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Maximal electric power generation from varying
ocean waves with LC-tuned reactive PTO force

Jingxin Zhang*, Uzair Bin Tahir*, Richard Manasseh

Abstract—The reactive Power Take Off (PTO) force is the
key to maximizing mechanical power absorption and electric
power generation of Wave Energy Converters (WECs) from
ocean waves with variable frequency, but its study is limited
due to its difficulty in physical realization. This paper presents
a simple yet effective LC-tuned WEC that generates a tunable
reactive PTO force from tunable inductor L and capacitor C in
the WEC. A complete closed loop system model of the WEC is
derived first, then three quantitative rules are obtained from
analyzing the model. These rules are used to tune the LC
network, and hence the reactive PTO force that drives the WEC,
to resonate with the input wave force and generate maximal
electric power over a range of wave frequencies. Mathematical
analysis of the WEC and tuning rules reveals the analytical
and quantitative descriptions of the WEC’s mechanical power
absorption, active and reactive electric power generation and
power factor, optimal electric resistance load, and the generator
and LC capacity requirements. Simulation results show the
effectiveness and advantages of the proposed WEC and verify
the analysis results.

Index Terms—WEC, reactive generator current, reactive PTO
force, mechanical power absorption, electric power generation.

I. INTRODUCTION

WAVE energy converters (WECs) play the central role in
ocean wave power generation, converting wave energy

to electric energy. Among various types of WECs, the point
absorber WEC is one of the simplest and most promising types
[1] and is the WEC addressed in this paper.

A WEC absorbs more power to produce electricity when it
resonates with incoming waves. But this is extremely difficult
to sustain under varying waves and electric loads [1]–[3]. To
solve this problem, the power take off (PTO) system of the
WEC is used to maximize power absorption in such situations.

The PTO system is a crucial part of a WEC. It absorbs
mechanical power from the WEC’s oscillator, generates the
PTO force against the wave input force to sustain oscillation
and mechanical power absorption, and converts absorbed me-
chanical power to electric power with the WEC’s generator.
Its design and operation directly affect the mechanical power
absorption and electric power generation of the WEC [4].

In attempts to make a WEC resonate over a range of
frequencies around its natural frequency, many mechanical
PTO methods have been proposed in the literature that can
‘tune’ the WEC, e.g., hydraulic PTOs [5], reactive actuators
[6], auxiliary mass control [7], impedance matching [8],
latching control [9], geometry and position control [10] and
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Technology, 3122, Victoria, Australia (rmanasseh@swin.edu.au).

conventional spring-damper systems [11]. These methods do
not address electric power generation directly, and generally
require additional mechanical and electrical devices and exter-
nal power injection, on top of the generator and wave input
power, to generate and control the PTO force. Hence, they
tend to be complex, expensive, inefficient and less responsive,
and may lower the net (electric) power output of the WEC.

In attempts to directly maximize the WEC’s electric power
generation under varying waves, many electrical PTO methods
have also been proposed, e.g., electric resistive latching [12],
impedance tuning [13], damping control [14], reactive control
[15], and maximum power point tracking [16], [17]. These
methods use the WEC’s generator to generate and control
the PTO force while producing electricity, without additional
devices and external power injection. Thus, they are simpler,
lower cost, more responsive and efficient, and may maximize
the net (electric) power output of the WEC.

Despite their advantages, the electrical methods share a
common problem: they only focus on the generation of ac-
tive electric power and overlook the reactive electric power
required by such generation. Many of them use the d-q axis
generator model and intentionally zero or suppress one axis
current to block or minimize the generator’s reactive current,
e.g., [12], [14], [18]. As a result, they generally do not produce
reactive PTO forces. As shown in some previous works [3],
[6]–[8], [19] and also in the sequel, the reactive PTO forces are
the key to making the WEC resonate and hence to maximizing
electric power generation over a range of wave frequencies.
The lack of reactive PTO forces makes it difficult for the
electrical methods to maximize electric power generation and
may result in the negative electric power generation observed
in [18] and references therein. Overlooking the generator’s
reactive current has also led to the absence of device sizing
analyses, e.g. an analysis of generator capacity rating, in the
existing works.

To solve these problems, we propose a new WEC structure
with a novel electric PTO system comprising a permanent
magnet linear generator (PMLG) in parallel connection with
tuneable inductor L and capacitor C, as shown in Fig. 1. The L
and C are used to produce respectively the lagging and leading
reactive currents in the generator to induce the lagging and
leading reactive PTO forces vs the wave input force. By tuning
the L and C and hence the reactive PTO forces according to
the wave frequency, we keep the WEC resonating and its active
electric power output constant and maximal over a range of
wave frequencies, under ideal conditions.

To reveal the underlying physics of the proposed WEC,
we use the ideal models of 1D ocean waves and linear
WECs, and a simplified single phase linear generator with
negligible internal resistance and inductance in our derivation
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Fig. 1. New WEC structure and mechanical-electrical interaction model

and analysis. Also, we only consider steady state operation of
the WEC without dynamic control of the PTO. The proposed
setup allows the derivation of a complete closed loop system
model of the proposed WEC, quantitative and analytical de-
scriptions and conditions for maximum mechanical absorption,
maximum active electric power generation, the active, reactive
and apparent powers and power factor of the WEC’s generator,
and generator capacity rating in term of apparent power. All
of these are previously unknown results to the best of our
knowledge.

