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Abstract

We analyze the noise characteristics of an optical transmission system repeated by two-mode phase-sensitive optical parametric

amplifiers. In such a system, the non-degenerated signal and idler waves co-propagate through the link, interacting with each

other in the optical parametric amplifiers. For the first time, we derive a closed-form expression for the accumulated noise

using the quantum-mechanical Langevin-equation approach. The derived noise formula allows calculating the noise figure of

the optical-amplifier chain under the influence of the internal loss of the amplifiers and the transmission loss of the link, thereby

theoretically demonstrating its low-noise characteristics.
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Theory of noise in optical transmission systems

repeated by two-mode phase-sensitive optical

parametric amplifiers

Kazuro Kikuchi

National Institution for Academic Degrees and
Quality Enhancement of Higher Education

Abstract

We analyze the noise characteristics of an optical transmission system repeated by two-mode
phase-sensitive optical parametric amplifiers. In such a system, the non-degenerated signal and
idler waves co-propagate through the link, interacting with each other in the optical parametric
amplifiers. For the first time, we derive a closed-form expression for the accumulated noise using
the quantum-mechanical Langevin-equation approach. The derived noise formula allows calculat-
ing the noise figure of the optical-amplifier chain under the influence of the internal loss of the
amplifiers and the transmission loss of the link, thereby theoretically demonstrating its low-noise
characteristics.

1 Introduction

Optical parametric amplifiers (OPAs) are suitable for large-capacity long-dis- tance optical transmis-
sion systems because of their low noise and wideband characteristics. Recently, phase-insensitive OPAs
(PIAs) operating over a 10-THz bandwidth were experimentally demonstrated using periodically poled
lithium niobate (PPLN) waveguides. The PIA-based repeaters enabled the transmission of a 41-ch
800-Gb/s polarization-division-multiplexed signal over three 30.8-km repeater spans [1].

However, the noise figure (NF) of the PIA is higher than the quantum limit of 3 dB because the
input port for the idler wave in the PIA is empty, and the vacuum fluctuations in the idler channel
merge into the signal. In contrast, one-mode phase-sensitive optical parametric amplifiers (PSAs), in
which the signal and idler are degenerated, can perform noise-free optical amplification, that is, NF
= 0 dB. This is because there is no empty input port in one-mode PSAs. However, the drawback of
one-mode PSAs is that only the in-phase(I) component of the signal electric field is amplified, whereas
the quadrature (Q) component is deamplified [2]. Using PPLN waveguides, the in-line one-mode PSA
for a 40-Gb/s differential phase-shift-keying signal was demonstrated in a 160-km fiber link [3].

Two-mode PSAs were proposed in [4] and experimentally demonstrated in [5, 6, 7]. They have the
advantage that the IQ components of the signal electric field can be simultaneously amplified, while
the NF is maintained at 0 dB. Recently, their low noise characteristics were demonstrated by using
integrated silicon nitride waveguides [8]. In the transmission system repeated by two-mode PSAs,
the idler input is given as a phase conjugation of the signal input. Subsequently, the signal and idler
waves co-propagate through the link, interacting with each other in the PSAs. Although it is crucial
to investigate the noise characteristics of such a system, there are few studies on this problem.

The present study analyzes the noise characteristics of a transmission system repeated by two-mode
PSAs. We apply the quantum-mechanical Langevin-equation approach [9, 10] to derive a closed-form
expression for the accumulated noise. To the best of the author’s knowledge, this is the first study
that derives such a theoretical expression. Using the derived noise formula, the NF of the transmission
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system repeated by two-mode PSAs is analyzed under the influence of the internal loss of the PSAs
and the transmission loss of the link, demonstrating its low-noise characteristics and elucidating the
physical origin of this low noise.

The organization of this paper is as follows. In Sec. 2, following the formulation provided in [9],
we introduce the quantum-mechanical Langevin equations for OPAs including the internal loss, and
summarize the noise characteristics of PIAs and one-mode PSAs. In Sec. 3, the noise characteristics
of an optical-amplifier chain repeated by two-mode PSAs are discussed on the basis of the quantum-
mechanical Langevin-equation approach, and a closed-form expression for the accumulated noise is
derived. Section 4 reports calculated results of the NF of single-stage two-mode PSAs. Subsequently,
the NF of the optical-amplifier chain repeated by two-mode PSAs is calculated in Sec. 5. Finally,
Sec. 6 concludes this paper.

