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Abstract

Affective computing encompasses the research and development of systems that can recognize, express, and “have” emotions.

Its literature is already vast, which is a hindrance for newcomers. Those who wish to create Computational Models of Emotion

(CMEs) must first identify what kind of system they want to build, then identify affective theories that match its requirements.

This survey aims to help designers of CMEs that generate emotions in computer agents and user interfaces with this latter task.

We give an overview of 63 CMEs from different domains, and identify which affective theories they use and why. Some of these

CMEs also use affective theories to express emotion and for other design purposes. We also analyse these instances to better

understand the complete system. The survey closes with a brief summary of how CMEs generally use each encountered theory.

The survey is meant as a guideline for deciding which affective theories to use for new CME designs that generate emotions.

1



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. #, NO. #, MONTH YEAR 1

What Lies Beneath—A Survey of Affective
Theory Use in Computational Models of Emotion

Geneva M. Smith and Jacques Carette

Abstract—Affective computing encompasses the research and development of systems that can recognize, express, and “have”
emotions. Its literature is already vast, which is a hindrance for newcomers. Those who wish to create Computational Models of
Emotion (CMEs) must first identify what kind of system they want to build, then identify affective theories that match its requirements.
This survey aims to help designers of CMEs that generate emotions in computer agents and user interfaces with this latter task. We
give an overview of 63 CMEs from different domains, and identify which affective theories they use and why. Some of these CMEs also
use affective theories to express emotion and for other design purposes. We also analyse these instances to better understand the
complete system. The survey closes with a brief summary of how CMEs generally use each encountered theory. The survey is meant
as a guideline for deciding which affective theories to use for new CME designs that generate emotions.

Index Terms—Affective computing, artificial intelligence, computational models of emotion (CME), psychology.

✦

1 INTRODUCTION

A FFECTIVE Computing introduces emotion as a concern
in programs so that they may recognize and respond

to human users more intelligently [1, pp. 3, 50]. There are
three main affective computing tasks [2, pp. 4], [3, pp. 2]
that enable this human-centered approach:

• Emotion Recognition, to capture user information like
speech and gesture to infer their current affective state,

• Emotion Generation, to produce an affective state given
the current program and environment state, and

• Emotion Effects on Behavior, to change a program’s be-
havior (e.g. facial expressions, gestures, or movements)
given its affective state.

Infrequently another task, Emotion Effects on Cognitive
Processes or Cognitive Consequences of Emotions [4, pp. 100]
is added. We focus on emotion generation and some aspects
of emotion effects on behavior.

1.1 Computational Models of Emotion

A Computational Model of Emotion (CME) is a software
system whose design is influenced by affective research [5,
pp. 2, 14]. CMEs use at least one affective theory as the basis
for its stimuli evaluation, emotion elicitation, and emotional
behavior generation mechanisms. A critical step in CME
design is choosing affective theories that best suit the design
requirements. This is a difficult task. Each theory has their
own assumptions on how different affective components
integrate, how emotions are differentiated, and on what
stage of the emotion process they focus on [2, pp. 10–11].

Given the large number of affective theories available
(we’ve seen at least 27), it is unrealistic for developers of
new systems to attempt to understand them all. A good

• The authors are with the G-ScalE Lab in the Department of Computing
and Software, McMaster University, 1280 Main St. West, Hamilton, ON,
L8S 4L8, Canada. E-mail: smithgm@mcmaster.ca, carette@mcmaster.ca

Manuscript received December 8, 2021. (Corresponding author: G. M. Smith)
Digital Object Identifier no. 10.36227/techrxiv.18779315

first step is to compare a categorization of the theories
that generally organize them into families, which relate the
theories by core assumptions or focus [2, pp. 11, 20]. From
there, one can identify a subset of theories to analyze to see if
they satisfy the design requirements, their level of empirical
validation, and how they might be used together.

This survey explores 63 CMEs from different application
domains. Its goal is to provide an overview of affective
theories that appear in CME designs, and the reasons for
that choice1. Seeing affective theories in context has two
advantages. First, CMEs translate theories into concrete
computational representations, thus dispelling the fuzziness
of the theories’ natural language presentations. The second
and greater advantage is that a CME targeted at a specific
application domain will illustrate the underlying theory’s
strengths and how it could be mechanized. In practice,
designers often combine theories—sometimes implicitly—to
achieve the desired CME functionality, because single the-
ories do not address all aspects of emotion or the available
empirical data [7, pp. 10]. Thus the role assigned to a theory
could be an indicator of its strengths.

1.2 Survey Scope
We only include CMEs that include emotion generation. We
used snowballing [8] to obtain systems, starting from well-
known ones (e.g. ALMA (38), EMA (26)) and papers like [9],
then following references and discovered keywords. Some
systems are direct iterations of prior designs—see Table 2
for CME “genealogy”. Prior systems are not surveyed un-
less they are sufficiently different to warrant exploration.
Prior systems that are not psychologically grounded are
also omitted, though mentioned when important ideas were
borrowed from them.

The systems are loosely grouped by application domain
(Table 1) to capture the general design intent. These cat-
egories are not restrictive—a CME might fit into multiple

1. See [6, pp. 370–372] for some historical context as well.

https://orcid.org/0000-0002-6015-2589
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TABLE 1
Overview of the Application Domains for Surveyed CMEs that Generate Emotion

Domain Systems

Multi-Purpose

1) Affective Reasoner (AffectR), 2) Cathexis, 3) Emotion Model (EmMod), 4) FLAME,
5) SCREAM, 6) MAMID, 7) TABASCO, 8) WASABI, 9) Maggie, 10) AKR Scheme, 11) General
Virtual Human (GVH), 12) ParleE, 13) Personality, Mood, and Emotion Space (PMES),
14) Interdependent Model of Personality, Motivations, Emotion, and Mood (IM-PMEB),
15) DER, 16) GenIA3, 17) InFra, 18) FAtiMA Modular (FAtiMA-M), 19) Hybrid Model of
Emotion-Eliciting Conditions (HybridC)

Natural Language Processing 20) SOM, 21) Hourglass of Emotions (HoE)
Cognitive Architecture 22) Soar, 23) LIDA, 24) CLARION
Affective Research 25) ACRES, 26) EMA, 27) Will, 28) ELSA,
Military and Emergency Personnel
Training 29) Émile, 30) EMOTION, 31) JBdiEmo, 32) DETT

Soft Skills Training 33) Puppet, 34) CBI, 35) FAtiMA, 36) TARDIS

Virtual Assistants and Companions
37) Greta, 38) ALMA, 39) Eva, 40) PPAD-Algorithm (PPAD-Algo), 41) PSA Heart, 42) Peedy
the Parrot, 43) ERDAMS, 44) TEATIME, 45) Presence, 46) Fuzzy Finite State Machine
Emotion Simulator (FFSM-Emo)

Social Robots
47) Kismet, 48) KaMERo, 49) Roboceptionist (R-Cept), 50) Partially Observable Markov
Decision Process for Cognitive Appraisal (POMDP-CA), 51) TAME, 52) iPhonoid,
53) Plutchik’s Wheel of Emotions Inspired (PWE-I), 54) GRACE, 55) EEGS

Art and Entertainment 56) Socioemotional State (SocioEmo), 57) The Soul, 58) GAMYGDALA, 59) Mind Module
(MM), 60) Em/Oz, 61) S3A, 62) FeelMe, 63) INVITE Game Agents (INVITE-A)

domains. The purpose is to capture the prevalent intent,
which should have guided the design process the most.

• Multi-Purpose CMEs (Systems 1–19) are not limited to
one specific task. These systems: explicitly list multi-
ple, sufficiently different potential uses [10, pp. 3–6],
[11], [12], [13]; name a general type of CME environ-
ment [14], [15], [16], [17], [18], [19], [20], [21], [22, pp. 10],
[23], [24], [25, pp. 60]; and allow users to integrate their
own affective theory implementations [26, pp. 12–13],
[27], [28].

• Natural Language Processing CMEs (Systems 20–21) read,
decipher, comprehend, and analyze human language,
focusing on affective content [29], [30].

• Cognitive Architectures (Systems 22–24) implement the-
ories concerned with the components of the mind and
interactions between them [31], [32], [33].

• Affective Research CMEs (Systems 25–28) explore aspects
of affect or affective system design. They are typically
stricter about the system’s behaviors, as they aim to
test an affective theory [34], [35] or replicate observed
affective phenomena [36], [37].

• Military and Emergency Personnel Training CMEs (Sys-
tems 29–32) help train personnel for emotionally-
charged scenarios in consequence free environ-
ments [38], [39], [40], or run simulations where affect
is a factor [41].

• CMEs for Soft Skills Training (Systems 33–36) help train
life skills that can be difficult to hone with traditional
techniques. This includes emotional intelligence [42,
pp. 153], problem solving under pressure [43], empa-
thy [44], and interview skills [45].

• Virtual Assistants with CMEs (Systems 37–46) have a
virtual embodiment, interacting with the user in a con-
versational capacity. They focus on: believability [46],
[47], [48], [49]; improved interface usability [50], [51],
[52], [53]; or both [54, pp. 762], [42, pp. 158].

• CMEs for Social Robots (Systems 47–55) are different

from virtual assistants because of robot’s physical em-
bodiment [55, pp. 120]. These CMEs aim to human-
ize robots and improve human-robot interactions by
adding a social dimension to them [56], [57], [58], [59,
pp. 209]—sometimes over extended time frames [55,
pp. 122–124], [60], [61]—and to provide companion-
ship [62], [63].

• CMEs for Art and Entertainment (Systems 56–63) are of-
ten used for improving agent believability, changing the
focus from strict adherence to psychological validity to
interesting and entertaining behaviors. However, agent
behaviors must remain plausible to be effective [64,
p. 216–217]. There are CMEs for: developer tools [65],
[66], [67], [68]; agent architectures [69, pp. 3], [70,
pp. 31], [71]; and exploring how emotion influences
believability [72, pp. 9].

1.3 Survey Organization
In Section 2, we extract the theories used and the justifica-
tion for choosing them from the surveyed CMEs. CMEs per-
form two main tasks—emotion generation and expression—
as well as some others. Correspondingly, we survey:

• Emotion Generation (Table 4): CMEs use affective theo-
ries to specify what emotions are possible, their elicit-
ing conditions (EECs), the affective space they occupy,
appraisal variables, and the order of process steps.
Multiple theories are often combined for this purpose,
such as using the emotions from one theory and the
appraisal variables of another. Thus we organize CMEs
by the kinds of theories they use. We use the broad
categories of [4]—discrete, dimensional, appraisal, and
neurobiological—but see [73, pp. 280] for a finer-grained
categorization. When a CME can be programmed with
a user’s choice of theories, we examine its default
implementation.

