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An Optimization Perspective on the Interactions
Between Models in the Internet of Drones

Hazim Shakhatreh, Wa’ed Malkawi, Ala Al-Fuqaha

Abstract—Unlike terrestrial wireless stations, using drones as
aerial wireless stations allows for improved wireless services
due to their 3D mobility. Therefore, model interactions play
a pivotal role in determining the locations and trajectories of
drones and their performance. In this paper, we discuss the
interactions between models in the Internet of drones under
different real-life scenarios. These models include: the channel
path loss models, intelligent reflecting surface (IRS) placement
model, solar energy model, wireless power transfer (WPT) model,
and power consumption model. Moreover, we discuss learned
lessons and highlight future research directions relevant to these
models.

Index Terms—Drones, optimization techniques, trade-off mod-
els, channel path loss, solar energy, wireless power transfer,
wireless networks.

INTRODUCTION

THe use of drones is becoming increasingly popular in
providing a variety of wireless services, including data

collection and wireless power transfer (WPT) in Internet of
Things (IoT) networks, providing wireless coverage for remote
areas, remote sensing, and cooperating with terrestrial wireless
networks to enhance wireless coverage. During a specific task
for a drone in a wireless network, it is important to consider
the trade-off models related to the service that a drone will
provide. These trade-off models will play an essential role
in determining the location and trajectory of a drone and its
performance quality. Flight time, power consumption, resource
usage, and performance are frequently trade-offs during design
optimization for drone operations in the Internet of drones. To
achieve the proper balance of these factors for drone operations
in the Internet of drones, we need to understand the trade-off
models for drones. For instance, using a drone at high altitudes
will provide a high probability of line-of-sight (LoS) wireless
channels with ground users, enhancing a drone’s coverage.
On the other hand, it will cause high power consumption for
a drone, minimizing a drone’s flight time.
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There are significant differences between the use of aerial
and terrestrial base stations in wireless networks. First, we
must choose the drone’s position in the horizontal space as
well as its altitude. Second, a terrestrial cell’s coverage area is
known in advance. Before solving the placement problem, it is
unknown what a drone’s coverage area is because it depends
on its 3D placement. Finally, the drone’s mobility enables it
to move to wherever the demand is, as opposed to a terrestrial
cell, which must wait for the demand to approach it. As a
result, it is important to identify the coverage area of a drone
that will bring in the most benefits for the Internet of drones
[1].

Path loss, a key consideration in the analysis and design
of wireless channels, reflects the signal’s loss of power. Due
to the variations in propagation conditions, wireless aerial
channels have different characteristics than wireless terrestrial
channels. So, compared to traditional terrestrial wireless chan-
nel path loss models, drone path loss models frequently differ
from those.

The expanded requirements for data transmission of wire-
less communication networks call for next-generation wire-
less networks to support aerial communications [2]. Beyond
fifth-generation (B5G) communication technology and sixth-
generation (6G) cellular communication both utilize intelligent
reflecting surfaces, or IRSs. To take advantage of this cutting-
edge technology for 6G communications, recent research
studies integrate an IRS into the Internet of drones. Improved
spectral and energy efficiency, increased network coverage,
and flexible deployment are some of the benefits of integrating
an IRS into the Internet of drones.

The drone-based communication systems’ onboard batteries
have a limited amount of energy storage capacity, which
limits their operational duration. To recharge their batteries,
the drones must frequently return to their charging stations. As
a result, these designs cannot ensure reliable and long-lasting
communication services, which could slow down system per-
formance [3]. Due to their potential to achieve perpetual
flight, solar-powered drones have drawn a lot of attention as
a solution to these drawbacks.

By lowering the energy use of an IoT device during data
transmission, using a drone as an aerial data collector can
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increase the lifetime of IoT networks, which necessitates an
efficient trajectory design for a drone because it also influences
the effectiveness of data collection. Another potential method
for increasing the lifetime of IoT networks is WPT technology,
in which a drone is utilized as a source of radio frequency
signals for IoT device recharging.

Utilizing a drone as an aerial base station requires con-
sidering different parameters that affect the drone’s power
consumption and therefore its performance. These parameters
include cruising velocity, power consumption of electronics,
power transfer efficiency for motor and propeller, lift-to-drag
ratio, drone mass, payload mass of communication devices,
and altitude of the drone.

