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Abstract

Objective: Clinical adoption of innovative EEG technology is contingent on the non-inferiority of the new devices relative

to conventional ones. We present the four key results from testing the signal quality of Zeto’s WR19 EEG system against

a conventional EEG system conducted on patients in a clinical setting. Methods: We performed 30-minute simultaneous

recordings using the Zeto WR19 (zEEG) and a conventional clinical EEG system (cEEG) in a cohort of 15 patients. We

compared the signal quality between the two EEG systems by computing time domain statistics, spectral density, and signal-

to-noise ratio. Results: All the statistical comparisons resulted in signal quality non-inferior relative to cEEG. (i) Time domain

statistics, including the Hjorth parameters, showed equivalence between the two systems, except for a significant reduction of

sensitivity to electric noise in zEEG relative to cEEG. (ii) The point-by-point waveform correlation between the two systems was

acceptable (r>0.6; P<0.001). (iii) Each of the 15 datasets showed a high spectral correlation (r>0.99; P<0.001) and overlapping

spectral density across all electrode positions, indicating no systematic signal distortion. (iv) The mean signal-to-noise ratio

(SNR) of the zEEG system exceeded that of the cEEG by 4.82 dB, equivalent to 16% improvement. Conclusion: In terms

of signal quality, the zEEG system is non-inferior to conventional clinical EEG systems with respect to all relevant technical

parameters that determine EEG readability and interpretability. Significance: Zeto’s WR19 wireless dry electrode system has

signal quality in the clinical EEG space equivalent to traditional cEEG recordings.
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Abstract— Objective: Clinical adoption of innovative EEG 

technology is contingent on the non-inferiority of the new devices 
relative to conventional ones. We present the four key results from 
testing the signal quality of Zeto’s WR19 EEG system against a 
conventional EEG system conducted on patients in a clinical 
setting. Methods: We performed 30-minute simultaneous 
recordings using the Zeto WR19 (zEEG) and a conventional 
clinical EEG system (cEEG) in a cohort of 15 patients. We 
compared the signal quality between the two EEG systems by 
computing time domain statistics, spectral density, and signal-to-
noise ratio. Results:  All the statistical comparisons resulted in 
signal quality non-inferior relative to cEEG. (i) Time domain 
statistics, including the Hjorth parameters, showed equivalence 
between the two systems, except for a significant reduction of 
sensitivity to electric noise in zEEG relative to cEEG. (ii)  The 
point-by-point waveform correlation between the two systems was 
acceptable (r>0.6; P<0.001). (iii) Each of the 15 datasets showed a 
high spectral correlation (r>0.99; P<0.001) and overlapping 
spectral density across all electrode positions, indicating no 
systematic signal distortion. (iv) The mean signal-to-noise ratio 
(SNR) of the zEEG system exceeded that of the cEEG by 4.82 dB, 
equivalent to 16% improvement. Conclusion: In terms of signal 
quality, the zEEG system is non-inferior to conventional clinical 
EEG systems with respect to all relevant technical parameters that 
determine EEG readability and interpretability. Significance: 
Zeto’s WR19 wireless dry electrode system has signal quality in 
the clinical EEG space equivalent to traditional cEEG recordings.   
 

Index Terms—EEG, signal quality, Hjorth parameters, 
electrophysiology, signal-to-noise ratio, spectral density, dry 
electrodes, wearable sensors.  
 

I. INTRODUCTION 
ireless technology is transforming the practice of 
electroencephalography (EEG), yet a smooth transition 
to the new technology is contingent upon 

uncompromised data quality [1]. Therefore, a thorough 
technical validation of a new EEG instrument is critical to 
clinical adoption. Zeto introduced a wireless dry electrode 
system, consisting of the WR19 headset and software platform, 
to improve accessibility, turnaround times, user convenience, 
patient comfort and experience. It provides easy setup/removal 
and real-time remote monitoring an FDA 510(k) clearance in 
2018 based on clinical studies that demonstrated non-inferiority 
to a conventional clinical EEG system. Here, we are reporting 
the results of a study conducted by an independent team of 
physician experts from the Department of Neurology and 

 
The paper was submitted for review on 04/16/2024. Z.N. Author is with the 

1Zeto, Inc., Santa Clara, CA; 2 UT Austin, Austin TX; 3 Eötvös Loránd 
University, Budapest, Hungary. Authors A.S.F., R.S.F., C.T.P. and K.G. are 
with the 4Department of Neurology and Neurological Sciences, Stanford 

Neurological Sciences of Stanford, who integrated the Zeto 
WR19 system in their routine clinical exam by using it 
simultaneously with a conventional device as a reference.  

