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Abstract

Pansharpening is the task of creating a High-Resolution Multi-Spectral Image (HRMS) by extracting and infusing pixel details

from the High-Resolution Panchromatic Image into the Low-Resolution Multi-Spectral (LRMS). With the boom in the amount

of satellite image data, researchers have replaced traditional approaches with deep learning models. However, existing deep

learning models are not built to capture intricate pixel-level relationships. Motivated by the recent success of self-attention

mechanisms in computer vision tasks, we propose Pansformers, a transformer-based self-attention architecture, that computes

band-wise attention. A further improvement is proposed in the attention network by introducing a Multi-Patch Attention

mechanism, which operates on non-overlapping, local patches of the image. Our model is successful in infusing relevant local

details from the Panchromatic image while preserving the spectral integrity of the MS image. We show that our Pansformer

model significantly improves the performance metrics and the output image quality on imagery from two satellite distributions

IKONOS and LANDSAT-8.
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Pansformers: Transformer-Based Self-Attention
Network for Pansharpening

Nithin G R, Nitish Kumar M, Rajanikanth Kakani, Venkateswaran N, Ankur Garg, and Ujjwal Kumar Gupta

Abstract—Pansharpening is the task of creating a High-
Resolution Multi-Spectral Image (HRMS) by extracting and
infusing pixel details from the High-Resolution Panchromatic
Image into the Low-Resolution Multi-Spectral (LRMS). With
the boom in the amount of satellite image data, researchers
have replaced traditional approaches with deep learning models.
However, existing deep learning models are not built to capture
intricate pixel-level relationships. Motivated by the recent success
of self-attention mechanisms in computer vision tasks, we pro-
pose Pansformers, a transformer-based self-attention architecture,
that computes band-wise attention. A further improvement is
proposed in the attention network by introducing a Multi-Patch
Attention mechanism, which operates on non-overlapping, local
patches of the image. Our model is successful in infusing relevant
local details from the Panchromatic image while preserving the
spectral integrity of the MS image. We show that our Pansformer
model significantly improves the performance metrics and the
output image quality on imagery from two satellite distributions
IKONOS and LANDSAT-8.

Index Terms—Pansharpening, Multispectral, Panchromatic,
Pransformers, Multi-Patch Attention

I. INTRODUCTION

Spaceborn satellites such as IKONOS and LANDSAT-8
provide two different complementary types of images: a high-
spatial and low-spectral resolution Panchromatic Image, and
a high-spectral and low-spatial resolution Multispectral (MS).
Due to the constraints on signal transmission broadband and
imaging sensor storage, it is very difficult to acquire a high
spatial resolution MS image directly. Pansharpening aims
at injecting the details from the Panchromatic image into
the Multispectral image, to generate a high spatial/spectral
resolution Multispectral (MS) image. The fusing process has
become a key preprocessing step in many applications such as
feature detection, land-cover classification, and also in making
high-resolution maps. This makes Pansharpening an central
task in the field of Satellite Remote Sensing.

In the past, traditional have been proposed for Pansharp-
ening which include the Intensity–Hue–Saturation (IHS)[12],
Principal Component Analysis (PCA)[1] and the Brovey
Transform method. However, the problem with the traditional
methods were the spectral distortions caused in the bands of
the pansharpened image. To address the problem of spectral
distortion, many deep learning methods has been recently
adopted by researchers. The authors in [16] proposed a deep
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network called PanNet, which preserves spectral and spatial
structure using the concept of ‘spectra mapping’. Another deep
neural network was also proposed in [5].

A fair share of CNN-based models has also been proposed
for the task of Pansharpening, which includes residual net-
works. In [9], the authors introduced PCNN, a simple three-
layer convolutional network to perform Pansharpening. The
authors of [2] proposed a deep convolutional network that
learns an end-to-end mapping between the low and high-
resolution images. In [3], SCRNN was proposed, which had a
lightweight structure with only little extra pre/post-processing
required. Yuan et al. [18] included the multiscale feature
extraction and residual learning into the basic convolutional
neural network (CNN) architecture. Similarly, the authors
of [15] proposed DRPNN, which is robust architecture and
performs high-quality fusion. Other CNN-based methods were
also proposed in [7], [13], [6], [17].