The authors in [4] present the system trade-offs in multi-
drone networks. The trade-off analysis framework that is
presented in this research work involves four steps. The first
step is to define the goal of the drone network by defining
the requirements that must be met. The second step involves
identifying alternatives by formulating several courses of ac-
tion. The third step is to compare the alternatives in terms
of performance measures. The fourth step is to perform a
sensitivity analysis of the final solution to test the sensitivity of
the assumptions and confirm them. Moreover, they discuss the
design requirements and their impacts on drone components
and their major influence on drone performance.

In [12], [13], the authors revisit drone-enabled wireless
communication’s fundamental energy, delay, and throughput
trade-offs. In particular, it is shown that energy consumption,
delay, and throughput can be traded off using different drone
trajectory models, shedding new light on the trade-offs that
exist in terrestrial communication. The authors of [14] aim to
study and analyze the currently existing drones in terms of last-
mile and last-yard delivery possibilities. Numerical results and
linear relationships between drone energy efficiency, takeoff
weight, and payload are presented. The main contribution
of this study is to discuss the tradeoffs among drone last-
yard delivery constraints, safety, sustainability, and logistical
capabilities.

In [15], the authors present a comprehensive analysis of
the trade-offs between the key drone deployment parameters:
beamwidth, height, and coverage radius. They also provide a
mathematical model to estimate the received signal strength
at any distance from the antenna boresight as a function
of altitude and antenna beamwidth. The analysis has been
extended to multiple drones, and a new multi-drone packing
scheme is proposed for wireless coverage, which offers several
advantages over previous approaches.

However, the current research works [4], [12]–[15] do not
consider the interactions between trade-off models in the
Internet of drones for different real-life scenarios such as

channel path loss, IRS placement, solar energy, WPT, and
power consumption. In this research work, motivated by these
scenarios, we discuss the interactions between models in the
Internet of drones under different real-life scenarios. We also
present a comparison among these models. Moreover, we
discuss the lessons learned and future research directions of
these models.

The remainder of this research work is organized as follows.
In Section II, we discuss the methodology that is utilized in
this research work. In Section III, we present the trade-off
in path loss models for the air-to-ground scenario in urban
environments, the air-to-ground scenario in millimeter-wave
(mmWave) wireless networks, the outdoor-to-indoor scenario,
and the terrestrial cellular base station-to-drone scenario in
suburban environments. In Section IV, we discuss the trade-
off in the IRS placement model. In Section V, we present the
trade-off in the solar energy model. In Section VI, we discuss
the trade-off in the WPT model. In Section VII, we present
the trade-off in the power consumption model. In Section VIII,
we present a comparison of trade-off models. In Section IX,
we discuss the lessons learned and highlight future research
directions relevant to these models. Section X concludes the
study.

METHODOLOGY

In this section, we discuss the methodology that is utilized
in this research work. As we mentioned before, the Internet
of drones can be utilized in different real-life scenarios. The
performance of each scenario can be modeled as a mathemat-
ical equation to help understand the parameters affecting the
performance, and also to discover new features of the scenario.

Many research studies focus on a single trade-off model to
determine a placement for a drone. For instance, the drone can
be utilized to provide wireless coverage for ground wireless
devices in disaster situations. At high altitudes, there is a
greater chance of LoS connections, but there is also a greater
path loss between a wireless device and a drone. While there
is a low chance of LoS connections and the path loss decreases
at low altitudes. Therefore, there is an optimal placement for
a drone that balances the probability of LoS connections and
path loss. How about if this aerial station is a solar-powered
drone? In addition to considering the quality of providing
wireless coverage, we need to consider the captured solar
energy which is also affected by the placement of a drone.

In this research work, we discuss the interactions between
different models in the Internet of drones under different real-
life scenarios. Table 1 demonstrates the mathematical models
and parameters of these models in the Internet of drones that
have been utilized in this research work. We focus on how
trade-offs occur among these models when the placement of
a drone changes.
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TABLE I: Mathematical models and parameters of the trade-off models in the Internet of drones.

