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Abstract

Egocentric vision has a wide range of applications for human-centric activity recognition. However, the use of the egocentric

fisheye camera allows wide angle coverage but image distortion is introduced along with strong human body self-occlusion,

which can impose significant challenges in data processing and model reconstruction. Unlike previous work only leveraging

synthetic data for model training, this paper first presents a new real-world EgoCentric Human Action (ECHA) dataset. By

using the self-supervised learning under multi-view constraints, we propose a simple yet effective framework, namely EgoFish3D,

for egocentric 3D pose estimation from a single image in different real-world scenarios.
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Abstract—Egocentric vision has a wide range of applications
for human-centric activity recognition. However, the use of
the egocentric fisheye camera allows wide angle coverage but
image distortion is introduced along with strong human body
self-occlusion, which can impose significant challenges in data
processing and model reconstruction. Unlike previous work only
leveraging synthetic data for model training, this paper presents
a new real-world EgoCentric Human Action (ECHA) dataset.
To tackle the difficulty of collecting 3D ground truth using
motion capture systems, we simultaneously collect the images
from a head-mounted egocentric fisheye camera as well as from
two third-person-view cameras, circumventing the environmental
restrictions. By using the self-supervised learning under multi-
view constraints, we propose a simple yet effective framework,
namely EgoFish3D, for egocentric 3D pose estimation from
a single image in different real-world scenarios. EgoFish3D
incorporates three main modules. 1) The third-person-view module
takes two exocentric images as input and estimates the 3D pose
represented in the third-person camera frame; 2) the egocentric
module predicts the 3D pose in the egocentric camera frame; and
3) the interactive module estimates the rotation matrix between
the third-person and the egocentric views. Experimental results
on our proposed ECHA dataset and existing benchmark datasets
demonstrate the effectiveness of the proposed EgoFish3D, which
can achieve superior performance to existing methods.

Index Terms—Egocentric vision, 3D human pose estimation,
Self-supervised learning, Multi-view constraints

I. INTRODUCTION

EGOCENTRIC vision is an emerging field in computer
vision, involving the analysis of data captured from

a head-mounted or chest-mounted wearable camera [1]–[3].
When the egocentric camera is directed downwards, especially
by incorporating a fisheye lens, the human body and the
surrounding environment can be captured with an enlarged
field-of-view, offering expanded visual cues for processing
[3]–[6]. Compared to the third-person view, egocentric vision
is advantageous for long-term human-centric perception in a
free-living environment, offering new opportunities for under-
standing human behavior and social activities [5]–[8].

One of the prerequisites of egocentric vision for downstream
applications is accurate pose estimation from egocentric views.
Although extensive progress in monocular 2D/3D human pose
estimation have been achieved in recent years [9]–[12], these
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Fig. 1. Egocentric 3D pose estimation from a single fisheye camera. a) Our
proposed EgoFish3D can achieve accurate 2D and 3D pose estimation from
the distorted image captured by a single fisheye camera. b) Existing third-
person-view 2D/3D pose estimation methods [9], [10] fail on this challenging
task from images captured by the fisheye camera. c) The strong self-occlusion
for lower limbs, the severe distortion of the fisheye camera, and the lack of
real-world datasets are the inherent challenges in egocentric vision.

conventional third-person-view pose estimation methods are
prone to inaccurate when directly used to predict 2D/3D
poses from the novel first-person viewpoint, as shown in
Fig. 1(b), which shows typical results that can be achieved.
Hitherto, there are few dedicated egocentric human pose es-
timation methods available due to several inherent challenges
in egocentric vision as shown in Fig. 1(c). First, there exist
significant human body self-occlusions from the first-person
view, especially for the head and lower limb, making the
estimation of occluded joints difficult. Second, although an
egocentric camera with a fisheye lens enlarges the field of
view and captures more details of the human body, the
recorded images are severely distorted, increasing the difficulty
of accurate annotation in practice. Furthermore, there is a
lack of real-world datasets with accurate ground truth data
as the collection using a motion capture (MoCap) system is
labor-intensive and limited to small laboratory settings. To
partially address these issues, recent effort within the vision
community has been directed to building public datasets using
synthetic human models [13] [14]. However, training with
synthetic datasets can affect the generalization capability of
the model when subsequently applied to real-world scenarios.
To circumvent the above problems, it is necessary to develop
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Fig. 2. Illustration of the training and inference phases of our proposed EgoFish3D. During the training phase, the third-person-view module takes two images
from the third-person view as input and generates a relatively accurate 3D pose represented in the coordinate system of the external cameras, the interactive
module predicts the rotation difference between the third-person-view and the egocentric coordinate systems, and the egocentric module estimates both 2D
and 3D poses from an egocentric distorted image. During the inference phase, only the egocentric module can directly predict 2D and 3D poses from an
egocentric image captured by a fisheye camera.

a dedicated method for egocentric 3D human pose estimation.
Furthermore, it is advantageous to incorporate self-supervised
learning. Some recent work has already leveraged the intrinsic
constraints across multiple third-person views, such as multi-
view geometry and view consistency [15]–[17], to enable
the 3D human pose estimation without ground truth. These
self-supervised methods have demonstrated comparative pose
estimation performance against those fully-supervised coun-
terparts. In practice, however, there is still the challenge of
directly transferring the multi-view self-supervised mechanism
for egocentric 3D pose estimation. First, the intrinsic pa-
rameters of the third-person-view and egocentric cameras are
totally different. Second, there is often limited overlap between
the third-person-view and first-person-view images, and the
transformation between two views is hard to acquire. More
importantly, conventional 2D/3D pose estimation methods can
hardly work on egocentric images, thus limiting the direct use
of self-supervised learning with multi-view constraints.