• Emotion Expression (Table 5): As this is often considered
distinct from generation, we examine affective theories
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selected for expression separately. CMEs that do both
generation and expression might use separate theories
for each task, or the same combination of theories for
both.

• Other Uses (Table 6): Some CMEs do not explicitly
model an affective theory, but it still plays a significant
role in its design. Examining their role in the design
process helps reveal the rationale behind a CME’s de-
sign.

In Section 3 we examine the theories (Table 3) that
appear in CMEs at least five times to understand their
strengths. This could reveal convergence on their use across
systems. Notes are also made about which theories have
been combined in CMEs. Throughout, we use abbreviations
for CME and affective theory names—some of them our
own—to increase the legibility of the text.

2 SURVEY

CMEs often use a theory for multiple purposes. We organize
CMEs by theory to examine all uses of a theory simultane-
ously, which allows us to deduce reasons for the overlap.
We cover each category in turn—discrete in Section 2.1,
dimensional in Section 2.2, appraisal in Section 2.3, and neu-
robiological in Section 2.4. Within a section, the ordering of
theories is chosen to make the narrative smoother.

2.1 Discrete Theories
Discrete or categorical theories emphasize a small set of
emotions, often called basic or primary emotions, that have
evolved via natural selection [140, pp. 305], [73, pp. 280], [6,
pp. 352].

2.1.1 Izard (Systems 2, 15, 47)
Izard (Iz.) appears in CMEs to define facial expressions and
the functional role of each emotion. However, it is not used
alone—or, arguably, primarily—for these tasks. Iz. is com-
bined with Ek. to define emotion categories based on facial
expressions [15, pp. 71], [26, pp. 4–5], [20, pp. 142–143]. This
is a “safe” combination, as Iz. shares the assumption that
facial expressions are a fundamental component of emo-
tion [141, pp. 83, 85–92]. There is also overlap in the facial
expression prototypes (e.g. Distress-Anguish), strengthening
their shared foundations on this aspect. Iz. is combined with
Plu. to explain emotion “mixtures” [25, pp. 63] and the
functional role of emotions [55, pp. 129], which are both
included in Iz.’s theory [141, pp. 64–65, 83, 97].

The infrequent use of Iz. might be due to its focus on
affective development, such as how it contributes to person-
ality and social development [108, pp. 847], [110, pp. 253–
254]. It presents emotion as a subsystem of personality that
also includes perception, cognition, motor systems, and a
network of interrelated systems that act automatically and
unconsciously [141, pp. 17, 44]. This suggests untapped
potential. Iz. could be useful for CMEs that want to tie per-
sonality to emotions without creating a personality module
(e.g. variable emotion thresholds), and to define an emotion-
driven learning system for personality development [141,
pp. 17, 45]. Iz. also connects drives to the larger personality

system [141, pp. 44], which could be useful for CMEs that
include them. Cathexis (2) uses Iz. to differentiate between
cognitive and non-cognitive emotion elicitors [15, pp. 71].
This suggest that Iz. would also be useful for separately
triggering CME’s reactive and deliberative systems.

2.1.2 Ekman (Systems 2–3, 5, 8, 10–13, 15, 19, 33, 37, 47,
49, 51–52, 57, 59)
CMEs use Ekman (Ek.) when they need to define or al-
low the assignment of facial expressions for specific emo-
tions [16, pp. 66], [18, pp. 594], [46, pp. 91], [55, pp. 129,
140], [21, pp. 253, 257], [66, pp. 343], [97, pp. 740], which is
indeed its focus [111, pp. 1]. Some CMEs have played it safe,
listing Ek.’s emotions as outputs of the emotion generation
process to ensure a direct connection between generation
and expression [42, pp. 155], [22, pp. 84, 100], [19, pp. 109].

While dimensional models may produce more accurate
expressions, discrete categories are easier to implement [61,
pp. 324]. FACS [112] is particularly useful for these CME
needs, as they break down the face into individual muscles
and show how they can combine into expressions [20,
pp. 146], [66, pp. 343], allowing expressions to be synthe-
sized both discretely and continuously [63, pp. 217]. Facial
muscles are well-documented as part of human muscle
anatomy, making it possible to mechanize them in a realistic
way [46, pp. 87–89]. This is essential for CMEs where users
expect affective expressions [63, pp. 211].

Ek. has a small list of emotion/expression pairs, which
can be limiting, but still compelling due to their hypothe-
sized universality [42, pp. 155], [69, pp. 8]. However, there
might be more [22, pp. 18–19]. ParleE (12) suggests that
other pairs can be added given sufficient evidence, mo-
tivating its combination of Ek. and Iz. [20, pp. 142–143].
Iz. helps with this task [55, pp. 129], [26, pp. 3–4] as it
shares similar views and also has a system for identifying
facial expressions, although its primary focus on infants and
young children [142]. Both Ekman and Izard unknowingly
performed the same cross-cultural studies at the same time
under Tomkins [111, pp. 3], which could explain the shared
views. They found comparable results, though Izard found
more expressions than Ekman. This eases their combination
when choosing categories for emotion generation based on
facial expressions and “universality” [15, pp. 71].

CMEs have also used Ek. for emotion expression without
using Ek.’s specific categories by using subsets of emo-
tions from other theories in emotion generation—such as
OCC [16, pp. 65–66], [46, pp. 91, 94] or a dimensional
model [55, pp. 129, 140], [66, pp. 343]—or by simply not
connecting all possible emotions to facial expressions [20,
pp. 142]. O & JL is another appraisal theory that CMEs use
that can connect to Ek. [25, pp. 63], [15, pp. 71], as there is
explicit overlap in their primary emotion list [132, pp. 209,
217].

SCREAM (5) is the only CME surveyed that uses Ek.’s
display rules [111, pp. 4] to control emotional displays given
a social and interaction context [14, pp. 231–232]. Iz. also
suggests that display rules can explain some social and
cultural differences in emotion expressions [141, pp. 84–85].
This makes Ek. a strong candidate—if not the de facto stan-
dard [7, pp. 4]—for CMEs with facial expression-centered
emotion expression components.



4 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. #, NO. #, MONTH YEAR

TABLE 2
Overview of the Contributing Designs of CMEs

System Builds On

5 SCREAM AffectR (1), Em/Oz (60)2

7 TABASCO 3T [74]1

8 WASABI MAX [75]3

10 AKR Will (27)1, GOLEM [76]1

11 GVH Autonomous Virtual Human Dialog System [77]3

12 ParleE Cathexis (2)1, FLAME (4), Émile (29)1,2, Em/Oz (60)
13 PMES ALMA (38)
14 IM-PMEB ALMA (38)
16 GenIA3 EMA (26), ALMA (38), ERDAMS (43), O3A [78]3, AgentSpeak [79]1

17 InFra FLAME (4)
18 FAtiMA-M FAtiMA (35)3, ORIENT [80]1, Computational Appraisal Architecture [9, pp. 31]
19 HybridC EMIA [81]3,4

22 Soar Em/Oz (60)2, PEACTIDM [82]1

23 LIDA Computational Appraisal Architecture [9, pp. 31]
26 EMA AffectR (1), Soar (22)1, Will (27)1, Émile (29)
27 Will ACRES (25)3

29 Émile AffectR (1), Cathexis (2)2, Em/Oz (60), NML1 [83]1, Steve [84]5, Affect Editor [85]5

30 EMOTION GVH (11): Generic Model [86]
31 JBdiEmo Jadex [87]1

32 DETT MANA [88]1,2

33 Puppet S3A (61)1

35 FAtiMA TABASCO (7)1, EMA (26), CBI (34), S3A (61), FearNot! [89]3

36 TARDIS Greta (37)5, ALMA (38)1, SocioEmo (56)1

38 ALMA EmotionEngine [90], [91]3

39 Eva ALMA (38)1

40 PPAD-Algo ALMA (38), Eva (39)1

43 ERDAMS AffectR (1), ParleE (12)2, DER (15), Émile (29)/“Jack and Steve”2, Em/Oz (60), Corpora
Coding [92]3

45 Presence PPP [93]1,3

47 Kismet Cathexis (2)3

48 KaMERo Steward Robot [94]3, Sentiment Relation Model [95]3

49 R-Cept Vickia [96]1,5

52 iPhonoid Interactive Robot System with Memory [97]3, AEIS [98]1

53 PWE-I HED [99]1, Mood Prediction [100]1

54 GRACE EmotiRob [101]3

55 EEGS Computational Appraisal Architecture [9, pp. 31]

56 SocioEmo ParleE (12)1, Émile (29), ALMA (38)1, Em/Oz (60), E/P Model [102]3

57 The Soul ALMA (38)1, Animating Expressions [103]3

58 GAMYGDALA Em/Oz (60)2

59 MM Will (27)1

60 Em/Oz Tok [104]1, Hap [105]1

61 S3A Will (27)4, Em/Oz (60)
63 INVITE-A INVITE Game [106]3, Grudge-holding/Grateful Agent Scenarios [107]

1 For domain specific agent capabilities that do not explicitly model agent emotion, influence emotion via other kinds of affect, map emotion to
another affect type, or are implementation-specific.

2 For domain specific agent capabilities that are affective in nature, but have unclear theoretical roots.
3 Direct or close descendant of this system.
4 The relationship is inferred from chosen affective theories and model definitions [25, pp. 61], [71, pp. 37, 48].
5 For agent embodiment only.

2.1.3 Plutchik (Systems 8, 17, 19–21, 46–47, 53)
Plutchik (Plu.) tends to appear in CMEs for its structure,
ability to mix emotions, and/or its connection between
emotions and adaptational behaviors [114, pp. 203–204].

Plu.’s circumplex structure, featuring an intensity di-

mension, affords both the understandability of emotion cat-
egories and the computational ease of dimensional theories.
This allows CMEs to bridge the gap between machine and
human-friendly representations [53, pp. 2, 5]. As the circum-
plex is built on self-reports on the meanings of emotion
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TABLE 3
Overview of the Main Theories Used in Surveyed CMEs

Theory Abbr. References
Izard Iz. [108], [109], [110]
Ekman Ek. [111], [112]
Plutchik Plu. [113], [114]
Valence & Arousal V-A [115], [116], [117]
Pleasure-Arousal-
Dominance Space PAD [118]

Frijda Frj. [119], [120]
Lazarus Laz. [121]
Scherer Sch. [122]
Roseman Ros. [123], [124], [125]
Ortony, Clore, & Collins OCC [126], [127], [128]
Smith & Kirby S & K [129], [130]
Oatley & Johnson-Laird O & JL [131], [132], [133], [134]
Sloman Slo. [135]
Damasio Dam. [136]
LeDoux LD [137]

words [114, pp. 204] it is a viable candidate for CMEs
concerned with analyzing text [29, pp. 218], [30, pp. 148–
149], though some question its validity [143, pp. 296, 298].

