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Abstract

We propose a neuromimetic architecture able to perform always-on pattern recognition. To achieve this, we extended an

existing event-based algorithm [1], which introduced novel spatio-temporal features as a Hierarchy Of Time-Surfaces (HOTS).

Built from asynchronous events acquired by a neuromorphic camera, these time surfaces allow to code the local dynamics of a

visual scene and to create an efficient event-based pattern recognition architecture. Inspired by neuroscience, we extended this

method to increase its performance. Our first contribution was to add a homeostatic gain control on the activity of neurons to

improve the learning of spatio-temporal patterns [2]. A second contribution is to draw an analogy between the HOTS algorithm

and Spiking Neural Networks (SNN). Following that analogy, our last contribution is to modify the classification layer and

remodel the offline pattern categorization method previously used into an online and event-driven one. This classifier uses

the spiking output of the network to define novel time surfaces and we then perform online classification with a neuromimetic

implementation of a multinomial logistic regression. Not only do these improvements increase consistently the performances of

the network, they also make this event-driven pattern recognition algorithm online and bio-realistic. Results were validated on

different datasets: DVS barrel [3], Poker-DVS [4] and N-MNIST [5]. We foresee to develop the SNN version of the method and

to extend this fully event-driven approach to more naturalistic tasks, notably for always-on, ultra-fast object categorization.
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A robust event-driven approach to always-on
object recognition

Antoine Grimaldi1, Victor Boutin1, Sio-Hoi Ieng2, Ryad Benosman2 and Laurent U Perrinet1

Abstract— We propose a neuromimetic architecture able to perform always-on pattern recognition. To achieve this, we extended an
existing event-based algorithm [1], which introduced novel spatio-temporal features as a Hierarchy Of Time-Surfaces (HOTS). Built
from asynchronous events acquired by a neuromorphic camera, these time surfaces allow to code the local dynamics of a visual scene
and to create an efficient event-based pattern recognition architecture. Inspired by neuroscience, we extended this method to increase
its performance. Our first contribution was to add a homeostatic gain control on the activity of neurons to improve the learning of
spatio-temporal patterns [2]. A second contribution is to draw an analogy between the HOTS algorithm and Spiking Neural Networks
(SNN). Following that analogy, our last contribution is to modify the classification layer and remodel the offline pattern categorization
method previously used into an online and event-driven one. This classifier uses the spiking output of the network to define novel time
surfaces and we then perform online classification with a neuromimetic implementation of a multinomial logistic regression. Not only do
these improvements increase consistently the performances of the network, they also make this event-driven pattern recognition
algorithm online and bio-realistic. Results were validated on different datasets: DVS barrel [3], Poker-DVS [4] and N-MNIST [5]. We
foresee to develop the SNN version of the method and to extend this fully event-driven approach to more naturalistic tasks, notably for
always-on, ultra-fast object categorization.

Index Terms—vision, pattern recognition, event-based computations, spiking neural networks, homeostasis, efficient coding, online
classification

F

1 INTRODUCTION

Bio-inspired engineering aims at taking advantage of our
understanding of the complex and impressively efficient
mechanisms found in nature. Event-based cameras perfectly
illustrate this process. Also called silicon retinas, these sen-5

sors are inspired by biological retinas and makes it possible
to capture luminous information asynchronously. Unlike its
classical frame-based counterpart, an event-based camera
responds to the scene’s dynamics in a pixel-wise fashion:
when a light change is detected, an event is emitted. The10

event is labeled with an ON or OFF polarity whether it
corresponds to an increase or decrease in brightness, re-
spectively (see figure 1). Event-based cameras offer various
advantages and notably a high temporal resolution, energy
efficiency, redundancy reduction, and a high dynamic range.15

Numerous interesting applications and use cases of event-
based cameras are nowadays flourishing in the scientific
community (see [6] for a review). This new technology,
along with the corresponding Address Event Representation
specification [7], brings a paradigm shift in the way visual20

information is processed.
Efficient event-driven solutions were found to solve

classical computer vision tasks such as estimating optical
flow [8–10], inferring 3D reconstruction [11–13] or solving
the simultaneous localization and mapping problem [14, 15].25

In this work, we focus on performing pattern recognition
such as is defined in the benchmark of digit recognition
defined by the event-based, augmented version of MNIST
called N-MNIST [5]. Some related approaches have used
standard Artificial Neural Networks (ANN) which were30

converted to Spiking Neural Networks (SNN), resulting

Fig. 1: A miniature event-based ATIS sensor (Left) which,
compared to classical frame-based representations (Middle),
outputs an event-based representation of the scene (Right).

in overall good classification results [16–18]. Alternatively,
some other competitive event-driven algorithms are devel-
oped using backpropagation adapted for SNN [19–21]. More
recently, it was proposed to introduce biomimetic saccades 35

to boost object recognition [22]. In [1], object recognition
is achieved through a feedforward hierarchical architecture
using time surfaces, an event-driven analog representation of
the local dynamics of a scene. Then, these are assembled
in a Hierarchy Of Time Surfaces (HOTS). Using a form of 40

Hebbian learning, the network is able to learn, in an unsu-
pervised way, progressively more complex spatio-temporal
features which appear in the event stream. The algorithm
was shown to make accurate predictions on a letter and digit
dataset [3], on a flipped card dataset [23] and on a dataset 45

of scenes with faces.
We identified two main limitations in the HOTS algo-

rithm. While the algorithm is efficient for some datasets,
we first observed a performance drop when learning to
classify digits from the more challenging N-MNIST dataset. 50

In particular, an unequal activation frequency of the differ-
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ent features during learning can lead to a poor variety of
time surfaces and consequently to a loss in efficiency. In a
subsequent work from the same group [24], this problem
was circumvented by averaging time surfaces gathered in a55

temporal window �t. To directly address this problem, we
have recently proposed to include a bio-plausible homeo-
static gain control mechanism [2]. We showed there that un-
supervised learning of the features is qualitatively improved
by balancing the activity of the different neurons within the60

same layer. We moreover tested the classification accuracy
over different datasets by injecting different amounts of spa-
tial and temporal noise to the input events stream, proving
that efficiency was increased by homeostasis. The second
limitation that we identified in the HOTS method is the65

output classifier. Indeed, it is based on the computation of an
histogram of the neural activations in the final layer of the
network to perform the classification. Such a method dis-
counts the fine-grained temporal dynamics of the stream of
events emitted by the last layer of the network. Even if one70

can argue that the dynamics of the event-based recording
are already captured by the structure of the network. More
importantly, a major drawback is that classification can only
be performed post hoc, once all the events of the tested
sample were received. Thanks to the increase in robustness75

offered by the homeostatic gain control, we will here include
and test an online classification algorithm at the last layer of
the network, such that we hope to achieve a fully end-to-end
event-driven and online pattern categorization.

In that perspective, this paper is organized as follows.80

First, we will present the HOTS algorithm using a novel
mathematical formalization, along with the contribution
brought by homeostasis. Then, we will extend the cate-
gorization algorithm by including a simple bio-plausible
online classification layer. Moreover, we will demonstrate85

that our method corresponds to a SNN with leaky integrate-
and-fire (LIF) neuron models. This will allow us to present
this unified theoretical framework as a novel contribution
as it establishes a bridge between neuromorphic engineer-
ing methods used here and computational neurosciences.90

We have simulated the model for different datasets and a
full implementation of this algorithm is available at https:
//github.com/SpikeAI/HOTS. These scripts allow to re-
produce all results presented in this paper and we will give
links to reproducible notebooks within the text. Finally, we95

will show the quantitative improvements of the resulting
classification performances, and how its dynamics may vary
for different datasets.

