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Abstract

Our automated deep learning-based approach identifies consolidation/collapse in LUS images to aid in the diagnosis of late

stages of COVID-19 induced pneumonia, where consolidation/collapse is one of the possible associated pathologies. A common

challenge in training such models is that annotating each frame of an ultrasound video requires high labelling effort. This

effort in practice becomes prohibitive for large ultrasound datasets. To understand the impact of various degrees of labelling

precision, we compare labelling strategies to train fully supervised models (frame-based method, higher labelling effort) and

inaccurately supervised models (video-based methods, lower labelling effort), both of which yield binary predictions for LUS

videos on a frame-by-frame level. We moreover introduce a novel sampled quaternary method which randomly samples only

10% of the LUS video frames and subsequently assigns (ordinal) categorical labels to all frames in the video based on the

fraction of positively annotated samples. This method outperformed the inaccurately supervised video-based method of our

previous work on pleural effusions. More surprisingly, this method outperformed the supervised frame-based approach with

respect to metrics such as precision-recall area under curve (PR-AUC) and F1 score that are suitable for the class imbalance

scenario of our dataset despite being a form of inaccurate learning. This may be due to the combination of a significantly

smaller data set size compared to our previous work and the higher complexity of consolidation/collapse compared to pleural

effusion, two factors which contribute to label noise and overfitting; specifically, we argue that our video-based method is more

robust with respect to label noise and mitigates overfitting in a manner similar to label smoothing. Using clinical expert

feedback, separate criteria were developed to exclude data from the training and test sets respectively for our ten-fold cross

validation results, which resulted in a PR-AUC score of 73% and an accuracy of 89%. While the efficacy of our classifier using

the sampled quaternary method must be verified on a larger consolidation/collapse dataset, when considering the complexity of

the pathology, our proposed classifier using the sampled quaternary video-based method is clinically comparable with trained

experts and improves over the video-based method of our previous work on pleural effusions.
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Automatic deep learning‑based 
consolidation/collapse 
classification in lung ultrasound 
images for COVID‑19 induced 
pneumonia
Nabeel Durrani2,10, Damjan Vukovic1,3,10*, Jeroen van der Burgt1, Maria Antico2,3, 
Ruud J. G. van Sloun8, David Canty5,9, Marian Steffens1, Andrew Wang5, Alistair Royse5, 
Colin Royse5,6, Kavi Haji5, Jason Dowling7, Girija Chetty4 & Davide Fontanarosa1,3*

Our automated deep learning‑based approach identifies consolidation/collapse in LUS images to aid in 
the identification of late stages of COVID‑19 induced pneumonia, where consolidation/collapse is one 
of the possible associated pathologies. A common challenge in training such models is that annotating 
each frame of an ultrasound video requires high labelling effort. This effort in practice becomes 
prohibitive for large ultrasound datasets. To understand the impact of various degrees of labelling 
precision, we compare labelling strategies to train fully supervised models (frame‑based method, 
higher labelling effort) and inaccurately supervised models (video‑based methods, lower labelling 
effort), both of which yield binary predictions for LUS videos on a frame‑by‑frame level. We moreover 
introduce a novel sampled quaternary method which randomly samples only 10% of the LUS video 
frames and subsequently assigns (ordinal) categorical labels to all frames in the video based on the 
fraction of positively annotated samples. This method outperformed the inaccurately supervised 
video‑based method and more surprisingly, the supervised frame‑based approach with respect to 
metrics such as precision‑recall area under curve (PR‑AUC) and F1 score, despite being a form of 
inaccurate learning. We argue that our video‑based method is more robust with respect to label noise 
and mitigates overfitting in a manner similar to label smoothing. The algorithm was trained using 
a ten‑fold cross validation, which resulted in a PR‑AUC score of 73% and an accuracy of 89%. While 
the efficacy of our classifier using the sampled quaternary method significantly lowers the labelling 
effort, it must be verified on a larger consolidation/collapse dataset, our proposed classifier using the 
sampled quaternary video‑based method is clinically comparable with trained experts’ performance.

Lung ultrasound (LUS) imaging has been used to identify and monitor lung changes associated with the highly 
contagious respiratory infections resulting from COVID-191. Ultrasound has proven to be more sensitive and 
specific than X-ray imaging and to be on par with computed tomography (CT)2 in detecting imaging patterns 
associated with lung pathologies. Being a portable, safe non-ionising imaging modality, Ultrasound is ideal for 
bedside, point-of-care examinations, such that is required for isolated contagious COVID-19 patients. These 
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patients require periodic assessment and imaging of identified lung changes, which assists in monitoring the 
severity of the COVID-19 respiratory disease progression.

COVID-19 respiratory infection can present with a myriad of lung pathologies and resultant ultrasound 
imaging patterns, as the disease progresses from acute through to chronic stages. In the initial stages of infection, 
associated lung changes that may be appreciated on ultrasound include irregular pleura, thickened pleura, multi-
ple B-line artifacts indicative of interstitial syndrome, and collapse. As the infection progresses, more pronounced 
pleural irregularities, tissue like echotexture suggestive of consolidation and scarring may  develop3,4. While low 
in incidence, other respiratory pathologies including  pneumothorax5 and pleural  effusion6 remain relevant for 
exclusion. As the COVID-19 respiratory infection persists, LUS may be used to assist with clinical response to 
intensive therapies such as prone ventilation or high positive end-expiratory  pressure7.

The workflow for COVID-19 LUS assessment typically consists of a highly trained and experienced LUS oper-
ator acquiring the images using a well-outlined protocol (for example the one described  in8) and interpretation 
of these images for any visible ultrasound imaging pattern changes associated with lung pathology. This requires 
considerable time and resources considering the extensive training and experience  required9 to perform, acquire 
and interpret the LUS images. These hindrances have been compounded during the COVID-19 pandemic, where 
the directly supervised training of additional operators to perform complex ultrasounds, with frequent patient 
contact, has been prohibitive. These challenges may be alleviated by using machine learning-based automatic 
interpretation in real-time (at the patient’s bedside) to facilitate the training and clinical use of lung ultrasound.