The rest of paper is organized as follows. Section II de-
scribes the proposed new WEC, its PTO force, and its closed
loop system model. Section III presents the LC tuning rules
of the new WEC, and the quantitative analysis and analytical
results of these rules. Section IV presents a simulation verifi-
cation and demonstration of the analytical results. Section V
draws the conclusions and discusses the implications, limita-
tions and extensions of the presented results.

II. PROPOSED NEW WEC STRUCTURE AND MODEL

A. Proposed new WEC structure

Fig. 1 (left) shows our proposed new WEC structure. It has a
heaving buoy driven by the ocean waves and connected to the
PMLG by a shaft. The PMLG is connected to a tunable parallel
LC network that provides electricity to the load (resistor) R.
This structure is similar to the class of WECs using direct
electric drive as the PTO system [20], but its tunable LC
network and PMLG form a new type of PTO system that
can be tuned to maximize the electric power output to the
load R over a range of wave frequencies. Though simple, the
basic principle derived from the proposed WEC is applicable
to other classes of WECs [1], [2], [21], as long as their
mechanical operation can be modelled as a resonating linear
mass-damper-spring system.

Fig. 1 (right) shows the Mechanical-Electrical (M-E) in-
teractions in the proposed WEC. As the buoy oscillates, it
moves the PMLG’s translator to generate the voltage v(t) that
drives the current i(t) through the RLC network; the current
i(t) = iR(t) + iL(t) + iC(t), in turn, induces the electrical
resistive force fpto(t) = fR(t)+fL(t)+fC(t) with three sub-
forces on the shaft of the PMLG; the three sub-forces exerted

through the shaft to the buoy induce the equivalent mass Mei,
damping Bei and stiffness Kei that affect the overall system
dynamics. It is assumed that the input wave frequency may
vary; typically, ocean swell waves with periods O(1− 10 s),
which carry the most energy, vary over timescales of days
[22]. However, the wave frequency is assumed to be known,
and the LC network is tuned, in accordance with the wave
frequency, to control the current i(t) and hence the fpto(t) to
achieve resonance at different wave frequencies.

B. Open loop dynamic model of proposed WEC

To reveal the fundamental M-E dynamics, we assume that
the whole WEC system is linear, the water is homogeneous,
inviscid, irrotational and incompressible and the waves are
sinusoidal, so the waves are describable by potential-flow
theory [1], [3]; the added mass corresponding to the radiation
force is constant [17], [23]; the shaft is rigid and lossless,
and hence the buoy and translator (BT) and its added fluid
mass move together as a single mass and all the masses are
lumped into the system total mass Mm. These assumptions
encapsulate the essential traits of WECs and are commonly
employed in the analysis and design of WECs [24], [25].

Denote x(t), ẋ(t) and ẍ(t) the displacement, velocity and
acceleration of the BT, respectively. Then, by the linear
potential theory and Newton’s second law of motion, the dy-
namics of the proposed WEC can be described, as commonly
formulated [25], [26] by

Mmẍ(t) = fw(t)− fpto(t)− fr(t)− fh(t), (1)

where fw(t) is the wave excitation force, fr(t) the radiation
force, fh(t) the hydrostatic stiffness force, and fpto(t) the
resistive force from the PTO system of proposed WEC.

As often assumed in fundamental linear analyses of WECs
[24], the excitation force fw(t) is from regular incident waves,
with angular wave frequency ω, constant amplitude Aw and
no phase difference, and takes the form

fw(t) = Aw cos(ωt). (2)

It is well known that Aw is proportional to the total mass
Mm, the larger the Mm, the higher the Aw [1]. The radiation
force fr(t) (the fluid force due to the oscillating body) is
approximated by Cummins’ equation [27] as

fr(t) = Bmẋ(t), (3)

where Bm is the radiation damping constant due to the
interaction of the buoy motion and surrounding water.

The hydrostatic stiffness force fh(t) is described as [23],
[28]

fh(t) = Kmx(t), (4)

where Km = ρgS is the hydrostatic stiffness, with ρ the water
density, g the acceleration due to gravity and S the cross-
sectional area of buoy.

With the fr(t) and fh(t) given above, the hydrodynamic
equation (1) of the WEC can be written as

Mmẍ(t) +Bmẋ(t) +Kmx(t) = fw(t)− fpto(t), (5)



IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, MARCH 2024 3

where fr(t) = Bmẋ(t) and fh(t) = Kmx(t) are moved to the
left hand side since they are the feedback forces induced by
ẋ(t) and x(t), while fw(t) and fpto(t) are kept on the right
since fw(t) is an independent external force from waves, and
the nature of fpto(t) is unknown and to be analyzed.
C. Analysis of fpto(t) and closed loop dynamic model of
proposed WEC

To analyze the fpto(t) force of the proposed WEC system,
we assume the PMLG in Fig 1 (left) is a 1-phase machine
with Np = 2 poles that generates a sinusoidal output voltage
when its translator is in steady reciprocal motion. Examples of
such PMLGs can be found in [29] and the references therein.
Since the internal resistance Rin and inductance Lin of a
generator are generally much smaller than the external load
R and L [30], we neglect Rin and Lin to simplify discussion
without loss of essence. Hence, the PMLG’s internal voltage
v(t) equals its terminal output voltage and the oscillation of
v(t) follows that of the translator, with the same frequency.