Recently, Attention mechanisms have been adopted to im-
prove the performance on the Pansharpening task. The au-
thors in [8] proposed a multi-scale channel attention residual
network (MSCARN) to comprehensively extract the coarse
structures and high-frequency details through a squeeze-and-
excitation block. In [11], Qu et al. proposed a self-attention
based method to perform Pansharpening in an unsupervised
setting. Transformer networks [14], which were originally
proposed for sequence-to-sequence tasks have been success-
fully adapted to Computer Vision applications like Image
Superresolution [10] and Recognition [4]. However, straight-
forward adaptations of these networks do not give the required
performance in Pansharpening because of their highly task-
specific nature.

In this letter, inspired by the Transformer networks, we
create an architecture called Pansformers, which uses PCNN
combined with channel-wise Self-Attention to improve the
performance of the task. Since Pansharpening is a region-based
fusion task, we create a Multi-Patch Attention mechanism,
which divides the input image into smaller, non-overlapping
patches and computes attention on those individual patches to
capture the local level details important for fusion. To the best
of our knowledge, ours is the first work to draw motivation
from Transformer-based architectures for Pansharpening in the
field of Satellite Remote Sensing.

II. PROBLEM DEFINITION AND PREPROCESSING

In this section, we formally define the problem and in-
troduce the notation for the input and the output images.
Consider three images - a single band Panchromatic image
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Fig. 1. The proposed Pansformers Architecture. Here, PCNN Base, Self-Attention Layer, Projection layers, and PCNN Head are the 4 components. The
PCNN Base produces a feature map of the input image, which is to the self-attention layer to infuse details into different bands. The Projection layer and the
PCNN Head layer process the Self-Attention layer outputs to produce the Pansharpened Image. The Self-Attention Layer shown here can either be Global
Attention or Multi-Patch Attention. We also include a skip-connection from the PCNN Base to the end of the Self-Attention layer.

HPan ∈ RX×Y , a low resolution n-band Multispectral image
HLRMS ∈ RN×X×Y , as same size as HPan, and a ground
truth Multispectral image HHRMS . Here, HPan is concate-
nated to HLRMS to form the input to the learning model
HInput ∈ RN+1×X×Y . Given HInput and the groundtruth
image HHRMS , the task of the learning model is to produce
a multispectral image HPred ∈ RN×X×Y which closely
matches the ground truth HHRMS . The HPred contains one
less band than HInput image, but matches the order of the
bands as HLRMS . In other words, the objective of the deep
learning model is to minimize the loss function L(HPred,
HHRMS) by learning to produce a higher resolution image
with both spectral and spatial characteristics of the images
preserved.

However, satellite data distribution is only provided with
one MS image and a corresponding Panchromatic image
and no groundtruth image is readily available. So, we use
Wald’s protocol to generate the input-groundtruth pairs from
the original low-resolution Multispectral (MS) image MSOrg

and the high-resolution Panchromatic image P . According to
Wald’s protocol, MSOrg is set to be the groundtruth image
HHRMS . First, we use a 3 × 3 Gaussian Blur on MSOrg

to create MSBlur Then, P and MSBlur are downsampled
by a factor K, determined by the inherent resolution of the
satellite, to create HPan and MSDown. Finally, MSDown

alone is interpolated by the same factor K to produce the
input MS image HLRMS . Due to the downsampling and inter-
polating, the HLRMS will be of a lower resolution compared
to HHRMS . Hence, HHRMS will serve as the ground-truth
image while HLRMS and HPan comprise the input image
HInput to the model. The model learns a mapping between
HInput and HHRMS in a manner that is independent of the
resolution of the images ensuring that the model works on
higher-resolution satellite images. We finally use a standard
tiling procedure used in [9] to divide the large satellite image
into numerous 64× 64 tiles for training.