Related works. The related literature on automatic identification of COVID-19 induced lung patholo-
gies utilising LUS  imaging10 involves applying Deep Learning (DL) algorithms trained on COVID-19 LUS 
 images11,11–15 and on identifying imaging patterns such as B-lines and pleural thickening that are associated with 
COVID-191,16–20 with inter- and intra-observer  studies21,22. These DL algorithms consist of convolutional neural 
networks (CNNs), which are presently considered the state-of-the -art for automated image analysis given their 
capability to extract low and high-level image features automatically. La Salvia M et al.1 implemented a 4-class 
classification approach, where class 0 was associated with the identification of A lines, class 1 referred to the pres-
ence of the shape of pleural lining, class 2 to broken or damaged pleural lines with the addition of consolidated 
areas, and finally class 3 to the appearance of tissue-like patterns with/without consolidation. This approach 
was then extended to a 7 classes classification problem, with the addition of 3 classes including the presence of 
B-lines or different degrees of image artefacts. In contrast, Baloescu C et al.17 created a custom supervised CNN 
to automatically detect B-lines in non-COVID patients and compared their algorithm results to well-known 
algorithms such as  ResNet23 and  DenseNet24.

Alternatively, Ebadi et al16 use a video-based Kinetics-I3D deep learning network that can identify automati-
cally alveolar consolidation and/or pleural effusion alongside A and B lines in LUS videos.

Other works include Roy S et al.14 who developed a COVID-19 severity scoring algorithm trained on a LUS 
dataset of patients. This dataset consisted of patients with mild (label = 1) to severe (label = 3) COVID-19 associ-
ated imaging patterns which was validated in a frame and video method by trained sonographers. These images 
and their associated labels were used to train a DL algorithm in a weakly supervised way by providing segmented 
and image-based annotated ground truth labels to a Spatial Transform Network (STN) to automatically localise 
and classify severity of COVID-19 on a frame-by-frame basis. A class was assigned to each severity stage by pro-
viding a segmented ground truth label and was fed into a STN that determined the spatial relationship between 
the imaging patterns associated with that pathology and its location in each video and associated frame. Finally, 
our group in a previous  work25 focused on automatic identification and classification of pleural effusion using a 
modified DL COVID severity algorithm implemented initially  by14.

The approach proposed here further develops the pathology classification algorithm  of25 by identifying con-
solidation/collapse in patients that have respiratory imaging patterns that may be associated with late-stage 
COVID-19 infection. The novelty of this work includes the application to a unique consolidation/collapse dataset 
and the development and testing of several different labelling strategies, including a novel efficient data labelling 
method.

This development of the video-based method is based on the sampling of frames from LUS videos and bears 
similarity to label  smoothing26, a method that often improves the performance of classifiers trained on noisy 
labels (i.e. labels that may be incorrect)27. The opposing points of view for label smoothing are that (1) uniform 
noise is being injected to the labels hence accentuating the problem of noisy labels and that (2) the blurring of 
label noise may reduce the soft label/class in any one training  example27. In practice, however, label smoothing 
has been demonstrated to be effective at improving classifier  performance27.

Materials and methods
Dataset. This study was approved by The Melbourne Health Human Research Ethics Committee 
(HREC/66935/MH-2020) and was performed in accordance with the Declaration of Helsinki. Lung ultrasound 
images used in this study were acquired from a previous study where written informed consent was obtained 
from all participating  patients28 (Melbourne Health Human Research Ethics Committee approval HREC/18/
MH/269, trial registration: http://www.ANZCTR.org.au/ACTRN12618001442291.aspx). All patients were 
admitted to the Royal Melbourne Hospital under an Internal Medicine unit with a cardiorespiratory-related 
presentation. Using a Sonosite X-Porte portable ultrasound imaging system (Fujifilm, Bothell, WA, USA) with a 
1-5 MHz phased array transducer in Cardiac preset ( acoustic working frequency: 1.72 MHz, mechanical index: 
1.3, soft-tissue thermal index: 0.9, focal optimization: Gen, default penetration depth: 15 cm, pulse repetition 
rate: 2933 Hz, scan repetition rate: 34.1 Hz, tissue harmonic imaging: On), the lung ultrasound examination was 
performed by an experienced physician trained in point-of-care ultrasound (XC)28. The examination followed a 
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standardized iLungScan protocol (The University of Melbourne, Ultrasound Education  Group29). Patients were 
positioned in a supine position. Six distinct lung scanning zones were examined at least once (Figs. 1, 2). Images 
were reviewed for diagnostic accuracy and quality assurance by one of the lung ultrasound experts (DC, AR or 
CR).

The original LUS image dataset consisted of 125 patients, it included a range of imaging patterns associated 
with multiple pathologies. Images were stored in DICOM format. The performing physician recorded the image 
interpretation on a standardized report form. Based on the available medical reports, we identified 46 patients 
with lungs of healthy appearance (healthy patients), and 11 patients with lungs of unhealthy appearance con-
sisting of evidence of consolidation/collapse (unhealthy patients). These 11 unhealthy (consolidation/collapse) 
patients’ LUS images were screened by two independent experts in ultrasound (AW and MS) for image quality 
(Section 2: A1) and interpretation confidence (Section 2: A1). This resulted in the selection of 9 unhealthy con-
solidation/collapse patients. Eighteen healthy patients out of the 46 were then randomly selected for this study. 
A normal lung pattern was identified by the presence of lung sliding, reverberation artifacts from the pleura, and 
absence of  atelectasis31 (collapse) or consolidation (Fig. 3). Distinguishing between lung  atelectasis31 (collapse) 
and consolidation is challenging on lung ultrasound, as the two frequently co-exist. For this preliminary study, 
consolidation and atelectasis were considered as one finding (I.e. collapse/consolidation). Collapse/consolidation 
was defined as an area of increased tissue density (tissue pattern) in the lung space that has the appearance of a 
solid organ, such as the liver (‘hepatization’). Other features used to report the presence of collapse/consolidation 
include air bronchograms (hyperechoic dots) and loss of lung volume, however these were not strictly required. 
Figure 3 demonstrates comparison LUS frames of an unhealthy (consolidation/collapse) vs healthy patient, from 
three different scan protocol regions. Out of the total 6 regions scanned during the examination, in our dataset, 
the RANT, RPL, and LPL regions contained imaging patterns consistent with lung consolidation/collapse. This 
resulted in the frames per LUS video varying anywhere from 50 to 300 frames, and for multiple scans (1-5 videos) 
per region. The distribution of unhealthy (consolidation/collapse) and healthy patients in the dataset and any 
coexisting lung pattern changes that were identified are shown in Table 1 and Fig. 2.

