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Kazuro Kikuchi

National Institution for Academic Degrees and
Quality Enhancement of Higher Education

Abstract
This study develops a theory of noise in optical parametric amplifiers (OPAs) based on the

quantum-mechanical Langevin equations. We derive theoretical expressions for the spontaneous
emission factor of OPAs for the first time. This enables analyzing the effect of internal loss on
the noise characteristics. In addition, we analyze the noise figures (NFs) of the laser amplifier,
phase-insensitive OPA, and phase-sensitive OPA. The NFs in the direct-detection and coherent
systems are compared, and the low-noise characteristics of OPAs are theoretically demonstrated
under the influence of internal loss.

1 Introduction

Laser amplifiers, such as erbium-doped fiber amplifiers and semiconductor optical amplifiers, have
widely been introduced in practical optical communication systems and devices. The noise character-
istics of laser amplifiers are critical for improving the performance of systems and devices. Theoretically,
laser-amplifier noise has always been analyzed using a master-equation approach [1], which focuses on
fluctuations in the number of photons. The spontaneous emission factor, determined from the balance
between gain and loss of laser amplifiers, plays an essential role in describing the noise characteristics.

Recently, phase-insensitive optical parametric amplifiers (OPAs) were experimentally studied in
wavelength-division-multiplexed coherent optical transmission systems [2]. Their low-noise wideband
characteristics are suitable for large-capacity long-distance optical transmission systems. Moreover, in
principle, phase-sensitive OPAs can perform noise-free optical amplification, although they experience
considerably more technical difficulties than phase-insensitive OPAs [3]. Despite these advantages,
there are few theoretical reports on how the noise characteristics of OPAs are influenced by their
internal loss, which cannot be neglected in practical devices [4].

This study develops a theory of noise in OPAs to analyze the effect of internal loss of OPAs on
their noise characteristics. We use the quantum-mechanical Langevin-equation approach to derive
the theoretical expressions for the spontaneous emission factor of phase-sensitive and phase-insensitive
OPAs, respectively. To the best of our knowledge, this is the first study that derives such theoretical
expressions. Using the derived spontaneous emission factor, the noise characteristics of OPAs can be
analyzed in a simple manner.

Next, we theoretically compare the noise figures (NFs) of a laser amplifier, phase-insensitive OPA,
and phase-sensitive OPA. The NFs of a laser amplifier and a phase-insensitive OPA in direct-detection
(DD) systems were compared when the number of photons of an output signal was measured. Mean-
while, the NFs of a laser amplifier, a phase-insensitive OPA, and a phase-sensitive OPA in coherent
systems were compared when the in-phase component (i.e., the real part) of the electric field of an
output signal is measured. The NFs are numerically calculated as a function of gross gain of the am-
plifiers, and the low-noise characteristics of OPAs are clearly demonstrated, even under the influence
of internal loss.
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The organization of this paper is as follows. Section 2 summarizes the theory of noise in laser
amplifiers based on the quantum-mechanical Langevin equation. After elucidating properties of fluc-
tuation operators associated with gain and loss, we derive a closed-form formula for the amplified
electric field including noise, with which the noise characteristics are re-examined. In Sec. 3, we de-
velop a theory of noise in phase-insensitive OPAs, following the theory of laser amplifiers in Sec. 2. By
deriving the spontaneous emission factor, we obtain a closed-form expression for the amplified electric
field that enables simple analyses of their noise characteristics. Section 4 extends the theory of noise in
phase-insensitive OPAs to phase-sensitive OPAs. In Sec. 5, we theoretically analyze the NFs of a laser
amplifier, phase-insensitive OPA, and phase-sensitive OPA. The NFs in the DD and coherent systems
are compared with each other. Section 6 concludes this paper.

2 Laser amplifiers

2.1 Langevin equation for laser amplifiers and its solution

When the annihilation operator for a signal electric field, âℓ, passes through a medium with gain and
loss, it obeys the following Langevin equation [5]:

dâℓ (t)

dt
=

1

2
(gℓ − γ) âℓ (t) + f̂g (t) + f̂γ (t) , (1)

where gℓ and γ denote the gain and loss coefficients, respectively. The gain coefficient, gℓ, is written
as

gℓ = AN2 , (2)

where A represents Einstein’s A coefficient, and N2 is the density of atoms excited into the upper laser
level. Meanwhile, the loss coefficient, γ, is expressed as