Model type Reference Mathematical model Parameters

Air-to-ground path loss model [5], [6] PLoS =
1

1 + α.exp(−β[θ − α])
PLoS : probability of having LoS

for drones in urban environments L = PLoSLLoS + (1 − PLoS)LNLoS α and β: constant values which depend on the environment
θ: elevation angle
L: average path loss
LLoS : average path loss for LoS
LNLoS : average path loss for NLoS

Air-to-ground path loss model for [7] PLoS = exp(−λgB

ri(hB − hR)

(hD − hR)
) λ: density of blockers

drones in mmWave wireless networks L = PLoSLLoS + (1 − PLoS)LNLoS gB : diameter of blockers
ri : 2D distance between the drone and the receiver
hD : height of the drone
hR : height of the receiver
hB : height of the blocker

Outdoor-to-indoor path loss model [8] L = LF + LB + LI = (wlog10d3D + wlog10f + g1) L: total path loss
+(g2 + g3(1 − cos(θ))2) + (g4d2D) LF : free space path loss

LB : building penetration loss
LI : indoor loss
w, g1 , g2 , g3 , and g4 : constant values
d3D : distance between the drone and the indoor user
d2D : distance between the building wall and the indoor user
f : carrier frequency
θ: incident angle

Path loss model of terrestrial cellular base [9] L = 10αlog(d) + A(θ − θo)exp(−
θ − θo

B
) + ηo L: total path loss

station-to-drone for suburban environments +N(0, aθ + σo) α: terrestrial path-loss exponent
d: terrestrial distance from the base station
A: excess path-loss scaler
θ: depression angle
θo : angle offset
B: angle scaler
ηo : excess path-loss offset
N : gaussian random variable
a: drone shadowing slope
σo : drone shadowing offset

Solar energy model [3] P =


ηSG, z ≥ Lu

ηSGe−β(Lu−z), Ll ≤ z < Lu

ηSGe−β(Lu−Ll), z < Ll

P : electrical output power of solar panels

η: energy harvesting efficiency
S: equivalent area of the solar panels
G: average solar radiation intensity on earth
z: altitude of the drone
β: absorption coefficient
Lu : altitude of the upper boundary of the cloud
Ll : altitude of the lower boundary of the cloud

WPT model [10] PT =
(mv + mp)v

370ηr
+ p PT : traveling power consumption

PH = 13.0397H + 196.8490 PH : hovering power consumption

PC =
pr

µ
PC : WPT consumption

mv : drone mass in kg
mp : drone payload in kg
v: speed of the drone in km/h
η: efficiency of power transfer for motor and propeller
r: lift-to-drag ratio
p: consumed power of electronics in kW
H: altitude of the drone
pr : harvested power by IoT device
µ: conversion efficiency

Power consumption model [11] PH = 13.0397H + 196.8490 PH : power consumption for hovering
EV = −16.9396H2 + 216.6944H − 157.9473 EV : energy consumption for flying vertically up
ES = −516V 4 + 4298V 3 − 12804V 2 + 15816V − 6251 ES : energy consumption with speed
PP = 0.001L2 + 0.0416L + 236.62 PP : power consumption for payload

H: relative altitude in meters
V : speed of a drone in meters per second
L: payload in grams

PATH LOSS TRADE-OFF MODEL

The trade-off in the air-to-ground path loss model: The
authors of [5], [6] present a model of air-to-ground path loss
for drones in urban environments and discuss the optimal
drone altitude for maximum wireless coverage. This model
is appropriate for the following three frequencies: 0.7 GHz, 2
GHz, and 5.8 GHz. The probability of LoS between a drone
and a wireless device in this model is a function of elevation
angle θ and propagation condition parameters. The trade-off
in this model is depicted in Figure (1.a). At high altitudes,
there is a greater chance of LoS connections, but there is also

a greater path loss between a wireless device and a drone.
While there is a low chance of LoS connections and the path
loss decreases at low altitudes.

The trade-off in the air-to-ground path loss model for
drones in mmWave wireless networks: The authors of [7]
present a model of air-to-ground path loss for drones in
mmWave wireless networks. MmWave systems have many
advantages, but they also have many technical challenges.
One of these is the short wavelength for signals, wherein
the LoS radio signal is obstructed by smaller objects. There-
fore, it is essential to consider the obstacles when assessing
the performance of the deployment of drones in mmWave



4

Higher path loss
Higher probability of LoS channel

Lower path loss
Lower probability of LoS channel 

0 500 1000 1500 2000 2500

Altitude (m)

90

95

100

105

110

115

120

P
a
th

 l
o
s
s
 (

d
B

)

Coverage Radius= 400m

Coverage Radius= 800m

Coverage Radius= 1200m

(a) The trade-off in the air-to-ground path loss model for drones in urban environments.1

Higher path loss
Lower effect of blockers

Lower path loss
Higher effect of blockers

0 50 100 150

Altitude (m)