In the typical process of setting up an EEG recording using 
conventional equipment, a trained technologist measures the 
head, marks electrode locations, abrades the skin, and applies 
paste and electrodes to the scalp, eventually tethering the 
patient to a box with wires. This procedure consumes time, 
requires technologists who need to be perpetually on call, and 
puts patients through a needlessly uncomfortable experience. 
The scarcity of technologists makes the problem worse, even 
unfeasible in many hospitals, emergency rooms, and other 
outpatient settings. Essential features such as easy data sharing 
and remote interpretation remain unavailable. 

Zeto’s EEG Platform (zEEG) provides an FDA-cleared, 
commercially available, minimal-prep, wireless, dry electrode 
alternative to the conventional EEG that can be used to perform 
a clinical EEG anywhere. Data is streamed to a secure cloud 
platform that provides live display. The zEEG system also 
provides tools for analysis and optional remote interpretation 
by neurologists. The WR19 headset uses soft gel-tip electrodes 
that do not require skin preparation or electrode paste, are dry 
to the touch, and leave no residue. Hence, the setup time is 
typically under 5 minutes, with the single-use disposable 
electrodes making patient clean-up and turnaround time much 
quicker. In addition to providing soft contact, the soft tips and 
flexible wires on the electrodes improve the stability of the 
electrode-to-skin interface.  

The advantages of dry electrodes in reducing preparation 
time are broadly recognized. Many publications demonstrate 
the competitive performance of dry electrodes relative to 
conventional systems [2-11]. While dry electrodes significantly 
improve patient comfort and reduce the EEG preparation time, 
they pose technical challenges that need to be solved with 
complete system engineering. 

Because signal equivalence is pivotal for clinical 
interpretability, the zEEG system leveraged four key 
innovations to protect signal quality: signal conditioning, noise 
shielding and cancellation, increased signal resolution, and 
artifact management: 

Signal conditioning: Since the magnitude of EEG signal is of 
the order of μV, it is susceptible to external noise. EEG signals 
on the scalp are weak as the outer layer of the skin, the 
'epidermis,' presents a high impedance path [10,12]. These 
signals are too weak to drive through a long wire (several feet) 
to reach the amplifier box. Hence, before placing the electrodes, 
EEG technologists abrade the skin surface (effectively 

University, Palo Alto, CA.  (correspondence e-mail: zoltan@utexas.edu). Z.N. 
and R.S.F. hold stock options in Zeto. The WR19 headsets and electrodes were 
provided by Zeto, Inc., Santa Clara, CA. 
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scratching away the epidermis layer) and apply a conductive 
paste to lower the skin impedance to 10 KΩ. Therefore, in 
conventional EEG systems, the impedance needs to be 
constantly monitored to be at or below the 10 KΩ threshold; 
otherwise, electrical interference would contaminate the signal. 
The zEEG headset was designed to circumvent the skin 
preparation by placing pre-amplification close to the electrodes. 
The pre-amp (front-end amplifier) converts the signal from a 
weakly driven, high-impedance input to a strongly driven, low-
impedance output with precise gain matching between 
amplifiers, matched to the level of 5 x 10-4. This provides 
extremely high input impedance (1 TΩ) and low leakage current 
(< 0.5 pA). Once amplified, the signals are less susceptible than 
passive electrode systems to pick up external noise. This 
enables dry electrodes to work with minimal skin preparation. 

Noise shielding and cancellation: The zEEG headset 
employs noise shielding to protect the signal from external 
interference through several proprietary methods. In addition, 
active noise cancellation enables further improvement in signal 
quality.  