2 MATERIALS AND METHODS

In this section, we start by describing the datasets used in100

this study and present a method to test our algorithm’s ro-
bustness to spatial and temporal jitter. Then, we generalize
the event-based HOTS model, already described in [1], and
extend its formalism to the continuous time domain. After
introducing the homeostasis regulation rule that allows for105

a better learning of the weights of the different layers [2],
we describe a new classifier using Multinomial Logistic
Regression (MLR) to propose an end-to-end event-driven
classification algorithm.

2.1 Datasets 110

To load the events, we use the community-built tonic python
package [25]. It currently offers the possibility to load five
different event-based datasets and is based on the PyTorch
language [26]. This allows to load event streams in a stan-
dard fashion and to optionally apply data augmentation 115

methods to the event streams. Once loaded, an event-based
camera recording is a Nev⇥4 matrix in which Nev represents
the number of events and the 4 columns represent the x
and y positions on the pixel grid, the time and polarity
values, respectively. Timestamps are given in microseconds 120

and polarities are 0 and 1 respectively for OFF and ON
events.

2.1.1 DVS barrel
The DVS barrel dataset [3] is a collection of digits and
letters captured by a DVS. Movement, and thus events, are 125

created by a rotating barrel on which digits or characters
are printed. The dataset is composed of 76 samples divided
into 36 samples for the training set (one per class) and 40
samples for the testing set. Each sample of DVS barrel is a
32⇥32 pixels event-based recording. The average recording 130

time for the samples of the dataset is 60.8 ms Unlike other
datasets, DVS barrel is not included in the tonic package.

2.1.2 Poker-DVS
Poker-DVS [4] is one of the first publicly available DVS
recordings from a real-world scene and was used to test 135

performances of [1]. It consists of 131 occurrences of the four
different symbols of playing poker cards (clubs, diamonds,
hearts and spades). They were extracted from 3 separate
DVS recordings while very quickly browsing the cards. The
sensor size is 31 ⇥ 31 pixels and recordings last on average 140

17 ms. In tonic, there is an available training set of 48
samples and a testing set of 20 samples.

2.1.3 N-MNIST
To test our model with a more complex dataset, we choose
the widely used N-MNIST dataset [5]. This dataset was 145

recorded while moving an event-based camera in front
of a screen on which digitalized MNIST digits [27] were
projected. MNIST digits are originally 28 ⇥ 28 pixels and
they were resized to project on the 28 ⇥ 28 pixel grid of
an Asynchronous Time-Based Image Sensor (ATIS) camera [28]. 150

For N-MNIST, tonic registered maximum values of x and y
equal to 34, due to the saccades of the camera, which are
kept in this study giving a sensor size of 34⇥ 34 pixels.

2.1.4 Data augmentation
To test for the robustness of the proposed algorithm, we 155

also used the tonic package to transform and augment the
N-MNIST dataset. In particular, this allows to add spatial or
temporal jitter to the input stream. As relevant information
is supposed to be represented within the timing and posi-
tion of input spikes, we can assume that classification per- 160

formance should get worse as the jitter increases. Therefore,
we will use this module to test differentially the robustness
of the algorithm by progressively adding some noise to
the input signal. To do so, we use a subset composed of
randomly selected samples from the testing set of N-MNIST. 165
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3

Fig. 2: Illustration of the different event-based data types
used in the HOTS network at a given event time. The two
rows correspond to the OFF and ON polarities of the events
as output of the event-based camera. (Left) Screenshot of
one single event (in white) at ti. (Middle) Timings since the
latest event, or time context, at time ti, forming the matrix
T (ti) (white represents �1). (Right) Time surface at ti as
the matrix TS(ti) (note that the maximum of 1 is reached
for the current event).

This subset is balanced between the different classes such
that we have an equal number of samples for each class.
We keep the exact same subset and apply different amounts
of spatial and temporal jitter independently. To account for
the variability of the jitter applied, we repeat the prediction170

10 times for each amount of jitter and derive a statistical
quantification from these repetitions.

2.2 Event-based formalism: HOTS model

The HOTS model comprises three aspects. First, a core
mechanism is defined that transforms any incoming event175

from the stream of events into a novel event as it is selected
in a layer of neurons (see figure 3). This layer consists of
perceptron-like neurons, which measure the similarity of
the input with patterns stored in the synaptic weights of
the neurons. Crucially, this novel event is selected based on180

previous history thanks to the definition of what we will call
time surfaces, and that will be used as the input to the current
layer of the network. Second, the neuron which is inferred
as the most similar emits an output event at the same time
as the incoming event. This core mechanism is defined on185

arbitrary address spaces and forms one layer of the network.
Using it as a building block, such layers can be stacked
together, each layer’s output address space defining a novel
input address space for the next layer. Finally, this constructs
a hierarchy of layers organized in a feedforward fashion.190

Third, the core mechanism can be used in the particular case
of the event streams produced by an event-based camera
by defining a set of addresses relative to the pixel grid. For
this, it reproduces the core mechanism in each layer at every
position of the pixel grid. This defines weights as kernels in a195

similar fashion as Convolutional Neural Networks (CNNs).
Let’s now formalize these aspects independently.

2.2.1 Time Surfaces
The output of an event-based camera is a discrete stream of
events (see figure 1) which can be formalized as an ordered
set of addresses: {ai}i2[0,Nev) where Nev 2 N is the total
number of events in the data stream. The rank i is the index
of the event and spans from 0 to Nev (excluded). On a
camera for instance, each address is typically in the form
ai = (xi, yi,pi), where (xi, yi) defines its position on the
pixel grid and pi its polarity. This formalism is defined over
the address space D of all possible addresses. On a camera,
we can define D = [0, NX)⇥ [0, NY )⇥ [0, Np) ⇢ N3 where
(NX , NY ) is the size of the sensor in pixels and Np is the
number of polarities (Np = 2 for ON and OFF polarities).
Each event is usually associated with a time ti. Note that a
stream of events is ordered in time and thus that if i1 < i2,
then ti1 < ti2 . We may now introduce the definition for the
subset of events’ ranks that occurred at or before a given
time t 2 R+ at a given address a 2 D:

⇠a(t) = {j 2 [0, Nev)|aj = a, and tj  t}

Note that this definition is given for any continuous time t
but is usually computed at the time of events. For instance, 200

⇠a(ti) gives the set of events’ ranks on address a until the
event that occurred at ti (in particular, including i if it
occurred at a = ai).

For the corresponding stream of events occurring at
address a, it is possible to construct what we call a time 205

context Ta(t). It records the time of the latest event that
occurred at that specific address a before or at t, with �1 if
no event was recorded (see figure 2, middle column):

8a 2 D, Ta(t) =

⇢
�1 if ⇠a(t) = ;

max{ti|i 2 ⇠a(t)} else. (1)

In particular, since at event time ti the address ai is active,
it follows that Tai(ti) = ti. Finally, the time context Ta(t) 210

is computed for each address at any given time and thus
forms a vector that we write T (t) over the address space.