Figure 1.  Describes the scanning locations: (A) Right Anterior (RANT) and Left Anterior (LANT); (B) Left 
Posterior Upper (LPU), Left Posterior Lower (LPL), Right Posterior Upper (RPU), and Right Posterior Lower 
(RPL); (C) Posterior view for LPU, RPU, RPL and LPL Source: Adapted from 30.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17581  | https://doi.org/10.1038/s41598-022-22196-y

www.nature.com/scientificreports/

In Table 1, with respect to the first column (number of patients), the columns under the heading Ultrasound 
Classifications show the lung changes present, while the last 2 columns show the number of videos and frames 
associated with the patients of each row. The last row of the table describes the healthy patient’s dataset.

Dataset exclusion criteria. The image quality for unhealthy (consolidation/collapse patients) and healthy LUS 
videos/frames ruled out what patients would be included for both the training of the algorithm and the ground 
truth labelling done by the trained sonographers. Clinical experts, namely, an experienced sonographer and a 
certified medical doctor, labelled the dataset described in “Related works” section to provide the DL model with 
ground truth labels for training purposes. Each LUS frame was assigned a binary label indicating if it contained 
clinical signs of consolidation/collapse (Score 1) or not (Score 0). The images acquired from improper US probe 
placement or containing imaging artefacts that significantly impair the ability to identify consolidation/collapse 
imaging patterns were excluded from the consolidation/collapse dataset.

Criteria for clinical significance of algorithm performance. The ultrasound images were revised by a trained 
sonographer (MS) with the intent of providing a video-based evaluation of the sonographer’s confidence level in 
determining if a scanning region contains consolidation/collapse or not. Confidence is based on image quality, 
and many other contributing factors such as the ability to identify anatomical landmarks, and image artifacts 
present that hindered the conclusive identification of any given frame with either having consolidation/collapse 
present or not.

This criterion consisted in a 3-scoring system (I.e. Y, Y* and N) representing the level of confidence in iden-
tifying consolidation/collapse in each video. A label of “N” represents an inconclusive decision in determining 
both the scanning region and consolidation/collapse identification due to varying factors (such as improper 
probe placement, imaging artefacts obstructing ability to identify a given pathology by its associated imaging 
pattern, poor image quality, etc). “Y*” represents frames in the associated video having both a high confidence of 
frames containing consolidation/collapse as well as frames that are inconclusive in terms of anatomical landmarks 
identification. Finally, Y represents frames with a clear determination of consolidation/collapse being present 
and clear anatomical markers present.

Figure 2.  Distribution of the patients before any processing (original dataset) to the final training dataset (after 
processing, data exclusion, and clinical exclusion).
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The original dataset when considering the consolidation/collapse (along with any other associated pathol-
ogy presented by identifying its associated imaging pattern), shows 11 patients or 40 videos (4910 frames) as 
shown in Table 1. the use of the exclusion and clinical criteria shown in Tables 2 and 3 led to a final consolida-
tion/collapse training dataset of 9 patients or 23 videos (3827 frames) and is shown in “Video-based labelling 
strategies” section.

Frame‑based labelling strategy. All frames of each unhealthy (consolidation/collapse patient) video 
were given a label of ’1’ (consolidation/collapse) or a label of ’0’ (no consolidation/collapse present). The frames 
labelled ’0’ were then excluded from the dataset. All frames of healthy patients were instead assigned a label of ’0’.

Table 3 summarises the dataset initially into the total number of frames with consolidation/collapse demon-
strated across the various scan protocol regions. It then further classifies this data into the number of frames used 
to train the algorithm after exclusion and clinical criteria have been applied. This exclusion process results in the 
ideal frames and image patterns of LUS patients with consolidation/collapse to be used to train the algorithm.

Figure 3.  Examples of unhealthy (left column) and healthy (right column) patients for 3 scanning regions (viz. 
RANT, RPL, LPL). The unhealthy patients are those for which consolidation is present, and are depicted here 
with a red bounding box encompassing the imaging patterns associated with the pathology, while the healthy 
patients are those for which no imaging patterns associated with consolidation/collapse or other pathologies.

Table 1.  Describes the pathology distribution among patients, after Dataset Review and exclusion (Fig. 2). 
Abbreviations: Acute Pulmonary Oedema (APO), Pleural Effusion (PE).

# of patients

Ultrasound classifications

# of videos # of framesConsolidation/collapse PE APO Interstitial syndrome

3 � 9 1397

4 � � 15 1682

3 � � � 17 2071

18 Healthy patients (no pathology present) 162 29167
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Video‑based labelling strategies. Besides the standard frame-based labelling approach described in 
“Video-based labelling strategies” section, video-based labelling strategies were also explored, as described “Pre-
processing” section, to reduce labelling time.

While the training of the frame-based model is considered supervised learning, since frame-level predic-
tions are evaluated using frame-level labels during training, the training of the video-based models is consid-
ered inaccurately supervised learning, a form of weakly supervised learning. This is because it is possible for 
the frame-level labels used for training to have  errors32. Such errors result because each video-based labelling 
strategy involves using a subset of frames from each video to determine the single label that is given to all frames 
of the video.

All‑or‑nothing video‑based labelling. For the all-or-nothing video-based approach, each patient was provided 
with iLungScanTM (Heartweb Pty Ltd, ITeachU Ltd, ACN 146184812) reports from LUS experts, developed by 
the Ultrasound Education Group at the University of Melbourne and validated by other experts from the Uni-
versity of Melbourne and QUT. These reports state the severity of consolidation/collapse present (as well as other 
pathologies) in the six scanning positions and are marked with a checkmark as shown in Fig. 4.