Signal resolution: The zEEG headset utilizes the latest 
generation 24-bit ADC, which offers superior range (± 350 mV) 
and exceptional linearity. The amplitude of the common mode 
signal can be as high as several volts, while EEG is in the range 
of several tens of microvolts. Hence, at least 100 dB of 
Common Mode Rejection Ratio is essential. Therefore, the data 
acquisition systems must suppress common mode voltage down 
to a few microvolts while the bioelectric signal (differential 
mode signal) must be amplified [13]. To achieve that, the zEEG 
headset uses a patent-pending active common mode 
cancellation technique. This technique dynamically calculates 
the average common mode voltage and applies negative 
feedback that cancels out the common mode voltage appearing 
in every channel. 

Artifact management: One of the biggest concerns with dry 
electrodes is their sensitivity to movement-related artifacts. 
Conventional wet electrodes eliminate this problem by being 
glued to the scalp. The conductive paste also acts as a shock 
absorber, minimizing relative motion between the electrode and 
scalp, thereby reducing motion artifacts. In the zEEG headset, 
the mechanical design minimizes relative motion between 
electrode and scalp via a carefully engineered helmet, using 
adjustable bands, spring-loaded and flexible electrodes with 
soft gel tips. These mechanisms work synergistically to ensure 
each electrode stays in contact with the skin despite motion. 

Each of these methods can improve the quality of EEG, but 
their combined effect significantly reduces systematic noise. As 
a result, the signal-to-noise ratio (SNR) of zEEG headset 
exceeds the SNR of conventional EEG (see Results).  
 
This study focuses on four features of equivalence:  
 

1. Time domain statistics: We compared the Hjorth 
parameters, artifact prevalence, baseline wander and 
electric noise susceptibility between the two systems.  

2. Point-by-point amplitude correlation: We tested the 
correlation between the zEEG and cEEG waveforms. 
Technically, we measured the voltage of the two 
corresponding signals at each ti sampling point in μV 
and computed the correlation between the sequences 

of measurements over an interval of ti..n for each 
electrode position. 

3. Spectral-domain correlation: We computed the 
spectral density in sliding windows per electrode and 
expressed the correlation between the two continuous 
power spectra. 

4. Signal-to-noise ratio (SNR) estimate: We defined the 
SNR at each data point of both time series per 
electrode position. Then, we compared the SNR 
distributions between the two systems at each 
electrode position using multiple t-tests.  
 

We set up the following acceptance criteria for equivalence: 
 

1. Time domain statistics are considered statistically 
equivalent between the two types of EEG recordings 
if, based on non-parametric statistics, such as 
Wilcoxon’s signed rank test, we cannot reject the null 
hypothesis.  

2. The point-by-point amplitude correlation must 
demonstrate a visually compelling similarity of 
waveforms by overlaying the zEEG and cEEG data on 
a shared μV axis separately for every electrode 
position. The similarity has to be quantified by 
computing the point-by-point Pearson’s correlations 
between the corresponding EEG data for all electrode 
positions. Pearson’s r > 0.5 will be acceptable, 
considering the necessary spatial separation between 
the corresponding electrode pairs (see Methods and 
Discussion).  

3. We consider the zEEG and cEEG power spectra 
equivalent if the average spectral density +/- standard 
deviation overlaps along the clinically relevant 0.1 to 
80 Hz frequency range.  In addition, Pearson’s 
correlation coefficient between the mean spectral 
density curves should exceed 0.9 to recognize the two 
recordings as equivalent in the spectral domain.  

4. We consider the two SNR equivalent if the aggregated 
SNR distribution of zEEG and that of the cEEG are 
statistically indistinguishable using a one-sample t-
test. Since the null hypothesis of the test is 
equivalence, the rejection of the null indicates the 
superior performance of one system over the other in 
terms of SNR.    