From the time context computed at each address, we
finally derive the following set of values:

8a 2 D, Sa(t) = e�
t�Ta(t)

⌧ (2)

where ⌧ is a given time constant. This defines a analog 215

vector over the address space that we call the time surface
and that we write S(t). The value for each given address
represents a scalar which is close to 1 when an event recently
occurred, and then vanishes to 0 when no event was recently
observed. In particular, it follows from the definition that 220

0  Sa(t)  1 and that 8i, Sai(ti) = 1. An illustration of a
time surface is given in figure 2, right.

2.2.2 Architecture of the network: hierarchy
Let us now formalize the building block of the HOTS
algorithm as a core mechanism defined on a neural layer. 225

Specifically, let’s consider that the layer is composed of
Nn neurons which form a novel address space A and we
may index these as n 2 [0, Nn). Each neuron is defined
by a weight vector Wn = [wa,n]a2D . This vector has the
dimension of the dendritic space associated to the input to 230

that layer. These may be composed into a weight matrix
W = [wa,n]a2D,n2A. These weights will be used to compute
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dendritic address
space

axonal address
space

input event stream

similarity

winner-take-all

time surface

output event stream

time

time

Fig. 3: Illustration of the core computation made within one layer of the HOTS algorithm. On the top of the plot, we
show the dendritic stream of events convolved by an exponential decay which forms the time surface. Time surfaces are
computed at the timestamp of each event/spike. The time surface at present is represented with the colored bar plot on
the top. In the vertical slice, computations made within one layer at time ti are illustrated. The time surface is compared
to all the kernels of the layer with the similarity measure resulting in the membrane potential of the postsynaptic neuron
represented in green. As an illustration, the layer contains only 4 neurons associated to 4 different kernels and with 10
dendritic inputs. At last, a winner-take-all rule (or argmax non-linearity) will choose at time ti the most activated neuron.
This will emit a spike and prevent the others from being activated through lateral inhibitions (in red). Note that for each
event as input of the layer, a new event will be emitted with the same timing as the incoming event.

the similarity of weight patterns with each time surface [29].
The similarity measure �n is defined as the scalar product
over the dendritic space D:235

�n(t) = hWn, S(t)i =
X

a2D
wa,n · Sa(t) (3)

Note that the similarity vector over all neurons may be
quickly computed as a matrix multiplication using �(t) =
WTS(t) (where T denotes the transpose operator). For each
incoming event at time ti, this similarity measure is updated
and forms a vector [�n(ti)]n2A across all neurons.240

Whenever a new event inputs the layer at time ti,
then this layer will emit one unique event with the same
timestamp and with an address corresponding to that of the
neuron which is the most similar to the analog input:

ni = argmax
n2A

�n(ti)

Note that this choice depends on the past events history by
way of the time surface as these are defined relative to the
time context which records (at ti) the time of the last ob-
served events. As a summary, this process thus transforms
the list of input addresses {ai} into a novel stream {ni} with245

identical timestamps {ti}.
As stated above, this building block can be stacked by

using the output address space to define the input address
space of a subsequent layer. We will index layers by L with,
by convention, L = 0 designing the input layer. To describe250

the input of layer L, we define a dendritic address space DL

(with DL=0 = D). We also set an axonal address space AL

for the output of the layer. If we define DL+1 based on AL,
then we can stack the different layers: the stream of event
will cascade from the first to the last layer. Each layer will be 255

defined by a weight matrix WL such that each time surface
will be associated with a similarity measure, which will
generate events in the axonal address space AL. Since each
incoming event generates one and only one output event in
each successive layer, we may compute for each incoming 260

event a time surface at each layer. For this computation, we
will use a different time constant ⌧L that will vary for each
layer of the network. We will designate the corresponding
time surfaces at each layer L as SL(t). This process defines
the core mechanism of the HOTS model. 265

2.2.3 Architecture of the network: kernels

Let us now define the topology of the address spaces. We
saw that each time surface SL(t) stores an analog value
function of the delay between t and the last event that was
recorded in the dendritic address space DL. This value is 270

then compared to weight vectors, similarly to the linear op-
eration which is operated in the dendritic tree of perceptron
neurons. However, from our knowledge on the early visual
cortical areas, we know that the receptive field of neurons
does not cover the whole visual space, but that they develop 275

over limited visual space and with stereotyped shapes. This
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5

is used in CNNs to define different kernels which capture
the local context in the neighborhoods around each neuron.
One notable advantage of this representation lies in the
translation-invariance which is imposed in the representa-280

tion by the convolution operator. In analogy with what is
done in CNNs, we may thus define the connectivity of a
HOTS core computation from this set of kernels that are
translated on the sensor grid.

In all generality, the convolution that is processed im-285

plies is a linear operation which can thus be modeled as
a matrix multiplication. The corresponding weight matrix
may be constructed using a Toeplitz operation which repli-
cates the kernel of each channel at all different positions.
More formally, let’s define the dendritic address space for290

each layer as DL = [0, NX) ⇥ [0, NY ) ⇥ [0, NL
p ) ⇢ N3.

The number NL
p defines the number of channels of the

time surface as input to layer L, we name dentritic them
channels. Each address may then be decomposed into its
position and its dendritic channel, that is, aL = (xL, yL,pL).295

The axonal address space of layer L is AL = [0, NX) ⇥
[0, NY )⇥ [0, NL

n ) ⇢ N3, where NL
n is the number of axonal

channels. The similarity measure may thus be written as:

�L
(xL,yL,kL)2AL(t) = (K̃L

k ⇤ SL(t))(xL, yL) (4)

where ⇤ is the convolutional operator and ⇠ is the sym-
metric operator which allows to compute the correlation in300

equation (3) using the convolution. Note that K̃L
k ⇤SL(t) rep-

resents the activity map and can be efficiently be computed
by a convolution over AL. In our formalism, time surfaces
are defined globally and each weight vector corresponds to
one column of the weight matrix which index is associated305

to an axonal address: (xL, yL,kL). The local context for the
kernels is defined, on the topography of the pixel grid, by
a radius RL and on all channels of the time surface. The
weights outside that radius are zero and thus the similarity
measured with the global time surface S(t) will generate the310

same results as with the time surfaces defined locally in the
original HOTS formalization.