Effectively, if one frame in a single video had consolidation/collapse present, all the remaining frames of the 
video would be incorrectly labelled as having consolidation/collapse. The all-or-nothing method was named 
after this limitation, whereby videos containing few frames with consolidation/collapse present produce more 
frames that are incorrectly labelled than are correctly labelled. The shortcoming is addressed by the sampled 
video-based labelling methods described in the following section.

Sampled binary and sampled quaternary video‑based labelling. For the sampled binary and sampled quaternary 
labelling methods (Fig. 5), a label was assigned to a video and its associated frames, by comparing the number 

Table 2.  The clinical criteria used to score LUS videos that have been evaluated by the algorithm beforehand. 
The labelling system determines a certain confidence of an experienced sonographer to identify the overall 
rating of a video based on the corresponding consolidation/collapse imaging pattern per frame using 
anatomical markers, image quality, and other possible obstructions for appropriate identification.

Y Y* N

Obstructions to identification Little to no ambiguity or obstructions to view Possible causes: - artefacts overlappin - poor ultrasound probe placement

Consolidation/collapse identified Conclusive frames Conclusive frames inconclusive frames Inconclusive frames

Anatomical landmarks/scanning regions identified Conclusive frames Conclusive frames inconclusive frames Inconclusive frames

Image quality Good to high Not optimal to normal Not optimal/poor

Table 3.  Describes the consolidation/collapse dataset distribution before and after application of the data 
exclusion and clinical criteria.

Frames per scanning region

RANT RPL LPL Total

Original data 807 3065 1578 5450 Videos=4 Patients=11

Exclusion criteria 507 2825 1578 4910 Videos=35 Patients=10

Clinical criteria 507 2071 1249 3827Videos=23 Patients=9

Figure 4.  Example of the information provided by the medical report where each LUS scanning region consists 
of a video that has been checked marked if it contains a pathology.
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of consolidation/collapse frames as a percentage of the total number of frames for that video. For these sam-
pled labelling methods, given an LUS video, 10% of its frames were randomly sampled rather than using peri-
odic sampling to reduce systematic errors. In our case, the labels were from the frame-based labelling method 
(“Video-based labelling strategies” section) and were validated by the clinical experts (AW, MS) by assigning 
each frame a binary label of 0 (healthy) or 1 (unhealthy containing consolidation/collapse).

After the 10% sampling of frames from an LUS video, all frames of the video were then assigned the same 
label depending on the proportion of unhealthy (consolidation/collapse) sampled frames, i.e. frames contain-
ing signatures of pulmonary consolidation/collapse (Fig. 3). For the binary method, a label of 0 was given to all 
the frames in each video frames if less than half the sampled frames were unhealthy (consolidation/collapse). 
Otherwise, a label of 1 was given. For the quaternary method, on the other hand, if the proportion of unhealthy 
(consolidation/collapse) sampled frames was lower than 25%, a label of 0 was given. Labels of 1, 2 and 3 were 
assigned for a proportion less than 50%, a proportion less than 75% and for the remaining interval of 75%-100% 
inclusive, respectively.

Pre‑processing. An open-source DICOM processing package  (Pydicom33) was used to extract the origi-
nal pixel data from the compressed DICOM format. Next, the various overlays inside and outside the ultra-
sound sector, including text, watermarks, and trademarks from the ultrasound imaging system, were replaced 
with black background pixels. The final step included cropping the images from 960× 720 pixels to a size of 
806× 550 pixels which contained the ultrasound sector to reduce the dataset size before being input into the DL 
model and only include the relevant information contained in the image.

Cross‑validation. As  per14,25, the train-test splits were performed at the patient level during cross-valida-
tion, i.e. all the images of a given patient were either included in the training or in the test set. The patient split 
was performed by assigning a binary label of healthy or unhealthy with imaging patterns consistent with con-
solidation/collapse (i.e. 0 or 1, respectively) to each of the 28 patients using the medical reports described in 
“Related works” section. This could be done unambiguously because there were no patients for whom a mixture 
of healthy and unhealthy consolidation/collapse LUS videos was collected, as determined by the medical reports.

A Stratified 10-fold cross-validation was used where each test set contained frames from one consolidation/
collapse patient, with the remaining video frames belonging to the healthy patients for which no imaging patterns 
resulting in any pathology was present. Since there was a total of 9 patients for which consolidation/collapse was 
present, one of the 10 folds had a test set containing only healthy patient video frames and was hence excluded 
from the final calculation. Note that for the sampled labelling methods of Section D2, the 10% sampling used to 
generate labels was performed once initially, rather than once per fold.

The trade-off between the quantity and quality of training examples is managed with the N/Y/Y* video cat-
egories from Section A2. Unlike the training examples from the videos labelled N, the Y* videos were deemed 
of high enough quality to be used for training in addition to the Y videos. However, since they did not possess 
the near-perfect inter-observer agreement of the Y videos, they were not considered of sufficient quality to be 
included in the test set to evaluate the algorithm performance. Hence ultimately the test set consisted solely of 
healthy videos and Y videos.

During the cross-validation process for training the algorithm, there was an equivalent number of frames 
between healthy and unhealthy consolidation/collapse frames per scanning region. Therefore, per training fold 
the scanning regions used for healthy and unhealthy consolidation/collapse frames was kept relatively the same 
to represent a training done on a balanced dataset. The distribution of the patients during training and testing 
of the model are presented in Table 4.

Deep learning model. A DL architecture consisting of a CNN and Spatial Transformer Network (STN)34 
was employed. Specifically, it used a Regularised Spatial Transformer Network (Reg-STN)14 to localise signatures 
of pulmonary consolidation/collapse. The Reg-STN uses ordinal labels (i.e. binary or quaternary labels in our 

Figure 5.  Illustrates the flowchart for the sampled binary and quaternary video-based labelling methods.
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case) as opposed to the explicit consolidation/collapse locations per  frame14. It creates an image crop used by the 
CNN for feature extraction to ultimately produce a  prediction14.

The algorithm was optimised using the same loss function as Roy S et al.14, who employed it for COVID-19 
severity score estimation, an ordinal  regression35 problem. This overall loss function, taking the form of a sum 
of terms, incorporated as one of its terms a soft ordinal regression (SORD)36 cross-entropy loss function to allow 
long-distance errors to be penalised harsher than low-distance  errors14.