105

110

115

120

125

130

135

140

P
a

th
 l
o

s
s
 (

d
B

)

Density of blockers= 0.02

Density of blockers= 0.06

Density of blockers= 0.1

(b) The trade-off in the air-to-ground path loss model for drones in mmWave wireless networks.2

Fig. 1: The trade-off in path loss models. This Figure shows that the lowest operating altitude is not the optimal altitude for
a drone. Therefore, the altitude of a drone should be optimized to have optimal performance quality in the Internet of drones.

wireless networks. Compared to lower frequencies, mmWave
frequencies present another challenge in that as the distance
between a drone and a wireless device increases, the path loss
increases noticeably. The trade-off in this model is depicted
in Figure (1.b). When the density of blockers increases, the
drone’s altitude is increased to increase the probability of LoS
connections while taking into account the growing path loss.
On the other hand, an environment with a low density of
blockers will allow a drone to fly at a low altitude to minimize
path loss.

The trade-off in the outdoor-to-indoor path loss mode:
According to the 5G infrastructure public-private partnership
(5G PPP) technology board report about data consumption
statistics, the vast majority of data usage occurs indoors [16].
The authors of [8] make use of an ITU-approved outdoor-
to-indoor path loss model to provide wireless coverage from

outdoor drones to indoor wireless devices. This model consid-
ers three types of losses, an indoor loss, a building penetration
loss, and a free space path loss. The indoor loss is a function
of the indoor distance between an indoor wireless device and a
wall of a building. The building penetration loss is a function
of an incident angle ϕ between a drone and an indoor wireless
device. The free space path loss is a function of the distance
between a drone and a wall of the building and the frequency.
The trade-off in this model is depicted in Figure (2.a). A
building penetration loss decreases while a free space path
loss increases as the horizontal distance between a drone and
a building wall increases. Similarly, as the horizontal distance
between a building wall and a drone decreases, the free space
path loss decreases and the building penetration loss increases.

The trade-off in the path loss model of terrestrial
cellular base station-to-drone for suburban environments:

1The parameters in numerical analysis are: the carrier frequency is 2 GHz, the average additional loss to the free space propagation loss for LoS and NLoS links are 1 dB and 20
dB respectively, and the parameter values α and β which depend on the environment are 9.6 and 0.28 respectively.
2The parameters in numerical analysis are: the carrier frequency is 28 GHz, the path loss model parameters for LoS are (αL = 61.4 and βL = 2), the path loss model parameters
for NLoS are (αN = 72 and βN = 2.92), the height of a receiver is 1.3 meters, the height of a blocker is 1.7 meters, and the diameter of a blocker is 0.5 meters.
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(b) The trade-off in the path loss model of terrestrial cellular base station-to-drone for suburban environments.4

Fig. 2: The trade-off in path loss models. This Figure shows that the horizontal placement of a drone should be optimized to
have optimal performance quality in the Internet of drones.

One possibility for providing the necessary backhaul links for
drones is the terrestrial cellular networks. Therefore, extending
traditional terrestrial cellular services to drones in future wire-
less networks is of great interest to the telecommunications
sector and standardization organizations. The authors of [9]
present a model of terrestrial cellular base station-to-drone
path loss for suburban environments. The trade-off in this
model is depicted in Figure (2.b). When the horizontal distance
between a drone and a terrestrial base station increases, the
path loss of a backhaul link from a terrestrial base station to
a drone increases, while the path loss of channels between
a drone and wireless devices decreases. Similarly, as the

horizontal distance between a drone and a terrestrial base
station decreases, the path loss of a backhaul link from a
terrestrial base station to a drone decreases, while the path loss
of channels between a drone and wireless devices increases.

IRS PLACEMENT TRADE-OFF MODEL

In the field of wireless communications research, a new
IRS concept has recently been introduced. The IRS is a 2D
electromagnetic material surface that has been artificially cre-
ated by humans, called a metasurface. It is made up of a vast
number of passive scattering elements that have been given a
unique physical structure. The electromagnetic characteristics