 
 
 

II. METHODS 
 
To compare the EEG signals between the cEEG (Nihon-
Kohden JE-921A system) and zEEG (Zeto WR19 wireless 
headset), we simultaneously recorded 30-minute duration 
EEGs from fifteen patients at the Department of Neurology & 
Neurological Sciences at Stanford. All patients have consented 
under the Stanford IRB’s oversight (eProtocol #: 61767, 
Approval Date: January 30, 2023). 
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The zEEG system uses proprietary active electrode 

technology and cloud-based software (the Zeto Cloud 
Platform). First, the zEEG headset was placed on the 
participant’s head, electrodes by design positioned according to 
the international 10-20 convention, and the headset was 
fastened using a chinstrap. The electrode contact quality was 
checked, and only after good contact quality was confirmed for 
all electrodes did the EEG technologist attach the cEEG 
electrodes. The skin area next to the zEEG electrodes, 
approximately 1 cm away was cleaned with NuPrep. The 
electrodes used in the cEEG were disposable Ag/AgCl cup 
electrodes loaded with Ten20 conductive paste and attached to 
the skin with adhesive medical tape. The cEEG electrodes were 
placed approximately 1 cm posterior to the zEEG electrodes to 
avoid an electric bridge between them. Subjects sat in a reclined 
chair with a back pillow or neck roll (Fig. 1). The sampling rate 
of zEEG and cEEG systems were set to 250 and 200 sample/s, 
respectively. 

As part of the time-domain comparison, we computed the 
Hjorth parameters: activity, mobility, and complexity. These 
parameters were introduced by Bo Hjorth [14] to indicate 
whether the EEG is fit for feature extraction.  

The activity parameter represents the signal power as the 
variance of the signal: 

 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑣𝑎𝑟*𝑦(𝑡)-, 

 
where y(t) represents the time-varying signal.   

The mobility parameter is the square root of the ratio of the 
variance of the first derivative of the signal to that of the signal. 
This parameter expresses the mean frequency or the proportion 
of the standard deviation of the power spectrum. 

 
 
 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 3𝑣𝑎𝑟 4
𝑑𝑦(𝑡)
𝑑𝑥 7

𝑣𝑎𝑟(𝑦(𝑡)) . 

 
The complexity parameter represents the change in 

frequency. It expresses the signal's similarity to a pure sine 
wave when its value converges to 1. 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 	
!"#$%$&'(!"($)!$ )

!"#$%$&'('(&))
. 

 
In addition, we computed the kurtosis, i.e., the ‘‘tailedness” 

of the amplitude probability distribution. Kurtosis is the fourth 
moment of the signal and characterizes the deviation of the 
amplitude distribution from the standard-normal distribution, 
which is the signature of an artifact-free EEG. Kurtosis is 
defined as:    

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝐸 BC
𝑦 − 𝜇
𝜎 G

,
H, 

 
where y is the time-domain signal, µ is the mean of y, s is its 
standard deviation and E is the expected value of y. Kurtosis 
measures the prevalence of outliers. For instance, if the 
distribution has a Kurtosis>3 (“leptokurtic”), the signal 
contains a substantial number of outliers.  

Another measure of the prevalence of outliers was the artifact 
ratio. Artifacts were defined as the fraction of data points with 
an absolute value > 6 STD from the mean. Kamousi et al. [15] 
introduced this metric, which we adopted for comparison.  

Moreover, we computed a “baseline wander” parameter to 
quantify the change of the average baseline drift that occurred 
between successive 10 s segments over the whole EEG, also 
adopted from [15].   

As the last parameter in the time domain statistics, we 
computed the average power of 60 Hz electrical noise 
interference with the unfiltered EEG signal between 59 and 61 

 
Figure 2: The method of adaptive alignment of the signals recorded by 
the Zeto and the conventional EEG system. The plots on the top show 
two 10 s EEG signals recorded from channel-F4 at the beginning of the 
recording and 100 s later. During the recording, a drift occurred as 
expected between the clocks of the two independent EEG systems 
resulting in an offset between the two signals (top right). Using 10 s 
time windows we calculated the signal-to-signal correlation between the 
two recordings, and we added variable delays between -200 to + 200 ms 
to one of the signals and re-calculated the correlations. We used a DT 
correction that resulted in the best correlation between the two EEGs 
and applied that correction to the entire 10 s data. The algorithm then 
recursively computed the delay between the subsequent 10 s data 
segments.   
 