To address the aforementioned challenges, we first con-
structed the EgoCentric Human Action (ECHA) dataset using
a head-mounted GoPro camera with a fisheye lens, and two
RGB cameras were used to simultaneously capture images
from a third-person view. The training and validation datasets
of ECHA consist of 30 video sequences (∼75k frames)
recorded in 8 different real-world indoor/outdoor scenes, in
which 10 different daily actions performed by 9 subjects with
20 different body textures were recorded. The test dataset
consisting of 10 actions performed by 4 subjects with new
body textures were simultaneously captured by a multi-camera
motion capture system with ground truth annotations. This
dataset can not only contribute as a new benchmark for
egocentric 3D pose estimation, but also help enhance the
generalization capability of the proposed method to real-world
scenarios. Central to this paper, we propose a novel self-
supervised method, namely EgoFish3D, for egocentric 3D
human pose estimation from a single head-mounted fisheye
camera. An overview of our proposed method is shown in
Fig. 2. The EgoFish3D consists of three modules: 1) the
third-person-view module; 2) the egocentric module; and 3)

the interactive module. The third-person-view module first
generates the 3D pose from two third-person-view cameras,
providing a relatively accurate 3D pose represented in a
third-person-view coordinate system. The egocentric module
then takes the distorted first-person-view image as input,
performs 2D pose estimation, and predicts the 3D pose in the
egocentric coordinate system as the final output. Within this
module, the latent features, 2D heatmaps and human masks
are incorporated in order to improve the accuracy. Another
interactive module is introduced to estimate the 3D rotation of
two 3D poses, adding supervision rules for training the other
two modules. During the training phase, we train these three
modules in a self-supervised manner. During the inference
stage, only the egocentric module is used to predict the 3D
pose from a single egocentric fisheye image. The proposed
work represents the first attempt in achieving egocentric 3D
pose estimation from a fisheye camera looking downwards in a
self-supervised manner without 3D pose ground truth as prior.
Experimental results on our ECHA and the public synthetic
datasets [13], [14] demonstrate that our method can achieve
good accuracy compared to existing supervised approaches.

In summary, the main contributions of this paper include:
• A self-supervised method is proposed to achieve egocen-

tric 3D pose estimation from a single image without the
need for 3D ground truth annotations.

• A real-world dataset ECHA is constructed, which con-
tains the synchronized images from two third-person-
view cameras and an egocentric fisheye camera.

• An interactive module is introduced to learn the relation-
ship between the third-person and egocentric views.

II. RELATED WORK

A. Human Pose Estimation from Egocentric Camera

With the increasing popularity of egocentric vision [7],
human pose estimation from a single egocentric camera has
received significant attention in recent years. Unlike the im-
age/video captured by a camera from the third-person view,
egocentric vision still faces inherent challenges originates from
the visual data captured from a novel first-person viewpoint. In
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previous works, the egocentric cameras are typically placed on
the chest [4] or head [13], [14], [18]–[21], looking outwards
[4], [18], [19] or looking downwards [13], [14], [20].

To mimic the visual perception of a human, one line of
research is based on the egocentric camera looking outwards,
but suffering from difficulties for recovering the 3D human
pose only with limited observed human body. Jiang et al.
[4] took advantage of the dynamic motion signatures of the
surroundings to infer the invisible pose from a chest-mounted
camera. However, the estimated poses are inaccurate and easily
affected by the changing of environment. Another group of
research [18], [19] modeled the egocentric 3D pose estimation
and foresting as a Markov decision processing when the pose
estimation is limited to a single mode of action, such as
running or walking.

Compared to the camera looking outwards, some recent
works change the egocentric camera to a downward-looking
setting, which can consistently capture the human body in the
field of view. Moreover, they all integrate the camera with
a fisheye lens to enlarge the perception area of human body,
which can boost the performance of egocentric 3D human pose
estimation. By using a head-mounted stereo fisheye camera,
Rhodin et al. [20] proposed a markerless egocentric full-body
motion capture method, but the stereo camera is inconvenience
in practical applications. Xu et al. [14] presented a real-
time egocentric 3D pose estimation method with a single
cap-mounted fisheye camera, which takes both original and
zoom-in images as input to deal with the strong occlusion
of the lower limbs. However, this method does not directly
regress the 3D pose in the inference phase but predict the
absolute depths of the joints instead. Most recently, Tome
et al. [13] introduced a large corpus of synthetic dataset
from a head-mounted fisheye camera, and proposed a three-
branch network that achieves the state-of-the-art 3D pose
estimation performance on this synthetic dataset. To deal with
the problem of the severe distortion, Zhang et al. [21] proposed
an automatic calibration module to estimate the fisheye camera
parameters, thus mitigating the effect of image distortions for
robust egocentric 3D pose estimation. It should be pointed out
that the models as proposed in [13], [14], [21] are trained on
synthetic data under fully-supervision, leading to a degraded
generalization capability of the model in real-world applica-
tions. Motivated by this, in this paper we first establish a real-
world egocentric human action dataset. In addition, we take
full advantage of the multi-view constraints between the third-
person-view and egocentric cameras to achieve egocentric 3D
human pose estimation in a self-supervised manner.