Moreover, the HOTS algorithm specified in [1], enforces
that the position of each event is not changed from one
layer to the next. As a consequence, each kernel still acts
as a convolution kernel, but the comparison are only to be
performed for the addresses corresponding to the position
(xi, yi) of the event. This restriction can be implemented
by defining the subset of output neurons with the exact
same position but across the different axonal channels and
modifies the match equation to:

pL+1
i = argmax

kL2[0,NL
n )

�L
(xi,yi,kL)(ti)

As a consequence, the next layer will emit an event aL+1
i =

(xi, yi,p
L+1
i ) with the same timestamp ti, that is, with the

same spatial position (xi, yi) but with a different channel.315

As a summary, each layer takes input events from its previ-
ous layer and feeds events to the next one by reproducing
these steps. It follows that neurons within a layer L are
competing across features: each incoming event produces
a single event on the axonal space. Following what is320

observed in biological visual pathways of mammals, we
may set the number of kernels NL

n , the time constant ⌧L

and the radius of the kernels RL in such a way that these

will increase when passing from one layer to the next. The
choice made in the original HOTS algorithm is to double 325

the radius of a kernel and the number of channels from one
layer to the next, while multiplying the time constant from
one layer to the next by a factor of ten. As a consequence, the
network will learn more and more complex spatio-temporal
features in a hierarchical way. 330

Regarding the learning of the weights it is performed
in an unsupervised fashion. During the unsupervised clus-
tering phase, kernels are updated with the same learning
rule as described in [1]. That is, once a neuron is matched, a
Hebbian-like mechanism is used to take the selected weight 335

vector Wn closer to the observed time surface. This mech-
anism is similar in principle to that used by the k-means
algorithm and is implemented in numerous other unsuper-
vised learning schemes [30]. Figure 4 offers an illustration
of the different kernels learned by the network. 340

2.3 Homeostasis
The contribution of homeostasis to the robustness of the
HOTS model is the guideline of a previous work [2]. Similar
regulation methods on an event-based dataset are used
in [31, 32] to balance the firing rate over the neurons of 345

each layer of the SNN. The model of [31] uses an adaptive
membrane threshold while [32] adds an auxiliary neuron
per layer for regulation of neurons firing rate. In this last
paper, they make a comparison of this technique with zero-
mean batch normalization [33] used for training deep neural 350

networks. These methods are similar in their objectives and
are well justified in terms of efficient coding [34].

Here, we implement homeostasis regulation by adapting
the heuristics from a previous work [35]. It simply consists
in modifying the similarity measure (see equation (3)) as: 355

�n(t) = �n(t) · hWn, S(t)i (5)

where we use the same gain as defined in [2]:

�n(t) = e�·(f(t)·Nn�1) (6)

where � is a regularization parameter, f is the relative
activation frequency of neuron n and Nn the total number
of neurons in the layer. The homeostatic gain rule is such
that �n > 1 if neuron n is less activated than the a priori 360

average 1
Nn

frequency on the layer and �n < 1 in the
opposite case. The activation frequency of the neuron is
measured by computing its probability of being activated
over all the previous events. This regulation rule allows to
train the different neurons in a balanced fashion and avoid 365

the response of only a few of them. Note in particular that
when we reach homeostasis and all neurons fire with equal
prior probability, then �n = 1 and the processing is similar
to that of HOTS. Note finally that when this happens within
a layer, the distribution of activation probability is uniform 370

(with probability p = 1
Nn

) and the event-based code reaches
a maximum of its entropy: the average information carried
by the address of an event approaches the maximal value of
log2(

1
p ) = log2(Nn) bits.

In practice, we observed that adding homeostasis to 375

balance the activation frequency of neurons leads to a
better clustering of the weight matrices, see figure 4. Note
that neural activity is balanced during the unsupervised
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6

(a) (b)

Fig. 4: Activation histograms and time surfaces obtained in the unsupervised learning algorithm (a) for the original HOTS
network (replicated from [1]) and (b) for the bio-plausible version with homeostasis. Activation histograms correspond to
the frequency by which each neuron was activated. For each layer number n, fn = 1

Nn
is the averaged activation frequency.

Associated time surfaces are plotted below histogram bins. The different lines are the different polarities of the features
(ON and OFF for the first layer), that is, the output neurons of the previous layer for the next one.

clustering phase across all digits. The homeostasis process
does not guarantee an equiprobability of neural activity380

for one digit, but over the whole learning set in line with
the efficient coding hypothesis [36]. In addition, it allows
avoiding to introduce an ad hoc heuristics in the learning
rule (see above) to reach convergence for all neurons. In [1]
for instance, weight matrices or synaptic weights associated385

with each neuron were initialized with the first incoming
time surfaces. This method makes the learning of weight
matrices very sensitive to initialization. In addition, the
hierarchy is learned sequentially, one layer after the other.
In this work, weights were instead initialized at random390

and we allow spikes to feed each layer of the network
even if a given layer is not fully trained. This method for
the unsupervised learning phase makes our algorithm more
similar to the conditions faced by living systems.

2.4 Online event-based classification395

In the original HOTS algorithm [1], classification is per-
formed by comparing the activation histograms across the
channels of the last layer of the network to that observed
on average for each given class. This classification with his-
togram comparison is performed post hoc, after the coding400

of an item from the dataset. Here, we introduce a novel
online classification scheme, that is, where classification is
performed for each spike reaching the classifier, and more
generally at any time when a classification is necessary.
Online inference on event-based data was developed in405

past studies [37–39]. However, [39] accumulates spikes as
input to reconstruct an image frame, [38] uses a sample-and-
hold approach, and freezes events during a defined time
step. [37] proposes to use Spike-Timing Dependent Plas-
ticity (STDP) for unsupervised learning of spatio-temporal410

features. For this last study, they also make a supervised
classifier able to learn in an online fashion and that should
be able to make an inference for every event. However, they
perform a classification based on the strongest response of
one neuron during the time window in which the sample415

is presented. This way, they do not make use of the event-
driven nature of the input to the classification layer.

We propose a novel method to perform online event-
driven classification. Following the same strategy used for

the construction of time surfaces, each event reaching the
last layer L = C of the network may indeed be transformed
into a time surface SC(t) using a time constant ⌧C. This
constant may change from one dataset to another according
to the mean duration of the samples. The time surface thus
forms an analog vector that may be used in a MLR model
to achieve supervised classification. Such MLR models are
for instance used in the last layer of classical deep-learning
networks [40] and are compatible with a neural implemen-
tation [41]. More specifically, it corresponds to the similarity
measure (see equation (3)) of the MLR weights with the
input, stacked with a sigmoid non-linearity. The weights are
defined on the whole dendritic space, that is, there is no local
context as it was defined for the kernels on the previous
layers. For each event, the output neurons will compute the
probability of predicting the respective class. In the MLR,
this probability value is computed as a softmax function of
the linear combination of the analog vector as input:

8c 2 {1, . . . , Nclass},

P r(y = c|ti;WC) =
ehW

C
c ,SC(ti)i

PNclass
j=1 ehW

C
j ,SC(ti)i

where WC
j are the coefficients associated to class j of the

MLR model. As in section 2.2.2, the formulation of the time
surface can be extended to the continuous time domain. 420

It follows that the probability value can be computed at
any time when necessary. We simplify the notation of the
probability value with the following equation:

�c(t) =
e�

C
c (t)

PNclass
j=1 e�

C
j (t)

(7)

Where �C
c (t) is the similarity measure (from equation (3))

between the time surface as input to the classification layer
and the weights of the MLR model associated to class c.
The final prediction is made with the argmaxc function by
selecting the class associated with the highest probability.
Then, thanks to the definition of the softmax function we
obtain its maximum value by getting the maximum value of
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7

the similarity measure. We obtain the same spiking process
as in any layer of the HOTS network:

c(t) = argmax
c2{1,...,Nclass}

�C
c (t)

It results in an always-on decision process able to make
a prediction at any time. Here, we perform event-driven425

prediction and compare the results of the classification as a
function of the number of events fed to the classifier or as a
function of time.