While Plu. proposes what the circumplex’s dimensions
could be [114, pp. 208], some CMEs use their own [30,
pp. 153], [59, pp. 212]. The circumplex structure only con-
strains the relative positions of variables, and axes are arbi-
trary reference points [144, pp. 13]. This means that defining
axes differing from Plu. is viable. Other changes have been
made to Plu. based on CME needs [145, pp. 97], suggesting
that Plu.’s structure is robust.

Plu. has one of the better developed theories of emotion
mixing [137, pp. 113], though it is not a unique feature [141,
pp. 64–65]. It uses a 3D color space analogy, which is
familiar to computer scientists [22, pp. 21]. Experiments
show laypeople tend to agree on the components of emotion
“mixtures” [114, pp. 204–205], suggesting that Plu. is a
convenient way to keep the structure of emotion categories
while affording the flexibility to add more as needed [29,
pp. 218], [24, pp. 35]2, [59, pp. 211, 214]. While such mixtures
may not have been empirically validated, a CME’s intended
domain might allow their use [25, pp. 63].

Rather than basing emotion primality on facial
expression—like Ekman and Izard [146, pp. 47–48], [141,
pp. 83])—Plutchik selected them based on evidence of a
finite set of adaptational behaviors that aim to maintain
internal homeostasis by acting on the environment [114,
pp. 203, 215]. This effectively connects behaviors to ac-
tion tendencies [119, pp. 72] and motivations [2, pp. 13],
which could be useful for supporting neurobiological-based
CMEs [55, pp. 129, 138], [22, pp. 31, 85], [24, pp. 35]3 and
CMEs that integrate drives. There is also evidence that
the circumplex can act as a common space for different
types of affect [144, pp. 30–31], which can help visualize
affective dynamics in combination with Plu.’s color wheel
analogy [59, pp. 210–211].

2. Inferred from InFra’s (17) design goals [24, pp. 27].
3. See footnote 2.

The focus on “everyday” understandability of emotion
and its structure suggests that Plu. might be an excellent
choice for creating tools for integrating affect into applica-
tions and natural language processing. However, the lack of
cultural specificity might lead to interpretation issues.

2.2 Dimensional Theories

Dimensional theories define a coordinate space using two or
more affective dimensions, such as valence and arousal [4,
pp. 97], [73, pp. 280]. Psychologists have located discrete
emotions in this space [7, pp. 9], which is useful for under-
standing and debugging CMEs.

2.2.1 Valence & Arousal (Systems 6, 22, 41–42, 45–47)

Valence and Arousal (V-A) appear in CMEs that typically
have a limited, well-defined domain requiring real-time
computations [54, pp. 766], [50, pp. 199–200], [53, pp. 2–
3]. V-A is a simple model of affect that captures most
affective phenomena, which can provide an alternate view
of affective states, contribute to affective intensity evalua-
tions [13, pp. 136], and connect a CME to other modules
such as speech and body gesture generation [42, pp. 162].
V-A is also part of core affect [147, pp.170], which might
be the only generalization that can be made about affective
phenomena [42, pp. 151]. V-A are the two most widely
agreed on affective dimensions [1, pp. 168], and are common
in dimensional theories [73, pp. 280], such as the more
structured circumplex models. Circumplex models could be
unified with appraisal models (Section 2.3), and connected
to processes such as reinforcement learning [138, pp. 279–
280].

Kismet (47) uses a dimensional space to combine dis-
parate information sources, and unify the emotion elicita-
tion process, internal representation, and facial expression
generation [55, pp. 133, 148, 151]. Its authors claim that
this unification helped Kismet’s emotion and behavioral
systems work in concert to produce the right behavior, at the
right time, and in the right way to enhance its believability
and understandability. However, they also found that a
third dimension, stance, was needed to prevent accidental
activation of emotions that are similar in the simpler 2D
space [55, pp. 139–140]. This suggests that V-A is ideal for
CMEs with a set of emotions that are conceptually easy
to distinguish both as internal representations and external
expressions so that additional dimensions are unnecessary.

2.2.2 Pleasure-Arousal-Dominance Space (Systems 8,
13–14, 16, 36, 38–40, 52, 56–58, 62)

Pleasure-Arousal-Dominance (PAD) Space appears in CMEs
that want to model multiple types and functions of affect—
usually emotion, mood, and personality—and their interac-
tions in a simple, unified way [22, pp. 92, 100], [49, pp. 216–
217, 224], [67, pp. 38], [57, pp. 217]. This aligns with the moti-
vation to create PAD, although it mainly focuses on emotion
and personality [118, pp. 261–262]. The empirical nature
and ability to represent any emotion using three continu-
ous dimensions might make PAD easy to understand with
parallels to RGB color space [66, pp. 339], and especially
suitable for CMEs [68, pp. 212]. The Soul (57) also connected
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TABLE 4
Theories Used for Emotion Generation in CMEs

Iz. Ek. Plu. V-A PAD Frj. Laz. Sch. Ros. OCC S & K O & JL Slo. Dam. LD

1 AffectR – – – – – – – – – g – – – – –
2 Cathexis g G – – – – – – – – – g – G G
3 EmMod – – – – – – – – – g – – – – –
4 FLAME – – – – – – – – g g – – – – g
5 SCREAM – – – – – – – – – g (60) – – – – –
6 MAMID – – – g – – – g – – g – – – –
7 TABASCO – – – – – g – g – – g – – – –
8 WASABI – G – – G – – – – g – – G – G
9 Maggie – – – – – – – – – G4 – – – – –

10 AKR – g – – – g – g g g – – – – –
11 GVH – G – – – – – – – g – – – – –
12 ParleE – – – – – – – – G G (4, 60) – g – – –
13 PMES – g1 – – – – – – – g1 – – – – –
14 IM-PMEB – – – – – – – – – g – – – – –
15 DER G G – – – – – – – – – – – – –

16 GenIA3 – – – – – – g (26) – –
g (26, 38,

– – – – –
43)

17 InFra – – g – – – – g – g (4) – – – – –
18 FAtiMA-M – – – – – – – – – G (35) – – – – –
19 HybridC – G – – – – – G G G – g – – –
20 SOM – – g – – – – – – – – – – – –
21 HoE – – G – – – – – – – – – – – –
22 Soar – – – – – – – G2 – – – – – – –
23 LIDA – – – – – – – g2 – – – – – – –
24 CLARION – – – – – – – g – – – – – – –
25 ACRES – – – – – G – – – – – – – – –
26 EMA – – – – – – g – – g (1, 29) – – – – –
27 Will – – – – – G – – – – – – – – –
28 ELSA – – – – – – – G – – – – – – –

29 Émile – – – – – – G – – g (1, 60) – g – – –
30 EMOTION – – – – – – – – – g (11)6 – – – – –
31 JBdiEmo – – – – – – – – – g3 – – – – –
32 DETT – – – – – – – – – G – – – – –
33 Puppet – G – – – – – – – G – – – – –
34 CBI – – – – – – G – – – – – – – –
35 FAtiMA – – – – – – g (26) – – g (26) – – – – –
36 TARDIS – – – – – – – – – g – – – – –
37 Greta – – – – – – – – – G – – – – –
38 ALMA – – – – – – – – – g – – – – –
39 Eva – – – – – – – – – g4 – – – – –
40 PPAD-Algo – – – – G – – – – g (38) – – – – –
41 PSA Heart – – – G – – – – – – – – – – –
42 Peedy – – – G – – – – – – – – – – –
43 ERDAMS – – – – – – – – – G (1, 60) – – – – –
44 TEATIME – – – – – G – – g – – – – – –
45 Presence – – – – – – – – – G – – – – –
46 FFSM-Emo – – g G – – – – – – – – – – –
47 Kismet G – G G5 – – – – – – – – – G G
48 KaMERo – – – – – – – – – G – – – – –
49 R-Cept – g – – – – – – – – – – – – –
50 POMDP-CA – – – – – – – – G – – – – – –
51 TAME – G – – – – – – – – – – – – –
52 iPhonoid – G – – g – – – – G – – – – –

Continued on next page



SMITH AND CARETTE: WHAT LIES BENEATH—A SURVEY OF AFFECTIVE THEORY USE IN COMPUTATIONAL MODELS OF EMOTION 7

TABLE 4
(Continued.) Theories Used for Emotion Generation in CMEs

Iz. Ek. Plu. V-A PAD Frj. Laz. Sch. Ros. OCC S & K O & JL Slo. Dam. LD

53 PWE-I – – G – – – – – – – – – – – –
54 GRACE – – – – – – – g – g – – – – –
55 EEGS – – – – – – – g – g G – – – –

56 SocioEmo – – – – – – – – – G4 – – – – –
57 The Soul – – – – G – – – – g (38) – – – – –
58 GAMYGDALA – – – – – – – – – G – – – – –
59 MM – G – – – – – – – – – – – – –
60 Em/Oz – – – – – – – – – G – – – – –
61 S3A – – – – – g (27) – – – G – – – – –
62 FeelMe – – – – G – – G – – G – – – –
63 INVITE-A – – – – – – – – – G3 – G – – –

G: Reasons for choosing the theory are clear; g: Reasons are unclear; (#): System borrowed from/is influenced by System #
1 It is unclear if it uses this theory [21, pp. 253].
2 Not yet implemented [138, pp. 271], [32, pp. 26].
3 Uses the OCCr model [40, pp. 195, 197], [72, pp. 17] a reinterpretation of the OCC model that aims to clarify the model’s logical structure and address

ambiguities [139, pp. 1].
4 Based on [127, pp. 193], a simplified model developed by Ortony for believable “artifacts” [48, pp. 23], [12, pp. 62], [65, pp. 285].
5 Also uses a stance dimension to measure the approachability of a stimulus [55, pp. 133].
6 Builds on [86, pp. 2], a successor of GVH (11).

TABLE 5
Theories Used for Emotion Expression in Surveyed CMEs

Iz. Ek. Plu. V-A PAD Frj. Laz. OCC Slo. Dam.