3The parameters in numerical analysis are: the carrier frequency is 2 GHz, the parameter values for the path loss model are (w = 20, g1 = 32.4, g2 = 14, g3 = 15, and
g4 = 0.5), and the distance between the indoor user and the building wall is 10 meters.
4The parameters in numerical analysis are: the carrier frequency is 2 GHz, the terrestrial path-loss exponent is 3.04, the excess path-loss scaler is -23.29, the angle offset is -3.61,
the angle scaler is 4.14, the excess path-loss offset is 20.7, the drone shadowing slope is -0.41, the drone shadowing offset is 5.86, the drone height is 150 meters, the average
additional loss to the free space propagation loss for LoS and NLoS links are 1 dB and 20 dB respectively, and the parameter values α and β which depend on the environment
are 9.6 and 0.28 respectively.
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of how the incident radio frequency signals reflect off of each
scattering component are changeable in a software-defined
way. It is possible to freely control the radio frequency signals’
reflecting phases and angles to synchronize phase control of
all scattering components to achieve the desired multipath
effect. In particular, to increase the received signal power
or decrease interference, the reflected radio frequency signals
can be added coherently or destructively. The range of user
needs that can be supported by wireless systems with IRS will
be greater, including more secure data transmissions, reduced
power consumption, expanded coverage, and increased data
rate [17].

It is challenging to support drones with high transmission
power while reducing inter-cell interference. Inter-cell inter-
ference in the aerial region is a problem that IRSs effectively
address and provide the wireless environment with a high
degree of design freedom. The elevation angle of a drone,
or the angle formed by the base station-drone link and the
horizontal plane, determines the level of interference in the
adjacent cells. A base station main beam spreads horizontally
when the elevation angle is small. As a result, drones in
the neighboring cell experience greater interference power.
To prevent this, IRSs are placed inside each cell to control
how signals are reflected and prevent them from penetrating
adjacent cells, as depicted in Figure 3. To offer precise
directivity in the base station-IRS-drone link and reduce the
transmission power used in the drone’s direct connection to
a base station, the base stations and IRSs work together
to perform beamforming. Drones that are close to or in its
line of sight are subject to severe interference because of
the base station-drone link’s powerful transmission power.
Instead of lowering the base station-drone link gain to prevent
interference in the neighboring cells, the base station-IRS-
drone link’s high gain transmission will prevent the spread
of transmitted signals over a wide area [18].

The trade-off in the IRS placement model: There is a
key trade-off in the IRS placement model. Base station-drone
direct links can cover a larger area when a cell boundary
and an IRS are close to one another, which causes the drone
that a base station serves to have a small elevation angle.
Consequently, the base station-drone link’s interference with
a different drone in the adjacent cell gets high. The IRS must
serve a drone at a smaller elevation angle when there is a
greater distance between it and the cell boundary, which results
in more interference from the base station-IRS-drone link.

SOLAR ENERGY TRADE-OFF MODEL

Fixed-wing drones can carry solar cells and utilize solar
energy. Utilizing a solar storage system can significantly
increase drones’ endurance while reducing fuel consumption.

IRS

Reflected signal suppresses
the transmission power in

the direct link

An interference-causing
directed signal spreads
to the neighboring cell

Fig. 3: Interference mitigation using IRS in the Internet of
drones.

Therefore, it appears that the hybridization of the power supply
system, which combines multiple power sources, is the best
option to ensure a high level of drone endurance. The use of
photovoltaic (PV) generation systems in unmanned vehicles,
such as drones, is getting a lot of attention. If a battery is set
up as a form of energy storage to power a drone during the
night or in the event of sun availability, then a drone equipped
with PV arrays can fly indefinitely. Drones that run on solar
power are frequently used for high-altitude, long-endurance
(HALE) applications. For solar-powered drones to receive the
most light energy, their wings must be large [19].

The trade-off in the solar energy model: The drone’s
flight altitude affects how much solar energy is captured. A
reduced flux of solar energy is received at the solar cell due
to the solar energy’s intensity significantly decreasing when
light passes through clouds. As a result, drones that are above
clouds typically have a higher capacity to capture solar energy
than drones that are below clouds. Since more energy could
be collected, a drone always prefers to fly at a higher altitude.
On the other hand, more path loss for wireless communication
channels is caused by higher flight altitudes for drones. The
trade-off in this model is depicted in Figure 4.

WPT TRADE-OFF MODEL

Recently, IoT networks have gained popularity because
they can significantly enhance the quality of human life
in different applications, such as environmental surveillance,
smart healthcare, and smart cities. By 2025, it is estimated
that there will be 25 billion IoT devices deployed for a wide
variety of applications. Due to the limited radio resources,
such a large number of devices with wireless connectivity will
put more strain on the current communications infrastructure.
Additionally, since IoT devices are typically randomly dis-
tributed, it is difficult to gather the data they generate for
further processing. Using drones as data collectors in IoT
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Fig. 4: The trade-off in the solar energy model. This Figure shows that the altitude of a drone should be optimized to have a
balance between the captured solar energy and the SNR.5

networks can significantly improve the performance of data
collection due to the advancement of drone technology and
the equipments used for communication has become smaller.