In practice, we first trained the hierarchical network
using unsupervised online learning on a training set. On this430

set, we computed the transformation of the input stream
into the output stream and then transformed it into time
surfaces to feed the classification layer. We trained the MLR
model using as supervision pairs each time surface along
with its true class. The MLR model was implemented with435

the PyTorch language, and training was performed by a
gradient descent with the Adam optimizer. Once the MLR
model was trained, we obtained analog vectors from the
computations of the hierarchical network on the testing
set. Then, we tested classification performances by sending440

these vectors to the MLR model which outputs the proba-
bility for each class to be true. This allowed us to compute
an accuracy on an event-by-event basis.

3 RESULTS

3.1 The Spiking Neural Network analogy445

We have defined the HOTS algorithm in an event-based
formalism and our first result is to demonstrate that when it
is extended to the continuous-time domain, this algorithm
may be implemented as a Spiking Neural Network (SNN).
Indeed, the definition of the time surface modulated by an450

exponential decay in equation (2) bears an analogy with the
LIF model with exponentially decaying postsynaptic poten-
tials. We aim at describing the event-based model on a time
continuum thanks to Ordinary Differential Equations (ODE)
and bridge such an algorithm with the SNN computational455

neuroscience framework.

3.1.1 HOTS as a SNN
Let’s consider the fundamental mechanism of the HOTS
algorithm at some layer L (we will omit this superscript for
clarity in this section). In the previous section, time surfaces
are defined at any time using equation (2):

8t 2 R+, Sa(t) = e�
t�Ta(t)

⌧

By looking at figure 3, one can observe that the dendritic
addresses refer to the presynaptic neurons and that the
temporal kernel defined by the time surface corresponds to460

the Spike Response model [42] of a first-order linear ODE.
Each presynaptic neuron corresponding to an address a 2 D
received the events with ranks from the set ⇠a(t) and the
evolution of Sa(t) thus follows the ODE:

d

dt
Sa(t) = �1

⌧
· Sa(t) +

X

i2⇠a(t)

(1� Sa(t)) · �(t� ti) (8)

The second term of the right side of equation (8) is a465

modulated Dirac function which implements the integration

of a novel presynaptic potential at t = ti. The modulation
1�Sa(t) is such that at the moment of the event as the new
value of the potential becomes Sa(t) + (1 � Sa(t)) = 1. It
thus implements the fact that the maximum value of a time 470

surface is equal to 1 and only the time until the last spike
has an influence and not spikes before that, as implemented
in the definition of the time context. As a consequence, it
implements a form of resetting mechanism which allows to
compute the time surface as a function of the time to the last 475

spike.
Then, for a postsynaptic neuron n of the layer, we

may define a membrane potential which corresponds to the
integration of synaptic inputs into the similarity measure:

�n(t) = hWn, S(t)i =
X

a2D
wn,a · Sa(t)

where we use the same weights Wn of equation (3) from
the event-based formalism. Finally, by integrating over the
different input synapses, we get a differential equation that
describes the dynamics of the membrane potential �n as a
similarity measure:

d

dt
�n(t) = �1

⌧
·�n(t)+

X

a2D
wn,a ·

X

i2⇠a(t)

(1�Sa(t)) ·�(t� ti)

Which may be simplified into a sum over all events:

d

dt
�n(t) = �1

⌧
·�n(t)+

NevX

i=0

wn,ai · (1�Sai(t)) ·�(t� ti) (9)

Such a ODE is classical for the description of the evolution
of the membrane potential of Integrate-and-Fire neurons.
Note that the major change lies in the modulation of the 480

integration of incoming spikes which allows to represent
only the time until the last spike. The hierarchical network
proposed in [1] is then equivalent to a SNN of LIF models
with a Hebbian-like learning mechanism as mentioned in
section 2.2.3. In this SNN, for every incoming event from 485

the event-based camera, one spike is emitted for each layer
of the network. It results in a winner-take-all (WTA) com-
petition between neurons within the same layer. This will
generate a spike with the same characteristics as the input
event (position, time). Only the channel, or polarity, will 490

change, and is given by the index of the winning spiking
neuron. In the hierarchical network that we defined, the
number of neurons will typically increase in each layer. As
a consequence, we identify that there is an inconsistency in
the HOTS model that we use here with biological neurons 495

through the lack of a fixed potential threshold (leading to the
absence of response latency). This delay is a constraint in the
biological mechanism for spike emission and in this frame-
work, we argue that we could draw a biological analogy
while being faithful to the original event-based algorithm. 500

One advantage of this method over even more realistic
networks is the absence of delay on the computations that
allows for fast classification.

3.1.2 MLR as a SNN
The classification layer of our algorithm is defined as a MLR 505

model, for which a parallel with a SNN implementation
was already drawn in [41]. Analogous to biology and as
described in section 3.1.1, the linear combination of the
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8

time surface as input with the MLR weights corresponds
to the integration of presynaptic spikes on the dendritic tree510

of one postsynaptic neuron associated to one class. Then,
�c(t) = hWC

c , S(t)i represents the membrane potential of
the postsynaptic neuron associated to class c and WC

c are
the corresponding synaptic weights. The softmax function
presented in (7) is a good model of a spiking WTA network.515

Indeed, [43] demonstrated that a stochastic spiking WTA
can be built from this type of activation function. The
denominator expresses the lateral inhibition by the other
neurons of the layer. The argmaxc function imposes a full
inhibition of other neurons until the next decision. As a520

consequence, if the classification is event-driven, only one
spike is emitted for the most probable class only at each
event. Then, the spiking mechanism of the classification
layer is the same as for the rest of the network due to the
fact that the logistic function is monotonic.525

The main difference with the other layers of the network
lies in the supervised learning rule of the MLR weights. We
can obtain the learning rule by finding the derivative of the
loss function. For the softmax regression, the loss function
for a rank i event is the binary cross-entropy:

J(ti) = �
NclassX

c=1

�{y(ti)=c} · log(�c(ti))

where �{y(ti)=c} is the ’indicator function’ and y(ti) is the
true class. If we compute the derivative of the loss function
with respect to ✓c, we can obtain the update rule of the
weights of the postsynaptic neuron associated to class c:

�WC
c (ti) =

⇢
⌘ · SC(ti) · (1� �c(ti)), for c = y(ti)
�⌘ · SC(ti) · �c(ti) for c 6= y(ti)

where ⌘ is the learning rate. This correlation-based learning
rule can be described as a supervised Hebbian learning
mechanism, with different possible weight updates depend-
ing on the true value of the outcome.

In summary, the event-based algorithm that we use in530

this work can be fully described by a SNN and learning of
the weights, done in an event-driven fashion, corresponds
to a Hebbian-like mechanism for the neurons inside the
network and in the classification layer.