 
Figure 1: The set-up of simultaneous recordings in clinical environments. 
Patients were leaning back in a comfortable position while the Zeto WR-
19 headset was positioned first, followed by arranging the gel-loaded 
clinical electrodes as close as possible to the Zeto electrodes. All 
recordings yielded clinically interpretable signals on all electrodes. The 
inset at the lower left is a photograph of the WR19 headset. 
 

zEEG

cEEG

WIFI

wired connecion

ref

Simultaneous zEEG and cEEG recording
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Hz. AC electrical noise contaminates the signal arising from 
brain’s intrinsic gamma oscillations, which holds diagnostic 
utility. Hence, susceptibility to this noise is an important metric 
for comparing EEG systems as it indicates the efficacy of 
system engineering.  

We compared all the above-described metrics between the 
two systems by averaging each parameter across the 19 
electrode positions and computing the within-subject 
differences using Wilcoxon’s signed rank tests. 

The most compelling demonstration of signal equivalence is 
the visual comparison of the two simultaneous waveforms 
recorded from adjacent electrodes. A point-by-point amplitude 
comparison requires perfect temporal and amplitude alignment 
between the two EEG samples. To achieve that, the amplitudes 
were displayed relative to a common μV scale using referential 
montages for both systems. The temporal alignment involved 
multiple steps. First, to match the sampling rates, we up-
sampled the cEEG data from 200 Hz to 250 Hz using Matlab’s 
(Mathworks, Natick, MA) cubic-spline interpolation method. 
To enable a rudimental offline synchronization between the two 
recordings, we asked each participant to make five consecutive 
blinks at the beginning of the recording, and we used those 
blinking artifacts as markers to align the recordings. In order to 
precisely align the two signals at sampling precision (4 ms) and 
maintain their synchrony over time, we introduced an adaptive 
alignment method (Fig. 2). Briefly, we divided both EEG data 
 
1  Reference to Encevis’ FDA 510(k) approval letter: 
https://www.accessdata.fda.gov/cdrh_docs/pdf17/K171720.pdf 

sets into 10 s nonoverlapping segments. Then, we shifted the 
entire zEEG data (all channels) in time from -80 to +80 ms in 4 
ms steps and computed the correlation between all 
corresponding data points within that segment. The average 
correlation over the 19 electrodes was the signal correlation for 
that specific time shift. Next, we repeated the process with 
incremental time shifts until completion of the full 160 ms 
range and identified the single time shift associated with the 160 
ms long correlation curve. We realigned the zEEG relative to 
cEEG by applying the shift (usually not more than two 
sampling points) that provided the highest correlation for the 
given segment and iterated the process for all other segments 
(Fig. 3). This method compensated for the occasional sample 
drifts that could occur due to independent clock signals and kept 
the two samples synchronized over the entire duration of 
recordings. While this adaptive realignment was crucial for 
estimating the signal correlation, the number of such 
realignments was negligible. This method allowed for 
computing a direct point-by-point correlation, spectral 
correlation, and signal-to-noise (SNR) estimations. 

To compare the spectral characteristics of signal 
transmission between the zEEG and cEEG systems, we used a 
sliding-window implementation of the power spectral density 
estimate (Matlab, Mathworks, Natick, MA) with 10 s 
overlapping windows. The spectral density function was 
smoothened by a moving average of two points for each time 
window and averaged across all time windows to obtain a mean 
spectral density function and standard deviation (STD). We 
computed Pearson’s correlation coefficients of the zEEG and 
cEEG average spectral density functions between 
corresponding frequencies at 0.1 Hz resolution.    

Because signal and spectral correlations can only estimate 
the equivalence/non-equivalence of the two systems but do not 
determine which system performs better, we sought a method 
to estimate signal quality at a common scale. The signal-to-
noise ratio provides an estimate of the fidelity of the signal and 
allows for a direct comparison of the two systems. The 
challenge is to work out an objective method to separate the 
noise from the signal in the EEG data because we do not have 
direct access to the intra-cortical dipoles that underlie the 
signal, which propagates to the surface and manifests as scalp 
EEG. As an alternative, we can utilize an unsupervised artifact 
reduction algorithm that removes the noise from EEG 
recordings and allows for estimating the noise as the difference 
between the original and the artifact-reduced EEG. The method 
is unbiased if we apply the same noise removal algorithm to 
both EEG data. We utilized ‘PureEEG,’ an FDA-cleared1 
digital artifact reduction (AR) software module based on a 
stochastic, spatio-temporal model for EEG, developed by 
Encevis (AIT, Austria) [16], which inputs the original raw EEG 
and outputs the artifact-reduced estimate of the same EEG. 
Even if the AR method was imperfect, as it might have altered 
the true signal, applying it to both EEG recordings affects both 
signals to the same extent. To calculate SNR, we considered the 
AR signal to represent the “true signal” and the difference 
between the “true signal” and the original raw EEG as “noise.” 