When designing a reliable and robust drone-enabled IoT
network, the energy problem poses a significant challenge
because IoT devices are usually deployed in locations with
unstable power sources or difficult access. Radio-frequency
WPT technology has been suggested as a solution to offer low-
power IoT devices a dependable energy supply to overcome
this challenge. WPT uses electromagnetic waves to transmit
radiation-based energy from a drone to an IoT device. The
channel between a drone and an IoT device, however, can
have a significant impact on WPT efficiency. Therefore, we
need to minimize the distance between a drone and an IoT
device and/or create LoS links to ensure WPT’s performance
[20].

The trade-off in the WPT model: The trade-off in the
WPT model is illustrated in Figure 5. When the hovering time
of a drone over an IoT device increases, more data is collected
from an IoT device, and more energy is transferred to an IoT
device, while the flight time of a drone decreases to cover
the other IoT devices. Similarly, when the hovering time of
a drone over an IoT device decreases, less data is collected
from an IoT and less energy is transferred to an IoT, while
the flight time of the drone increases to cover the other IoT
devices.

POWER CONSUMPTION TRADE-OFF MODEL

Automation research must address three key issues to make
drone tasks feasible in the Internet of drones. These key
issues are drone coordination, localization and navigation, and
drone design. Robust coordination will be needed to manage
thousands of drone agents in the air, sharing resources like
charging stations. Because so many platforms already exist
that support GPS, localization and navigation may seem like
problems that have been solved. However, using drones in
various operating environments, in changing and unstructured
environments, will necessitate the integration of sensors and
positioning systems still in development. Drone design entails
developing machines that are reliable, capable of operating in
a variety of environments, efficient, can hover, and can operate
in a wide range of conditions. This is a significant undertaking
that will require creativity and contributions from scientists in
various fields [10].

Despite growing popularity, a number of obstacles pre-
vent drone applications from reaching their full potential.
A significant disadvantage of drones is their short battery
life. The typical drones are electric motorized vehicles with
finite-life onboard batteries. Most drone applications can’t take
advantage of their full potential as a result. Planning drone
missions so that there is minimal power consumption will
help to overcome the limited flight time that drones have due
to their short battery lives. Energy-efficient drone trajectory
planning is required for drone applications. Identifying and
reducing actions that use a lot of power is crucial for achieving

5The parameters in numerical analysis are: the energy harvesting efficiency is 0.4, the equivalent area of the solar panels is 1 m2, the average solar radiation intensity on earth is
1367 W/m2, the altitudes of the upper and lower boundaries of the cloud are 700 meters and 1400 meters respectively, the absorption coefficient modeling the optical characteristics
of the cloud is 0.01, the carrier frequency is 2 GHz, the average additional loss to the free space propagation loss for LoS and NLoS links are 1 dB and 20 dB respectively, the
parameter values α and β which depend on the environment are 9.6 and 0.28 respectively, the noise power is -120 dBm.
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Fig. 5: The trade-off in the WPT model. This Figure shows that the hovering time of a drone over an IoT device should be
optimized to have an efficient trajectory for data collection and WPT operations in IoT networks.6

energy-efficient drone missions. Following an accurate and
thorough model of drone power consumption is crucial for
this. It would be possible to plan drone flight missions and
recharge batteries more effectively with the help of a precise
model of battery performance in various scenarios [11].

The trade-off in the power consumption model: The
trade-off in the power consumption model is illustrated in
Figure 6. The movement type, speed, and payload parameters
will be crucial in this model, while the power requirement
for communication can be regarded as insignificant. The
total power consumed by onboard sensors and communication
hardware is fixed and low.

A COMPARISON OF TRADE-OFF MODELS

To utilize drones as aerial base stations, we need to model
the path loss for drone wireless channels for different fre-
quency bands, different environments, and different scenarios.

The altitude of a drone should be optimized to have optimal
performance quality in the Internet of drones when wire-
less devices are outdoors. On the other hand, the horizontal
placement of a drone should be optimized to have optimal
performance quality in the Internet of drones when wireless
devices are indoors or when considering the performance of a
backhaul link with a ground base station.