3.2 Replication of HOTS and the role of homeostasis535

In a recent paper [2], we reproduced results found in
HOTS [1] with the DVS barrel and Poker-DVS datasets.
Results are accessible online at 01 SIMPLEALPHABET and
02 POKERDVS. We replicated past results with the first
dataset and, with the Poker-DVS dataset, we demonstrated540

the inconstancy in classification performance emerging from
the variability of the unsupervised clustering in the original
method [1]. This variability in the clustering phase is mainly
due to the initialization of the synaptic weights with the first
time surfaces entering the network, a common problem of545

unsupervised learning algorithms such as k-means.
To circumvent that issue, we initialized matrices at ran-

dom and applied a homeostatic gain control mechanism
over neural activations, resulting in a more stable learning
of the synaptic weights, see figure 4. Results were compared550

for both methods, with and without homeostasis regulation,
reporting an improvement when adding homeostasis. The

classification task was also performed on the widely used N-
MNIST dataset with, again, improved performances for the
method with the homeostatic gain control mechanism. One 555

result of interest is that homeostasis significantly improved
robustness to both spatial and temporal jitter. In this paper,
we make use of the advantages brought by homeostasis, and
we present a new classifier allowing online classification to
further extend these results. 560

3.3 Online inference
In this section, we present the results for the end-to-end
event-driven online classification described in section 2.4.
First, to illustrate the dynamic evolution of classification
performances at the event scale, we will plot the accuracy 565

value for each event on the data stream since its beginning.
Within a dataset, the total number of events for the samples
can vary. We set a maximum number of events to compute
accuracy by taking the 95th percentile of the dataset in
terms of number of events. We also report the classifica- 570

tion performance as a function of time by computing the
accuracy value at defined time steps. Within each time bin,
we set the predicted class as the one that was chosen most
by the classifier. As recordings within the same dataset
have approximately a fixed duration, we report the mean 575

accuracy value on a timescale defined by the duration of the
shortest sample. Finally, to compare with other methods, we
report classification performance by making one decision
per sample based on the class that was chosen the most, we
call this measure offline accuracy. Moreover, we compare 580

the classification performances with MLR on the raw event-
based signal and on the output of the network in order
to quantitatively assess the coding efficiency of the trained
network. This is denoted as online RAW in the plots. We also
name original HOTS, results replicated with the method de- 585

scribed in [1] and online hHOTS the event-driven algorithm
described in our study.

3.3.1 DVS barrel
We start by the DVS barrel dataset, which is composed
of few samples (36 for training and 40 for testing), and 590

serves as a useful toy model. We reproduced past offline
classification results obtained in [1] and then observed the
online classification performances. For the analog vector we
feed to the classifier, we used a time constant ⌧L=c = 50 ms.
In figure 5, one can see the previous classification perfor- 595

mance for the original method with histogram comparison,
represented as a red dashed line. In this latter methods,
the prediction of the class can only be done offline, once
the classifier received all the events. The accuracy value
obtained for this method is close to 98 %. We computed the 600

offline accuracy of the other methods and obtained 100% for
both online RAW and online hHOTS.

Figure 5(a) illustrates the evolution of the accuracy as a
function of the number of events treated by the classifier.
One can notice that this accuracy value is outperformed 605

by the online method (in blue) after only a few number of
events or a reduced amount of time compared to the full
recording. Surprisingly, the method that performs classifi-
cation with a single MLR model on the raw event stream
(in orange), that is the output of the event-based camera, 610
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DVS barrel dataset

(a) (b)

Fig. 5: Online classification performance on the DVS barrel
dataset. We show the average accuracy computed with
respect to the number of events since the beginning of the
stream (a) and also as a function of the corresponding time
(b).

also outperforms the past method after few events. For the
first events, there is an advantage for the online method
performing MLR on the raw stream of events. Then, both
online methods outperform the original HOTS algorithm
with only ⇡ 80 events. After ⇡ 250 events, our method615

obtains an accuracy of 100 % and the classifier using the
raw event stream as well, with a small drop in performance
around 1000 events. Even if it seems to be more stable
after 250 events, there is no significant advantage for the
method that uses the output of the HOTS network. This620

surprising result may originate from the fact that samples
are all presented in a rotating barrel. The DVS is fixed and
the movement of the digits is close to a uniform translation.
As such, the spatio-temporal signature of the digits will be
easy to capture and the MLR model alone is enough to make625

a good prediction.
In figure 5(b), the accuracy value is presented as a

function of time. The time step used for this dataset is
100 µs and, as explained before, we make the prediction
by choosing the class that is selected the most during a time630

step. The online RAW method shows excellent results and
reaches the same performances of the original method at
the second time step, that is, after only 1 ms. The method
using the output of the HOTS network to feed the classifier
performs reaches 98% of accuracy only at 2.5 ms. We explain635

this delay to reach good classification results by the filtering
of the events done within the network. Indeed, each time
surface that is sent to a layer of the network needs a
minimum number of non-zero components to be treated
and trigger a new event. As a consequence, the network640

needs to gather a certain amount of events to send the first
spike to the classifier, leading to a time delay for the first
predictions and for the accumulation of evidences. Notice
that both online methods reach 100% accuracy after ⇡ 4 ms.
Once again, we observe that only the very beginning of the645

recording is sufficient to reach a perfect recognition.

3.3.2 Poker-DVS

For the Poker-DVS dataset, we used a time constant for the
classification layer equal to 10 ms. This value is significantly
smaller than for the other datasets, as the recordings in this650

dataset are very short, with an average of 17.4 ms. Previous

Poker-DVS dataset

(a) (b)

Fig. 6: Online classification performance on the Poker-DVS
dataset. We show the average accuracy computed with
respect to the number of events since the beginning of the
stream (a) and also as a function of the corresponding time
(b).

results obtained in [2] gave an accuracy of 95 % for the
HOTS algorithm (see 02 PokerDVS for more details). We
obtain 100% for the offline accuracy of both methods using
the MLR model as a classifier. 655

Figure 6(a) shows the evolution of the classification per-
formance as a function of the number of events processed
by the classification layer. One can see that, for our online
method, accuracy increases rapidly with a few events and
reaches a plateau at 100 % of accuracy after about 500 660

events. For the raw event stream, MLR also performs well,
even if it reaches the maximum accuracy plateau slightly
later. Both methods match the original classification results
after about 200 events. Note that, classification on the raw
inputs is less stable at the end of the recording and drops in 665

accuracy for more than 2500 events.
Figure 6(b) gives the classification accuracy relative to

the time of the recording. Time steps used for classification
are of 10 µs each. As in figure 5(b), we observe a delay for
the first predictions of our method. MLR on the raw event 670

stream can make prediction for the very first events, but
shows worse accuracy values at the end of the recording. For
these very short recordings, perfect recognition is obtained,
only for our method, at the end of the event stream, after
around ⇡ 15 ms. Note that the decision of the class for one 675

specific time step gathers all the predictions taken for each
event with this time step. This difference to choose the pre-
dicted class explains the non-linear changes on classification
performance when going from the events scale to the time
scale. 680

3.3.3 N-MNIST

We finally test our method on a relatively more complex
task, the N-MNIST dataset. We first check for the results
with the original method from [1] and see that performances
are 37.9 % of accuracy on the N-MNIST dataset. This 685

classification score is computed when using one histogram
averaged for all the samples in the same class. In a previous
study, authors used a k-Nearest Neighbors to boost perfor-
mances of the method with a simple classifier, more appro-
priate for big datasets like N-MNIST [44]. With k = 12, 690

we reached an accuracy of 86.9 % for the original HOTS
algorithm (see red dashed line in figure 7), and improved

Page 9 of 22 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

N-MNIST dataset

(a) (b)

Fig. 7: Online classification performance on the N-MNIST dataset. We show the average accuracy computed with respect
to the number of events since the beginning of the stream (a) and also as a function of the corresponding time (b).

its classification performance with homeostatic gain control
to reach 87.7 % (not shown here). These values are obtained
with histograms gathering the activation distribution of the695

last layer of the network.
Let’s now compare these results with the online classifier.