γ = AN1 + γw , (3)

where N1 is the density of atoms at the lower laser level, and γw represents the loss coefficient of
the waveguide. The fluctuation operators, f̂γ and f̂g, result from the loss and gain of the medium,
respectively. The solution to Eq. (1) is given as

âℓ (t) = exp

(
(gℓ − γ) t

2

)[
âℓ (0) +

∫ t

0

(
f̂g (t

′) + f̂γ (t
′)
)
exp

(
− (gℓ − γ) t′

2

)
dt′

]
. (4)

2.2 Properties of the fluctuation operators in laser amplifiers

The annihilation operator, âℓ (t), and the creation operator, â†ℓ (t), must satisfy the commutation
relation given by [

âℓ (t) , â
†
ℓ (t)

]
= 1 . (5)

Consequently, Eqs. (4) and (5) demonstrate that the commutation relation between f̂γ (t) and f̂†
γ (t

′),

and that between f̂g (t) and f̂†
g (t

′), should be given [6] by[
fγ (t) , f

†
γ (t

′)
]
= γδ (t− t′) , (6)[

fg (t) , f
†
g (t

′)
]
= −gℓδ (t− t′) . (7)
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By contrast, according to the quantum damping theory [5], the correlation properties between the
above-mentioned fluctuation operators are expressed, when the photon energy is much larger than the
thermal energy, as 〈

f̂γ
†
(t) f̂γ (t

′)
〉
= 0 , (8)〈

f̂γ (t) f̂γ
†
(t′)

〉
= γδ (t− t′) , (9)〈

f̂g
†
(t) f̂g (t

′)
〉
= gℓδ(t− t′) , (10)〈

f̂g (t) f̂g
†
(t′)

〉
= 0 . (11)

In addition, f̂g and f̂γ have no correlation.

2.3 Average number of output photons from laser amplifiers

The photon-number operator of the output signal is given by n̂ℓ (t) = â†ℓ (t) âℓ (t). We can obtain its
average from Eq. (4) through Eqs. (8)–(11) as

⟨n̂ℓ (t)⟩ = GℓΓ ⟨n̂ℓ (0)⟩+ (GℓΓ− 1)nsp,ℓ , (12)

where the gross gain of the amplifier, Gℓ, the total loss, Γ, and the spontaneous emission factor, nsp,ℓ,
are given by

Gℓ = exp (gℓt) , (13)

Γ = exp (−γt) , (14)

nsp,ℓ =
gℓ

gℓ − γ
. (15)

If the waveguide loss is negligible, nsp,ℓ is written as

nsp,ℓ =
N2

N2 −N1
, (16)

which represents the degree of population inversion of lasing materials, as described in [1]. The first
term on the right-hand side of Eq. (12) represents the average number of photons of the amplified
signal, whereas the second term represents the amplified spontaneous emission (ASE).

2.4 Closed-form expression of the electric field of the laser-amplifier output

We convert Eq. (4) into a closed-form expression of the amplified electric field. Using the net gain,

GℓΓ, and nsp,ℓ, we define the noise operator, ĉ†ℓ, as√
(GℓΓ− 1)nsp,ℓĉ

†
ℓ =

√
GℓΓ

∫ t

0

f̂g (t
′) exp

(
− (gℓ − γ) t′

2

)
dt′ . (17)

Equations (7), (13)–(15), and (17) demonstrate that the noise operators, ĉℓ and ĉ†ℓ, satisfy the following
commutation relation: [

ĉℓ, ĉ
†
ℓ

]
= 1 . (18)

Equation (18) suggests that ĉℓ and ĉ†ℓ are the annihilation and creation operators for photons, respec-

tively. Moreover, we define the noise operator, d̂ℓ, as√
(GℓΓ− 1) (nsp,ℓ − 1)d̂ℓ =

√
GℓΓ

∫ t

0

f̂γ (t
′) exp

(
− (gℓ − γ) t′

2

)
dt′ . (19)
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Equations (6), (13)–(15), and (19) yield the commutation relation between d̂ℓ and d̂†ℓ as[
d̂ℓ, d̂

†
ℓ

]
= 1 , (20)

suggesting that d̂ℓ and d̂†ℓ are the annihilation and creation operators for photons, respectively. The

noise operators, ĉℓ and d̂ℓ, are not correlated with each other, and have no correlation with the input
signal, âℓ (0).