1 AffectR – – – – – – – x1 – –
2 Cathexis – – – – – – – – – X
3 EmMod – X – – – – – – – –
5 SCREAM – X – – – – – x2 – –
7 TABASCO – – – – – X x – – –
8 WASABI – X – – – – – – – –
11 GVH – X – – – – – – – –
12 ParleE X X – – – – – – – –
16 GenIA3 – – – – – – x (26) x2 – –
24 CLARION – – – – – – x – – –
25 ACRES – – – – – X – – – –
26 EMA – – – – – – x – – –
29 Émile – – – – – – – – – x
33 Puppet – X – – – – – – – –
34 CBI – – – – – – X – – –
35 FAtiMA – – – – – – X (26, 34) – X –
37 Greta – X – – – – – – – –
45 Presence – – – X – x – – – –
47 Kismet X x X X3 – – – – – –
54 GRACE – – – – – – x – – –
57 The Soul – X – – X – – – – –
60 Em/Oz – – – – – – – X1 – –
61 S3A – – – – – – – X (60) – –

X: Reasons for choosing the theory are clear; x: Reasons are unclear; (#): System borrowed from/is
influenced by System #

1 Based on an unpublished work which AffectR describes [10, pp. 50] and Em/Oz duplicates and expands
on [70, pp. 104].

2 Based on [127, pp. 193, 198], a simplified model developed by Ortony for believable “artifacts” [14,
pp. 234], [27, pp. 5:5].

3 Also uses a stance dimension to measure the approachability of a stimulus [55, pp. 133, 140].
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TABLE 6
Theories Used for Other Purposes in Surveyed CMEs

Iz. Plu. V-A PAD Frj. Laz. Sch. Ros. OCC S & K O & JL Slo. Dam. LD

3 EmMod – – – – – – – – – – – – O –
5 SCREAM – – – – – – – – o1 – – – – –
7 TABASCO – – – – O – – – – – – – – –
8 WASABI – O – – – – o – O – – O O o
9 Maggie – – – – – O – – – – – – – –

13 PMES – – – o (38) – – – – – – – – – –
14 IM-PMEB – – – o (38) – – – – – – – – – –
15 DER – – – – – – – – – – – o o –
16 GenIA3 – – – o (38) – – – – – – – – – –
17 InFra – – – – – – – – – – – – – o
18 FAtiMA-M – – – – – O O – – – – – – –
19 HybridC O O – – – – – – – – – – – –

22 Soar – – O – – – – – – – – – – –
24 CLARION – – – – – – – – O – – – – –
26 EMA – – – – o – o – – o – – – –
29 Émile – – – – – – – – – – – O – –

35 FAtiMA – – – – o (61) – – – o – – – – –
36 TARDIS – – – o (38, 56) – – – – – – – – – –
37 Greta – – – – – – – – – – o – – –
38 ALMA – – – o – – – – – – – – – –
39 Eva – – – o (38) – – – – – – – – – –
40 PPAD-Algo – – – o (38, 39) – – – – – – – – – –
41 PSA Heart – – – – – – – – o – – – – –
43 ERDAMS – – – – – – O O O – – – – –
45 Presence – – – – – – – – – – – o o –
48 KaMERo – – – – – – – – o – – o – –
49 R-Cept – – – – – – o – – – – – – –
51 TAME – – – – O – – – – – – – – –
53 PWE-I – – – – – – o – – – – – – –
55 EEGS – – – – – – – – O – – – – –
56 SocioEmo – – – O (38) – – – – – – – – – –
57 The Soul – – – o (38) – – – – – – – – – –
58 GAMYGDALA – – – O – – – – – – – – – –
59 MM – – – – o (27) – – – – – o – – –
61 S3A – – – – O (27) – – – – – – – – –

O: Reasons for choosing the theory are clear; o: Reasons are unclear; (#): System borrowed from/is influenced by System #
1 Based on [127, pp. 193], a simplified model developed by Ortony for believable “artifacts” [14, pp. 231].

facial expression generation to PAD Space [66, pp. 340–342],
creating a unified emotion generation/expression CME.

PAD is very similar to V-A. Its pleasure dimension fills
the same role as valence, and arousal is shared by both
theories. The third dimension, dominance, distinguishes be-
tween emotions such as Anger and Fear [118, pp. 264].
WASABI (8) found this necessary in its design, but stated
that dominance cannot be evaluated without cognition [22,
pp. 58, 100]. Thus PAD should be used with deliberative
mechanisms, although ALMA (38) and The Soul (57) do
not have any. However, their goals are not geared toward
affective research.

PPAD-Algo (40) defines emotion intensity as the length
of a vector in PAD space [49, pp. 217], based on ideas for a
two-dimensional affective space [148]. While it is unclear if
the dimensions are homogeneous, the results appear “good

enough” for non-research applications. Emotion intensity
measures have not historically received as much agree-
ment compared to other facets of affective science [149], [6,
pp. 373] and many of the theories examined here also do not
address intensity comprehensively.

PAD also tends to appear in CMEs that model mood,
using a set of fixed values to represent personality as the
initial mood point. ALMA (38) might have been first to
do so [47, pp. 31]. However, this use might be due to the
translation error from English to German [150, pp. 354] as
PAD describes a personality space—not mood [118, pp. 266–
267]. Still, many CMEs have adopted ALMA’s mood model,
suggesting it is “good enough” [65, pp. 289] for many
applications. Indeed, ALMA and the CMEs that borrow
its mood model [23, pp. 68], [27, pp. 5:18], [48, pp. 24],
[49, pp. 217, 222], [66, pp. 339], [21, pp. 255], [45, pp. 5]
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are mainly concerned with believability. The exception is
WASABI (8), intended for both believability and affective
research [22, pp. 10], and does not reference ALMA. ALMA
also connects PAD to OCEAN personality traits [151] via
[118]’s mapping [47, pp. 31]. ALMA’s predecessors might
have motivated this choice [90, pp. 52], [91, pp. 131].
ALMA’s PAD-based model of personality better aligns with
the theory’s intent, and has been reused in [65, pp. 289] and
[45, pp. 5], as well as those that use its mood model. Overall,
ALMA is a good PAD starting point for CMEs emphasizing
believability over validity. For a very simple mood model,
coherent with Ek.’s concept of mood, the pleasure dimension
can act as an approximation of good and bad mood [57,
pp. 218].

PAD’s pervasiveness in CMEs suggests its usefulness for
creating a unified space for multiple types of affect and
interfacing between theories. Caution is required as sound-
ness depends on how rigorously concepts are matched.

2.3 Appraisal Theories

Appraisal theories emphasize distinct components of emo-
tion, including appraisal dimensions or variables [4, pp. 97],
and the role of cognition in emotion elicitation [6, pp. 354].
They suggest that subjective appraisals of events or poten-
tially uncontrolled, unconscious cognitive evaluations elicit
most emotions [73, pp. 280]. Appraisal variables map onto
an n dimensional space, where specific configurations rep-
resent specific emotions [140, pp. 306]. Individuals generate
values for these variables by analyzing stimuli for personal
meaning and consequences, and often their goals [152,
pp. 250].

2.3.1 Frijda (Systems 7, 10, 25–27, 35, 44–45, 51, 59, 61)
Frijda (Frj.) often appears in CMEs to explicitly connect emo-
tions to action tendencies and define an action-driven ap-
praisal process [34, pp. 247], [36, pp. 151], [52, pp. 146, 150].
This aligns with Frj.’s proposal that emotions—outputs of
a continuous information processing system—are changes
in action readiness [119, pp. 453, 466]. “Action readiness”
refers to motivational states, which are associated with
goals rather than actions or behaviors [120, pp. 143]. For
CMEs, this affords the freedom to design flexible, domain-
independent goal-achievement processes that multiple af-
fective states can use. CMEs can thus use action evaluations
to drive affective processes [17, pp. 268–269]. For systems
like TEATIME (44), whose focus is a flexible affective
decision-making mechanism [52, pp. 143], this connection
is essential. Frj.’s description of action tendencies appears
to transfer to designs that do not implement its appraisal
process [17, pp. 267], [42, pp. 161], [18, pp. 594, 596–597],
since many of the identified action tendencies are associated
with an emotion label [119, pp. 87–90].

The conceptualization of emotion elicitation as an infor-
mation processing system is a useful analogy for CMEs,
and can provide the necessary mechanization framework
for structure-oriented theories like Ros. [52, pp. 146] and
OCC [71, pp. 37, 48, 61]. It is also possible to abstract and
apply different elements independently of the broader the-
ory, such as implicit appraisal checks [17, pp. 266], informa-
tion filtering [71, pp. 49], and mechanisms whose behavior

changes with the system state [63, pp. 211], [37, pp. 286, 297].
The Will architecture (27), built on Frijda’s definition, relates
emotion to personality, mood, and sentiments, allowing it
to define them as system configurations [36, pp. 135–136,
157–158]. These ideas have been adopted by other CMEs,
requiring fewer subsystems in their implementation [69,
pp. 6–7, 9], [71, pp. 48], [44, pp. 130–132].

2.3.2 Lazarus (Systems 7, 9, 16, 18, 24, 26, 29, 34–35, 54)
Lazarus (Laz.) usually appears when a CME requires coping
behavior [43, pp. 302, 306], [33, pp. 10, 12], [27, pp. 5:5–5:6],
a deliberative process whereby the individual can suppress
action tendencies and choose other strategies for influencing
the current situation [153, pp. 628]. As coping plays a critical
role in the theory [121, pp. 39–40], the appearance of Laz. in
this context is unsurprising. Coping has been incorporated
directly into the appraisal process as an influencing fac-
tor [37, pp. 272, 279]. It has also been used alone for planning
agent behaviors [17, pp. 267], [37, pp. 278], [62, pp. 135],
[38, pp. 325, 327, 331], and has been successfully paired
with a separately defined component for quick, reactionary
behaviors [44, pp. 130, 132–133]. The coping models of
EMA (26), Émile (29), and CBI (34) have been particularly
influential [154, pp. 353], [155].

Laz. also describes a reappraisal process to explain the
continuous and responsive nature of the emotion system to
changes in the environment [121, pp. 134]. This is directly
tied to coping, which can affect changes in an individual’s
interpretation of the environment. This concept has also
appeared alone, in CMEs that reprocess information after
deliberative processes like coping [44, pp. 133–134], [28,
pp. 46–47], which could result in different emotions com-
pared to purely reactive systems.