In IRS-aided Internet of drones, the IRS placement should
be optimized inside each cell to control how signals are
reflected and prevent them from penetrating adjacent cells.
For solar-powered drones, the altitude of a drone should be
optimized to have a balance between the captured solar energy
and the SNR.

In drone-enabled IoT networks, the hovering time of a drone
over an IoT device should be optimized to have an efficient
trajectory for data collection and WPT operations. On the other
hand, the movement type, speed, and payload parameters will

6The parameters in numerical analysis are: the dimensions of the geographic area are 250m x 250m, the number of IoT devices is 100, the energy capacity of the drone is 80
W.h, the drone payload is 2 k.g, the drone mass is 8 k.g, the speed of the drone is 1.8 km/h, the efficiency of power transfer for motor and propeller is 0.8, the lift-to-drag ratio
is 3, the consumed power of electronics is 0.25 kW, the altitude of the drone is 5 meters, the power consumption of the drone during the recharging is 0.1 kW, the conversion
efficiency is 0.5, and the data rate of each IoT device is 250 kbps.
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Power consumption model

Hovering: With the altitude
increasing of a drone, hovering
requires more power.

Horizontal movement: Throughout
the duration of the flight, the power
consumption is constant. Due to the
slight vertical movements a drone
made, there are small variations in
power consumption.

Vertical movement: Flying requires
more power as a drone’s altitude
increases.

Speed: Speed causes a significant
increase in the in stantaneous power
consumption. However, speed does
not directly cause an increase in total
energy consumption because the
overall amount of time needed to
arrive at a particular placement
decreases.

Payload: The power consumption of
the drone increases in direct
proportion to its payload.
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Fig. 6: The trade-off in the power consumption model. This Figure shows that the movement type, speed, and payload parameters
are crucial to achieving energy-efficient drone missions.7

be crucial to achieving energy-efficient drone missions. Figure
7 summarizes the comparison among these models.

In Figure 8, we demonstrate how the vertical and horizontal
movements of a drone affect the trade-off model in the
Internet of drones. The models that are affected by the vertical
movement are the air-to-ground path loss model, the air-to-
ground path loss model for mmWave, the solar energy model,
and the WPT Model. On the other hand, the outdoor-to-
indoor path loss model and the path loss model of a terrestrial
cellular base station are affected by horizontal movement.
The models that are affected by the vertical and horizontal
movements of a drone are the IRS placement model and the
power consumption model.

LESSONS LEARNED AND FUTURE RESEARCH DIRECTIONS

In the following paragraphs, we summarize the learned
lessons from our study and highlight future research directions

that are relevant to the drone models:

• Path Loss Trade-off Model: Most of the proposed path
loss models for drones are performed using simulation
software. To make use of drones as aerial base stations,
we need to conduct actual experiments to model the
drones’ path loss. These experiments should include
different frequency bands, different environments, and
different scenarios. These realistic path loss models will
help telecommunications companies to appropriately use
drones in future wireless networks. Moreover, additional
experiments in various flight scenarios will aid in elabo-
rating the stationary characteristics of the drone channels.

• IRS Placement Trade-off Model: A problem involving
aesthetics is one of the real challenges in commercializing
IRS-aided systems. The roofs or walls of buildings are
typically where IRSs are installed. Consequently, an
unannounced IRS deployment could ruin the appearance

7The parameters in numerical analysis are: the power consumption model for hovering with altitude is (P = 13.0397H + 196.8490), the energy consumption model for flying
vertical up is (E = −16.9396H2 + 216.6944H − 157.9473), the energy consumption model with speed is (E = −516V 4 + 4298V 3 − 12804V 2 + 15816V − 6251),
and the power consumption model for payload is (P = 0.001L2 +0.0416L+236.62) where H is a relative altitude in meters, V is the speed of a drone in meters per second,
and L is a payload in grams.
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IoT

In drone wireless networks, the
altitude of a drone should be
optimized to have a balance
between LoS connections and
path loss.

In mmWave drone networks, the
altitude of a drone should be
optimized to have a balance
between the effect of the density
of blockers and path loss.

When a drone is providing
wireless coverage for indoor
wireless devices, the horizontal
placement of a drone should be
optimized to have optimal
performance quality.

The horizontal placement of a
drone should be optimized to
have a balance between the
path loss of a backhaul link from
a terrestrial base station to a
drone and the path loss of
channels between a drone and
wireless devices.