B. 3D Human Pose Estimation via Self-Supervised Learning
under Multi-View Constraints

Recently, self-supervised learning has attracted increasing
attention in estimating 3D human pose, in which the multi-
view information is utilized to mitigate the ambiguity of
learning 3D human poses from synchronized 2D images
captured from third-person-view cameras [22]–[25]. However,
the fusion of multiple views and the annotation of 3D poses
in different camera views are challenging. Employing some
typical fusing methods, such as multi-view consistency of the

same pose [15], [22], [25] and triangulation [24], [26], can
tremendously reduce the labor cost of 3D human pose labelling
and make the network learning in a self-supervised manner.

Rhodin et al. [22] employed the multi-view consistency to
constrain the system to predict the same pose in all views
with the help of only a few annotated data. CanonPose [15]
disentangled the observed 2D pose into a canonical 3D pose
and a camera orientation. In specific, it contains several sub-
networks inferring the same 3D pose from different views,
and the predictions from all views are aggregated to produce
the final 3D pose inference. However, only applying multi-
view consistency constraint is not sufficient enough because
the model may trap in a trivial solution with different inputs
[22], [27]. Iqbal et al. [27] introduced a novel objective
function based on normalized 3D bone lengths that computed
from Human3.6M dataset. Differently, Rhodin et al. [28]
took advantages of temporal consistency prior to first learn
a geometry-aware body representation from sequential unla-
belled multi-view images, and then map the novel geometry
representation to actual 3D poses. In this paper, we aim
to address the multi-view self-supervised learning from the
combination of third-person and egocentric views.

The other branch of study in fusing multi-view data em-
ployed conventional triangulation method, given the intrinsic
and extrinsic parameters of the cameras [24], [26]. Iskakov
et al. [26] firstly proposed a baseline method that computes
the 3D human pose from multi-view 2D poses algebraically.
Kocabas et al. [24] utilized the epipolar geometry theorem
to generate 3D pose annotations from multiple 2D poses. Our
method also incorporates the triangulated 3D pose as the prior
for faster convergence and better performance.

III. EGOCENTRIC HUMAN ACTION (ECHA) DATASET

There is a pressing need for available real-world data to en-
able the development of egocentric pose estimation algorithms
due to the unique camera placement and the images captured
from first-person view. However, the existing training methods
for egocentric pose estimation are almost based on synthetic
datasets, and some real-world data is only used for the test.
Due to the domain gap between the synthetic environment
and the real-world environment, the generalization capability
of the model in real applications is limited. More important,
it is faced with difficulties for simultaneously capture ground
truth data using MoCap system for supervised learning. This
is because the multi-camera MoCap system is limited in a
certain environment and the annotation is labour-intensive.

In this paper, we first construct an EgoCentric Human
Action (ECHA) dataset to enable the egocentric 3D human
pose estimation in a self-supervised learning manner. Unlike
previous datasets mainly consist of synthetic images [13], [14],
our ECHA is composed of real-world images collected by an
egocentric camera with a fisheye lens in different scenarios.

A. Data Collection

To overcome the difficulty in acquiring ground truth data
by MoCap system, two RGB cameras are used to capture
images from the third-person view and a head-mounted GoPro
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Fig. 3. The details of our proposed ECHA dataset. a) Placement of two third-person-view cameras (rgb camera of Realsense D455) and a head-mounted
egocentric camera (GoPro) with a fisheye lens looking downwards; b) Selected examples of the different scenes, subjects, and body textures in our ECHA
dataset. In total, we capture the data of 9 subjects in 8 different scenes with 20 different body textures; c) 10 different daily actions are recorded in our dataset.

camera with a fisheye lens captures the images from the
egocentric view. In this manner, the ECHA dataset consists of
well-synchronized images captured from two different views,
i.e., the third-person view and egocentric view. In practice,
the egocentric camera is fixed on the head through a helmet
and extends forward about 13-18cm, and tilts downwards
about 15-25 degrees to reduce the self-occlusion and ensure
that the lower limbs can be seen as much as possible. We
also use Aruco [29] marker to obtain the 6D pose of the
egocentric camera represented in the third-person-view frames.
All three cameras are well calibrated with a 25mm chessboard
to determine the intrinsic parameters [30].

In the training and validation sets of our ECHA dataset,
there are 9 different subjects with 20 different body textures
performing 10 daily actions (i.e., squatting, walking, dancing,
stretching, waving, boxing, kicking, touching, clamping, knock-
ing). To improve the diversity of the dataset, real-world data
are captured in 8 different scenes, both indoor and outdoor.
In total, there are 30 video sequences about 75k frames in
the ECHA dataset. To fully evaluate the performance as well
as the generalization capability of different egocentric pose
estimation algorithms, in the test set we simultaneously use
the VICON MoCap system with a full-body gait model to
collect these 10 daily actions performed by 4 subjects with
new body textures, i.e., ∼17K frames with 3D ground truth
of anatomical joint positions. It should be emphasized that the
test data are captured in a same indoor scene due to the use
of MoCap system, and more importantly 2 of 4 subjects are
unseen in the training set.

In summary, the ECHA dataset can be divided into three
different parts: about 65k images with both third-person-view
images and egocentric images are for training, the remaining
10k images are for validation, and the egocentric data along
with 3D ground truth captured by the VICON Mocap system
form the test dataset. Further details of our dataset can be
found in our supplementary material.

B. Data Preparation

It is noteworthy that our main focus is on egocentric pose
estimation, so we exploit OpenPose [9] to offline extract 2D
joints of the target human given the rgb images captured from
third-person-view cameras. These two 2D poses are served
as the input to the third-person-view module of EgoFish3D.
Besides, a pretrained human instance segmentation model [31]
is used to offline extract the human mask as the input to our

egocentric module. The extrinsic parameters between the two
third-person-view cameras are pre-measured and fixed during
the data collection. To fit in our proposed network, we resize
the images from the third-person view to 640×480 and the
images from the egocentric view to 384×384.