 
Figure 3: The pipeline of data processing. The same data processing steps 
were applied to both EEG recordings except the adaptive realignment 
applied to the zEEG data stream. (It does not matter which system we 
applied the adaptive realignment.) We computed two main outputs, and 
plotted the signal correlations and from the spectral analysis we plotted the 
spectral correlations.  
 

https://www.accessdata.fda.gov/cdrh_docs/pdf17/K171720.pdf
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Then, we computed the SNR for both systems at each electrode 
position separately (Fig. 4). The average channel-by-channel 
SNR was considered as the mean SNR of a given system and 
compared to the mean SNR of the other system. This method 
provided a relatively unbiased estimate of the signal quality in 
dB for both systems. 

 

III. RESULTS  
 

Data were analyzed from all 15 patients enrolled, ages 
between 19 and 70 years old; seven of them were females. All 
15 recordings resulted in acceptable quality EEG signals for 
90% of the total recording duration on all 19 electrodes, and 
10% were unreadable due to artifacts in both systems (this 
proportion of artifacts is typical due to involuntary movements 
and verbal interactions with the patients during the recording). 
Interpretations from cEEG included abnormal (n=3), diffusely 
slow (n=1), and focally slow (n=1), with none showing ictal 
activity.  

The analysis of time-domain statistics revealed no significant 
difference between the zEEG and cEEG systems in all metrics 

we tested except the sensitivity to electric noise (Table 1). The 
zEEG system showed a significant reduction of 60 Hz power 
line interference with the signal (p=0.0003) relative to the 
cEEG, an effect attributable to the driven analog (EEG) signal 
and noise shielding in the Zeto WR19 headset.  

None of these metrics can substitute for the direct visual 
comparison of a 10 s sample of two EEGs displayed in a 
superimposed fashion, including all 19 electrodes (Fig. 5). Note 
the substantial overlap between the EEG waveforms. 

To substantiate the visual assertion of similarity, we 
computed the point-by-point correlation between pairs of 
waveforms for the complete 30-minute recordings for each 
participant. None of our datasets showed a less than 0.6 
Pearson’s correlation coefficient (r>0.6; P<0.001), even though 
the two systems were not recorded at the same sampling 
frequency and electrodes were 1-2 cm apart (Fig. 5). 

Because relevant clinical information is concealed in the 
spectral domain, it is critical to assert any systematic 
discordance in spectral characteristics between the two systems. 
Therefore, we compared the mean and standard deviation of 
spectrograms computed across 10 s sliding windows (Fig. 6). 
The overlap between the STD bands around the mean spectral 
density curves suggests no systematic spectral difference 
between zEEG and cEEG in the 0.1-80 Hz range (Fig. 6,7).  The  

Parameter Mean 
zEEG 

Mean 
cEEG 

P 

Hjorth Activity 7748.4    4074.18  0.0832 
 Mobility 0.1308 0.1648 0.0637 

Complexity 4.1175 3.5492 0.0637 
Artifact Ratio 0.0035 0.0029 0.1688 
Curtosis 570.23 1060.29   

   
0.4543 

Baseline  
wander 

1.4045 0.9526 0.0833 

Electric noise 5.349  15.1338   0.0003 
*** 

Table 1. Comparison of non-spectral EEG quality indicators. 
Parameter definitions are in the text. The P statistics were obtained by 
using Wilcoxon’s signed rank test, a non-parametric test for 
comparing rank-ordered data.   Only electric noise showed a 
significant difference, in favor of zEEG. 