By electrical machine theory [30], when the PMLG’s trans-
lator moves at the velocity ẋ(t), driven by the input force
fw(t), an internal voltage v(t) is induced in its stator winding,
with

v(t) = Keẋ(t), (6)

where Ke is the electric constant. The internal voltage v(t)
then drives a current i(t) through the PMLG and the RLC
network. The current i(t) = iR(t) + iL(t) + iC(t), in turn,
induces a resistive force comprising three components on the
translator shaft,

fei(t) = Kti(t) = KtiR(t) +KtiL(t) +KtiC(t) (7)

where Kt is the force constant satisfying Kt = Ke, although
their physical units are different [30].

Using (6), iR(t) = v(t)/R, iL(t) = 1
L

∫
v(t)dt and iC(t) =

Cdv(t)/dt, the RLC currents can be written as

iR(t) =
Keẋ(t)

R
, iL(t) =

Ke

L
x(t), iC(t) = CKeẍ(t). (8)

Define the electrically induced mass, damping and stiffness

Mei := KtKeC, Bei := KtKe/R, Kei := KtKe/L. (9)

Then by (6)-(9), the electrically induced resistive force fei(t)
and its three sub-forces can be written as

fei(t) = Kti(t) =Meiẍ(t) +Beiẋ(t) +Keix(t)(10)
fC(t) := KtiC(t) =Meiẍ(t), (reactive leading) (11)
fR(t) := KtiR(t) = Beiẋ(t), (active) (12)
fL(t) := KtiL(t) = Keix(t). (reactive lagging) (13)

As shown in Section III, fR(t) is the active sub-force; fC(t)
and fL(t) are respectively the reactive leading and lagging
sub-forces absorbing zero average mechanical power.

Since fei(t) is the only force from the PMLG against the
input force fw(t), fei(t) = fpto(t) in (5). Substituting (10)
into (5) gives the closed-loop dynamic model of the proposed
WEC

(Mm +Mei)ẍ(t) + (Bm +Bei)ẋ(t) +

(Km +Kei)x(t) = fw(t). (14)

As shown below, (14) is a passive linear system with bounded
input and bounded output (BIBO) stability and hence admits
the Fourier transform (on both sides) [31][

(jω)2(Mm +Mei) + jω(Bm +Bei)+

(Km +Kei)]X(jω) = Fw(jω). (15)

Rearranging (15) and defining the frequency response function

H(jω) :=
1

(Km +Kei)− ω2(Mm +Mei) + jω(Bm +Bei)
(16)

gives the input-output frequency response model of the pro-
posed WEC system

X(jω) = H(jω)Fw(jω). (17)

As seen from (5), (10), (14) and (17), the proposed WEC
is a closed loop system, with a single input fw(t) (Fw(jω) in
the frequency domain), a single output x(t) (X(jω)), and the
closed loop frequency response function H(jω). As a single-
input-single-output system, fw(t) (Fw(jω)) is the only source
of (mechanical) energy input. The feedback loop is closed by
the feedback force fpto(t) = fei(t) = fC(t) + fR(t) + fL(t),
with all three sub-forces internally generated by the PMLG and
RLC network using only the mechanical input energy. Hence,
the energy of the output x(t) (X(jω)) is always less than or
equal to the energy of the input fw(t) (Fw(jω)). As the input
energy from fw(t) (Fw(jω)) is always bounded (finite), so is
the output energy of x(t) (X(jω)). By signals and systems
theory [31], (14) ((17)) is a passive linear system with BIBO
stability.

Remark 1: The force fei(t) = fpto(t) given in (10) is
in the same form of the general linear PTO (GLPTO) force,
fpto(t) = Mptoẍ(t) + Bptoẋ(t) + Kptox(t), implicitly and
conceptually proposed in [6], [17]. However, the GLPTO has
been utilized mainly in models where the intent is maximiz-
ing the mechanical power absorption of WECs from ocean
waves, but not for maximal electrical power generation. As
a result, the conceptual GLPTO generally involves additional
mechanical and electrical devices that are not used for electric
power generation and need external power injection (negative
power flow) for their operation. Also, the GLPTO is mostly
conceptual. To the best of our knowledge, there has been no
physical realization of GLPTO with all the three sub-forces
so far; see the references cited in Section I. In contrast, the
force fei(t) = fpto(t) in (10) is generated completely during
energy conversion by the energy conversion device comprising
the PMLG and RLC network. It is entirely passive without
external power injection (without negative power flow) and
any additional mechanical devices. Hence, it can be physically
and easily implemented. As far as we are aware of, (14) and
(16)-(17) are the first of their kind that analytically describes
the closed loop hydrodynamics of a whole WEC system,
with the PTO feedback gains, Mei, Bei and Kei, completely
determined by the physical parameters of the PMLG and
RLC, and with the force fpto(t) = fC(t) + fR(t) + fL(t)
generated fully internally within the WEC.



IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, MARCH 2024 4

III. ELECTRIC OUTPUT POWER MAXIMIZATION

Applying the inverse Fourier transform to (16)-(17), it can
be readily shown that for fw(t) = Aw cos(ωt) as given in (2),
the (steady state) output of system (14) is given by

x(t) = |H(jω)|Aw cos(ωt+ φ), (18)

|H(jω)| = 1

|(Km +Kei)− ω2(Mm +Mei) + jω(Bm +Bei)|
,

(19)

φ = tan−1

(
−ω(Bm +Bei)

(Km +Kei)− ω2(Mm +Mei)

)
, (20)

where |H(jω)| and φ are respectively the magnitude and phase
of H(jω). It then follows from (18) and − sin(ωt + φ) =
cos(ωt+ π/2 + φ) that

ẋ(t) = ω|H(jω)|Aw cos(ωt+ π/2 + φ), (21)

ẍ(t) = −ω2|H(jω)|Aw cos(ωt+ φ). (22)

As seen from (6)-(8) and (18)-(22), the amplitudes of
internal voltage v(t), current i(t) and the instantaneous electric
power p(t) = v(t)i(t) are all maximized when the amplitude
of x(t), |H(jω)|Aw, is maximized. Therefore, maximizing
|H(jω)| maximizes the amplitude of x(t), which in turn
maximizes the amplitude of electric power p(t).

A. Maximizing |H(jω)| by LC tuning

As seen from (19), |H(jω)| is maximized when its denom-
inator |(Km + Kei) − ω2(Mm +Mei) + jω(Bm + Bei)| =
{[(Km +Kei) − ω2(Mm +Mei)]

2 + [ω(Bm + Bei)]
2}1/2 is

minimized. From (3) and (9), Bm > 0 and Bei > 0 for all
0 < R < ∞. Hence, [ω(Bm + Bei)]

2 > [ωBm]2 > 0 always
holds as long as there is an electric load 0 < R < ∞. The
only means to minimize |H(jω)| under a given 0 < R < ∞
is to tune Kei and Mei through L and C such that, ideally,
(Km +Kei)− ω2(Mm +Mei) = 0, or equivalently√

(Km +Kei)/(Mm +Mei) = ω. (23)

When (23) is satisfied, H(jω) = 1
jω(Bm+Bei)

, which is purely
imaginary with phase φ = −π/2 and maximum magnitude

|H(jω)| = |H(jω)|max :=
1

ω(Bm +Bei)
, (24)

and the system (14) resonates with its input force fw(t) =
Aw cos(ωt); the amplitudes of x(t), ẋ(t), ẍ(t), v(t), i(t) and
p(t) are all maximized for the given electric load R.

When C and L are disconnected, C = 0, L = ∞, Mei = 0,
Kei = 0, and (23) reduces to√

Km/Mm = ω0. (25)

This ω0 is the natural frequency (or undamped resonant
frequency) of conventional WECs studied in most of the
previous, mechanically-focused, literature [1]. It is determined
by the WECs’ inherent mass Mm and stiffness Km. Although,
as noted in Section I, many ingenious mechanical techniques
have been proposed to actively tune Km or Mm [4], the
vulnerability of complex mechanical linkages, valves or other
devices needed for mechanical tuning has meant that in
practice, to the best of our knowledge, Km and Mm have

effectively been fixed for a conventional WEC. When ω ̸= ω0

due to changes in wave frequency, the conventional WEC will
lose resonance, resulting in lower amplitudes of x(t), ẋ(t),
ẍ(t), e(t), i(t) and p(t).

Since Mei and Kei (defined in (9)) can be varied by varying
C and L, the proposed WEC system can be tuned using C and
L by the following three Rules derived from (23) and (25).

1) When ω = ω0, disconnect C and L to make C = 0 and
L = ∞ in (9) and hence Mei = 0 and Kei = 0 in (23).

2) When ω < ω0, disconnect L to make Kei = 0 and tune
C to make Mei = Km/ω

2−Mm in (23). From (9), the
C (in Farad, F) thus tuned is given by

C =
Mei

KtKe
=
Km/ω

2 −Mm

KtKe
> 0. (26)

3) When ω > ω0, disconnect C to make Mei = 0 and tune
L to make Kei = ω2Mm −Km in (23). From (9), the
L (in Henry, H) thus tuned is given by

L =
KtKe

Kei
=

KtKe

ω2Mm −Km
> 0. (27)

These three Rules yield the same H(jω) with |H(jω)| =
|H(jω)|max = 1

ω(Bm+Bei)
and phase φ = −π/2 for all ω >

0. It then follows from (21) that under Rules 1)−3)

ẋ(t) ≡ Aw

Bm +Bei
cos(ωt),∀ω > 0, (28)

which is in phase with fw(t) = Aw cos(ωt),∀ω > 0 and gives
the instantaneous mechanical absorption of WEC

pa(t) := fw(t)ẋ(t) =
A2

w

Bm +Bei
cos2(ωt) ≥ 0,∀t. (29)

Therefore, the system (14) always resonates with the input
force fw(t) and the amplitudes of x(t), ẋ(t), ẍ(t), v(t), i(t)
and p(t) are always maximized for the given electric load R,
irrespective of the wave frequency ω.