IV. EGOFISH3D FOR EGOCENTRIC 3D POSE ESTIMATION

A. Problem Statement

In this paper, our aim is to perform egocentric 3D pose
estimation from a single head-mounted fisheye camera by
leveraging the self-supervision provided by two third-person-
view cameras. Let denote {C1}, {C2} as the coordinate sys-
tems of two third-person-view cameras c1, c2 and {Cego}
indicates the local coordinate system of the egocentric fisheye
camera cego. For a camera c, the captured image at each
frame can be defined as Ic, the corresponding 2D joints of
the target human is Jc = {jc,1, jc,2, · · · , jc,N} ∈ RN×2,
where jc,i = [uc,i, vc,i] indicates the pixel coordinates of a
joint i and N is the number of key body joints. Accordingly,
the estimated 3D joints represented in the camera c is Pc =
{pc,1, pc,2, · · · , pc,N} ∈ RN×3, where pc,i = [xc,i, yc,i, zc,i].
Note that we first exploit OpenPose [9] to extract the 2D
pose Jc1 , Jc2 from two third-person-view images Ic1 , Ic2 , and
the transformation matrix {c2Rc1 ,

c2 Tc1} between two third-
person-view cameras is given.

Given an image Icego captured by the egocentric fisheye
camera, a deep neural network fθ(·) with parameters θ is
designed to first predict the 2D joint positions Jcego , and
then estimate the 3D human pose Pcego represented in the
egocentric camera coordinate system. In this paper, we propose
EgoFish3D to perform this task via self-supervised learning.

B. Overview of EgoFish3D

The architecture of our proposed EgoFish3D is shown in
Fig. 4. In specific, our network contains three modules, i.e.,
third-person-view module f trdθ , egocentric module fegoθ , and
the interactive module f itrθ .

The third-person-view module f trdθ achieves 3D pose es-
timation from two external cameras, which aims to offer a
relatively accurate 3D pose as the supervision represented in
the third-person-view camera coordinate system. The input
of this module is the two 2D poses Jc1 , Jc2 estimated from
two third-person-view images and the output is the 3D poses
P̂c1 , P̂c2 under the third-person-view coordinate system. The
network is composed of several MLPs, where each MLP is
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Fig. 4. Overview of our proposed EgoFish3D. The figure shows the network architecture, which contains three modules: third-person-view module, egocentric
module and interactive module. The black arrows indicate direction of information flow. The colorized lines with arrows indicate different loss functions. The
yellow dotted line indicates that two sub-networks share the same weights.

the combination of a linear layer, a batchnorm layer and an
activation function.

For egocentric module fegoθ , the input is a single egocentric
image Icego . We first perform 2D pose estimation to obtain
the heatmaps of the body joints, and then predict the 3D pose
P̂cego under the egocentric coordinate system. To tackle the
inherent challenges of pose estimation in distorted egocentric
images, a feature fusion mechanism is proposed by combin-
ing the high-level features F̂ T cego of the input image, 2D
heatmaps of body joints ˆHM cego and human masks M̂cego

together. The module is first built upon the CNN backbone to
achieve feature fusion. Then the fused features are fed into an
encoder-regressor, a combination of several CNN layers and
MLPs, to generate the final 3D pose estimation.

Noted that the 3D poses estimated by the above two
modules are represented in different coordinate systems,
hence, it is necessary to perform the rotation alignment be-
tween third-person-view and the egocentric coordinate sys-
tems across frames. To this end, we introduce an interac-
tive module in this paper, which takes the paired 2D poses
{Jc1 , Ĵcego}, {Jc2 , Ĵcego} from different coordinate systems as
input. The network structure is similar to the third-person-
view module and is composed of several MLPs, predicting
the rotation matrices c1R̂cego ,

c2 R̂cego , repesctively.

C. Third-Person-View Module

This module aims to predict 3D poses under the third-
person-view camera coordinate system, by giving two third-
person-view images and the transformation matrix between
these two cameras. In order to generate accurate pose estima-
tion, we combine the conventional triangulation via multi-view
constraints and a learning-based depth estimation model.

1) 3D pose triangulation: Given the intrinsic parameters
and transformation matrix of two cameras, a point in 3D
space can be determined by triangulation with respect to
its projections on two images. Among different triangulation
algorithms, we use the depth estimation related one. After
obtaining 2D poses Jc1 , Jc2 via OpenPose [9], the analytical
solution of 3D positions P tri

c1 , P
tri
c2,i

can be calculated.

2) 3D pose estimation via depth prediction: To avoid the
inaccurate 3D pose estimation by triangulation, we also intro-
duce a network f trdθ to predict the depth values of 2D joints,
i.e., dc = f trdθ (Jc). Thus, the 3D joints P̂c represented in each
camera coordinate system can be calculated by leveraging the
intrinsic parameters of this camera.

3) Loss functions: In this module, two constraints are
involved to facilitate the training of the network. First, the
constraint Ltrd

pose between the depth-based prediction and the
triangulation result.

Ltrd
pose =

∑
c=c1,c2

N∑
i=1

||p̂c,i − ptric,i ||1 (1)

Besides, two estimated 3D poses represented in {C1} and
{C2} are expected to the same after transformation.

Ltrd
tran =

N∑
i=1

||p̂c1,i − (c2Rc1 p̂c2,i +
c2 Tc1)||1 (2)

During the training, the total loss Ltrd can be formulated as
the weighted sum Ltrd = ω1Ltrd

pose + ω2Ltrd
tran.