Consequently, by using Eqs. (17) and (19), Eq. (4) is reduced to the new closed-form expression of
the amplified electric field, given by

âℓ (t) =
√
GℓΓâℓ (0) +

√
(GℓΓ− 1)nsp,ℓĉ

†
ℓ +

√
(GℓΓ− 1) (nsp,ℓ − 1)d̂ℓ . (21)

The first term represents the electric field of the amplified signal, the second term represents noise
associated with gain, and the third term represents noise associated with loss.

2.5 Effects of loss and gain on amplifier noise

This subsection examines the meaning of Eq. (21) in detail. We first consider the special case in which
the amplifier has no gain, i.e., gℓ = 0, but has loss, i.e., γ > 0. Given that nsp,ℓ = 0 in such a case,
Eq. (21 ) can be simplified as

âℓ (t) =
√
Γâℓ (0) +

√
1− Γd̂ℓ , (22)

where the second term indicates that the loss-induced vacuum fluctuation merged into the signal.
Next, we consider the case in which the amplifier has no loss, i.e., γ = 0, but has gain, i.e., gℓ > 0.
Noting that nsp,ℓ = 1 in this case, we have

âℓ (t) =
√
Gℓâℓ (0) +

√
Gℓ − 1ĉ†ℓ , (23)

where the second term represents the ASE noise from the gain medium.
Equations (22) and (23) are well-known formulae describing the loss and gain effects, respectively,

on an electric field [7]. However, the newly derived Eq. (21) generalizes them when loss and gain
coexist.

2.6 Noise formulae for laser amplifiers

The noise characteristics of laser amplifiers can be calculated by simple algebraic manipulation of the
creation and annihilation operators in Eq. (21). For example, the variance of the photon number is
obtained from Eq. (21) after straightforward calculations as〈

∆n̂ℓ (t)
2
〉
= (GℓΓ)

2
(〈

n̂ℓ (0)
2
〉
− ⟨n̂ℓ (0)⟩2 − ⟨n̂ℓ (0)⟩

)
+GℓΓ ⟨n̂ℓ (0)⟩+ (GℓΓ− 1)nsp,ℓ

+ 2GℓΓ (GℓΓ− 1) ⟨n̂ℓ (0)⟩nsp,ℓ + (GℓΓ− 1)
2
n2
sp,ℓ . (24)

When the input light is in the coherent state, the first term on the right-hand side of Eq. (24) is zero.
The second and third terms represent the shot noise caused by the signal and ASE, respectively; and
the fourth and fifth terms represent the signal-ASE and ASE-ASE beat noise, respectively [8].

Moreover, the average and variance of the real part of the amplified electric field are given from
Eq. (21) as

⟨âℓr (t)⟩ =
√
GℓΓ ⟨âℓr (0)⟩ , (25)〈

∆âℓr (t)
2
〉
= GℓΓ

〈
∆âℓr (0)

2
〉
+ (GℓΓ− 1)nsp,ℓ

〈
ĉ2ℓr

〉
+ (GℓΓ− 1) (nsp,ℓ − 1)

〈
d̂2ℓr

〉
, (26)
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where the suffix r of the operators indicates the real part. Noting that
〈
∆âℓr (0)

2
〉

= 1/4, and〈
ĉ2ℓr

〉
=

〈
d̂2ℓr

〉
= 1/4, we find from Eq. (26)

〈
∆âℓr (t)

2
〉
=

1

4
+

1

2
(GℓΓ− 1)nsp,ℓ . (27)

The first term on the right-hand side of Eq. (27) originates from vacuum fluctuations, whereas the
second term originates from ASE. The noise characteristics of the imaginary part of the signal electric
field, âℓi (t), are the same as those of the real part, because laser amplifiers can amplify the real and
imaginary parts of the signal electric field by the same gain, as expressed by Eq. (21).

3 Phase-insensitive OPAs

3.1 Langevin equations for phase-insensitive OPAs and their solutions

When a signal electric field and an idler electric field propagate through an OPA, the annihilation
operator for the signal, âs, and the creation operator for the idler, â†i , satisfy the following Langevin
equations [9]:

dâs (t)

dt
= −gp

2
â†i (t)−

γ

2
âs (t) + f̂s (t) , (28)

dâ†i (t)

dt
= −

g∗p
2
âs (t)−

γ

2
â†i (t) + f̂†

i (t) . (29)

In these equations, the gain coefficient, gp, is expressed as gp = |gp|eiϕ, where |gp| is a real-numbered
constant determined from the nonlinear optical coefficient and the pump power, and ϕ is determined
from the phase difference between the signal and pump waves. In this study, we assume that the loss
coefficients of the signal and idler have the same value of γ. Note that γ of OPAs only includes the
waveguide loss, in contrast to laser amplifiers (see Eq. (3)). The fluctuation operators, f̂s and f̂i, result
from the loss of the signal and idler, respectively.