This model was selected since it is based on a unique/novel Reg-STN network, that has been proven to be 
able to localize and identify features in LUS images that were associated with COVID-1914.

Training approach. Since the training and test sets were formed using stratified cross-validation, their class 
distributions reflected that of the whole dataset, with far healthier LUS frames than unhealthy consolidation/
collapse frames. Hence,  following25, a batch-level class balancing was implemented using the weighted random 
sampler from  PyTorch37,38. As  in14, the DL model was trained using an Adam optimiser with a learning rate 
decay of 1× 10

−4 , early stopping on the training loss, and online data augmentation 14. This training was run 
up to a maximum of 80 epochs, using a batch size of 32 and an initial learning rate of 1× 10

−5 . For the frame-
based labelling, all-or-nothing video-based labelling, and binary video-based labelling the number of classes of 
the SORD loss function described in “Deep learning model” section was set to n = 2 , while for the quaternary 
video-based labelling method n = 4 was used.

The network was trained on a single Nvidia Titan RTX GPU with 24 GB of memory installed on a worksta-
tion running Linux with 128GB of memory. The GPU workstation used an Intel i9-9820X CPU with 20 cores 
running at 3.30 GHz (Lambda Labs, San Francisco, CA, USA).

Evaluations. Evaluation metrics. The models trained using both the frame-based labelling approach and 
the video-based labelling approaches produced frame-level predictions, which were evaluated against the frame-
based binary ground truths as  in25.

To evaluate the quaternary method in a manner comparable to the all-or-nothing and sampled binary meth-
ods, quaternary labels 0 and 1 were considered negatives (i.e. healthy) with the rest being considered positives 
(i.e. unhealthy or containing imaging patterns consistent with consolidation/collapse). That is, letting a denote 
the test set label and p denote the prediction, a linear projection from the 4× 4 quaternary confusion matrix 
[

Qap

]

 to the binary confusion matrix was defined by the equations

which respectively define the true negatives TN , false positives FP , false negatives FN , and true positives TP for 
the quaternary method. Note that Qap = 0 when a = 1 or a = 2 since the frame-based ground truths are binary. 
This method allowed metrics such as accuracy, precision, recall, and F-score to be defined using binary formulae 
for the quaternary method and thereby compared to the same set of metrics applied to the frame-based method 
and the all-or-nothing and sampled binary video-based methods. A classification threshold of 0.5 was used to 
separate the positive and negative classes to evaluate these metrics and was not calibrated because the calibra-
tion would require us to reduce the size of our already small training and test set sizes to afford a validation set 
for threshold tuning.

Given this imbalance, the appropriate classification threshold-independent measure of skill is PR-AUC score, 
which does not account for true negatives and thereby exaggerate classifier performance, unlike ROC-AUC 
 score39. Additionally, precision-recall  curves39 were also used for evaluation. Each point on a precision-recall 
curve corresponds to a possible value for the classification threshold that separates negative and positive classes. 
This threshold is applied to the predicted score for the positive class, or the sum of the predicted scores for the 
positive classes (viz. 2 and 3) in the case of the quaternary method. Precision-recall curves are summarised by 

TP =Q22 + Q23 + Q32 + Q33

FP =Q02 + Q03 + Q12 + Q13

FN =Q20 + Q21 + Q30 + Q31

TN =Q00 + Q01 + Q10 + Q11

Table 4.  Shows the distribution of the patients and their respective videos and frame during the training and 
testing of the model/algorithm.

Patient distribution after Exclusion and Clinical Criteria

Patients Videos Frames

Total 27 162 32994

Healthy 18 139 29167

Training 16/17 125–133 26125–27664

Testing 1/2 6–14 1248–2912

Consolidation/collapse 9 23 3827

Training 8/9 21–23 3486–3827

Testing 1 2 120–330
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the Precision-Recall curve Area Under Curve score (PR-AUC), which corresponds to the average precision 
across the precision-recall curve.

Evaluation of statistical significance. To evaluate the significance of PR-AUC scores, the statistical procedure 
suggested  by40, stratified bootstrapping, was used. Stratified bootstrapping involves drawing n positive sam-
ples and m negative samples from the dataset with replacement for each of I  iterations to produce a distribu-
tion of I  bootstrapped PR-AUC scores. Stratification is necessary because PR-AUC scores are sensitive to class 
 imbalance40, with the n : m ratio giving the vertical centre point for a horizontal line, which is the precision-recall 
curve for a classifier with no skill.

Specifically, for each fold, given the test set predictions for a pair of labelling methods to be compared, a pair 
of PR-AUC scores was obtained, whose difference we refer to as the observed difference. To test if the two scores 
for each fold were significantly different from each other, and hence test the null hypothesis that the performances 
of the pair of labelling methods were insignificantly different, stratified bootstrapping with 10,000 iterations was 
employed. For each fold, two sets of bootstrapped PR-AUC scores, corresponding to a pair of labelling methods, 
were obtained and used to form the distribution of 10,000 PR-AUC score differences. Under the null hypothesis, 
the two sets of PR-AUC scores would have been sampled from the same distribution, so that the distribution of 
differences would have mean zero; the alternate hypothesis, on the other hand, is that the respective means of the 
two sets of bootstrapped scores are different. Hence, to form a distribution able to test the null hypothesis, the 
observed difference was subtracted from each of the 10,000 PR-AUC score differences to form a mean-shifted 
distribution of differences, from which a p-value was finally obtained by performing a t-test. Note that an identi-
cal p-value, for a fold and pair of labelling methods, could have been obtained by performing a paired-samples 
t-test on the two mean-shifted distributions of PR-AUC scores, as opposed to differences, corresponding to each 
labelling method.