D. Egocentric Module

This module aims to predict both 2D and 3D poses of the
target human under the egocentric camera coordinate system
given a distorted fisheye image, where the 3D pose is the final
output. To achieve better performance on 3D pose estimation,
we propose a feature fusion method to combine the high-
level features of the input image, the 2D heatmap of body
joints and the mask of human body together. Moreover, the
2D heatmap as well as the 2D pose branch is incorporated
with the reprojection constraints by leveraging the 3D pose
estimated from the third-person-view module.

1) 2D pose and heatmap prediction by reprojection: After
obtaining the 3D joints from the third-person-view module,
an intuitive way is to project the 3D data onto the distorted
egocentric image plane, thus providing a supervised informa-
tion for training the egocentric 2D pose detector. The intrinsic
parameters of the fisheye camera is extracted by the calibration
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method [30]. As is well known, it is extremely challenging to
directly predict the transformation between two cameras with
less overlap and different intrinsic parameters. For simplicity,
in our ECHA dataset, we make use of the Aruco marker
to determine the 6D pose {c1R̃cego ,

c1 T̃cego} of egocentric
camera in the third-person-view coordinate system. However,
the detection is seriously affected by the illumination and
distance from the marker to camera. Thus, we only use the
images with stable detection of the Aruco marker to train
the egocentric 2D pose detector. Given the P tri

c1 estimated
from the third-person-view camera c1, it can be reprojected on
the egocentric image. Accordingly, we can get the egocentric
2D pose Jrep

cego as well as the heatmap HMrep
cego . Next, the

egocentric 2D pose detector is trained to predict the 2D
heatmaps ˆHM cego under the supervision of HMrep

cego , where
MSE loss Lego

rep is used as the constraints. The reprojected
2D pose is relatively low-accuracy due to the influence of the
triangulated 3D pose and extrinsic parameters. It is noteworthy
that the 2D pose detector can finally predict more accurate
heatmaps compared to the reprojected ones.

Lego
rep =

N∑
i=1

|| ˆHM cego,i
−HMrep

cego,i
||22 (3)

2) Information fusion for egocentric 3D pose estimation:
The main objective of this paper is to train the network fegoθ

that can predict the 3D pose P̂cego given a single fisheye image.
To achieve this, we propose a feature fusion mechanism in the
egocentric module to boost the pose estimation performance,
which consists of three branches. The first branch uses the pre-
trained 2D pose detector to obtain the heatmaps ˆHM cego , the
second branch extracts the latent features F̂ T cego of the input
image in feature space, and the third branch uses a pretrained
human instance segmentation network [31] to extract the
human masks M̂cego .The final fusion is built upon an attention-
aware way, i.e, P̂cego = fegoθ ( ˆHM cego ⊙ F̂ T cego ⊙ M̂cego).
Then the fused feature is fed into an Encoder and Regressor
to predict the final 3D poses. During the training, two self-
supervised constraints are used. One is the reprojection loss
Lego
rep mentioned above to force the egocentric 2D detector to

generate reasonable heatmaps. The other one is the transfor-
mation constraint Lego

pose of 3D poses between the third-person
view and the egocentric view, which is supervised by the
rotation matrix c1R̂cego predicted by the interactive module.
Note that we choose {C1} as the reference frame. Besides, an
additional loss Lego

bone on bone length b̂ is utilized to force the
length of L left and right links to be the same.

Lego
pose =

N∑
i=1

||p̂cego,i −c1 R̂cego p̂c1,i||2 (4)

Lego
bone =

L∑
i=1

||b̂leftcego,i
− b̂rightcego,i

||2 (5)

3) Loss functions: During the training of the egocentric
module, the total loss Lego is the weighted sum Lego =
α1Lego

rep + α2Lego
pose + α3Lego

bone.

Fig. 5. Examples from our proposed ECHA dataset and the public datasets,
i.e., xR-EgoPose [13] and Mo2Cap2 [14]. Compared to xR-EgoPose and
Mo22Cap2, both training and test data in the ECHA dataset are real-
world images and suffer from less occlusions of lower limbs, improving the
generalization capability of the learned models in practical applications.

E. Interactive Module

As the detection of Aruco markers is greatly affected by
the environment and easily fails in some circumstances, we
propose the interactive module to automatically predict the
rotation matrix between the third-person-view and egocentric
coordinate systems, offering the transformation constraints for
training the egocentric module. Given the pair of 2D poses
{Jc, Ĵcego}, where c ∈ {c1, c2}, the interactive module f itrθ

predicts the Euler angles [θ̂, ϕ̂, ψ̂] through a simple MLPs.
Accordingly, the rotation matrix R̂ can be determined. By
leveraging the extrinsic parameters of two third-person-view
cameras, the transformation constraint Litr

tran can be defined
as follow.

Litr
tran = ||c1R̂cego −c2 Rc1

c2R̂cego ||1 (6)

To facilitate a fast convergence of the interactive module, we
use the extrinsic parameters cR̃ego predicted by Aruco markers
to form the constraint Litr

mat at the beginning of the training.

Litr
mat = ||cR̂cego −c R̃cego ||1, c = c1, c2 (7)

During the training stage, the total loss Litr can be formu-
lated as the weighted sum Litr = β1Litr

tran + β2Litr
mat. Noted

that Litr
mat is only used in the first 5 epochs.

In summary, the loss function for training the whole network
of our EgoFish3D is the sum of losses for the aforementioned
modules, i.e., L = Ltrd + Lego + Litr.