2 Quantum-mechanical Langevin-equation approach for noise
analyses of OPAs

We introduce the quantum-mechanical Langevin equations for OPAs including the effect of the internal
loss. The noise characteristics of PIAs and one-mode PSAs are discussed on the basis of the solutions
to the Langevin equations [10].

2.1 Langevin equations for PIAs and their solutions

When a signal electric field and an idler electric field propagate through an OPA, the annihilation
operator for the signal, âs, and the creation operator for the idler, â†i , satisfy the following Langevin
equations [11]:

dâs (t)

dt
= −g

2
eiϕâ†i (t)−

γ

2
âs (t) + f̂s (t) , (1)

dâ†i (t)

dt
= −g

2
e−iϕâs (t)−

γ

2
â†i (t) + f̂†

i (t) . (2)

In these equations, the gain coefficient, g, is a positive constant determined from the nonlinear optical
coefficient and the pump power, and ϕ is determined from the phase relation among the signal, idler,
and pump waves. In this study, we assume that the loss coefficients of the signal and idler have
the same value γ. The fluctuation operators, f̂s and f̂i, result from the loss of the signal and idler,
respectively. According to the quantum damping theory [12], the correlation properties between the
above-mentioned fluctuation operators are expressed as follows:〈

f̂s (t) f̂
†
s (t

′)
〉

= γδ (t− t′) , (3)〈
f̂i (t) f̂

†
i (t

′)
〉

= γδ (t− t′) , (4)〈
f̂†
s (t) f̂s (t

′)
〉

= 0 , (5)〈
f̂†
i (t) f̂i (t

′)
〉

= 0 . (6)

Moreover, f̂s and f̂i are not correlated.

2



Analytical solutions to Eqs. (1) and (2) can be derived as follows [9, 10]:

âs (t) =
[
âs (0) + Â (t)

]
cosh

(
gt

2

)
exp

(
−γt

2

)
−
[
eiϕâ†i (0) + B̂ (t)

]
sinh

(
gt

2

)
exp

(
−γt

2

)
, (7)

â†i (t) =
[
â†i (0) + e−iϕB̂ (t)

]
cosh

(
gt

2

)
exp

(
−γt

2

)
− e−iϕ

[
âs (0) + Â (t)

]
sinh

(
gt

2

)
exp

(
−γt

2

)
, (8)

where the operators, Â (t) and B̂ (t), are expressed as follows:

Â (t) =

∫ t

0

[
f̂s (t

′) exp

(
γt′

2

)
cosh

(
gt′

2

)
+ f̂†

i (t
′) eiϕ exp

(
γt′

2

)
sinh

(
gt′

2

)]
dt′ , (9)

B̂ (t) =

∫ t

0

[
f̂†
i (t

′) eiϕ exp

(
γt′

2

)
cosh

(
gt′

2

)
+ f̂s (t

′) exp

(
γt′

2

)
sinh

(
gt′

2

)]
dt′ . (10)

Using Eqs. (3)–(6), we obtain the following averages for the operators, Â (t) and B̂ (t), from Eqs. (9)
and (10): 〈

Â† (t) Â (t)
〉

=
1

4

exp ((g + γ) t)− 1

1 +
g

γ

+
exp ((−g + γ) t)− 1

1− g

γ

− 2 (exp (γt)− 1)

 , (11)

〈
B̂† (t) B̂ (t)

〉
=

1

4

exp ((g + γ) t)− 1

1 +
g

γ

+
exp ((−g + γ) t)− 1

1− g

γ

+ 2 (exp (γt)− 1)

 , (12)

〈
Â† (t) B̂ (t) + B̂† (t) Â (t)

〉
=

1

2

exp ((g + γ) t)− 1

1 +
g

γ

− exp ((−g + γ) t)− 1

1− g

γ

 . (13)

When the signal is incident on the OPA but the idler is not, the signal gain does not depend on ϕ, as
shown by Eq. (7). This mode of operation is referred to as phase-insensitive parametric amplification.
In the following, we assume that âi (0) = ∆âi (0), where ∆âi (0) represents the vacuum fluctuations in
the idler channel. According to Eq. (7), the vacuum fluctuations in the idler channel merge into the
signal channel and increase the signal noise.