The analytical solutions to Eqs. (28) and (29) can be derived as

âs (t) =
[
âs (0) + Â (t)

]
cosh

(
|gp|t
2

)
exp

(
−γt

2

)
−
[
exp (iϕ) â†i (0) + B̂ (t)

]
sinh

(
|gp|t
2

)
exp

(
−γt

2

)
, (30)

â†i (t) =
[
â†i (0) + exp (−iϕ) B̂ (t)

]
cosh

(
|gp|t
2

)
exp

(
−γt

2

)
− exp (−iϕ)

[
âs (0) + Â (t)

]
sinh

(
|gp|t
2

)
exp

(
−γt

2

)
, (31)

where the operators, Â (t) and B̂ (t), are expressed as

Â (t) =

∫ t

0

[
f̂s (t

′) exp

(
γt′

2

)
cosh

(
|gp|t′

2

)
+ f̂†

i (t
′) exp (iϕ) exp

(
γt′

2

)
sinh

(
|gp|t′

2

)]
dt′ , (32)

B̂ (t) =

∫ t

0

[
f̂†
i (t

′) exp (iϕ) exp

(
γt′

2

)
cosh

(
|gp|t′

2

)
+ f̂s (t

′) exp

(
γt′

2

)
sinh

(
|gp|t′

2

)]
dt′ . (33)
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3.2 Properties of fluctuation operators in OPAs

Similar to Eq. (6), the commutation relation between f̂s (t) and f̂†
s (t

′), and that between f̂i (t) and

f̂†
i (t

′) are given by [
fs (t) , f

†
s (t

′)
]
= γδ (t− t′) , (34)[

fi (t) , f
†
i (t

′)
]
= γδ (t− t′) . (35)

Moreover, the correlation relations between them are given by〈
f̂s (t) f̂

†
s (t

′)
〉
= γδ (t− t′) , (36)〈

f̂†
s (t) f̂s (t

′)
〉
= 0 , (37)〈

f̂i (t) f̂
†
i (t

′)
〉
= γδ (t− t′) , (38)〈

f̂†
i (t) f̂i (t

′)
〉
= 0 . (39)

The operators, f̂s and f̂i, are not correlated with each other, and are correlated with neither âs (0) nor
âi (0) .

When the signal is incident on the OPA but the idler is not, the signal gain does not depend on
ϕ, as expressed by Eq. (30). This mode of operation is referred to as phase-insensitive parametric
amplification. In the following, we assume that âi (0) = ∆âi (0), where ∆âi (0) represents the vacuum
fluctuations in the idler channel. As shown by Eq. (30), the vacuum fluctuations in the idler channel
merge into the signal channel and increase the signal noise.

3.3 Average number of output photons from phase-insensitive OPAs

Using Eqs. (36)–(39), we obtain the following averages for the operators Â (t) and B̂ (t) from Eqs. (32)
and (33):

〈
Â† (t) Â (t)

〉
=

1

4

exp ((|gp|+ γ) t)− 1

1 +
|gp|
γ

+
exp ((− |gp|+ γ) t)− 1

1− |gp|
γ

− 2 (exp (γt)− 1)

 , (40)

〈
B̂† (t) B̂ (t)

〉
=

1

4

exp ((|gp|+ γ) t)− 1

1 +
|gp|
γ

+
exp ((− |gp|+ γ) t)− 1

1− |gp|
γ

+ 2 (exp (γt)− 1)

 , (41)

〈
Â† (t) B̂ (t) + B̂† (t) Â (t)

〉
=

1

2

exp ((|gp|+ γ) t)− 1

1 +
|gp|
γ

− exp ((− |gp|+ γ) t)− 1

1− |gp|
γ

 . (42)

By using Eqs. (30) and (40)–(42), the average number of output signal photons, ⟨n̂s (t)⟩ =
〈
â†s (t) âs (t)

〉
,

can be derived after straightforward calculations as

⟨n̂s (t)⟩ = GpΓ ⟨n̂s (0)⟩+ (GpΓ− 1)nsp,p , (43)

where the gross gain, Gp, is given by

Gp = cosh2
(
|gp|t
2

)
, (44)
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and nsp,p is the spontaneous emission factor, calculated as

nsp,p = 1 +
1

GpΓ− 1


1

4

(
1 +

|gp|
γ

) [
1− Γ

(√
Gp −

√
Gp − 1

)2
]