V. EXPERIMENTAL SETTINGS

A. Dataset

For the ECHA dataset as mentioned in Sec. III, we train
the model based on 65k frames from the sequences {seq1-
seq2, seq4-seq11, seq13-seq17, seq21-seq30}, and validate
our model on the rest of images from {seq3, seq12, seq18-
seq20} to demonstrate qualitative results. To demonstrate the
effectiveness of our proposed self-supervised method, we also
capture seven test videos named {test1-test7} of 4 subjects (2
of them are novel subjects and all body textures are unseen in
the training set) with 3D pose ground truth provided by the
VICON system to offer quantitative results. Note that we do
not capture the joint position of nose in VICON system, so
we only report the results of 14 body joints.

To evaluate the effectiveness of our method, we also conduct
the comparison experiments on the other two existing synthetic
datasets. 1) Mo2Cap2 [14] is a large-scale synthetic dataset
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that simulates the images captured by a single cap-mounted
fisheye camera, which contains 530k rendered images includ-
ing about 3000 different actions and 700 different body tex-
tures. Besides, there is a real-world test set consisting of ∼5.5k
frames for quantitatively evaluation. 2) xR-EgoPose [13] is
also a synthetic dataset captured by a head-mounted fisheye
camera. It has 383k frames with 23 male and 23 female
characters performing 9 different actions. Both Mo2Cap2 and
xR-EgoPose datasets contain the ground truth annotations
of 2D and 3D joint positions. Fig. 5 demonstrates several
examples of three datasets. Although our ECHA contains
less images than Mo2Cap2 and xR-EgoPose, we believe that
the real-world egocentric images in our dataset can somehow
contribute to the community for the development of egocentric
pose estimation algorithms.

B. Implementation Details

The detailed architecture of the proposed EgoFish3D is
presented in the supplementary material. Since our method
is based on self-supervised learning method, the network can
hardly converge with an end-to-end training strategy. To make
our model converge fast and reduce overfitting, we adopt a
multi-stage training strategy instead. First, we train the third-
person-view module with 3D pose triangulation and depth
estimation methods to estimate the 3D pose under the third-
person-view coordinate system with ω1 = 1.0, ω2 = 0.5.
Then the egocentric 2D pose detector is trained to estimate the
heatmaps with α1 = 1.0. Note that the input egocentric image
is of size 384×384 and the dimension of heatmap is 48×48.
To improve the generalization of the egocentric 2D pose
estimation model in different real-world scenarios, we train the
model on a combination of ECHA (∼40k with available 2D
reprojection from triangulated 3D pose) and Mo2Cap2 (∼40k
synthetic data with annotated 2D pose). Next, we train the
interactive module to estimate the rotation matrix between the
third-person-view coordinate system and the egocentric one.
In the first 5 epochs, we use extrinsic parameters estimated
from Aruco as the supervision to speed up the convergence
of the network with β1 = 1.0, β2 = 1.0. Finally, we train the
egocentric module and finetune the whole network for better
performance with α2 = 1.0, α3 = 0.05. The proposed method
and comparison methods are implemented by PyTorch, and we
apply Adam for optimization with a learning rate of 0.001.

C. Evaluation Metrics

Two evaluation protocols are used in this paper. One refers
to Mean Per Joint Position Error (MPJPE), which calculates
the average distance between the ground truth and the pre-
dicted 3D joints as in Eq. (8).

E(P, P̂ ) =
1

K

1

N

K∑
k=1

N∑
i=1

||pki − p̂ki ||2 (8)

The other refers to PA-MPJPE, which indicates the MPJPE
after applying alignment by Procrustes Analysis to remove
the global translation, rotation and scale of the two 3D poses.

D. Comparison Methods

Since we are the first to propose a self-supervised method
for egocentric 3D pose estimation from a looking downwards
fisheye camera by leveraging multi-view constraints from the
third-person view, we compare our proposed EgoFish3D with
three existing supervised methods [13], [14], [32] that use
egocentric images with ground truth annotations. First, the
comparison experiments are conducted on our ECHA dataset.
For a fair comparison, we replace our egocentric module
with the other comparison methods and keep the third-person-
view and interactive modules. For the network proposed by
Martinez [32], we implement the network after extracting the
2D pose from the heatmaps we predicted. Due to the code of
[14] [13] are not publicly available, we implement these two
models by ourselves instead. As it is difficult to determine
the rotations between body parts in real-world data, only the
first and the third branches of the network proposed by Tome
[13] is implemented for the comparison. For the network
proposed by Xu [14], we implement the heatmap-zoom and
joint depth estimation modules, and generate the 3D pose
by the reprojection formula of the egocentric fisheye camera.
Second, we compare our proposed EgoFish3D with other
methods on the Mo2Cap2 [13] and xR-EgoPose [14] datasets.
To illustrate the generalization ability of our EgoFish3D, we
direct apply our trained model to the real-world test data in
Mo2Cap2 without finetuning and demonstrate the qualitative
results. To compare the performance of 3D pose estimation, we
retrain our egocentric view module on xR-EgoPose dataset and
report both quantitative and qualitative results. The comparison
methods on our dataset are noted as follows.

• Martinez [32], a baseline method with several MLPs for 3D
pose estimation, where the input is 2D pose.

• Tome [13], a state-of-the-art supervised method with
encoder-decoder network for egocentric 3D pose estimation.

• Xu [14], a two-branch network that takes both original and
zoom-in images as input for supervised pose estimation.

• EgoFish3D, the full network of our proposed method.

E. Ablation Study

We also conduct ablation studies of the proposed
EgoFish3D to demonstrate the effectiveness of different sub-
networks and loss functions. We remove or change the fol-
lowing parts of our network one by one.