Ultimately, recalling from “Cross-validation” section that one of the 10 folds was excluded, for each pair of 
labelling methods, 9 p-values corresponding to 9 folds were obtained. Each p-value indicated whether the pair 
of PR-AUC scores corresponding to the pair of labelling methods for a given fold were significantly different. 
A Bonferroni  correction41,42 was used to correct for the multiple comparisons problem, whereby the chance 
of falsely rejecting the null hypothesis by chance alone increases with the number of repetitions of a family of 
hypothesis tests testing the same hypothesis. Therefore, a 5% chosen significance level was divided by 9 folds to 
yield a 0.56% Bonferroni-corrected significance level. Using this Bonferroni-corrected significance, if the null 
hypothesis were true, 5% of the tests performed are expected to have their null hypothesis rejected by chance 
alone. Hence, out of the 9 p-values obtained to compare labelling methods, it is sufficient that one of them (i.e. 
11% of the p-values) is below the Bonferroni-corrected significance level of 0.56% to conclude that the labelling 
methods are significantly different.

Inter/intra‑observer tests. To perform the inter/intra-observer test metrics, two independent (1 MD from Royal 
Melbourne, 1 clinically trained LUS sonographer) experts were tasked with performing clinical labelling of the 
original consolidation/collapse (as described in Table 1 of the original patient dataset). The labelling done by 
each expert comprised of a per frame binary scoring system where a score of 0 (no consolidation/collapse pre-
sent) or a score of 1 (consolidation/collapse present) was assigned to all patients from Table 1. The scope of a 
given score of 0 includes frames that are conclusive for no imaging patterns associated with a given pathology 
being present, and inconclusive or indeterminate for imaging patterns associated with a pathology not being 
present and is further described (on a per video basis) in “Related works” section. The inter/intra-observer 
agreement was calculated using a percent agreement between the experts and the algorithm and a Cohen kappa 
 score43 between the experts.

Results
For the specific classification threshold of 0.5 that was used, with respect to accuracy, the frame-based method 
performed best (accuracy: 90.1%), with the video-based methods performing from best (accuracy: 88.7%) to 
worst (accuracy: 87.2%) in the following order: sampled quaternary, sampled binary, all-or-nothing binary 
(Table 5). However, given the class imbalance of the dataset (Tables 6, 7), accuracy reflects the ability of each 
method to produce true negatives. Indeed, the order of accuracies from the highest performing frame-based 
method to the lowest performing all-or-nothing binary method is identical to the order from highest to lowest 

Table 5.  The mean/std test-set metrics for the 10-fold cross validation, for which videos labelled N (Section II.
A2) were excluded. One of the 10 folds, which contained only healthy frames, was excluded from the results. 
Here Y* frames are frames Y* videos (Section II.A2).

Mean/SD (%) with Y* frames excluded from the test set

Method PR-AUC Recall Precision F1-score Accuracy

Frame-based 60.08 ± 39.38 63.28 ± 36.62 53.01 ± 37.44 54.69 ± 38.02 90.18 ± 9.35

All-or-nothing binary video based 64.37 ± 39.32 69.18 ± 28.12 56.27 ± 37.86 59.10 ± 34.96 87.21 ± 17.07

Sampled binary video based 62.39 ± 40.09 69.22 ± 28.30 52.75 ± 36.37 55.92 ± 32.31 87.41 ± 14.97

Sampled quaternary video based 73.34 ± 30.37 83.67 ± 23.62 59.26 ± 28.14 66.78 ± 25.13 88.73 ± 15.87
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of the percentage of true negatives produced (Table 7). Hence F1 score is a more suitable metric for evaluation. 
For the specific classification used, with respect to F1 score, the video-based methods (inaccurately supervised 
learning methods) outperformed the frame-based method (supervised learning method) with the sampled 
quaternary video-based method (F1 score: 67%) performing best and the frame-based method (F1 score: 55%) 
performing worst (Table 5).

When considering the class imbalance of the dataset, it is particularly important to calibrate the classification 
 threshold44. Hence, other Table 5 metrics are less informative than the PR-AUC score, a classification threshold-
independent metric. With respect to PR-AUC score, the Table 5 methods performed from best to worst in the 
same order as they performed for F1 score with the sampled quaternary video-based method performing best 
(PR-AUC score: 73%) and the frame-based method performing worst (PR-AUC score: 60%). Additionally, with 
respect to PR-AUC score, the sampled quaternary method outperformed the sampled binary method by 11% 
and the all-or-nothing binary method by 9% (Table 5).

The precision-recall curves of the best and worst folds are judged using PR-AUC score and given by Fig. 6. 
Recall that PR-AUC score is sensitive to the ratio between consolidation containing ground truth frames to the 
total number of the frames, which defines the precision-recall curve for a classifier with no skill. This ratio across 
folds (mean/std (%): 11.6 ± 8.1) has maximum 29.1% and minimum 1.4%.

As described in “Evaluation of statistical significance” section, a Bonferroni-corrected significance level of 
0.56% was used to assess for each pair of labelling methods, the 9 p-values corresponding to 9 folds. In all cases, 
the percentages of folds for which the null hypothesis was rejected were significantly greater than the 5% rate 
expected due to chance if the scores corresponding to a pair of labelling methods were insignificantly different. 
More concretely, the sampled quaternary method was found to be significantly different compared to the sampled 
binary method (mean/std p: 0.12 ± 0.29) for 50% of folds, the all-or-nothing binary method (mean/std p: 0.17 ± 
0.29) for 50% of folds, and the frame-based method (mean/std p: 0.17 ± 0.3) for 60% of folds. Additionally, the 
sampled binary method was found to be significantly different compared to the all-or-nothing binary method 
(mean/std p: 0.24 ± 0.26) for 30% of folds, and the frame-based method (mean/std p: 0.16 ± 0.27) for 60% of 
folds. Finally, the frame-based method was found to be significantly different from the all-or-nothing binary-
based method (mean/std p: 0.19 ± 0.36) for 70% of folds.

The metrics here utilised for the analysis of the inter-observer agreement include the Cohen kappa and the 
percent agreement comparing the labels provided by two experts. In Table 6, in the columns under the heading 
Data after criteria, the percent agreement is used to show the agreement between two experts in labelling frames 
associated with imaging patterns from the consolidation/collapse pathology. This metric is calculated before and 
after the clinical criteria had been applied to demonstrate to what degree the experts agree on consolidation/
collapse frames labelled Y (high image quality, conclusively identified imaging patterns associated with pathol-
ogy, clear anatomical markers), labelled Y* (conclusively identified imaging patterns associated with pathology, 

Table 6.  Metrics for the inter-observer agreement analysis. (% agreement), {clinical criteria (unhealthy 
(consolidation/collapse)/healthy dataset) Y: Optimal, Y*: Good, N: Poor}.