+
1

4

(
1− |gp|

γ

) [
1− Γ

(√
Gp +

√
Gp − 1

)2
]
+

1

2
(1− Γ)

 . (45)

Equation (43) has the same form as Eq. (12), but nsp,ℓ, Gℓ, and ⟨n̂ℓ (0)⟩ in Eq. (12) are replaced by
nsp,p, Gp, and ⟨n̂s (0)⟩ in Eq. (43), respectively.

3.4 Closed-form expression of the electric field of the phase-insensitive
OPA output

We convert Eq. (30) into a closed-form expression of the amplified electric field. Let the noise operators

ĉ†p and d̂p be defined as√
(GpΓ− 1)nsp,pĉ

†
p = −

√
(Gp − 1) Γ exp (iϕ)

[
∆â†i (0) +

∫ t

0

f̂†
i (t

′) exp

(
γt′

2

)
cosh

(
|gp|t′

2

)
dt′

]
+
√
GpΓ exp (iϕ)

∫ t

0

f̂†
i (t

′) exp

(
γt′

2

)
sinh

(
|gp|t′

2

)
dt′ , (46)√

(GpΓ− 1) (nsp,p − 1)d̂p =
√
GpΓ

∫ t

0

f̂s (t
′) exp

(
γt′

2

)
cosh

(
|g|t′

2

)
−
√
(Gp − 1) Γ

∫ t

0

f̂s (t
′) exp

(
γt′

2

)
sinh

(
|gp|t′

2

)
dt′ . (47)

Using Eqs. (34) and (35), we can demonstrate the following commutation relations:[
ĉp, ĉ

†
p

]
= 1 , (48)[

d̂p, d̂
†
p

]
= 1 . (49)

Consequently, ĉp and d̂p are the annihilation operators, and ĉ†p and d̂†p are the creation operators for
photons. Finally, we can derive the following closed-form expression for the electric field of the OPA
output, using Eqs. (30), (32), (33), (46), and (47):

âs (t) =
√
GpΓâs (0) +

√
(GpΓ− 1)nsp,pĉ

†
p +

√
(GpΓ− 1) (nsp,p − 1)d̂p . (50)

The first term in Eq. (50) represents the electric field of the amplified signal, the second term represents
the noise stemming from vacuum fluctuations in the idler channel, and the third term represents the
noise associated with signal loss.

3.5 Noise formulae for phase-insensitive OPAs

Using Eq. (50), we can calculate the noise characteristics of the phase-insensitive OPAs by simple
algebraic manipulation of the creation and annihilation operators. Given that Eq. (50) has the same
form as Eq. (21), the noise formulae, Eqs. (24) and (27), are still valid for OPAs. When the input

7



signal is in a coherent state, replacing Gℓ, nsp,ℓ, and ⟨n̂ℓ (0)⟩ in Eqs. (24) and (27) with Gp, nsp,p, and
⟨n̂s (0)⟩, respectively, we have the noise formulae, given by〈

∆ns (t)
2
〉
= GpΓ ⟨n̂s (0)⟩+ (GpΓ− 1)nsp,p

+ 2GpΓ (GpΓ− 1) ⟨n̂s (0)⟩nsp,p + (GpΓ− 1)
2
n2
sp,p , (51)〈

∆âsr (t)
2
〉
=

1

4
+

1

2
(GpΓ− 1)nsp,p . (52)

Similar to laser amplifiers, the real and imaginary parts of the signal electric field have the same noise
characteristics.

4 Phase-sensitive OPA

4.1 Langevin equation for phase-sensitive OPAs and its solution

When the signal and idler waves in OPAs are degenerated, the gain becomes dependent on ϕ. This
mode of operation is referred to as phase-sensitive parametric amplification. Equation (28) yields the
following Langevin equation governing the phase-sensitive parametric amplification:

dâs (t)

dt
= −gp

2
â†s (t)−

γ

2
âs (t) + f̂s (t) . (53)

If ϕ = π, the Langevin equations for the real part, âsr (t), and the imaginary part, âsi (t), of the signal
electric field are given by

dâsr (t)

dt
=

|gp|
2

âsr (t)−
γ

2
âsr (t) +

1

2

(
f̂s (t) + f̂†

s (t)
)