It can be seen from (11)-(13), (18), (21), (22) and (28)
that with Rules 1)−3), fR(t) = Beiẋ(t) is in phase with
fw(t); fC(t) = Meiẍ(t) leads and fL(t) = Keix(t) lags
fw(t) by π/2 rad. As shown in III-B, only fR(t) absorbs
average mechanical power. Hence, they are respectively the
active, reactive leading and reactive lagging PTO sub-forces.
They together produce the active and reactive PTO forces for
different wave frequencies under Rules 1)−3), as shown in
III-C. Moreover, from (26) and (27), the lower the ω < ω0,
the larger the C is required; and the higher the ω > ω0, the
smaller the L is required.

B. Maximizing mechanical power absorption by optimal R

From (14), the average mechanical power absorption Pa of
the resonating WEC, over a full period T of fw(t), can be
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written as

Pa =
1

T

∫
T

pa(t)dt =
1

T

∫
T

fw(t)ẋ(t)dt

=
1

T

∫
T

[Mmẍ(t) +Bmẋ(t) +Kmx(t)] ẋ(t)dt+

1

T

∫
T

[Meiẍ(t) +Beiẋ(t) +Keix(t)] ẋ(t)dt (30)

=
Bm

T

∫
T

ẋ2(t)dt+
Bei

T

∫
T

ẋ2(t)dt (31)

=
A2

wBm

2(Bm +Bei)2
+

A2
wBei

2(Bm +Bei)2
(32)

=: Pm + Pei. (33)

In the above, (31) follows from (18), (21) and (22) which
show that ẍ(t) and x(t) are orthogonal to ẋ(t), when the WEC
resonates at the frequency ω with φ = −π/2, and hence the
first and third terms in the two integrals of (30) integrate to
zero; (32) follows from substituting (28) into (31) and using
cos2(ωt) = 1/2 + cos(2ωt)/2.

As seen from (30)-(33), Pei and Pm are the average me-
chanical powers absorbed by WEC through the PMLG induced
damping force Beiẋ(t) and the wave induced damping (radi-
ation) force Bmẋ(t). Here Bm is the unchangeable inherent
mechanical damping of WEC, while Bei = KtKe/R can be
tuned using R to maximize Pm, Pei and hence Pa.

Taking dPei/dBei = A2
w

(Bm+Bei)−2Bei

2(Br+Bei)3
= 0 and solving

for Bei gives the optimal Bei and the corresponding optimal
electric load R, denoted as B∗

ei and R∗ (in Ohm),

B∗
ei = Bm = KtKe/R

∗, R∗ = KtKe/Bm, (34)

and the resulting maximal average mechanical absorption Pei,
Pm and Pa, denoted as P ∗

ei, P
∗
m and P ∗

a (in Watt), respectively.

P ∗
ei = P ∗

m = A2
w/8Bm, P ∗

a = 2P ∗
ei = 2P ∗

m = A2
w/4Bm.

(35)
Note that (34) and (35) hold for all ω > 0 due to Rules 1)−3).

Remark 2: It is clear from (30) and (31) that the average
mechanical power absorbed by the reactive sub-forces (Mm+
Mei)ẍ(t) and (Km +Kei)x(t) is zero. This and the maximal
average power absorption (35) are consistent with previous
results, eg [1], [2], [14], but they now hold for all ω > 0,
instead of ω = ω0 only, due to Rules 1)−3). The optimal
electric load R∗ and its maximal average power absorption
P ∗
ei are the first of their kind to the best of our knowledge.

C. Electric active power generated and reactive power needed

From (6) and (28), the output voltage v(t) under Rules
1)−3) has the same amplitude as given below for all ω > 0.

v(t) = Keẋ(t) =
KeAw

Bm +Bei
cos(ωt) =

√
2V cos(ωt), (36)

where V =
√

1
T

∫
T
v2(t)dt = KeAw/

√
2(Bm+Bei), in Volt,

is the root mean square (RMS) of v(t). It then follows from
basic AC circuit analysis [32] that the current i(t) is given by

i(t) =
√
2I cos(ωt+ ψ), (37)

where I = V
√

(1/R)2 + (ωC − 1/ωL)2, in Ampere, is the
RMS of i(t) and ψ is the phase of i(t) vs v(t) given by

ψ = tan−1[(ωC − 1/ωL)/(1/R)]

= cos−1
(
(1/R)/

√
(1/R)2 + (ωC − 1/ωL)2

)
.(38)

The instantaneous electric power can therefore be written as

p(t) = v(t)i(t) = 2V I cos(ωt) cos(ωt+ ψ)