Comparison

% Agreement

Data after exclusion criteria

Frame-based All-or-nothing video Sampled binary video Sampled quaternary video

Expert 1/algorithm

{Y and Y*}

(90.088) (87.626) (87.823) (89.791)

{Y}

(91.106) (89.154) (89.240) (90.994)

Expert 2/algorithm

{Y and Y*}

(90.144) (87.767) (87.87.835) (89.956)

{Y}

(91.602) (89.186) (89.202) (91.026)

Table 7.  The mean/std test-set confusion matrix for the 10-fold cross validation test-set results with videos 
labelled N (Section II.A2) excluded. Positives correspond to frames from LUS videos that contain signatures of 
consolidations (and associated imaging patterns) while negatives correspond to frames that do not. One of the 
10 folds, which contained only healthy frames, was excluded from the results. Here Y* frames are frames Y* 
videos (Section II.A2).

Method

Mean/SD (%) with Y* frames excluded from the test set

TP FP FN TN

Frame-based 5.68 ± 4.66 5.93 ± 7.18 4.08 ± 5.52 84.31 ± 28.82

All-or-nothing binary video based 6.75 ± 3.90 9.74 ± 13.80 3.01 ± 3.46 80.50 ± 31.80

Sampled binary video based 6.73 ± 3.98 9.51 ± 11.43 3.03 ± 3.52 80.73 ± 30.94

Sampled quaternary video based 7.59 ± 4.08 8.16 ± 11.72 2.17 ± 3.42 82.08 ± 33.69
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exactly one of: unclear anatomical markers or lower image quality), and labelled N (e.g. lower image quality, 
inconclusively identified imaging patterns associated with pathology, unclear anatomical markers). The Expert 1 
/ Algorithm and Expert 2 / Algorithm rows show the percent agreements of each expert’s labels, and the classifier’s 
predictions for the test set, which includes a mixture of healthy and unhealthy consolidation/collapse patients for 
each of the labelling methods. Since the frames that did not satisfy the clinical criteria and were therefore labelled 
N were excluded from the algorithm training, these frames were also not considered in the percent agreement 
and Cohen kappa scores computations.

The quaternary method performs the best in terms of percent agreement with the worst performing method 
being the all-or-nothing video-based method (Table 6). The Cohen kappa/percent agreement for the (Y/Y*/N), 
(Y/Y*), and (N) cases between Expert 1 and Expert 2 are 0.537/0.805, 0.956/0.99, and 0.149/0.59 respectively. 
The percent agreement along with the other metrics (e.g. PR-AUC, accuracy) shows that the performance of the 
algorithm is at least on par if not at certain times slightly better than the trained experts after the application of 
the data exclusion criteria and the clinical criteria.

Discussion
In this paper, we utilised an automated DL-based approach that identifies consolidation/collapses in LUS images 
to aid in the prognosis of late stages of COVID-19 induced pneumonia. Here we extend our previous work on 
pleural effusion pathology  classification25 by proposing an improvement to its video-based method, namely, 
through our sampled quaternary video-based method. We have evaluated this quaternary method by compar-
ing it with the frame-based method and video-based method of our previous pleural effusion work and with the 
sampled binary video-based approach.

Figure 6.  The best and worst fold test set precision-recall curves across the 10 folds for which videos labelled N 
(Section II.A2) were excluded from the training, and for which videos labelled Y* were excluded from the test 
set. These are given with their associated average precisions given by the Area Under Curve (AUC) scores, for 
models trained using the various labelling methods: the sampled quaternary and binary video-based methods, 
the all-or-nothing binary video-based method, and the frame-based method. One of the 10 folds, which 
contained only healthy frames, was excluded from the results.
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There is a trade-off between the quantity and quality of training data: By increasing the quality of the dataset 
by excluding videos, we reduce our dataset size. This trade-off was managed by excluding N but not Y* video 
frames from the training set, preferring instead of excluding only Y* from the test set. This exclusion of Y* from 
the test set was done because, in order to evaluate how well the compared classifiers fare against the challenge 
of label noise, the test sets ground truths must be virtually free of it. For images that do not fall under the Y 
criteria (Section A2), the inter-observer agreement varies greatly as the identification of a given frame with an 
imaging pattern associated with consolidation/collapse gets more inconclusive due to a range of factors includ-
ing varying image quality, location of key anatomical markers, artefacts hindering or obstructing the associated 
imaging pattern found with consolidation/collapse, and improper or poor placement of US probe resulting in 
unusable or highly questionable image. Since the difference between the N/Y*/Y categories is due to the image 
information becoming clearer and less ambiguous in the identification of the imaging patterns associated with 
consolidation/collapse, as expected, the agreement between the experts increases and becomes more consistent 
for the Y category, while it decreases for the categories Y* and N due to the inconsistency and complexity of 
identifying this pathology.

In this study, only 2 experts were compared in the interobserver study mainly due to the time and effort 
required to perform this task and the limited number of available trained experts in this field. In the future, 
additional experts could be involved to refine our current results. However, given our image classification into 
the three different categories, it is expected that the interobserver agreement that will be obtained for the category 
Y, where the image information is not ambiguous, would be comparable to our current result, whereas a possible 
decrease in interobserver performance could be expected for the categories Y* and N.

While it is hard to gauge the performance of the model with respect to false positives and false negatives, since 
those metrics are with respect to a specific classification threshold of 0.5, domain knowledge may be leveraged. 
In the case of false positives, for which the algorithm predicted the frame as containing consolidation/collapse 
when there was none, the algorithm sometimes labels possible artefacts that resemble consolidation/collapse 
or liver like features if located in the RPL scanning region. A possible approach to addressing this issue is by 
providing the anatomical information of the liver and accounting for that during the trainings.In the case of 
false negatives, for which the algorithm predicted the frame as being free from consolidation/collapse when it 
was instead present, the misclassified frames were sometimes drawn from LUS videos for which the consolida-
tion/collapse was hidden beneath an inflated lung and was only visible when the patient exhaled. This limitation 
could be addressed similarly to the false positive case, by accounting for patient inhales/exhales during training. 
Alternately, patient breathing rhythm could be accounted for automatically by an algorithm that accounts for 
the temporal relationship between frames.