• EgoFish3D, the full network of our proposed method.
• w/o M̂ , an ablated model by removing the human instance

segmentation M̂cego .
• w/o F̂ T , an ablated model by removing the branch of feature

extraction F̂ T cego .
• w/o ˆHM , an ablation study that removes the heatmap

prediction branch ˆHM cego in the egocentric view module.
• w/o f trdθ , an ablated study removing the third-person-view

module f trdθ . Only triangulated 3D pose is for supervision.
• w/o Ltrd

pose, the loss constraining the depth-based and trian-
gulated poses in the third-person-view module is removed.

• w/o Litr
mat, an ablated model without Litr

mat as in Eq. (7).
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TABLE I
COMPARISON MPJPE(PA-MPJPE) RESULTS OF EGOCENTRIC 3D POSE ESTIMATION IN MILLIMETERS (mm) ON ECHA DATASET

Approach All squatting Walking Dancing Stretching Waving Boxing Kicking Touching Clamping Knocking
Martinez [32] 118.3(80.0) 135.5(75.9) 114.8(73.9) 122.9(84.3) 133.2(85.0) 107.9(76.1) 116.7(82.2) 102.6(71.8) 117.9(79.0) 115.9(93.3) 116.4(84.6)
Tome [13] 112.4(73.9) 136.3(78.4) 113.9(72.6) 119.5(79.8) 123.9(78.2) 99.0(63.9) 110.3(71.9) 100.2(73.1) 110.7(67.7) 104.3(81.1) 103.4(72.0)
Xu† [14] 110.9(71.2) 112.4(70.7) 114.3(76.8) 108.5(70.1) 114.7(69.5) 105.9(65.5) 109.5(68.1) 106.7(72.0) 102.2(65.8) 128.0(85.9) 106.6(66.0)
EgoFish3D 107.9(73.1) 123.8(71.2) 106.8(68.9) 110.4(80.1) 121.4(81.3) 95.6(66.4) 111.2(75.4) 94.6(69.3) 110.5(70.0) 101.6(80.8) 102.7(71.4)

Ablated models All squatting Walking Dancing Stretching Waving Boxing Kicking Touching Clamping Knocking
A: EgoFish3D 107.9(73.1) 123.8(71.2) 106.8(68.9) 110.4(80.1) 121.4(81.3) 95.6(66.4) 111.2(75.4) 94.6(69.3) 110.5(70.0) 101.6(80.8) 102.7(71.4)
B: w/o M̂ 114.1(82.5) 133.7(80.3) 110.4(71.3) 113.0(82.6) 127.8(92.0) 108.3(85.3) 116.9(88.0) 101.7(75.5) 109.0(83.3) 106.0(87.0) 112.3(87.7)
C: w/o F̂ T 114.5(73.5) 135.8(77.5) 116.6(70.2) 120.2(79.9) 126.8(80.5) 102.0(64.5) 113.4(73.5) 101.2(69.3) 110.9(68.9) 107.3(81.9) 107.6(71.1)
D: w/o ˆHM 123.9(82.3) 150.0(91.2) 119.9(81.6) 131.2(91.9) 128.7(85.6) 120.5(73.6) 115.7(77.3) 120.2(86.3) 117.8(74.8) 128.4(87.2) 111.8(74.0)
E: w/o f trd

θ 114.4(78.3) 127.0(80.0) 112.0(76.6) 111.0(78.2) 126.7(79.3) 102.6(69.1) 114.0(75.3) 104.0(78.7) 117.0(72.8) 117.4(94.4) 113.0(79.1)
F: w/o Ltrd

pose 111.1(79.5) 148.1(86.1) 114.1(87.8) 115.9(88.6) 117.1(82.0) 92.5(64.3) 111.3(77.4) 98.5(78.5) 106.1(68.5) 99.9(76.6) 101.0(74.9)
G: w/o Litr

mat 521.1(78.7) 481.2(75.4) 510.7(76.7) 478.2(83.7) 572.7(83.0) 532.9(70.5) 563.0(76.4) 466.7(80.7) 519.7(76.3) 525.4(88.5) 558.1(77.2)

† Require additional information (i.e., the intrinsic parameters of the fisheye camera) during the inference phase.

TABLE II
COMPARISON MPJPE RESULTS OF EGOCENTRIC 3D POSE ESTIMATION IN MILLIMETERS (mm) ON XR-EGOPOSE DATASET

Approach All Gaming Gesticulating Greeting
Lower
Stretching

Patting Reacting Talking
Upper
Stretching

Walking

Martinez [32] 122.1 109.6 105.4 119.3 125.8 93.0 119.7 111.1 124.5 130.5
Tome(p3d) [13] 130.4 138.3 108.5 100.3 133.3 117.8 175.6 93.5 129.0 131.9
Tome(p3d+hm) [13] 58.2 56.0 50.2 44.6 51.1 59.4 60.8 43.9 53.9 57.7
Tome(p3d+hm+rot) [13] 54.7 60.4 54.6 44.7 56.5 57.7 52.7 56.4 53.6 55.4
EgoFish3D 57.8 47.3 44.7 47.7 58.3 53.9 51.0 40.6 61.7 56.7

VI. EXPERIMENTAL RESULTS

A. Quantitative Results

Without further clarify, the bold and underline values in
the table indicate the best and the second best results in each
column, respectively. All the elements indicate the result in
millimeters (mm). By leveraging a full-body gait model pro-
vided by VICON MoCap system, the ground truth annotations
are the 3D joint positions from the anatomical level.