, (54)

dâsi (t)

dt
= −|gp|

2
âsi (t)−

γ

2
âsi (t) +

1

2i

(
f̂s (t)− f̂†

s (t)
)

. (55)

The solution to Eq. (54) is given by

âsr (t) = exp

(
(|gp| − γ) t

2

)[
âsr (0) +

1

2

∫ t

0

exp

(
− (|gp| − γ) t′

2

)(
f̂s (t

′) + f̂†
s (t

′)
)
dt′

]
, (56)

whereas the solution to Eq. (55) is given by

âsi (t) = exp

(
− (|gp|+ γ) t

2

)[
âsi (0) +

1

2i

∫ t

0

exp

(
(|gp|+ γ) t′

2

)(
f̂s (t

′)− f̂†
s (t

′)
)
dt′

]
. (57)

Note that the real part of the signal electric field is amplified, whereas its imaginary part is deamplified,
as expressed by

⟨âsr (t)⟩ =
√

GdΓ ⟨âsr (0)⟩ , (58)

⟨âsi (t)⟩ =
√

Γ

Gd
⟨âsi (0)⟩ , (59)

where the in-phase gross gain, Gd, is given by

Gd = exp (|gp| t) . (60)

Therefore, we can use only the real part of the signal electric field for coherent optical transmission
systems.
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4.2 Noise formulae for phase-sensitive OPAs

In contrast with laser amplifiers and phase-insensitive OPAs, the second terms in Eqs. (56) and (57)
cannot be written in terms of single annihilation operators for photons because of the phase-sensitive
gain. Therefore, a closed-form expression for âs (t) is not available, and the noise characteristics must
be evaluated by performing integration in Eqs. (56) and (57). However, the second moment of the
operators is not difficult to calculate. For example, the variance of the real part can be calculated,
when the incident signal is in a coherent state, as〈

∆â2sr (t)
〉
=

1

4
+

(GdΓ− 1)nsp,d

4
, (61)

where nsp,d represents the spontaneous emission factor, which is expressed as

nsp,d =
|gp|

|gp| − γ
. (62)

Meanwhile, the variance of the imaginary part is calculated as〈
∆â2si (t)

〉
=

1

4
+

1

4

(
Γ

Gd
− 1

)
n′
sp,d , (63)

where the spontaneous emission factor, n′
sp,d, is given as

n′
sp,d =

|gp|
|gp|+ γ

. (64)

5 NF of optical amplifiers

5.1 Definition of NF in DD systems

The NF of amplifiers can be defined as the power ratio of the equivalent input noise to the actual
input noise of the signal. The equivalent input noise of laser amplifiers in DD systems is given by〈
∆n̂ℓ (t)

2
〉
/ (GℓΓ)

2
. The variance of the photon number of the input signal in the coherent state is

given by ⟨n̂ℓ (0)⟩ [8]. Consequently, by using Eq. (24), the NF can be written as

NFDD1,ℓ =
GℓΓn0.+ (GℓΓ− 1)nsp,ℓ + 2GℓΓ (GℓΓ− 1)nsp,ℓn0 + (GℓΓ− 1)

2
n2
sp,ℓ

(GℓΓ)
2
n0

, (65)

where n0 = ⟨n̂ℓ (0)⟩. When GℓΓn0 ≫ (GℓΓ− 1)nsp,ℓ, which means that the photon number of the
amplified signal is much larger than that of the ASE, as is usually the case, and Eq. (65) is approximated
as

NFDD2,ℓ =
1

GℓΓ
+

2 (GℓΓ− 1)nsp,ℓ

GℓΓ
. (66)

If GℓΓ ≫ 1, Eq. (66) is further reduced to 2nsp,ℓ, which is commonly called the NF of laser amplifiers
[8]. Given that nsp,ℓ ≥ 1 in the high-gain region, the lower limit of the NF is 2 (3 dB).

Similarly, in DD systems using phase-insensitive OPAs, the NF is given from Eq. (51) by

NFDD1,p =
GpΓn0 + (GpΓ− 1)nsp,p + 2GpΓ (GpΓ− 1)nsp,pn0 + (GpΓ− 1)

2
n2
sp,p

(GpΓ)
2
n0

, (67)

where n0 = ⟨n̂s (0)⟩. When GpΓn0 ≫ (GpΓ− 1)nsp,p, Eq. (67) is approximated as

NFDD2,p =
1

GpΓ
+

2 (GpΓ− 1)nsp,p

GpΓ
. (68)

In the high-gain region in which GpΓ ≫ 1, Eq. (68) approaches 2nsp,p. Equation (45) shows that
nsp,p ≥ 1; therefore, the lower limit of the NF is 2 (3 dB).