III. PANSFORMERS

We develop a Transformer-based architecture called Pans-
formers to tackle the problem of Pansharpening. The main

highlight of our architecture lies in our channel-wise self-
attention network, which operates across different bands to
extract information on the relative importance of each band in
fusing details from the Panchromatic image. We experiment
with two different types of self-attention, namely Global
Attention and Multi-Patch Attention. Our architecture is shown
in Fig 1. The basic structure of our Pansformers architecture
involves the self-attention network sandwiched between two
PCNN blocks which act as a ‘base’ and ‘head’ to extract
enriched information. The structure of our architecture is
explained in the sections below.

A. PCNN

The Pansharpening Convolutional Neural Network (Masi
et al. [9]) is a baseline CNN network proposed for Pansharpen-
ing. The PCNN is a shallow, fully convolutional network that
consists of three layers having filter sizes 9×9, 5×5 and 3×3
respectively with 64, 32, and 4 filters. We hypothesized that
combining multiple PCNN block can aid the performance of
the self-attention layers, therefore, boosting the performance
significantly. Hence, in our architecture, we use two PCNN
network blocks, named PCNNBase and PCNNHead, as a
basic processing block at the input and output sides to facilitate
the learning of relevant features in the self-attention layer.
The PCNNBase layer operates on the input image HInput

and produces HBase. In PCNNBase alone, we alter the last
convolutional layer to contain 5 filters instead of 4, to preserve
the number of input channels.

HBase = PCNNBase(HInput), (1)

B. Image Self-Attention

Self-attention, also known as intra-attention, is an attention
mechanism that computes a representation of the individual
elements of the inputs by learning to ‘attend’ to the most
relevant details present in the elements. In our self-attention
module, the multiple bands of the input image are considered
as the elements, and the self-attention process computes the
attention scores across the bands through the equation:

SelfAtt = Softmax(Q ·KT ) · V, (2)



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 3

where Q, K and V correspond to Query, Key and Value
are independent projections of the image learnt through three
single 1 × 1 convolutional layers denoted by CQ, CK , and
CV .

The self-attention layer operates on HBase to form a
condensed, information-rich attention map HAtt. The atten-
tion map not only helps in extracting intricate, local-level
information from HPan, but also determines the relative
importance of each band in the optimal infusion of the details
into HLRMS . In our model, we propose two different forms
for self-attention, namely Global Attention and Multi-Patch
Attention, which are described and compared below.

Global Attention: In the Global Attention layer (Ga), the
attention is computed on the entire image as a whole. In other
words, global-level features are extracted across the bands of
the entire image. In this process, only one Query QGa, Key
KGa and Value VGa per input image will be produced using
just three 1 × 1 convolution layers CQ

Ga, CK
Ga and CK

Ga. The
projections are of the same spatial size as HBase.

GlobalAtt = Softmax(QGa ·KT
Ga) · VGa (3)

HAtt = GlobalAtt(HBase) (4)

However, we hypothesize that in global attention, the finer-
grained features are not captured since the attention scores
are calculated for the entire image and not region-wise. Since
the region of operation is large, the single 1 × 1 convolution
layers extract only the top-level, coarse details present in the
image. Also, computation of self-attention across the entire
image slows down the training speed significantly, since the
time complexity of computation of self-attention scores scales
quadratically with an increase in input size ([14]).

Since Pansharpening is a region-based fusion task, the
intricate local-level pixel details are extremely important for
increasing the resolution. Motivated by this, we developed
a Multi-Patch Attention (Mpa) module, which calculates at-
tention scores separately on multiple, smaller patches and is
explained in the section below:

Multi-Patch Attention: In Multi-Patch Attention, the at-
tention is calculated separately on several smaller, non-
overlapping patches of the input image. As the first step, the
input image of the previous layer is divided into the m number
of non-overlapping patches of spatial size X/m × Y/m,
where X × Y is the spatial size of the input image. Then,
self-attention is computed on each of the patches separately.
Formally defining, given HBase of size 64 × 64, we divide
it into 16 patches, each of size 16 × 16, denoted by the set
of HBasePatch = {H11

Base, H
12
Base, ...H

21
Base, H

22
Base....H

mm
Base}

where we number the patches according to conventional matrix
notation. The self-attention function is applied to all the
patches separately in which each patch will have a set of three
1× 1 convolution layers denoted by CQ

ij , CK
ij , and CV

ij which
give rise to Qij , Kij and Vij , where i and j denote the position
of the patch in the original image. The query, key and value
projections of each patch will be the same size as the patch.