Another feature of Laz. is its use of relational themes,
which are connected to emotions [121, pp. 122]. This treats
appraisal as a comprehensive unit rather than a set of
individual dimensions. This emulates discrete categories,
allowing CMEs to treat each emotion separately [12, pp. 60].

2.3.3 Scherer (Systems 6–8, 10, 17–19, 22–24, 26, 28, 43,
49, 53–55, 62)
Scherer (Sch.) tends to appear where CME designs need
multi-level and/or multi-stage appraisals [68, pp. 210–211],
[13, pp. 136] that incorporate cognition in their evalua-
tions [25, pp. 61, 66]. These features are inherent in Sch. [122,
pp. 99, 103]. This group of CMEs notably include the
Cognitive Architectures [138, pp. 272, 274], [32, pp. 26–27],
[33, pp. 9, 11], which is likely a result of Sch.’s complexity
compared to other appraisal theories [28, pp. 46–47], [156,
pp. 58]. It uses a dynamic systems view where components
change and interact over time, such that emotion is an
emergent product of system synchronization [35, pp. 99–
102, 143]. Sch. has used neural networks as a system repre-
sentation.

However, other CMEs have found ways to use Sch. with-
out using multi-level or multi-stage processes. Some CMEs
have opted to use only its appraisal variables [17, pp. 266],
[18, pp. 597], sometimes combining them with variables
from other theories like OCC [24, pp. 30], [157, pp. 8–9],
and emotion descriptions because they account for coping
potential [51, pp. 416–417]. Others take inspiration from
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its process model to connect emotion generation to other
subsystems [62, pp. 138]. Still others reference Sch. for some
of its theoretical concepts [158, pp. 141–142], [122, pp. 95–
96], such as the design-oriented differentiation between
types of affect [22, pp. 83], [61, pp. 323], [59, pp. 209], and to
show how goals can represent a broad range of motivational
states [37, pp. 286, 297]. This suggests that some CMEs
can comfortably use pieces of Sch. independently of the
complete theory.

2.3.4 Roseman (Systems 4, 10, 12, 19, 43–44, 50)
Roseman (Ros.) appears in CMEs to map emotions to action
tendencies, and to define Surprise as an emotion. Ros. is
usually not used alone. In TEATIME (44), Ros. is combined
with Frj. because they both emphasize action tendencies
which are essential to its target application [52, pp. 143, 146].
POMDP-CA (50) is an exception, using Ros. to represent
cognitive appraisal theories [56, pp. 268]. This might be
because, out of the two theories identified in [1] for cognitive
appraisal, Ros. systematically built a model between ap-
praisal variables and emotions from empirical studies [123,
pp. 267–268] which makes it more plausible [56, pp. 265].

The larger issue is that Ros. does not specify an emotion
generation process. CMEs have compensated for this by
using Markov Models [56, pp. 267], fuzzy logic [11, pp. 227–
228], and combining Ros. with process-based theories like
Sch. [25, pp. 66] and Frj. [52, pp. 150].

CMEs that use Ros. to define Surprise use other
theories—usually Sch. and/or OCC—that do not explicitly
define it [18, pp. 597], [20, pp. 119, 135–136], [25, pp. 66].
These unions appear to be sound. OCC agrees with Ros.
that unexpectedness elicits Surprise [126, pp. 32], and Sch.’s
suddenness variable in the novelty check appears to do a
comparable evaluation [122, pp. 95]. Anger is an emotion
that Ros. shares with OCC, but it limits its scope to events
caused by other agents, which a CME might find more
helpful [51, pp. 417].

2.3.5 Ortony, Clore, & Collins (Systems 1, 3–5, 8–14, 16–
19, 24, 26, 29–33, 35–41, 43, 45, 48, 52, 54–58, 60–61, 63)
The Ortony, Clore, and Collins (OCC) model of emotion is
the most used [72, pp. 16], [80, pp. 292], [62, pp. 136] and
widely accepted theory in affective computing [39, pp. 1]
despite cautioning that “...we view each emotion specifi-
cation, or characterization, as a proposal rather than as an
empirically established fact.” [126, pp. 87–88], and not being
as popular in psychology [37, pp. 278]. The widespread
use of OCC is partially due to its hierarchical structure
of emotions and eliciting conditions, which feels familiar
to computer scientists [22, pp. 44], [156, pp. 57] and is
amenable to computation [126, pp. 2, 181–182], [1, pp. 195],
[7, pp. 8], [6, pp. 362]. It also accounts for some emotions
about others, but does not provide a full description of
emotion intensity or the process of emotion elicitation.

2.3.5.1 Computational Tractability: Some CMEs
mention, directly or indirectly, that its prevalence in affective
computing is a reason for choosing OCC [25, pp. 61], [67,
pp. 33], [72, pp. 16–17], [21, pp. 251, 253]4. Others have
compared it to a computational approach [70, pp. 28], [25,

4. This decision is inferred.

pp. 66], [62, pp. 136], [67, pp. 33] or its relative ease of
implementation [65, pp. 282], [20, pp. 135–136], [71, pp. 48],
[44, pp. 129–130]. Still, these reasons alone should be in-
sufficient for choosing OCC over other theories—it is not
a “silver bullet” solution [159, pp. 2]. Computer scientists
pushed OCC’s computability by resolving ambiguities and
creating an inheritance-based structure, but they caution
that its integrity as a psychological theory might have been
compromised [139, pp. 1]. However, this is not a concern
for CMEs that are not meant to simulate actual affective
phenomena [40, pp. 195], [72, pp. 9, 17]. A further benefit
of OCC’s comparison to a computational approach is that
it can be easier to understand without a background in
psychology [70, pp. 28], [65, pp. 282]. This might make
it more “clear and convincing” [97, pp. 741] than other
appraisal theories.

OCC assumes that people view the world in terms of
world aspects and changes [126, pp. 18]. One could view
this as an event-driven model, which also lends itself to
computational modeling [54, pp. 766], [94, pp. 264], [46,
pp. 94], [62, pp. 138], [71, pp. 51], [21, pp. 253], [45, pp. 4],
[58, pp. 236], [42, pp. 151–152]. This view led some CMEs
to define what emotions they can produce as they relate to
eliciting events [14, pp. 230], [39, pp. 4], [44, pp. 129], [48,
pp. 23], [51, pp. 412, 418], [67, pp. 33], [157, pp. 4, 8–9], [25,
pp. 66], [23, pp. 68], which can be independent of cognitive
processing [19, pp. 109].

OCC also describes how to structure different types of
goals, attitudes, and standards, relating them to the emotion
hierarchy and each other [126, pp. 34–35]. This has moti-
vated OCC’s adoption as they make it clearer how emotions
and behaviors are related to both goal [33, pp. 10] and non-
goal structures [20, pp. 136], [62, pp. 138], [157, pp. 6], how
to differentiate between goal types [44, pp. 131], and how to
relate goals in the hierarchy [71, pp. 51], [24, pp. 31].

Ironically, OCC’s authors believe that computers cannot
have emotion but it is still useful to reason about them:
“...we do not consider it possible for computers to expe-
rience anything until and unless they are conscious. Our
suspicion is that machines are simply not the kinds of
things that can be conscious...There are many AI [Artificial
Intelligence] endeavors in which the ability to understand
and reason about emotions or aspects of emotions could be
important” [126, pp. 182]. AffectR (1) adheres to this when
reasoning about another agent’s actions [10, pp. 27]. How-
ever, OCC can be applied to emotion generation as well [1,
pp. 195], also shown by AffectR, because the process of
reasoning about emotions could be understood as reasoning
about the emotional significance of an event to the agent [14,
pp. 230]. The focus on reasoning makes OCC amenable to an
intentional stance, which enhances agent believability [42,
pp. 151–152], because users can “see” the agent’s thought
processes. Ortony later created a version of OCC specifically
for affective agents, focusing on consistent and believable
behaviors [127]. This is ideal for CMEs that do not need
to simulate true affective phenomena, but only a few use
it [65, pp. 285], [12, pp. 62], [48, pp. 21]. Eva (39), one of the
systems using [127], has been extended [160, pp. 2], hinting
at the effectiveness of [127] for affective agents.

Unlike the original OCC theory, [127] includes a hierar-
chy of response tendencies grouped by type which CMEs
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have used [14, pp. 234], [27, pp. 5:5]. This might be a
simplification of unpublished work intended for the full
theory, which AffectR (1)—a research model—and Em/Oz
(60)—a non-research model—incorporate [10, pp. 51], [70,
pp. 28, 104]. This hierarchy can be implemented such that it
allows users to categorize display mechanisms [10, pp. 51–
53], [14, pp. 234]—encouraging modular development—and
assign the same behavior to different tendencies, affording
more control over emotional displays [70, pp. 86, 100], [71,
pp. 53].

2.3.5.2 Empathetic Emotions and Surprise: Some-
thing that might be unique to OCC are the “fortunes of
others” emotions (e.g. Happy-For), which rely on evaluations
of how someone else feels. These are critical for empathetic
agents [51, pp. 412], [46, pp. 97, 111] and agents that model
relationships [65, pp. 288], [45, pp. 1, 4], [67, pp. 33], [72,
pp. 33, 48]. Eva (39) uses OCC to connect to a non-affective
relationship model so that it can establish relationships
with users [48, pp. 22–23]. However, OCC does not include
Surprise which is important for some CMEs. OCC excludes
Surprise because they believe that it is not inherently positive
or negative [126, pp. 32]. Instead, they categorize it as a
cognitive state tied to a global unexpectedness variable. CMEs
that need Surprise draw from Ros. [20, pp. 119], [25, pp. 66]
because it shares this hypothesis [123, pp. 269].

2.3.5.3 Computing Emotion Intensities: OCC’s
structure also shows which variables contribute to an
emotion’s intensity, proposing that it is evaluated with a
weighted function [126, pp. 69, 82]. Unfortunately, it does
not propose what those weights should be, nor the func-
tion’s nature. AffectR (1) appears to circumvent this issue by
not computing a numerical intensity value at all [10, pp. 47–
50]. ALMA (38) requires a separate tool to define intensity
functions parameters [161, pp. 206–207], which The Soul (57)
found useful for its purposes [66, pp. 339]. Other CMEs
solved this by translating OCC emotion families to other
theories [49, pp. 217], creating their own functions from the
given variables [11, pp. 233], [51, pp. 419–422], [12, pp. 62],
[67, pp. 37–38], [72, pp. 48], [157, pp. 14] or manually coding
them [71, pp. 62], [44, pp. 133], [41, pp. 994–995], [22, pp. 95],
[48, pp. 23], [57, pp. 220]. Em/Oz (60) opted to only adopt a
subset of variables, finding that the simpler model was suf-
ficient for its goals [70, pp. 53]. Emile (29) drew from Em/Oz
specifically for its simpler intensity functions [38, pp. 328],
though it is not the only CME to use Em/Oz this way [14,
pp. 230]. Some CMEs have found various combinations of
Em/Oz, Emile, and FLAME (4) intensity functions useful
their own purposes [65, pp. 289], [20, pp. 117–125].