= V I cos(ψ) + V I cos(2ωt+ ψ), (39)

and the average electric output power can be written as

P =
1

T

∫
T

p(t)dt =
1

T

∫
T

V I[cos(ψ) + cos(2ωt+ ψ)]dt

= V I cos(ψ) = S cos(ψ), (40)

where P (in Watt) and S := V I (in VA) are respectively the
active and apparent electric power outputs of the PMLG, and

cos(ψ) = (1/R)/
√

(1/R)2 + (ωC − 1/ωL)2 := PF, (41)

derived from (38), is the power factor (PF ) of the PMLG.
When ω = ω0 and Rule 1) is used, ψ = 0, i(t) = iR(t) =

v(t)/R is in phase with v(t), and PF = 1. When ω < ω0

and Rule 2) is used, ψ > 0, i(t) = iR(t) + iC(t) leads v(t),
and PF < 1. When ω > ω0 and Rule 3) is used, ψ < 0,
i(t) = iR(t) + iL(t) lags v(t), and PF < 1. Recall that
v(t) = Keẋ(t) and ẋ(t) is in phase with fw(t) as shown
in (28). Hence, under Rule 1), fpto(t) = KtiR(t) = fR(t)
yields the active PTO force in phase with fw(t); under Rule
2), fpto(t) = KtiR(t) +KtiC(t) = fR(t) + fC(t) yields the
reactive PTO force leading fw(t); under Rule 3), fpto(t) =
KtiR(t) +KtiL(t) = fR(t) + fL(t) yields the reactive PTO
force lagging fw(t).

With V , I and cos(ψ) defined respectively in (36), (37) and
(41), the active electric power P can be rewritten as

P = V I cos(ψ) = V 2 cos(ψ)
√
(1/R)2 + (ωC − 1/ωL)2

= V 2/R = K2
eA

2
w/2R(Bm +Bei)

2, (42)

which is dependent on R but independent of PF . This is
because R, L and C are in parallel connection with the same
voltage source v(t) and only R absorbs the active power P .

From (6), (7), (39), (40) and Ke = Kt, it follows that for
any 0 < R < ∞, p(t) = v(t)i(t) = (Ke/Kt)fei(t)ẋ(t) =
fei(t)ẋ(t) = pei(t) and P = 1

T

∫
T
p(t)dt = 1

T

∫
T
pei(t)dt =

Pei. By (34), (35) and (42), when R = R∗ = KtKe/Bm,
Pei = P ∗

ei = A2
w/8Bm for all ω > 0, which is the maximal

average mechanical power the PMLG can absorb. Hence, when
the electric load R = R∗, the maximal active electric power
output P ∗ = P ∗

ei = A2
w/8Bm W is attained for all ω > 0.

Although P is independent of PF , the apparent power S =
V I = P/PF does increase as PF decreases. Physically, PF
decreases when ωC or 1/ωL increases, which increases iC(t)
or iL(t) and hence i(t) = iR(t) + iL(t) + iC(t) and its RMS
(aka effective) value I = V

√
(1/R)2 + (ωC − 1/ωL)2. The

increased i(t) in turn increases the instantaneous PTO force
fpto(t) = Kti(t) and the effective PTO force Fpto = KtI
to keep resonance at the frequency ω ̸= ω0. Consequently,
the reactive power output, given by Q = S sin(ψ) (in VAR),
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increases. When PF is low, the efficiency of the PMLG in
active electric power generation becomes low. For the same
level of P output, the PMLG’s capacity rating S = V I
must be higher at lower PF since I flowing through the
PMLG is higher. Therefore, to attain resonance and hence
maximal active electric power output over a wider range of
wave frequencies, we must use a PMLG with higher capacity
(VA) rating to withstand higher I , and capacitor C with larger
capacitance to provide higher I . This is the price we have to
pay.

IV. SIMULATION STUDIES

Simulation studies are conducted to verify the proposed
WEC and Tuning Rules 1)−3) and compare with the
WEC without LC tuning. Simulations are performed using
continuous-time dynamic system modules and the ode15s
solver of MATLAB/Simulink with a time step of 0.01 seconds.
The simulated WEC, having a buoy of radius br = 1.5 m
and height bh = 2.75 m, is adopted from [33] with Mm

= 10,000 kg, Bm = 4,000 Ns/m, Km = 31,580 N/m, ω0

=
√
Km/Bm = 1.77 rad/s, Ke = 842 Vs/m, Kt = 842

N/A, and poles Np = 2. The simulated wave input force
fw(t) = Aw cos(ωt) has Aw = 10 kN and its frequency ω
varied in the studies presented below.

From (34)-(35) and the analysis of Section III, the opti-
mal electric resistor load for the simulated WEC is R∗ =
KeKt/Bm = 177 Ω, which renders the maximum aver-
age mechanical power absorption P ∗

a = A2
w/4Bm = 6.25

kW and induces the maximum active electric output power
P ∗ = P ∗

a /2 = 3.125 kW. Also, as given in (28), with
R = R∗ = 177.5 Ω and Rules 1)−3), the velocity of the
WEC, ẋ(t), is in phase with the input force fw(t) for all
ω > 0. Hence, we set R = 177 Ω, and use these P ∗

a and P ∗

values and ẋ(t) in phase with fw(t) as the theoretical values
and condition to check the simulation results in all the studies.

To facilitate comparison, we use blue curves to show the
waveformes and superscript ∗ to represent the variables of
tuned WEC, and use black curves for the waveformes of
untuned WEC and red curves for the input force. The curves in
Cases 1-3 are plotted from static start to steady state operation.