9



5.2 Numerical results on NF in DD systems

Figures 1, 2, and 3 show the NFs of laser amplifiers and phase-insensitive OPAs in DD systems,
calculated as a function of gross gain when Γ = −3 dB, Γ = −5 dB, and Γ = −10 dB, respectively. The
red and black broken curves show rigorous NFs, NFDD1,ℓ and NFDD1,p, respectively, when n0 = 100.
By contrast, the red and black solid curves show the approximated NFs, NFDD2,ℓ and NFDD2,p,
respectively. Note that NFDD2,ℓ and NFDD2,p are good approximations to NFDD1,ℓ and NFDD1,p,
respectively. Moreover, 2nsp,ℓ and 2nsp,p are represented by the red and black dash-dotted curves,
respectively, when the gross gain is larger than 1/Γ. These parameters are effective only for the NF
in the high-gain region.

Note that NFDD1,p is always smaller than NFDD1,ℓ for prescribed values of the gross gain and Γ;
this demonstrates the intrinsic low-noise characteristics of OPAs. Moreover, Figs. 1, 2, and 3 show
how the noise characteristics of the laser amplifier and phase-insensitive OPA are deteriorated by their
internal loss.

1/ 3 dB =

Rigorous

Approximation

,2 spn

,2 sp pn

Laser amplifier

Phase-insensitive OPA

Rigorous

Approximation

Figure 1: NFs of laser amplifiers and phase-insensitive OPAs in DD systems, calculated as the function
of gross gain when Γ = −3 dB. Red and black broken curves: NFDD1,ℓ and NFDD1,p, respectively,
when n0 = 100. Red and black solid curves: NFDD2,ℓ and NFDD2,p, respectively. Red and black
dash-dotted curves: 2nsp,ℓ and 2nsp,p, respectively.

5.3 Definition of NF in coherent systems

We assume that the real part (or imaginary part) of the signal electric field is measured by coherent

receivers behind laser amplifiers. The equivalent input noise is given by
〈
∆âℓr (t)

2
〉
/ (GℓΓ). Mean-

while, the variance of the real part of the input signal electric field in the coherent state is equal to
1/4. Consequently, by using Eq. (27), the NF is written as

NFcoh1,ℓ =
1

GℓΓ
+

2 (GℓΓ− 1)nsp,ℓ

GℓΓ
, (69)

which is the same as the approximated NF for DD systems, given by Eq. (66). The measurement of the
imaginary part of the signal electric field resulted in the same NF. Similarly, when phase-insensitive
OPAs are employed, the NF is given as

NFcoh1,p =
1

GpΓ
+

2 (GpΓ− 1)nsp,p

GpΓ
, (70)
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1/ 5 dB =

Rigorous

Approximation

,2 spn

,2 sp pn

Laser amplifier

Phase-insensitive OPA

Rigorous

Approximation

Figure 2: NFs of laser amplifiers and phase-insensitive OPAs in DD systems, calculated as a function
of gross gain when Γ = −5 dB. Red and black broken curves: NFDD1,ℓ and NFDD1,p, respectively,
when n0 = 100. Red and black solid curves: NFDD2,ℓ and NFDD2,p, respectively. Red and black
dash-dotted curves: 2nsp,ℓ and 2nsp,p, respectively.

which is the same as Eq. (68). Thus, in the high-gain region, the NFs approach 2nsp,ℓ and 2nsp,p when
the laser amplifier and phase-insensitive OPA are employed, respectively, and the lower limit of the
NFs is 2 (3 dB).

Coherent receivers usually measure the real and imaginary parts of the signal electric field simulta-
neously [3]. This requirement induces a 3-dB loss for each of the real-part and imaginary-part branches
of the optical circuit after amplification. In this case, the NFs given by Eqs. (69) and (70) are modified
into

NFcoh2,ℓ =
2

GℓΓ
+

2 (GℓΓ− 1)nsp,ℓ

GℓΓ
, (71)

NFcoh2,p =
2

GpΓ
+

2 (GpΓ− 1)nsp,p

GpΓ
, (72)

which are close to NFcoh1,ℓ and NFcoh1,p, respectively, in the high-gain region.
When we employ phase-sensitive OPAs and measure only the real part of the signal electric field

by using an optical phase-locked loop homodyne receiver [3], the NF is given from Eq. (61) as

NFcoh,d =
1

GdΓ
+

(GdΓ− 1)nsp,d

GdΓ
. (73)

This approaches nsp,d when GdΓ ≫ 1. Therefore, its lower limit is 1 (0 dB), which implies that
noise-free optical amplification can be achieved.