 

 
Figure 4: The method of calculating the signal-to-noise ratios for the two 
systems. The top panel illustrates a 5 s sample of raw EEG recorded by the 
zEEG system and same signal after artifact reduction. The difference is 
depicted by the bell-shaped distribution on the right. The bottom panel is 
the same for the cEEG system. The equation defines the calculation of 
SNR. The SNR is expressed in dB units; hence it allows for direct 
comparison between the two systems. The average SNR difference 
expresses the distances between the SNR distributions of the two EEG 
systems.  
 

 
Figure 5: Direct signal-to-signal comparison. The two simultaneous 10 s 
EEG samples of Zeto and NK system overlaid after resampling and 
adaptive realignment. The match between the two recordings on all 19 
electrodes is apparent. Insets represent details on a magnified scale. 
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population-wide distributions of spectral correlations were 
consistently high (Pearson r>0.995) at each electrode position 
(Fig. 8). 

While the point-by-point and spectral correlations indicated 
substantial agreement between the two EEG records, the 
correlations do not inform which recording system is more 
sensitive to signals originating from the brain. Therefore, we 
introduced a method to quantify the signal-to-noise ratio (SNR) 

of the two systems by estimating the contribution of noise to the 
signal (See Methods and Fig. 4). We found that the mean SNR 
of zEEG averaged over electrode positions exceeded the SNR 
of cEEG by an average of 4.8176 dB, which accounted for 16 
% signal improvement (Fig. 9). 

This difference in SNR in favor of zEEG was significant at 
all the 19 electrode positions (Tstatmin=119.49, P<0.001; 
Tstatmax=734.16; P<0.000; df=383599) no matter whether we 
analyzed the entire 30-minute recording with artifacts included 
or only a 90 s long artifact-free interval (Fig. 9 upper and lower 
panel, respectively). 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

DISCUSSION 
 
Dry electrode wireless EEG systems challenge the status quo of 
conventional EEG in many features, including signal quality 
and clinical interpretability, whether used in clinical neurology, 
experimental psychology, or neuroscience. Our analysis 
demonstrates that innovative features when synergistically 
applied, can close the gap and eventually exceed the signal 
quality of standard clinical EEG systems. This study compared 
the most important performance metrics of EEG between a 
novel and a conventional recording device, including time 
domain statistics, point-by-point signal correlation, spectral 
domain statistics, and SNR. The time domain analysis 
determines the statistical equivalence of the signal dynamics 
expressed by the Hjorth parameters. The point-by-point 
correlation asserts the waveform similarity between the two 
systems, which is critical for detecting and classifying clinical 
events in the EEG. The comparison of spectral density statistics 
can articulate subtle differences between EEG systems in their 

 
Figure 6: Spectral analysis of simultaneous recordings. The channel-
by-channel average spectral density and Standard Error of the mean 
is shown as shaded areas around the mean. Spectral analysis was 
calculated in 10 s sliding windows by using multi-taper method. 
Notice the 60 Hz notch filtering artifact, and the posteriorly maximal 
alpha power peak. Both the mean spectral density as well as the 
standard error qualitatively show a close match between the two 
systems. 

 
Figure 7: Spectral correlations. Spectral correlations at different 
electrode positions from a single participant. Each data point 
represents the average power in [dB] at the same specific frequency in 
both EEG systems.   
 

 
Figure 8. Spectral Correlations computed across all subjects. 
The top part shows a box-plot representation of spectral 
correlation values per channel. Horizontal lines in the middle of 
boxes are medians, and the size of the box represents the upper 
and lower first quartiles. The bottom part depicts the 
correlations as histograms projected according to the electrode 
topography overlaid on a head model.  
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sensitivity to periodic components of neuronal activity in the 
delta, theta, alpha, beta, and gamma bands of the EEG. These 
oscillations have diagnostic relevance, and their prominence is 
a mandatory part of clinical EEG reports. Lastly, using SNR we 
compare the performance of zEEG to that of cEEG, which 
promises to serve as a benchmark for future tests.  

To make an unbiased comparison of EEG signals, we used 
simultaneous EEG recordings as a gold standard. We included 
all 19 electrodes per system (38 electrodes plus references) 
according to the 10-20 arrangement by placing them as close as 
possible without touching each other, typically about 1 cm 
apart. This ensured that the recording conditions were identical, 
and the data sampling was balanced at 250 samples/s between 
both systems (Table 2). Both temporal and spectral statistics 
resulted in significant concordances between the two EEG 
systems despite the spatial separation of electrodes. 