A. Case 1 (ω = ω0 = 1.77 rad/s)

By Rule 1), the proposed WEC in this ideal case does not
need tuning and the LC network is disconnected. Figs. 2-3
show the waveforms of the relevant variables of the WEC,
which approach respective steady state amplitudes in about
7 s. As analyzed in Section III, the WEC resonates at the
frequency ω = ω0 = 1.77 rad/s, with its ẋ(t) (v(t) = Keẋ(t))
and fpto(t) (i(t) = fpto(t)/Kt) all in phase with fw(t); the
amplitude of fpto(t) is well below that of fw(t); it absorbs
the maximal mechanical power Pa = P ∗

a = 6.25 kW, and
the PMLG outputs the maximal active electric power P =
P ∗ = 3.125 kW = P ∗

pto, the maximal mechanical power it
can absorb, with PF = 1. The PMLG capacity rating in this
case must be ≥ S∗ = P ∗ = 3.1255 KVA.

B. Case 2 (ω = 1 rad/s < ω0 = 1.77 rad/s)

By Rule 2), the proposed WEC in this case is tuned with
C = 0.0304 F and L is disconnected. Figs. 4-5 show the

Fig. 2. WEC response at natural resonance frequency ω = ω0

Fig. 3. Mechanical and active electrical powers of WEC at ω = ω0

waveforms of the relevant variables of tuned and untuned
WECs. The tuned and untuned WECs both oscillate at the
frequency of fw(t), ω = 1 rad/s, and the tuned waveforms
approach respective steady state amplitudes in about 30 s.
Compared with those of Case 1, the steady state amplitudes
of tuned waveforms are the same or higher, whereas those
of untuned waveforms are much lower. This is because the
untuned WEC is not resonating with fw(t). Hence, its average
mechanical power absorption Pa = 1 kW and active electric
power output P = 0.5 kW, as opposed to P ∗

a = 6.25 kW and
P ∗ = 3.125 kW of the tuned WEC.

For the untuned WEC, the phases of its fpto(t), ẋ(t) and
x(t) lead their tuned counterparts. For the tuned WEC, the
phases of its ẋ∗(t) and x∗(t) remain the same as those in
Case 1, with ẋ∗(t) still in phase with fw(t), but its f∗pto(t) is
no longer in phase with fw(t) as was in Case 1, instead, it
now leads fw(t). The tuning capacitor C introduces iC(t) into
i∗(t) = iR(t) + iC(t) to significantly boost the amplitudes of
i∗(t) and f∗pto(t) = Kti

∗(t) and makes i∗(t) leading v∗(t) =
Keẋ

∗(t) and f∗pto(t) = Kti
∗(t) leading fw(t) by ψ = 1.3886

rad. The amplitude of this reactive leading PTO force f∗pto(t)
is about 2.2 times higher than fw(t) and 4 times higher than
in Case 1, which forces the tuned WEC to resonate at ω =
1 rad/s instead of ω0 = 1.77 rad/s and output the maximal
active electric power P ∗ = 3.125 kW. This is at the cost
of low PF = cos(ψ) = 0.18 and high S∗ = P ∗/PF =
17.25 KVA of PMLG as analyzed in III-C. So the PMLG
capacity rating must be ≥ 17.25 KVA in order to maintain
the 3.125 kW maximal active electric power output, when the
wave frequency ω = 1 rad/s is about 44% lower than WEC’s
natural frequency ω0 = 1.77 rad/s.

C. Case 3 (ω = 2.3 rad/s > ω0 = 1.77 rad/s)

By Rule 3), the proposed WEC in this case is tuned
with C disconnected and L = 33.3113 H. As seen from
Figs. 6-7, similar to Case 2, both WECs oscillate at the
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Fig. 4. Responses of tuned and untuned WECs at ω < ω0,

Fig. 5. Mechanical and active electrical powers of tuned and untuned WECs
at ω < ω0

frequency of fw(t), ω = 2.3 rad/s, and the tuned waveforms
approach respective steady state amplitudes in about 12 s. The
waveform amplitudes of the untuned WEC are significantly
lower because it is not resonating with fw(t). Its average
mechanical power absorption Pa = 2.6 kW and its active
electric power output P = 1.3 kW, as opposed to P ∗

a = 6.25
kW and P ∗ = 3.125 kW of tuned WEC. The phases of
fpto(t), ẋ(t) and x(t) of the untuned WEC now lag their tuned
counterparts. The phases of ẋ∗(t) and x∗(t) of the tuned WEC
remain the same as those in Case 1, with ẋ∗(t) still in phase
with fw(t), but its f∗pto(t) now lags fw(t). The tuning inductor
L introduces iL(t) into i∗(t) = iR(t) + iL(t) to significantly
boost the amplitudes of i∗(t) and f∗pto(t) = Kti

∗(t) and
make i∗(t) lagging v(t) = Keẋ

∗(t) and f∗pto(t) = Kti
∗(t)

lagging fw(t) by ψ = 1.1674 rad. The amplitude of this
lagging reactive f∗pto(t) is about 20% higher than fw(t) and
2 times higher than in Case 1, which forces the tuned WEC
to resonate at ω = 2.3 rad/s, instead of ω0 = 1.77 rad/s,
and output P ∗ = 3.125 kW. The cost for this is the low
PF = cos(ψ) = 0.3925 and high S∗ = P ∗/PF = 7.92
KVA of PMLG as analyzed in III-C. The PMLG capacity
rating must be ≥ 7.92 KVA in order to maintain the 3.125
kW maximal active electric power output, when the wave
frequency ω = 2.3 rad/s is about 30% higher than WEC’s
natural frequency ω0 = 1.77 rad/s.