A model of mood might be needed to prevent unnatu-
rally fast fluctuations in emotion state [22, pp. 88], and many
CMEs that use OCC also model mood [70, pp. 75, 94], [23,
pp. 68], [27, pp. 5:18], [48, pp. 24], [49, pp. 217, 222], [66,
pp. 339], [21, pp. 255], [45, pp. 5], [14, pp. 231]. ALMA (38)
explicitly notes that the inclusion of mood produced a more
natural emotion intensity [150, pp. 354].

Strictly speaking, the weighted function used by these
systems is not an intensity function. OCC proposes that a
weighted combination of the EECs leading to an emotion
family is an emotion potential—a higher potential means a
higher chance of experiencing that emotion [126, pp. 81–
82]. The difference between an emotion threshold and this

value is its intensity. CMEs can modulate these thresholds
to implicitly model moods and personality [16, pp. 65–66],
[71, pp. 51], [46, pp. 103, 109–110], [20, pp. 119], [44, pp. 131],
[22, pp. 92–93], [28, pp. 48].

2.3.5.4 The Missing Emotion Elicitation Process: A
shortcoming of OCC is a lack of emotion generation pro-
cesses [25, pp. 65]. This is a deliberate omission, as OCC it
views as a general cognitive psychology problem, although
it stresses the role of cognition in such processes [126, pp. 2].
Some CMEs refer to this in their analysis of OCC [25, pp. 61],
[18, pp. 597], [42, pp. 161], [23, pp. 67]. AffectR (1) might be
the most complete realization of the missing processes [10,
pp. 30–33]. Subsequent CMEs used AffectR’s process, gen-
eralized for plans to achieve domain independence [38,
pp. 326–327], [20, pp. 118] and partially simplified [37,
pp. 282–283, 285], [44, pp. 130, 132]. FAtiMA’s (35) imple-
mentation proved effective, as [80] adopted it specifically
for its planning and appraisal mechanisms. Plans are also a
step towards explainable behaviors by providing context for
elicited emotions [38, pp. 328], which aligns with the OCC’s
focus on reasoning about emotions [126, pp. 182].

Some CMEs take a biologically-inspired approach based
on motivations and drives [12, pp. 56], [23, pp. 65–66].
The reliance on cognition guided yet other CMEs to use
OCC to define a deliberative layer in biologically-inspired
architectures [16, pp. 63], [22, pp. 58, 100], [60, pp. 258–
259]. This is supported by [128, pp. 177], which incorporates
neurobiological findings. Other CMEs integrate OCC into a
Belief-Desire-Intention (BDI)-inspired system or architecture
to account for cognitive activities [41, pp. 993], [51, pp. 417],
[42, pp. 153–154, 161], [40, pp. 195], [27, pp. 5:4–5:5]. How-
ever, this can make the CME itself difficult to modify if it is
integrated too deeply into the host architecture [46, pp. 111–
112]. Some CMEs aim to be architecture agnostic, but still
require at least one BDI-like input to produce emotions [67,
pp. 32, 36–37], [157, pp. 7], [14, pp. 227, 230, 234–235], [24,
pp. 28–29]. The reliance on cognition has also led some
CMEs to have mechanisms allowing other reasoning pro-
cesses to influence emotion generation [162, pp. 213].

CMEs have also combined the OCC structures with a
process-oriented theories like Frj. [71, pp. 48] and Sch. [62,
pp. 138], [25, pp. 66], or draw from Picard [1] for guid-
ance [18, pp. 603], [21, pp. 252]. Many CMEs set their emo-
tion model between input and output modules to mediate
their interactions [39, pp. 4], [90, pp. 50], [48, pp. 22], [65,
pp. 284], [66, pp. 342–343], [28, pp. 45]5, [72, pp. 33], [49,
pp. 211–212], [57, pp. 218], [19, pp. 110], with some using or
considering fuzzy logic to aid in matching eliciting condi-
tions to emotions [11, pp. 227–228], [45, pp. 3, 7], [24, pp. 29–
30]. If the goal is not to create “correct” behaviors, this
strategy is sufficient if it meets the CME design goals [70,
pp. 44–45].

2.3.6 Smith & Kirby (Systems 6–7, 55, 62)

Smith & Kirby (S & K) only seems to appear in CMEs
that want to integrate multiple, parallel input sources into
one unit for appraisal. This appears to be its distinguishing
factor among appraisal theories [130, pp. 129–130].

5. Builds on [9, pp. 31].
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S & K always appears with Sch. to combine appraisal
information from sources from multiple levels of resolu-
tion [13, pp. 136], [17, pp. 266, 268], [68, pp. 210]. This
might be because Sch. is better validated [130, pp. 129], com-
putationally tractable, and because Scherer draws parallels
between sequential check registers and S & K’s integrated
appraisal [122, pp. 105, 120]. Another possibility for this
pairing is a misconception that Sch. is strictly a sequential
appraisal process [58, pp. 236] when it is not [122, pp. 100,
103]. One exception is EMA (26), which combines S & K
with Frj. to define an attention mechanism [37, pp. 286]. This
is likely because [120, pp. 149] compares its “blackboard
control structure” to S & K’s appraisal register. This suggests
that CMEs can combine S & K with other theories that have
some comparable work to the appraisal register concept.

2.3.7 Oatley & Johnson-Laird 6 (Systems 2, 12, 19, 29, 37,
59, 63)

Oatley & Johnson-Laird (O & JL) appears in CMEs to define
what emotions they support, relate other types of affect to
emotions, and connect emotion intensity to changes in com-
putational plans. O & JL typically have a supporting role for
defining emotions in CMEs. Ek. is usually the main theory
present for defining CME emotions [15, pp. 71], [25, pp. 63–
64]. This connection is sound, as O & JL considered Ek. as
evidence when identifying their set of basic emotions [133,
pp. 57–61].

Moods and personality are conceptualized in O & JL’s
theory in relation to emotions [133, pp. 23–24, 61]. This
is useful for CMEs because it allows them to use one
representation that can be configured to for different types
of affect. MM (59) references this definition of mood, but
combines it with the extension of Frj. proposed by the Will
architecture (27) [69, pp. 9]. It does not reference O & JL for
personality. Sentiments—long-term emotional dispositions
mainly towards others—were added to the theory later [134,
pp. 81], and is a natural extension to a theory emphasizing
the communicative role of emotion in social structure and
relationships [131, pp. 41]. For agents whose behaviors
should be influenced by their relationships with others, this
concept is invaluable [72, pp. 19–20].

O & JL propose that there is no emotion process, arguing
that emotions are states entered at plan junctures, which that
might include conflicts between different goals, agents, and
resources demands [133, pp. 22, 24–25, 31–36]. CMEs have
taken this information to define emotion intensity in relation
to an agent’s goals and plans [20, pp. 117], [38, pp. 328].
This also frames cognition as a knowledge transformation
process, which is amenable to computation [46, pp. 94].

Perhaps the most useful element of O & JL is its focus on
the social and communicative role of emotions [131, pp. 41–
42]. This has implications for multi-agent applications with
affective content because each agent is an independent
module in a larger system [133, pp. 178, 181–182]. Conversa-
tional agents might also benefit from this view, which casts
conversations as a form of mutual planning. As the field of

6. Although it does not name appraisal dimensions, Oatley &
Johnson-Laird talk about evaluating events relevant to plans and goals
individually such that changes in achievement probability induce emo-
tions [133, pp. 50]. Therefore, it is grouped with the appraisal theories.

social affective agents progresses, O & JL could come to play
a larger role in their development.

2.4 Neurobiological Theories

Biological neural circuitry and brain structures inspire the
neurobiological theories of affect [4, pp. 98]. Though un-
common in affective computing [163, pp. 451], they have
the potential to influence biologically-inspired CMEs for
applications such as embodied agents and those that have
drives, limited resources, and must select actions in real time
that are consistent with the agent’s internal state [6, pp. 364].

2.4.1 Sloman 7 (Systems 2, 8, 15, 29, 35, 45, 48)
Sloman (Slo.) is commonly used to define the architec-
ture surrounding emotion generation [60, pp. 257–258], [26,
pp. 3–6], [42, pp. 160], [22, pp. 84] rather than doing it
directly. This is likely because Slo. conceptualizes emotion as
a product of a central information-processing system [135,
pp. 204, 211]. This affords the distinction between the
processing requirements of emotion at different processing
resolutions while considering the system’s constraints. The
division of processes into layers also makes it possible
to adopt some of Slo.’s mechanisms independently of the
broader theory. For example, Slo.’s deliberative layer con-
tains the ability to plan [135, pp. 223]. Therefore, Slo. can
help with tasks in plan-based CME components, such as
evaluating goal importance based on plans [38, pp. 329],
and affect-driven resource allocation based on urgency [44,
pp. 134].

WASABI (8) is the only CME surveyed that uses Slo.
directly in emotion generation for non-cognitive emotion
elicitation [22, pp. 90], using its definition of emotions
as information processing interrupts and modulators [135,
pp. 211, 230]. This might be due to Slo.’s inclusion of “be-
liefs”, “desires”, and “intentions” in its architectural speci-
fication [135, pp. 208], which neatly aligns with WASABI’s
underlying BDI architecture.

2.4.2 Damasio (Systems 2–3, 8, 15, 29, 45, 47–48)
Like Slo., Damasio (Dam.) often appears to define the archi-
tecture of a CME in terms of cognitive and non-cognitive
emotions [15, pp. 72–73], [26, pp. 3–6], [42, pp. 160], [22,
pp. 97–98]. This aligns with its idea of two emotion types:
innate, evolution-based primary emotions and learned,
cognition-driven secondary emotions that trigger the pri-
mary system [136, pp. 131–139]. WASABI (8) found Dam.
insufficiently specific for formalization, but drew assump-
tions to make it so [22, pp. 54, 97]. The resulting model is
comparable to Sch.. WASABI found similar overlaps with
[128], which extends OCC with neurobiological evidence,
motivating its combination with Dam..