5.4 Numerical results on NF in coherent systems

Figures 4, 5, and 6 show the NFs of the three types of amplifiers used in coherent systems, calculated
as a function of gross gain when Γ = −3 dB, Γ = −5 dB, and Γ = −10 dB, respectively. The red
and black solid curves represent NFcoh2,ℓ and NFcoh2,p, respectively, where we assume simultaneous
measurements of the real and imaginary parts of the signal electric field. By contrast, the blue solid
curves represent NFcoh,d obtained by the phase-sensitive OPA. Moreover, 2nsp,ℓ, 2nsp,p, and nsp,d are
plotted by red, black, and blue dash-dotted curves, respectively, when the gross gain is larger than 1/Γ.
Note that these parameters are effective only for NF in the high-gain region. Figures 4, 5, and 6 show
how the noise characteristics of the laser amplifier and OPAs in coherent systems are deteriorated by
their internal loss.
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1/ 10 dB =

Rigorous

Approximation

,2 spn

,2 sp pn

Laser amplifier

Phase-insensitive OPA
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Approximation

Figure 3: NFs of laser amplifiers and phase-insensitive OPAs in DD systems, calculated as a function
of gross gain when Γ = −10 dB. Red and black broken curves: NFDD1,ℓ and NFDD1,p, respectively,
when n0 = 100. Red and black solid curves: NFDD2,ℓ and NFDD2,p, respectively. Red and black
dash-dotted curves: 2nsp,ℓ and 2nsp,p, respectively.

1/ 3 dB =

,2 spn

,2 sp pn

Laser amplifier

Phase-insensitive OPA

Phase-sensitive OPA

,sp dn

NF formula

NF formula

NF formula

Figure 4: NFs of laser amplifiers, phase-insensitive OPAs, and phase-insensitive OPAs in coherent
systems, calculated as a function of gross gain when Γ = −3 dB. Red, black, and blue solid curves:
NFs of laser amplifiers, phase-insensitive OPAs, and phase-sensitive OPAs, respectively. Red, black,
and blue dash-dotted curves: 2nsp,ℓ, 2nsp,p, and nsp,d, respectively,

6 Conclusions

We presented a theory of noise in phase-insensitive and phase-sensitive OPAs based on the quantum-
mechanical Langevin equations. Through derivation of theoretical expressions for the spontaneous
emission factor, we analyzed the effect of the internal loss of OPAs on their noise characteristics. To
the best of our knowledge, this is the first study that derives theoretical expressions for the spontaneous
emission factor of OPAs. In addition, we analyzed the NFs of the laser amplifier, phase-insensitive
OPA, and phase-sensitive OPA. The NFs in the DD and coherent systems were compared, and the
low-noise characteristics of OPAs were theoretically demonstrated.
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1/ 5 dB =

,2 spn

,2 sp pn
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Phase-insensitive OPA

Phase-sensitive OPA

,sp dn

NF formula
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NF formula

Figure 5: NFs of laser amplifiers, phase-insensitive OPAs, and phase-insensitive OPAs in coherent
systems, calculated as a function of gross gain when Γ = −5 dB. Red, black, and blue solid curves:
NFs of laser amplifiers, phase-insensitive OPAs, and phase-sensitive OPAs, respectively. Red, black,
and blue dash-dotted curves: 2nsp,ℓ, 2nsp,p, and nsp,d, respectively,

1/ 10 dB =

,2 spn

,2 sp pn

Laser amplifier

Phase-insensitive OPA

Phase-sensitive OPA

,sp dn

NF formula
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NF formula

Figure 6: NFs of laser amplifiers, phase-insensitive OPAs, and phase-insensitive OPAs in coherent
systems, calculated as a function of gross gain when Γ = −10 dB. Red, black, and blue solid curves:
NFs of laser amplifiers, phase-insensitive OPAs, and phase-sensitive OPAs, respectively. Red, black,
and blue dash-dotted curves: 2nsp,ℓ, 2nsp,p, and nsp,d, respectively,
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