D. Case 4 (0.5 rad/s ≤ ω ≤ 2.7 rad/s)

The proposed WEC in this case is tuned with Rules 1)-3)
over ω ∈ [0.5, 2.7] rad/s and is compared with the untuned
WECs over the same frequencies. Fig. 8 plots the effective
input force Fw (RMS of fw(t)), the RMS current I , effective
PTO force Fpto = KtI and apparent power S = V I of the
PMLG in the tuned and untuned WECs over ω ∈ [0.5, 2.7],
where I , Fpto and S share the same curves but with different
scales since Kt and V are constants for all ω > 0 as shown

Fig. 6. Responses of tuned and untuned WECs at ω > ω0.

Fig. 7. Mechanical and active electrical powers of tuned and untuned WECs
at ω > ω0
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Fig. 8. RMS Currents I , effective PTO forces Fw and apparent powers S of
PMLG in tuned and untuned WECs over ω ∈ [0.5, 2.7].

earlier. As seen from the plots, for the untuned WEC, its
Fpto < Fw,∀ω > 0, and its I , Fpto and S fall off from
the peak at ω = ω0 when ω is above or below ω0 (the black
curve of Fig. 8), resulting in the decreased average mechanical
power absorption Pa and active electric power output P (the
black curves of Fig 9). In contrast, for the tuned WEC, its F ∗

pto

increases as ω shifts away from ω0 and becomes significantly
higher than Fw when ω is significantly lower or higher than
ω0 (the blue curve of Fig 8); this increased F ∗

pto drives the
tuned WEC to resonate with the input force at all ω > 0 with
significantly large I∗ and S∗, and keeps its average mechanical
power absorption P ∗

a and active electric power output P ∗

constant for all ω > 0 (the blue lines of Fig 9). As shown by
the two example blue curves in Fig 9, Rules 1)-3) effectively
shift the power curve as the input force frequency changes
and align the power peak with the input force frequency ω.
The apparent power S∗ shown by the blue curve of Fig. 8
gives the lower bound for the PMLG capacity rating required
at different wave frequencies.

V. DISCUSSIONS

Except for complicating the derivation and analysis, the
neglected internal resistance Rin and inductance Lin of the
PMLG do not affect the main results given above. The Lin

yields some lagging in i(t) and fpto(t) = Kti(t), which can be
easily compensated for by increasing the value of C if needed;
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Fig. 9. Active powers vs wave frequency of tuned (blue) and untuned (black)
WECs

Rin consumes some active electric power and reduces the net
active electric power output of the PMLG, which is inevitable
in all generators.

As shown analytically and experimentally in Sections
III−IV, the capacity of the PMLG must be ≥ S∗ = P ∗/PF
VA, where P ∗ = A∗

w/8BmW, given in (35), is the maximal
active electric power the WEC can produce, and 0 < PF < 1
depends on the frequency range of fw(t) over which we want
WEC to resonate. The leading (lagging) current iC(t) (iL(t))
from C (L) and the corresponding reactive leading (lagging)
fpto(t) are the key to the resonance at ω ̸= ω0. Limiting
iC(t) (iL(t)) will limit the frequency range of resonance or
the oscillation amplitude of the WEC at ω ̸= ω0, leading to
reduced electric power generation. Although these results are
obtained for steady state operation of WEC without dynamic
PTO control, they reveal a fundamental fact in the dynamic
PTO control considered in many previous works, e.g. [12],
[14], [18], [19]. The fact is that the leading and lagging reac-
tive PTO forces are indispensable for the transient operation
and control of WEC at ω ̸= ω0. Physically, the reactive PTO
force can be easily induced in the generator by the L and C
devices as shown above and controlled by controlling iC(t)
and iL(t). However, this has not drawn much attention in the
current literature.

The presented results are limited to the single-phase 2-
pole PMLG, single frequency sinusoidal ocean wave, and
steady state operation of WEC. Their extensions to multi-
phase multi-pole linear and rotary generators, multi-frequency
and broadband waves, and transient operation and control of
WEC are currently being investigated.

VI. CONCLUSION

This paper has presented a novel LC-tuned WEC and its
complete closed loop system model. Three quantitative rules
have been derived from the closed loop system model to
tune the reactive PTO forces produced by the LC device,
for the WEC to resonate at ω ̸= ω0 and hence generate
maximal electric power from ocean waves with variable
frequency. Mathematical analysis of the WEC and tuning
rules has led to the analytical and quantitative descriptions of
the WEC’s mechanical power absorption, active and reactive
electric power generation and power factor, optimal electric
load R, and capacity requirements of the PMLG and LC
device. Simulation results have shown the effectiveness and
advantages of the new WEC and verified the analysis results.
The implications, limitations, and further extensions of the
presented results have been discussed.
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