1) ECHA dataset: The comparison 3D pose estimation
results with other state-of-the-art methods on our ECHA
dataset are reported in the upper part in Table I. The second
column lists the average MPJPE(PA-MPJPE) results of all test
data, and the remaining shows the results for each action.

It can be seen, our proposed EgoFish3D achieve the best
average 3D pose estimation results (MPJPE=107.9 and PA-
MPJPE=73.1) against other comparison methods [13], [14],
[32]. This is because that our egocentric feature fusion method
can leverage more useful information implied in the input
image. For instance, the human mask is beneficial for re-
moving the heatmaps with low confidence or beyond the
scope of human body. It should be pointed out that the
method proposed by Xu [14] is sensitive to the distorted
egocentric images captured from a fisheye lens. Compared to
our EgoFish3D, their method requires the intrinsic parameters
of the fisheye camera to compute the 3D pose during the
inference phase. Hence, the performance of this method will be
significant degraded without the known intrinsic parameters of
the camera. For action-level comparison, our EgoFish3D can

still achieve the best or second best pose estimation for nine
actions, except for Boxing that with upper limb outside the
field of view, which proves that our method is more stable to
different actions than the comparison methods.

2) xR-EgoPose dataset: For xR-EgoPose dataset, the com-
parison MPJPE results are presented in Table II. Compared
to [13], our method (57.8) performs better than the two-
branch network (58.2) and is on par with the three-branch
network (54.7). However, the three-branch network of [13]
contains the supervised information of the relative rotations
between body joints, which is not easily acquired in real-world
data. For different actions, our EgoFish3D achieves the best
performance on five out of eight actions.

3) Ablation Study: The lower part of Table I lists the
results of ablation studies on ECHA dataset. We report the
average MPJPE(PA-MPJPE) results of all test data in the
second column, and the rest shows the results for each action.
It can be found that, compared to the other six ablated models
B-G, our full network (model A) achieves the best on both
MPJPE and PA-MPJPE. For action-level comparison, our full
network can achieve the best or second best pose estimation
for nine actions, which significantly outperforms other models.

Does the feature fusion method work? To evaluate the ef-
fectiveness of the proposed three-branch feature fusion mech-
anism in the egocentric view module, we remove each branch
one by one corresponding to the models B-D. The results
show that all three branches contribute to improve the pose
estimation performance. The heatmap ˆHM cego introduces the
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Fig. 6. Visualization results of egocentric 2D pose estimation by our proposed
EgoFish3D. a) On ECHA dataset; b) On Mo2Cap2 dataset. The red points
are the predicted joint positions and the colorized lines indicate the skeleton.

prior of 2D joints, the mask M̂cego removes the heatmap with
low confidence or out of human body, and the latent feature
F̂ T cego preserves the original information from images and
compensates for the incorrect 2D pose detection.

Can we directly use the triangulated 3D pose as the
supervision? We perform the ablation study by removing the
third-person-view module and direct apply the triangulated 3D
pose as the supervision. As shown in model E, the performance
is clearly worse than the full network architecture. This
originates from the inaccurate 2D poses and trivial solution
of the triangulated 3D pose in some circumstances. More
importantly, with a well-trained third-person-view module, we
can ease the data collection procedure by using only one third-
person-view camera.

Does the coarse prior knowledge help the training
of the network? The models F and G aim to highlight
the significance of the prior knowledge on the 3D pose by
triangulation and the rotation matrix by Aruco markers. With
the help of these prior information, it can be seen that our full
network (model A) can consistently improve the performance.
Especially for Litr

mat calculated by Aruco-based rotation, the
network without this loss can hardly estimate the 3D pose
under the egocentric coordinate system.

B. Qualitative Results
Fig.6 demonstrates the visualization results of egocentric

2D pose estimation on ECHA and Mo2Cap2 datasets by our

proposed self-supervised learning based method. For ECHA
dataset as in Fig.6(a), the proposed EgoFish3D can predict
relatively accurate 2D pose even with the occlusion of lower
limbs. The generalization ability of the 2D pose predicted by
our model on Mo2Cap2 dataset is exhibited in Fig. 6(b), where
the 2D pose estimator is trained by mixing ECHA dataset with
a small number of synthetic data (∼40k) in Mo2Cap2 dataset,
without further finetuning on this dataset.

The egocentric 3D pose estimation results by our method on
our ECHA, xR-EgoPose, and Mo2Cap2 datasets are presented
in Fig. 7(a)-(c), respectively. To explore the generalization
ability of our proposed method, we directly apply our trained
model to the Mo2Cap2 dataset without finetuning. We retrain
our EgoFish3D on xR-EgoPose [13] to conduct comparison on
xR-EgoPose dataset. Given a single egocentric image captured
by a fisheye lens, it can be seen that the proposed EgoFish3D
can predict reasonable well 3D pose for different actions, even
on unseen subjects & textures and some occluded body parts.
More qualitative results can be found in our supplementary
material.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a self-supervised egocentric pose esti-
mation method called EgoFish3D to estimate both the 2D pose
and 3D pose under the egocentric view from a single RGB
image. This is achieved by leveraging the potential information
from both the third-person view and the egocentric view.
Specifically, the EgoFish3D incorporates three main modules:
the third-person-view module, the egocentric module and the
interactive module to improve the performance of our self-
supervised method. This paper also proposes a real-world
EgoCentric Human Action dataset called ECHA to capture the
images from three different cameras circumventing the use of
MoCap system to acquire the ground truth. Our experimental
results demonstrate that our EgoFish3D can predict relatively
accurate 2D and 3D pose. In future work, we aim to make
our approach generalize well to the different placement of the
egocentric camera and incorporate the human pose estimation
with more egocentric vision tasks.
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