For this dataset, we used ⌧c = 150 ms for the time constant
of the online classification layer. Also, to reduce the total
computation time, the learning of the MLR model on the700

training set was done with a down sampled stream of
events. Only 1 event every 10 was kept, and we will see
that it is sufficient for a robust training of the classification
layer. After training, we tested the classifier and figure 7
illustrates the evolution of the classification performances705

during the recordings. One can observe a strong advantage
for the method that uses the encoding of HOTS compared to
the control method making classification on the raw event
stream.

As for previous datasets, we report classification accu-710

racy when making one decision per sample based on the
class that was chosen the most, with decisions made at the
event scale. For the MLR classifier using the output of the
HOTS network, we obtain 95.1 % of accuracy and only
44.6 % for the control method. In this case, the shapes of715

the digits are more complex and diverse than for previous
datasets, giving evidence that encoding by the hierarchical
network is here essential to perform a correct classification.
Note that higher classification results obtained on the N-
MNIST dataset are reported in the literature. [32] announces720

99.4 % of accuracy for a 8-layered SNN trained with back-
propagation. Different works using back-propagation obtain
very high accuracy: ⇡ 99 % [20, 45, 19, 46]. We argue that,
even if we don’t outperform these state-of-the-art results,
this simpler feedforward network structure with a bio-725

plausible learning obtains very competitive accuracy values.
Figure 7(a) gives accuracy values as a function of the

number of events used for classification. Unsurprisingly,
classification accuracy improves as the number of events

increases. Quickly after ⇡ 150 events, our method (in blue) 730

outperforms the offline classification method used in [2]
and the mean accuracy keeps increasing with the number
of events. This online classification allows ultra-fast object
categorization in terms of events: only with a few events,
classification reaches a good level of accuracy. The control 735

method, on the other hand, stays below classification per-
formances obtained with the original HOTS. The non-stable
behavior observed for the orange curve after 1000 events
is due to the variability in the number of events in each
recording. 740

In figure 7(b), we observe the evolution of classification
accuracy as a function of time. Time steps used for this
dataset last 100 µs and classification is done by making a
decision per time step based on the class that was matched
the most by the softmax function. This difference in cate- 745

gorization, made on a defined time step and not for every
event, can explain the drop in accuracy for the first decisions
for both online methods. Indeed, the first accuracy values
remain lower than in 7(a), that is when the classifier makes a
decision per event. Then, when enough events are gathered, 750

accuracy values are stabilizing and match the classification
results obtained as a function of the number of events. For
our method, the first decisions, which correspond to the
first events emitted as the output of the HOTS network, are
being performed after approximately 10 ms. Then, classifi- 755

cation accuracy increases rapidly. Our method outperforms
the original one after ⇡ 30 ms and then keeps increasing
to reach a plateau. N-MNIST recordings are composed of
three saccades lasting 100 ms each. The performance of
the classification at the end of the first saccade is 92.7 % 760

of accuracy, at the end of the second saccade we reach
94.5 % of correct categorization and at the end of the third
saccade we reach 95.1 % of accuracy. Note that, already
at the first saccade, our method is able to obtain good
classification results. The two remaining saccades improve 765

categorization performances to reach the accuracy value
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Accuracy as a function of spatial (a) and temporal (b) jitter

(a) (b)

Fig. 8: Robustness of classification performances on N-MNIST. The input stream was perturbed by changing the position or
timing of the events and we report classification results as a function of (a) standard deviation of temporal jitter in logscale
or (b) standard deviation of spatial jitter. Blue curves show fits for the results of the HOTS method with homeostasis and
these are compared to the performance of the original HOTS algorithm (Red curves). Dots are the mean values of accuracy
over 10 trials for discrete values of jitter. Transparent outlines represent the 5% and 95% quantiles.

obtained when taking one decision per sample. Both as a
function of the number of events or as a function of jitter, our
method allows reaching good classification results with only
a small portion of the total recording. This algorithm shows770

interesting performances for ultra-fast digit recognition. The
results of 7(b) indicate that the second and the third saccade
of the N-MNIST recordings add only a small amount of
information. Previous works report accuracy results using
only the first saccade and show only small improvement775

when using the other ones as well [20, 18, 37].

We also wanted to assess the robustness on this event-
driven object recognition method. For this, we perturb the
original datasets by adding temporal or spatial jitter to the
events. Jitter is applied only on the testing set to add noise to780

the signal used for classification. As described in section 2.1,
we use the tonic package to apply temporal or spatial jitter
on the tested samples. To assess the performance of the
method, a subset of 1000 samples of N-MNIST is taken
randomly and used to apply different amounts of jitter. For785

each amount of jitter applied to the testing set, 10 repetitions
are made to get different accuracy values. Finally, we fit a
beta distribution to these results to compute the percentiles
plotted in figure 8. To compare with past results obtained
in [2], we plot the offline accuracy obtained when making790

one decision per sample. When no jitter is applied, the
original HOTS method and the algorithm with homeosta-
sis get comparable results. The online HOTS presented in
this study performs better, as reported above. We obtain a
significant increase in performance with our online classifier795

for all the different amounts of jitter. As expected, the higher
the jitter, the stronger its negative impact on classification.
The drop in accuracy as a function of jitter fits well a sigmoid
function decreasing from a maximal accuracy value to reach
chance level (i.e. 10 % accuracy). Using this fit, one can800

define a critical standard deviation of jitter in pixels or in ms
where accuracy drops to half its maximal value compared

to chance level. This half-saturation level reveals a signature
value for the relevant information contained in the signal.

In figure 8(a), we show the mean accuracy for the orig- 805

inal method, the one with homeostasis and ours. Accuracy
reaches its half-saturation level for a spatial jitter with a
standard deviation equal to 1.35, 2.30 and 2.94 pixels,
respectively. Homeostasis increases resilience to spatial jitter
when applied to the original method. As shown in [2], 810

there is a qualitative improvement in the clustering phase
when applying homeostasis. Indeed, kernels learned by the
network with homeostasis were all matured and offered
a more diverse dictionary for an efficient encoding by the
network. With the online classifier, robustness to jitter is 815

again increased and the half-saturation level is more than
doubled compared to the one from the original method.

Figure 8(b) illustrates a high resilience of the network
to temporal jitter. The x-axis is composed of log10 values,
and one can observe that even the original method is robust 820

to temporal jitter. The half-saturation values are 23.44 ms,
100.0 ms and 407.4 ms respectively for the original HOTS
method, for the one with homeostasis and for the algorithm
presented in this study. Even the original method offers a
high resilience to temporal jitter. This robustness can origi- 825

nate from the use of time surfaces for signal encoding. When
adding temporal jitter, locations of events are kept intact
and only the timing is impacted. From the jittered signal, a
time surface is computed with the same spatial structure by
applying an exponential decay on the delays. This transform 830

diminishes the impact of jitter. Then, the time surface is
compared to smooth time surfaces with a scalar product
on the whole spatial window. This technique renders the
encoding of input events more robust to local temporal
variations. The increase of resilience for the methods with 835

a homeostatic gain regulation can also come from the im-
proved clustering of the network. For classification with
online MLR, half-saturation level is reached for a standard
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deviation of temporal jitter equal to 407.4 ms. The samples
of the N-MNIST dataset last on average 307.7 ms, meaning840

that the chronological order of the events has a limited
impact for the method and task used here. The way we build
the analog vector as input of the MLR layer can explain this
surprisingly high resilience. Given the relatively high time
constant used for the exponential decay, the combination845

of only few events on precise spatial locations can lead
to a good prediction of the class. On this specific dataset
of static binary digits moving in front of a DVS, temporal
information seems not to be that important for classification.
We expect sensibly different qualitative results on more850

realistic datasets.