In IRS-aided drone wireless
networks, the IRS placement
should be optimized inside each
cell to control how signals are
reflected and prevent them from
penetrating adjacent cells.

For solar-powered drones, the
altitude of a drone should be
optimized to have a balance
between the captured solar
energy and the SNR.

In drone-enabled IoT networks,
the hovering time of a drone over
an IoT device should be optimized
to have an efficient trajectory for
data collection and WPT
operations.

The movement type, speed, and
payload parameters will be crucial
to achieving energy-efficient
drone missions.

Fig. 7: A comparison of trade-off models. This Figure shows the crucial parameters for trade-off models in the Internet of
drones.

of a location. To increase the signal’s strength as it
travels along a reflecting path before reaching users,
IRS should also have a good propagation path free of
obstacles. Therefore, the installation location constraints
should be added to the problem of optimal placement
for an IRS. Additionally, there is still much to be learned
about how many IRSs are required to accommodate users’
high levels of mobility. MmWave and sub-terahertz (THz)
frequencies, reflection efficiency of IRSs, and security
vulnerabilities of IRSs are possible research opportunities
for IRS-aided drone applications in the future.

• Solar Energy Trade-off Model: The performance of a
single source-based power supply system for a drone will
be severely constrained due to its poor performance in a
variety of real-life scenarios. As a result, when designing
a drone’s electric power system, power sources with
different properties are increasingly being hybridization.
Choosing a hybrid power source is highly influenced by
the weight/duration requirements of the drone tasks. Pos-
sible research opportunities to enhance energy harvesting
for drones include mechanical energy harvesting using
flapping wing motion and wind-induced vibration.

• WPT Trade-off Model: Using a drone as a flying data
collector and an aerial charger using WPT technology
can prolong IoT networks’ lifetime by reducing the
consumption of IoT devices’ energy, which necessitates

route planning for drones. Drones’ flight times can be
prolonged, which will improve their performance in IoT
networks, by utilizing the WPT technology in their
interaction with other energy storage systems, such as
the power transfer among drones and electric vehicle-
drone charging systems. To help autonomously update
drone trajectories online, reinforcement learning tools
may present research opportunities.

• Power Consumption Trade-off Model: The weight
and size of the equipment that drones can carry are
constrained. Most power loggers that are available com-
mercially are either too heavy or too big to be carried by a
drone. The GPS signal strength is essential for controlling
a drone to achieve the desired trajectory. For a drone, a
3D GPS with a sufficient number of satellites visible is
required. On the availability and strength of GPS signals,
environmental factors have a significant impact. The
external payloads on a drone must be perfectly balanced
when conducting experiments with payloads. The flight
and a secure landing depend on this. It’s crucial to have
good wind conditions. The drone needs to have favorable
wind conditions because it struggles to do missions in
windy conditions. This has a significant impact on the
drone’s power usage as well. Investigating the similarities
and differences between the power consumption models
of various drone types would be a possible future research
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Fig. 8: A comparison of trade-off models based on vertical and horizontal movements of a drone. This Figure shows how the
type of drone’s movement affects the trade-off model in the Internet of drones.

direction.
• The Joint Trade-off of Drone Models: Many research

studies focus on a single trade-off model to determine a
3D placement for a drone. Considering the joint trade-off
models for drones in wireless networks will enhance the
performance quality of these vehicles. To clarify the joint
trade-off of these models, the benefits and drawbacks are
presented when the vertical and horizontal placements of
a drone are changed. When a drone’s altitude increases,
the probability of LoS channels increases, the effect
of blockers decreases, and the capture of solar energy
increases. On the other hand, when a drone’s altitude
decreases, the path loss decreases, the SNR increases,
the quality of WPT and data collection increases, and the
lifetime of a drone increases. When a drone’s horizontal
placement changes, the operators of wireless networks

should consider many issues such as the quality of service
for indoor wireless devices, the proper balance between
the path loss for a backhaul link and the path loss for
wireless devices, and the IRS placement.

CONCLUSION

The interactions between trade-off models in the Internet
of drones for different real-life scenarios are discussed in this
article. These models are the channel path loss model, IRS
placement model, solar energy model, WPT model, and power
consumption model. We also present a comparison among
these models. Furthermore, the lessons learned and future
research directions of these models are discussed. Utilizing
these models with machine learning and artificial intelligence
techniques is a promising future direction for research.
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