MultiPatchAtt = Concat(SelfAtt(Hij
Base)) (5)

SelfAtt(Hij
Base) = Softmax(Qij ·KT

ij) · Vij (6)

Fig. 2. The Multi-Patch Attention Mechanism. HBase is divided into 16
patches (HBasePatch). Then, the self-attention is computed on each of the
individual patches Hij

Base (Only single patch shown for clarity). The self-
attention maps are then concatenated to form HAtt (Not Shown).

where i and j both range from 1 to m.

HAtt = MultiPatchAtt(HBasePatch) (7)

After computing self-attention, the attention maps of each
patch are concatenated (or re-stitched) back together to form
the output 64x× 64 image.

In multi-patch attention, the region of operation is signif-
icantly reduced. The local, more intricate pixel-level details
that are important for obtaining the highest resolution possi-
ble, are captured. Our multi-patch attention module does not
increase the number of trainable parameters in the architecture.
The increase in the number of 1x1 convolution layers for
patch-wise computation is canceled out by the reduction in
the size of the operation. Another interesting feature of the
multi-patch attention mechanism is the attention computation
process becomes significantly faster due to the reduction in
the input size, leading to faster training times. Even though the
attention computation is sequential and not parallel, the speed-
up achieved due to the smaller size outweighs the increase in
the number of self-attention computations.

C. Skip-Connection

Due to the local-region computations in the attention layers,
we predicted that there may occur a distortion in the long-
range spatial coherence of the image. In our architecture,
we also include a skip-connection, from the end of the
PCNNBase to HAtt.

HSkip = HAtt +HBase (8)

This is to ensure that both the spatial and the spectral
characteristics of the image are preserved intact. The skip-
connection provides the model with an alternative route to
learn the required high-resolution output image by smoothing
out any distortions caused in the attention maps. This skip
connection also ensures unhindered gradient flow to the initial
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TABLE I
IMAGE CHARACTERSITICS OF IKONOS AND LANDSAT-8

Characteristics IKONOS LANDSAT-8
Panchromatic Resolution 0.82 m 15 m
Multispectral Resolution 3.28 m 30 m

Bit Size 11 bit 16 bit

PCNNBase layer thereby contributing to the stability of the
model.

D. Projection Layers and PCNNHead

The output of the attention layers when combined with the
skip connection, is raw and unprocessed, and require further
processing. We use same-size convolution Projection layers to
process the attention maps.

HProj = P2(P1(HSkip)) (9)

where P1 and P2 are the two projection layers containing
20 and 5 filters respectively. The projection layers increase the
number of channels from 5 to 20, then decrease it back to 5
channels again. We conjectured that this bottleneck structure
helps in learning the final high-resolution details in a higher-
dimensional space with more channels. This process helps in
processing the raw attention and skip-connection outputs to
produce a coherent, higher resolution output image. Finally,
we use the PCNNHead block and discard the final band in
HProj that corresponds to HPan.

HPred = PCNNHead(HProj) ∈ RN×X×Y (10)

It is to be noted that our architecture is directly inspired by
Transformer networks([14]). The intuition behind the Multi-
Patch Attention layers is to process parts of the input sep-
arately, similar to the Multi-Head Attention in Transformer
Networks. Also, our projection layers P1 and P2, which learn
relevant details in higher dimensional space, were derived from
the working of feed-forward layers in Transformers.

IV. EXPERIMENTAL SETTINGS AND METRICS

We used Pytorch to construct our models and utilized an
Nvidia Tesla P100 GPU on Google Colab Pro for training.
A total of 6 and 4 images from IKONOS and LANDSAT-
8 are used to create the training and testing sets. For both
the datasets, we used 80% of the images for training and the
remaining 20% equally for validation and testing sets. The
Mean Squared Error(MSE) Loss with an Adam Optimizer
was used to train the model with a learning rate of 10e−3.
Apart from Global Attention and Multi-Patch Attention, we
also trained one version containing a combination of both the
attention modules in a two-streamed fashion. For visualizing
the images, we upsample the original MS image MSOrg to
the size of the original Panchromatic image P , and perform
tiling, then re-stitch the pansharpened tiles to form the final
image.