4 DISCUSSION

In this study, we augmented a neuromorphic engineering
method with techniques from computational neuroscience
to develop an online, event-driven classification algorithm.855

On one hand, neuromorphic engineering is inspired by biol-
ogy to develop efficient algorithms and technology. For in-
stance, DVS cameras are inspired by the retina, memristors
are used to implement neuroplasticity and neuromorphic
chips are designed to emulate neural elements in order860

to perform sparse and asynchronous computations as ob-
served in the biological brain. Therefore, the neuromorphic
field is interested in understanding neural circuitry to be
able to reproduce such mechanisms. On the other hand,
computational neuroscience uses mathematical models to865

describe and explain a wide range of cognitive processes.
It focuses on biological plausibility to validate its models
and in comparison with experimental data. As a result,
both fields have a common interest in neural information
processing and how these may implement the computations870

that happen in the brain (for a review, see [47]).
We initiated our study with the HOTS network which

original basis is inspired by the hierarchy found in the visual
cortex. As designed in this network, the receptive field size
is increasing along the visual hierarchy [48]. In [49], it is875

observed that cortical areas follow a hierarchical ordering of
intrinsic timescales. They infer that shorter timescales can
be useful for rapid detection or tracking of dynamic stimuli,
whereas longer timescales can be used for decision-making
computations made by higher level areas. This particular880

organization in the HOTS architecture and the evolution of
the parameters of time surfaces across the different layers
follows physiological principles. From a computational per-
spective, time surfaces capture the inter spike interval (ISI)
characteristics by being a function of the delay between885

the current time and the last event on a specific dendritic
address. The exponential decay applies a non-linearity to
this delay and results in a finer resolution of the analog
value for the recent events decreasing rapidly with time to
vanish after only few ⌧ . The parameter ⌧ , used to compute890

time surfaces, is then defined to obtain an optimal repre-
sentation of the ISI distribution on the different addresses.
In the HOTS network, there is an increase of the number
of neurons, thus an increase of the number of channels,
across the different layers. Using principled theory, one can895

demonstrate that the increase of the number of channels
along the hierarchy will impact the ISI distributions. Indeed,

from the core mechanism of HOTS, one event is emitted for
each event as input of a layer, then by increasing the number
of channels, the distribution of the spikes will get more and 900

more sparse and the ISI will increase. To keep an optimal
representation, the time constant of the exponential decay
has to be increased as well similarly to what is observed in
the choice of the hyper parameters of the HOTS network.
In line with theoretical neuroscience, we join the formalism 905

of the event-based algorithm that we propose with SNN
computations by extending the equations to the continuous
time domain. We also define the core computations of the
network on generic address spaces and this new mathemati-
cal formalism may seem to complicate the formulation of the 910

computations. We argue that by bridging these two different
fields and develop a common framework, one can open
interesting cross-talks about advances done in parallel from
both sides. In this work, we continue to use computations
observed in nature to progress toward more generic and 915

bio-plausible models. First, we used a homeostatic rule
inspired by living systems to make the unsupervised online
learning of the network more robust. Then, we added an
online classification layer that performs MLR and which
is compatible with a neural implementation [41]. Globally, 920

the results offer a good example of the possible joint future
between neuromorphic engineering and computational neu-
roscience. In this method, the clustering phase, i.e. when the
network learns kernels, is fully online and unsupervised. We
have shown in a previous study that this clustering can be 925

very sensitive to initialization [2]. Thanks to the homeostatic
gain control that balances the activity of the neurons within
the same layer, unsupervised learning can be stabilized.
The classification layer learns the weights of the MLR in
a supervised way. This learning is also performed online: 930

digits are presented independently, one after the other. The
temporal dynamics between the events of the same digits
are given by the temporal decay ⌧c and learning can be
done for each analog vector as input of the classification
layer in an online fashion. This online, bio-plausible and 935

event-driven learning method is interesting for applications
in systems with a reduced memory like embedded archi-
tectures, for instance in autonomous robots. Once trained,
the network can realize always-on classification, meaning
that, whenever it is needed, a prediction can be inferred. We 940

present results obtained with event-driven categorization,
that is a prediction if done for each event as input of
the classification layer. It results in ultra-fast categorization
because there is no need to wait for the end of the sample
recording or to gather a definite amount of events. As we 945

propose a generic formalism, predictions can be done with
different constraints, for instance based on specific timings
or when the output of the classification layer reach a fixed
threshold leading to stronger confidence in the prediction.

This dynamical classification, that evolves through time 950

for each new event, is more similar to object recognition
performed by biological systems [50]. For the datasets pre-
sented in this paper, only a reduced number of events in
the sample were needed to reach good accuracy (see for
instance figure 7). We also observed a surprisingly high 955

robustness of the method to temporal jitter. We infer that,
for this dataset made from static and binary digits, and
because spatial locations are transferred along the different
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Fig. 9: Effect of the spatial downsampling on online classi-
fication accuracy as a function of the number of events on
the N-MNIST dataset. MLR with a ds (downsampling) of
1 corresponds to the method presented in this paper and
as the downsampling increases, the spatial resolution of the
pixel grid decreases. We observe a significant effect of spatial
resolution on classification performances, showing that the
information necessary for object recognition is not fully
captured by the HOTS network and is highly dependent
on the spatial information given by the event stream as the
output of the network.

layers, the MLR model can capture some specific relative
locations of the output spikes to perform good enough960

decisions. To assess this hypothesis, we applied a spatial
downsampling on the global time surface that serves as
input of the classifier. The MLR model is then learned and
tested with the spatial resolution of the pixel grid, in this
case 34 ⇥ 34, reduced progressively by the spatial down-965

sampling. Results are presented in figure 9 and, along with
results of figure 8(a), highlight the importance of spatial
information in the stream of events as output of the network.
In comparison, the classifier does not seem to be sensitive
to temporal ordering of the events, but we argue that this970

may be due to the characteristics of the dataset. We aim at
applying this method to real-world recordings in order to
assess performances for more complex tasks.

One potential concern when adapting this algorithm
to real-world categorization is the use of time surfaces to975

detect an object. Indeed, with a deeper analysis of the
representation inherent to time surfaces, one can see that
they represent the dynamical signature of a moving object.
A time surface represents therefore a combination of an
object and its motion, but both elements are not explicitly980

dissociated. This entangled information may need to be sep-
arated in order to reach optimum object categorization. For
simple datasets with a uniform movement like DVS barrel
and Poker-DVS, classification is excellent. For more complex
shapes like in N-MNIST, we can still perform good classi-985

fication accuracy, yet we cannot reach the performances of
state-of-the-art algorithms. Even if challenging results are
obtained with a reduced number of events, the classification
accuracy reaches a plateau, and we think that we can over-
come this limitation in performance by dissociating shape990

from motion in the time surface.
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