Two specific features of Dam. are useful for specific CME
tasks. One is emotion’s influence on decision-making [136,
pp. 126, 128], which can drive the design of CME behav-
ior [15, pp. 72], [16, pp. 63], [38, pp. 330]. Directly related to
decision-making, the second feature is the Somatic Marker

7. Since Sloman considers the brain to be an information processing
system [135, pp. 206–207], it is grouped with the neurobiological
theories.
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Hypothesis (SMH), which describes how secondary emo-
tions are learned and connected to the primary emotion
system [136, pp. 137, 145, 174]. The SMH has been used
as-described to elicit emotions from memories by learned
associations between stimuli and emotions [15, pp. 73], and
as a clever way to mark different types of inputs with
common information to coordinate further functions [55,
pp. 133, 151].

Damasio posits that CMEs cannot use this theory be-
cause of the biological connection between the mind and
body [136, pp. 249–250], suggesting that Dam. cannot be
implemented in agents without a physical body. However,
it is possible to use a version of SOM that bypasses the
body [136, pp. 155–158] as described by WASABI [22, pp. 50,
56].

2.4.3 LeDoux (Systems 2, 4, 8, 17, 47)
LeDoux (LD), often alongside Dam., appears in CMEs to
define their architecture in terms of cognitive and non-
cognitive emotions. Damasio and LeDoux applaud each
other’s work [136, pp. 133], [137, pp. 250, 298]. This could
explain their frequent co-use or connection in CMEs [15,
pp. 72–73], [164, pp. 1, 5], [22, pp. 161].

LD and Dam. are complementary, agreeing that emo-
tion is critical in decision-making and cannot be separated
from the body [137, pp. 41, 176]. Where Dam. focuses on
emotional learning and its relation to cognition (i.e. sec-
ondary emotions), LD studies the mechanisms of emotional
conditioning (i.e. primary emotions)—specifically Fear [137,
pp. 127–128]. WASABI (8) drew from this so that the elicita-
tion of Fear did not require reasoning [22, pp. 87].

LD views emotions as biological functions with differ-
ent neural systems that evolution has maintained across
species [137, pp. 106–107, 171], which might have inspired
the emotion-to-expression interface in InFra (17) [24, pp. 27].
Each emotion has a mechanism that is programmed to
detect innate stimuli relevant to the system’s function [137,
pp. 134, 143, 161–163, 165, 175–176]. Cognition allows these
systems to learn new triggers—which are indistinguishable
from one another—and keep the same behavior and speed
as innate ones. The ability to unconsciously and quickly
perceive and form persistent emotional memories is the
brain’s most efficient learning and memory functions [137,
pp. 182, 266], which FLAME (4) uses for some of its learning
processes to improve its adaptability [11, pp. 227, 237–238].

3 DISCUSSION

Surveying CMEs and the affective theories used brought out
some commonalities. We discuss use themes, computerizing
theories, cooperation between perspectives, psychologist influences
and other sources of influence.

3.1 Use themes
The surveyed CMEs use a variety of theories for different
purposes (Table 7). The reasons for choosing particular
theories are not always clear. However, there are clear trends
in how they use affective theories. Even in CMEs without
explicit choice rationale, these uses align with different
aspects of the theories. This is indicative of their strengths,
which tend to be similar within each perspective.

TABLE 7
Number of Uses of Affective Theories in Surveyed CMEs

Emotion
Generation

Emotion
Expression

Other Total

OCC 39 5 8 52
Ek. 12 9 – 21
Sch. 12 – 6 18
PAD 5 1 10 16
Frj. 6 3 6 15
Laz. 5 7 2 14
Plu. 6 1 2 9
V-A 5 2 1 8
Dam. 2 2 4 8
Ros. 6 – 1 7
O & JL 5 – 2 7
Slo. 1 1 5 7
Iz. 3 2 1 6
LD 4 – 2 6
S & K 4 – 1 5

The discrete theories appear when types of emotion must
be clearly distinguished. This reflects a strength of discrete
theories, which build a small set of emotion categories
that are supported by empirical evidence [7, pp. 9–10].
Identifying and labeling emotion categories helps delimit
them, making it easier to talk about them both formally and
informally [73, pp. 286], [6, pp. 353]. The discrete perspective
is associated with the most empirical evidence of observed
emotion effects to emotions [7, pp. 10]. However, discrete
theories do not give many details on emotion generation
processes, so they are sometimes combined with another
theory or used in hand coded designs (e.g. [61, pp. 324]).

Dimensional theories appear when CMEs need a simple
and effective model of affect, as another perspective of emo-
tion categories, and/or as a common space for modeling
different affective phenomena and their interactions. Their
strength lies in their description of affect in a simple way [4,
pp. 97], but it can lose information about an emotional
state if its resolution exceeds the named dimensions [103,
pp. 172], [6, pp. 353]. This might not be appropriate for all
CMEs.

Affective computing uses appraisal theories often [4,
pp. 97], [156, pp. 55], appearing more frequently than dis-
crete or dimensional ones. This might be due to its ability
to comprehensively represent the complexity of emotion
processes, receiving consistent empirical support for their
hypothesized mechanisms [73, pp. 281–282]. However, they
are based on cognition and CMEs seeking to use these
theories must be able to account for it [6, pp. 354]. Most
of the CMEs surveyed reference appraisal theories in some
way.

The neurobiological theories tend to appear when a
CME wants to distinguish between reactive, non-cognitive
and deliberative, cognitive emotion processes. All three
theories claim mechanisms for fast, “stupid” reactions and
slower, deliberative plans that people collectively call “emo-
tions” [135, pp. 230], [136, pp. 133], [137, pp. 161–165].
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3.2 Computerizing Theories

Once an affective theory is chosen, the challenging task of
“programming” it arises. Some theories—Frj., Sch., OCC, O
& JL, and Slo.—were deliberately designed to be computa-
tionally tractable [34, pp. 247], [73, pp. 279], [126, pp. 181],
[131, pp. 30], [165, pp. 231], while others—Damasio and
LeDoux, for example—have argued that their theories can-
not be computationally realized [136, pp. 249–250], [137,
pp. 41, 176]. Whether or not theorists intended their work to
be computerized, designers have found ways to make them
work. However, how accurately a CME adheres to a theory
and/or observed affective phenomenon tends to be directly
proportional to how complex the CME is.

Since “emotions” emerge from interacting components
of intelligence, neurobiological theories can produce richer
models than most, if not all, affective components [165,
pp. 226]. They might also be more plausible than appraisal
theories [15, pp. 72–73] and better aligned with current
findings [42, pp. 160]. However, accurately modeling these
theories requires modeling parts of the brain and body. For
many CMEs, this might not be feasible or desirable. There
will also be questions about the accuracy of the resulting
system due to gaps in our understanding of anatomical
structures and functions (although aiming for complete
accuracy might not be useful to anyone [156, pp. 60]).

Appraisal theories might be best suited for CMEs as they
touch on all components and phases of emotion process-
ing [2, pp. 13]. They are also relatively easy to translate
to computational representations due to their rule-based
tendencies [1, pp. 225] and comparisons to information pro-
cessing [156, pp. 59]. Some have integrated neurobiological
findings, which increases their scientific merit—but it also
increases their complexity. For example, empirical test of
Sch. have been relatively successful in predicting different
patterns in emotion processes [122, pp. 93, 103, 117–118].
However, it is also very complex, connecting its processes
to biological systems like the Autonomic Nervous System
(ANS) and memory, and allowing for multiple levels of
information processing. This might be why Sch. is favored
by Cognitive Architectures and Affective Research CMEs
like CLARION (24) and MAMID (6), whose assumptions
closely follow Sch.’s [13, pp. 136], [33, pp. 6]. These systems
would gladly sacrifice computational efficiency for accuracy
because their aim is to study affective phenomena. De-
pending on how the theory is realized, this complexity can
also make it difficult to understand how the CME internals
work, effectively turning them into a black-box system [35,
pp. 143–144].

Many CMEs focus on agent believability rather than
accurately modeling affective phenomenon. Enforcing re-
alism and rational intelligence can be detrimental to their
goals [70, pp. 11]. For these systems, computational effi-
ciency is more important as they typically interact with
users in real-time, and modularity is essential for testing
and debugging. This affords more choice in what theories
to use and how to model them. For example, dimensional
theories are likely the most amenable to efficiency-focused
designs. They have the lowest affective resolution, but they
are also considered “universal” and individual points can
be labeled if needed [2, pp. 12, 15]. However, since they do

not define emotion generation, it is left to the designer to
determine how much detail they want to implement.

Defining emotion generation computationally without
strict adherence to accuracy leaves room for a number of
interesting approaches. There are designs that use meta-
data [54, pp. 765], [47, pp. 33], [14, pp. 236] and mathe-
matical concepts like Bayesian Networks [50, pp. 204], [19,
pp. 108], Markov Models [18, pp. 603], [20, pp. 115], and
fuzzy logic [11, pp. 229], [53, pp. 2], [45, pp. 3, 7], [24,
pp. 29–30], which can be quite efficient but are not neces-
sarily sound. Other theories—typically appraisal—are also
conscripted, but might not be modeled in full [70, pp. 52],
[67, pp. 36]. CMEs have also improved their efficiency by
considering their target domain’s limitations, which might
involve fewer emotion categories [19, pp. 109], [39, pp. 2],
[12, pp. 58] and appraisal variables [52, pp. 150], while
others are able to scale as needed [68], [14, pp. 239], [63,
pp. 217], [28, pp. 44], [67, pp. 35], [24, pp. 27]. As these
have all found some success in achieving their goals, this
further emphasizes that accuracy is not always necessary.
This opens up the design space while creating a CME that
behaves “well enough” for its intended tasks.

3.3 Prospective Perspective Cooperation
CMEs will most often use different theories in combination
due to their relative strengths and weaknesses. It is rela-
tively easy to combine theories that share the same perspec-
tive because their core assumptions tend to align. For exam-
ple, Ekman, Izard, and Plutchik agree on the function of at
least four primary emotions—Joy/Happiness, Sadness, Anger,
and Fear—and their ability to interact to produce what
people recognize as other, more complex, emotions [111,
pp. 69], [110, pp. 254, 258–259], [114, pp. 200, 204–205].
Similar overlaps exist in the appraisal theories’ evaluation
dimensions and how they label distinct combinations. The
dimensional theories, V-A and PAD, are the most obviously
compatible—one could simply layer V-A over the P-A plane
directly. By staying within one perspective, a CME design
can use the individual strengths of each theory with little
worry of conflicting assumptions or views.