We evaluated our pansharpened image against the ground-
truth image, by computing a series of performance metrics.
While Peak Signal to Noise Ratio (PSNR) provides the ratio of

the maximum possible power to the corrupting noise present,
Universal Quality Index (UQI) measures image distortion.
While Structural Similarity Index (SSIM) and Spatial Corre-
lation Coefficient (SCC) calculates the structural and spatial
similarity between the images, Spectral Angle Mapper (SAM)
measures the angle of spectral distortion caused across the
bands.

TABLE II
COMPARISON OF PERFORMANCE METRICS ON IKONOS DATA SET

Method/Model PSNR UQI SAM SCC SSIM
Brovey 26.582 0.849 0.021 0.894 0.881

IHS 30.04 0.981 0.0268 0.809 0.979
PCNN 36.308 0.984 0.074 0.969 0.958
Global 43.210 0.997 0.043 0.984 0.986

Multi-Patch 45.205 0.998 0.032 0.988 0.992
Global+Multi-Patch 42.912 0.997 0.039 0.985 0.986

TABLE III
COMPARISON OF PERFORMANCE METRICS ON LANDSAT-8 DATA SET

Method/Model PSNR UQI SAM SCC SSIM
Brovey 10.210 0.813 0.007 0.905 0.78

IHS 11.32 0.997 0.0115 0.877 0.847
PCNN 40.308 0.990 0.059 0.936 0.947
Global 47.593 0.999 0.024 0.978 0.995

Multi-Patch 48.045 0.999 0.022 0.979 0.996
Global+Multi-Patch 47.87 0.999 0.029 0.979 0.994

V. RESULTS AND DISCUSSION

Performance metrics have been calculated for the three
variants of our architecture on IKONOS and LANDSAT-
8 are given in Tables II and III. From the tables, it is
evident that our model has recorded better performance metrics
values when compared with the traditional methods Brovey
Transforms and Intensity Hue Saturation (IHS), and the basic
deep learning model PCNN. All the three variants of our
proposed model have attained excellent values of SAM and
SCC, highlighting the low spatial and spectral distortion in
the pansharpened images, which suggests that the models
preserve the characteristics of the image adequately. A low
SAM value suggests that the pansharpened image differs
very little in the angle of spectral distortion compared to the
groundtruth image. The high values of SSIM also suggest the
similarity achieved between the pansharpened image and the
high-resolution groundtruth. We conjecture that the achieved
performance is due to the relative simpleness and effectiveness
of our architecture, reinforcing our belief that deeper networks
introduce more distortions. The multipatch attention model
generated pansharpened images have been visualized in Figs
3 and 4. From the pansharpened images, it is evident that
the proposed model produces sharper images and higher-
resolution Multispectral images.

Out of the three variants, the Multi-Patch Attention network
has constantly achieved better performance in terms of the
metrics and image quality. The intricate, local details captured
in the region-wise attention computation in the Multi-Patch
Attention layer is responsible for superior performance. The
fact that the proposed Multi-Patch attention network trains
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Fig. 3. Visual comparision of IKONOS Image (a) Interpolated MS image (b)
Multi-Patch Attention Pansharpened MS image

faster than other networks makes it well suited to perform Pan-
sharpening on large satellite images. To achieve further quality,
the models can be trained on larger tiles, like 256 × 256, to
take into account longer-range spatial dependencies.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this letter, we propose Pansformers, a channel-attention-
based architecture for Pansharpening. The proposed architec-
ture contains a novel Multi-Patch Attention module which
computes attention on multiple, smaller patches to capture the
intricate local-level details required for fusion. The proposed
architecture is effective and able to produce high-quality
pansharpened MS images as evaluated through the number of
quality performance metrics and also outperforms the previous
state-of-the-art methods. Further, as future work, it is sug-
gested that an attempt for selective attention mechanism which
computes attention separately over the MS and Panchromatic
images may be carried out instead of combining them in the
input image.
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