The method of simultaneous recordings also has its own 
intrinsic caveats due to the spatial scale at which EEG signal 
changes over the surface of the scalp. Cortical activity 
dynamics consists of propagating waves at different frequencies 
that change the signal's amplitude at a sub-centimeter scale in 
the brain [17,18]. Therefore, we cannot expect to record the 
same signal from adjacent electrodes. In addition, the reference 
electrodes were placed at different positions (linked mastoid 
A1-A2 for Zeto and Cz-Pz for the NK system), which also 
rendered a difference in signal amplitude distribution (Table 2). 
Moreover, the impedance of the electrodes and the 
susceptibility to electrical noise were different between the two 
systems. The zEEG system used active electrode technology, 
noise shielding, and 24-bit Analog to Digital Conversion 
(ADC) resolution; the NK system used passive electrodes and 
16-bit ADC resolution (Table 2).  Despite factors that made the 

two recording conditions different, we found a significant 
match between the two systems across all investigated metrics 
(Table 2). This comparison demonstrates that the Zeto zEEG 
system is non-inferior to the conventional cEEG system with 
respect to signal quality and efficacy. 

Finally, the SNRs calculated based on the artifact reduction 
algorithm enabled us to compare the two systems 
parametrically. The SNR values were expressed in dB, and the 
two systems were compared on complete 30-minute as well as 
short (90 s) artifact-free segments. Under both conditions, we 
found the zEEG displaying higher SNR at all electrode 
positions than the cEEG (Table 2). This comparison strongly 
supports the claim that innovative, well-engineered systems 
such as the zEEG can produce an EEG signal exceeding the 
quality of conventional EEG, despite the higher impedance of 
unprepared skin relative to cEEG. 
 
 
 

 
Figure 9: The observed SNR differences per electrode position. The top 
panel represents the SNR distributions of zEEG (blue) and cEEG (pink) 
systems overlaid for each channel separately. The SNR distributions were 
computed from the entire 30-minute EEG recordings of one subject. The 
bottom panel represents the SNR distributions computed from the same 
recording but from a 90 s artifact-free EEG with the same color code as the 
top panel. Numbers in blue and red represent the medians of the zEEG and 
cEEG SNR distributions, respectively. 
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 Zeto WR19 N-K JE-921A Concordance Difference 
Electrodes Ag coated plastic with soft gel tip Ag/AgCl with conductive gel   
Electrode contact type Touching the skin Glued to the skin with adhesive 

tape 
  

Skin impedance  1TΩ 20 kΩ   
Sampling frequency 250 Hz 200 Hz (250 Hz up sample)   
Bit resolution 24 16   
Amplifiers active passive   
Electrode shielding shielded non-shielded   
Coverage Full montage, 19 electrodes Full montage, 19 electrodes   
Recording References Linked mastoid, A1-A2 Cz-Pz   
Line-noise artifact 
filtering 

59-61 Hz 59-61 Hz   

Bandpass filtering 0.5-59 Hz 0.5-59 Hz   
Hjorth parameters Activity=7748.4     

Mobility=0.1308 
Complexity=4.1175 

Activity=4074.18  
Mobility=0.1648 
Complexity=3.5492 

P=0.0832 
P=0.0637 
P=0.0637 

 

Signal correlation  Point-by-point  Point-by-point Pearson’s r=0.46-
0.94 P<0.001 

 

Spectral correlation  Between 0.5 and 59 Hz Between 0.5 and 59 Hz Pearson’s r>0.99 
P<0.00001 

 

SNR 20.15 dB 15.33 dB  P<0.001 
 
Table 2: Summary of system parameters and results. The first column summarizes the parameters relevant for comparing the two systems (white field). 
The second and third columns provide the actual values of those parameters for the zEEG (Zeto) and cEEG (Nihon-Kohden) systems in blue and pink, 
respectively. The bottom of the table summarizes the study results: the Hjorth parameters, the mean signal correlation, the mean spectral correlation, and 
the median differences between the signal-to-noise ratio estimates. 
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