To evaluate our classifiers in a classification-threshold independent manner, the PR-AUC score was used 
in place of the more common ROC-AUC score. This is because the dataset employed had an imbalanced class 
 distribution39. The imbalanced class problem was exacerbated by the fact that in the case of the quaternary 
labelling method, there are three decision thresholds to be calibrated as opposed to one. Moreover, for imbal-
anced datasets, as in this work where there is a majority of healthy patients, the TN, FP, FN,TP rates obtained 
were skewed which in turn resulted in a high discrepancy between the best and worst folds Precision-Recall 
curves (Fig. 6). In the future, these limitations will be solved using a larger dataset with a balanced number of 
pathologic and healthy cases.

The fact that the sampled quaternary method outperformed the sampled binary method with respect to the 
PR-AUC score is expected, and in fact this quaternary method performed best overall in this respect. This is 
because the quaternary approach performs a smoother transition between healthy and non-healthy classifications 
by providing 4 classes rather than 2. This increase in class granularity may be limiting the maximum ascent in 
training loss per training iteration due to the inherent error of video-based labelling in comparison to frame-
based labelling. More concretely, the fact that the overall loss function used incorporated a SORD cross-entropy 
loss function as one of its terms allows long-distance errors to be penalised harsher than low-distance errors. 
This is beneficial because, just as some predicted severity scores are closer to the true severity score  in14, some 
predicted sampled quaternary video-based method labels are more representative of the true number of frames 
with signatures of consolidation/collapse than others. This contrasts with cases where the classes are independ-
ent of each other.

In our findings, the inaccurately supervised learning of the video-based methods outperformed the supervised 
learning of the frame-based method with respect to PR-AUC score. This may be explained in terms of the bias-
variance trade off, with the video-based methods shifting the trade off towards bias and the frame-based method 
shifting it towards variance. Indeed, for the video-based methods, a single label is being assigned to all frames 
of the video, so that the degrees of freedom the model has to overfit the noisy labelling data is reduced. Instead, 
a more uniform labelling noise is introduced across the frames of a video, which may be reducing the over-
confidence of the video-based classifier has on any single frame. The quaternary method may be facilitating this 
reduction of over-confidence by preventing an overly high degree of noise from being injected uniformly across 
the labels of a video, as may be the case for the binary approaches. In this sense, our quaternary method is similar 
to label smoothing, a regularisation method that reduces over-confidence by smoothing labels and label noise, 
which been shown to be effective for datasets with incorrect labels present. Note, however, that the frame-based 
method still performed best in terms of accuracy, which may be due to the loss function used optimising error 
as opposed to a metric similar to PR-AUC score or F1 score that is more suitable for class imbalance scenarios.

While the sampled quaternary method outperformed the all-or-nothing binary method, there is a trade-off 
in terms of labelling effort. If medical reports are readily available, then the all-or-nothing method would not 
require additional labelling effort or clinical expertise. Hence, if the reduction in labelling time is of a higher 
priority than classification accuracy, then the all-or-nothing method may be preferred. The labelling effort of the 
sampled quaternary and sampled binary methods, on the other hand, are identical: this is because the labelling 
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effort depends only on the percentage of frames sampled (10% in our case). Indeed, the sampled binary and 
quaternary methods are flexible in the sense that the trade-off between labelling effort and classification accuracy 
is easy to adjust: the higher the percentage of frames sampled, the higher the labelling effort.

A potential limitation of our findings relates to the fact that the dataset came from a single ultrasound sys-
tem. Variability among manufacturers is expected. Therefore, the ability to generalize our findings to images 
acquired from other systems will need to be determined. The key limitation of our work was the reduced size 
of high-quality training examples. Future work could address this limitation through transfer learning, a more 
sophisticated approach to data augmentation than the online data augmentation that was used, or by applying 
our classifier to a larger and higher quality dataset. Each of these approaches mitigate overfitting, while the 
latter approach reduces the dataset label noise. Since overfitting and label noise are posited as the reason why 
our video-based approaches outperform the frame-based method, the suggested future work could provide 
evidence that our video-based approaches indeed mitigate label noise or overfitting in a manner similar to label 
smoothing. Additionally, due to the large number of healthy training examples and limitations on expert time, 
the Section A2 Y/Y*/N categorisation was not applied to the healthy examples. Other algorithms/models in the 
literature were trained to identify b-lines and pleural lining irregularities associated with COVID-19, but they 
were never tested on more or complex pathologies (PE, consolidation/collapse, atelectasis, interstitial syndrome, 
etc) and their associated imaging patterns. Furthermore, this model has the capability of performing both image 
classification and segmentation, which will be explored as part of our future work.

Conclusion
Our work provides a tool for automatic consolidation/collapse identification of LUS video frames during point-
of-care testing. Out of the labelling methods considered, the video-based methods were intended to reduce 
labelling effort while minimising the resulting loss of accuracy.

The video-based methods outperformed the frame-based method. This may be a result of overfitting due to 
the variance of our small dataset size or label noise. Specifically, our video-based methods may be more robust 
to label noise and variance than the frame-based method. That is, in the bias-variance trade-off the frame-based 
method shifts the trade-off towards variance while the video-based method shifts the trade-off towards bias. 
It is expected that if the classifier was run on a larger dataset of higher quality, the frame-based method would 
outperform the video-based methods. However, this must be confirmed through future work.

The best performing method was the sampled quaternary method, which employed a novel training approach 
using four classes, and performed better than the medical report based all-or-nothing method  of25. However, 
if medical reports corresponding to LUS videos are readily available, then the all-or-nothing method may be 
preferred for scenarios where a reduction in labelling time is prioritised higher than classification accuracy.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author(s) on 
reasonable request.
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