Combining theories from multiple perspectives poses a
more complex challenge, although often necessary to ad-
dress all aspects of affect needed in the design. For exam-
ple, OCC is frequently combined with Ek.—which focuses
on automatic, hard-wired appraisals rather than evalua-
tions [146, pp. 51]—to produce facial expressions based on
cognitively-evaluated events [19, pp. 109], [21, pp. 253], [25,
pp. 66], [42, pp. 155], [97, pp. 740–741]. This connection is
presumably due to the OCC’s association of characteris-
tically similar “linguistic tokens” with each emotion [126,
pp. 1–2, 87–88]. By finding similar words, one can fit the
emotions from discrete theories into the OCC structure.
However, this relies on subjective interpretations, and even
the given lists lack empirical validation [126, pp. 172–176].
More pressingly, emotions of the same name might repre-
sent different concepts. Fear and Anger in OCC, as with
many appraisal theories, are complex emotions requiring
flexible, cognitive evaluations [22, pp. 85, 87]. In contrast,
the same emotions in discrete theories are simpler, triggered
by inflexible hard-wired systems. While they might be ex-
pressed with the same physiological changes, behaviors,
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and expressions, their eliciting mechanisms are not of the
same kind [2, pp. 15–16]. Whether or not this distinction is
important for a particular CME, it should still be addressed
as it affects how accurately the theories are modeled. Similar
considerations must be made when attempting to align the
dimensional theories with the dimensions of appraisal the-
ories, and locating discrete emotions in dimensional space.

These conceptual mismatches does not mean that there
are “correct” and “incorrect” theories, or that they are in-
compatible, especially considering how they overlap and
converge on the role of emotion [2, pp. 10–11, 14–15], [73,
pp. 281], [6, pp. 352, 354–355]. Rather, they are different
views—perspectives—of a complete system, each focusing
on different aspects of the emotion process [119, pp. 259]. A
healthy, human emotion system seems to rely on both fast,
primary and deliberative, secondary emotions [1, pp. 70].
This idea of two emotion types is present in some affective
theories, such as [146, pp. 51], [109, pp. 74], [120, pp. 155],
[122, pp. 102], and [166, p. 93], and is also supported by
empirical investigations of the brain [136, pp. 136–139], [137,
pp. 177–178]. Some CMEs have explicitly modeled these two
“pathways”, including [16, pp. 63], [15, pp. 73], [42, pp. 160],
[22, pp. 98], and [60, pp. 258]. Correspondingly, one way that
each perspective could be assigned roles in CME designs to
address different aspects of emotion generation is:

• Neurobiological theories provide guidelines for how to
unite disparate emotion processing pathways into a
coherent system,

• Discrete theories drive the creation of a limited set of
fast, hard-wired [6, pp. 366] reactions to specific stimuli
(“primary emotions”, “low road”),

• Appraisal theories drive the deliberative, slower systems
for emotion elicitation that require planning and/or
reasoning (“secondary emotions”, “high road”) that can
account for language and sociocultural factors, allow-
ing for a broader range of identifiable emotions, and

• Dimensional theories provide a common space for merg-
ing the outcomes of each emotion pathway in the spirit
of appraisal registers [122, pp. 105], [166, p. 93] while
allowing other types of affect to interact with emotion.

3.4 Psychologists Directly Involved in CME Design

Translating a psychological theory into a CME is difficult
because it involves formalizing informal concepts and docu-
menting hidden assumptions [9, pp. 22–23]. This process can
be harrowing, as one is often left guessing at the theorist’s
original intent and there might be no way to know for sure.
While assumptions are unavoidable, some CMEs can act
as secondary sources because originator(s) of the theories
used were involved in the design. CMEs designed under
the influence of a theory’s creator are critical, as the for-
malization and documentation effort comes from the most
accurate information source.

Frijda supervised the development of both ACRES (25)
and the Will architecture (27). ACRES is designed as a partial
test of its functionality, treating the theory as a design spec-
ification [34, pp. 237, 247]. Will—the spiritual successor of
ACRES—proposes a reasonable extension of Frj.: emotion,
moods, sentiments, and personality are related by focus
and duration [36, pp. 135–136, 138]. This is convenient for

CMEs, as it shows that these affective types can share the
same underlying structure. Scherer directly influenced the
design of ELSA (28). This CME is particularly relevant, as its
purpose is to show that Sch.—which takes an information
systems view on emotion processes [122, pp. 103]—can be
computationally operationalized and used as a research
tool [35, pp. 142–143]. Ortony provided direct supervision
for AffectR (1) [10, pp. iv], which presumably makes it
the most faithful account of OCC emotion generation pro-
cesses and action tendency taxonomy. More details are in
Section 2.3.5.

A number of CMEs have also been indirectly guided
by psychologists via other systems [38, pp. 325] or by
consultation [38, pp. 332], [17, pp. 281] [37, pp. 303], [167,
pp. 89], [22, pp. vii], [145, pp. 101]. These systems provide
valuable insights, though their usefulness is limited to spe-
cific elements. Caution must be used, as it can be difficult to
tell which parts relied on consultation and which did not.

3.5 Data, Models, and Other Theories
Affective theories are not self-contained. They do not ad-
dress all aspects of emotion generation that a CME might
need, such as emotion intensity and cognitive organization.
In these cases, CMEs might draw on additional affective
theories or start to look beyond them to other sources.

A number of systems—like TABASCO (7), FAtiMA (35),
AKR (10), SOM (20), HybridC (19), Greta (37), Kismet (47),
and MM (59)—strengthen or extend their chosen theoretical
foundations by supporting it with other comparable or
complementary theories [17, pp. 266], [44, pp. 130, 132],
[18, pp. 594, 599–600, 606], [29, pp. 218, 247], [25, pp. 63–
64], [46, pp. 91], [55, pp. 129], [69, pp. 6, 8–9]. Some, like
FLAME (4), cite additional work to support perceived short-
comings in a foundational theory [11, pp. 223, 233–234, 239].
Yet other CMEs use additional sources to connect emotion
with other system components, such as mood [26, pp. 5–
6], [15, pp. 72], [20, pp. 119]8, social variables [65, pp. 288],
and emotion expression [24, pp. 27]. An interesting example
is POMDP-CA (50), which uses [169] to mathematically
define unexpectedness [56, pp. 269], similar to suddenness in
Sch. [122, pp. 95]. This is necessary to appraise Surprise
in both Ros. [123, pp. 267] and OCC [126, pp. 126]. Three
sources in particular have left lasting impressions in affec-
tive computing: Picard [1], Minsky [170], and empirical data.

A pioneer of affective computing, Picard offers a com-
puter science-friendly view on affect, offering models and
ideas for CME design. AKR (10) references it to justify its
use of Markov Models for emotion dynamics [18, pp. 603].
PMES (13) uses Picard to define an emotion intensity func-
tion [21, pp. 252]. DER (15) uses Picard to define emotion
intensity functions, dynamic filters so that mood influences
emotions, and to describe emotional stimulus impulses [26,
pp. 7–8]. KaMERo (48) cites Picard for comparable rea-
sons [60, pp. 259–260]. IM-PMEB (14) and FAtiMA (35) use
Picard to define an emotion intensity decay function [23,
pp. 68], [44, pp. 130–131]. SocioEmo (56) references both
Picard and ALMA (38) for this task [65, pp. 289]. Pres-
ence (45) cites Picard for their separation of primary and

8. [20, pp. 119] notes that the idea of an activation threshold in [168]
is consistent with OCC.
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secondary emotion processing channels, motivating its use
of Slo. and Dam. [42, pp. 160]. Greta (37) cites Picard’s
“tub of water” metaphor, comparable to Plu., for addressing
coexistent emotions in its design considerations [46, pp. 99].
TAME (51) uses Picard for defining emotion dynamics as a
system response [63, pp. 211].

Minsky offers a model of human intelligence amenable
to AI. Since many affective theories—especially appraisal
theories—rely on cognition, Minsky’s Society of Mind
presents a way to model it. O & JL explicitly draw parallels
to it [131, pp. 32, 39]. EmMod (3) cites Minsky as the
main inspiration for its architecture, producing complex
behaviors via the interactions of many, simple units [16,
pp. 63]. Cathexis (2) compares its models of secondary
emotions to Minsky k-lines, connecting primary emotions
to encountered stimuli [15, pp. 73]. HoE (21) also compares
its radial dimensions to k-lines [30, pp. 149, 152]. It further
cites Minsky for its assumption of independent resources
that determine emotion states.

Empirical data, the best source for replicating observable
phenomena, is also critical in CMEs. It has been used it for:
defining degrees of emotion positivity and negativity [157,
pp. 4], emotion effects [13, pp. 136], and how mood in-
fluences emotion [23, pp. 69]; deriving emotion intensity
functions [51, pp. 419]; quantifying the relationship between
emotion intensity, desires, and expectations [11, pp. 232],
[20, pp. 125]; and gesture models [43, pp. 302]. Of these,
only MAMID (6) does not state its source. Some systems
have moved to a purely data-driven approaches (e.g. [171],
[172]), implying that empirical data will continue to be a big
part of CME design.

Even this extension to the prevalent theories in the sur-
veyed CMEs does not cover all the potential affective theory
candidates (see [73, pp. 280–281]). However, it does provide
a reference for exploring the domain of affective theories
and a starting point for thinking about affect in terms of
computational models. For example, if one is considering V-
A then they might look into [173] to see if it fits their needs
better. One should not feel limited to what is listed here—
there might yet be inspiration in unlikely places (e.g. [174]).

4 CONCLUSION

We have surveyed the ways that CMEs use affective theo-
ries. It examines CMEs from different application domains
to see how they used the theories for emotion generation,
expression, and other design purposes. A comparison of
these uses found that each type of affective theory filled
a similar role across the application domains:

• Discrete theories define what emotions a CME ex-
presses and how it does so,

• Dimensional theories provide a simple representation
that can describe different types of affect in a common
space,

• Appraisal theories connect emotion to cognition—using
it to drive plans and behaviors—with a finite set of
defined evaluations, and

• Neurobiological theories unite the reactionary and de-
liberative emotion views, tying them to measurable
body states.

Like the survey, this list is not meant to be exhaustive.
There are likely other ways that one could apply these
theories to CME designs. The hope is that both veteran
designers and newcomers to the field use this survey as
a starting point for new CME designs by providing them
with a practical view of some affective theories and existing
CMEs to borrow from and build on.
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