Using Eqs. (7) and (11)–(13), the average number of output signal photons can be derived after
straightforward calculations as follows [9, 10]:〈

â†s (t) âs (t)
〉
= G0Γ0

〈
â†s (0) âs (0)

〉
+ (G0Γ0 − 1)nsp0 , (14)

where the gross gain, G0, is given by

G0 = cosh2
(
gt

2

)
, (15)
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the internal loss, Γ0, is given by
Γ0 = exp (−γt) , (16)

and the spontaneous emission factor, nsp0, is expressed as follows:

nsp0 = 1 +
1

G0Γ0 − 1


1

4

(
1 +

g

γ

) [1− Γ0

(√
G0 −

√
G0 − 1

)2]

+
1

4

(
1− g

γ

) [1− Γ0

(√
G0 +

√
G0 − 1

)2]
+

1

2
(1− Γ0)

 . (17)

The first term in Eq. (14) represents the amplified number of photons, whereas the second term
represents the amplified spontaneous emission (ASE), characterized by its resemblance with the laser-
amplifier theory [13].

From Eq. (7), we find that the real part of the electric field, âsr (t), is amplified such that

⟨âsr (t)⟩ =
√
G0Γ0 ⟨âsr (0)⟩ . (18)

Meanwhile, when the input signal is in the coherent state, the variance of the fluctuations in the real
part of the signal electric field is calculated using Eqs. (7), (11)–(13), and (15)–(17), as follows [9]:〈

∆â2sr (t)
〉

=
1

4
+

1

2
(G0Γ0 − 1)nsp0 . (19)

The first term in Eq. (19) represents the vacuum fluctuations, whereas the second term represents the
ASE. In addition, the imaginary part has gain and noise variance, which are expressed as in Eqs. (18)
and (19), respectively, meaning that PIAs isotropically amplify the IQ components of the signal electric
field.

In the optical transmission system, where PIA-based repeaters compensate for the span loss, Γs,
the net gain of each PIA is adjusted such that

G0Γ0 =
1

Γs
. (20)

The ASE from each PIA is accumulated at the output, and the variance of the fluctuations in the real
part of the signal electric field is expressed as follows:〈

∆â2sr,n
〉

=
1

4
+

1

2
(1− Γs)nnsp0 , (21)

where n represents the number of spans.

2.2 Langevin equations for one-mode PSAs and their solutions

When the signal and idler OPAs are degenerated, the gain becomes dependent on ϕ. This mode of
operation is referred to as one-mode phase-sensitive parametric amplification. In contrast to PIAs,
the vacuum fluctuations cannot be merged from the idler port, which is closed in one-mode PSAs;
therefore, noise-free amplification is possible using such amplifiers.

Given that ϕ = π, Eqs. (1) and (2) yield the following Langevin equation governing the one-mode
PSA:

dâs (t)

dt
=

g

2
â†s (t)−

γ

2
âs (t) + f̂s (t) . (22)
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The Langevin equations for the real part, âsr (t), and imaginary part, âsi (t), of the signal electric field
are expressed as follows:

dâsr (t)

dt
=

g

2
âsr (t)−

γ

2
âsr (t) +

1

2

(
f̂s (t) + f̂†

s (t)
)

, (23)

dâsi (t)

dt
= −g

2
âsi (t)−

γ

2
âsi (t) +

1

2i

(
f̂s (t)− f̂†

s (t)
)

. (24)

The solution to Eq. (23) is given by

âsr (t) = exp

(
(g − γ) t

2

)[
âsr (0) +

1

2

∫ t

0

exp

(
− (g − γ) t′

2

)(
f̂s (t

′) + f̂†
s (t

′)
)
dt′
]

, (25)

whereas the solution to Eq. (24) is given by

âsi (t) = exp

(
− (g + γ) t

2

)[
âsi (0) +

1

2i

∫ t

0

exp

(
(g + γ) t′

2

)(
f̂s (t

′)− f̂†
s (t

′)
)
dt′
]

. (26)

Note that the real part of the signal electric field is amplified, whereas its imaginary part is deamplified,
as expressed by

⟨âsr (t)⟩ =
√
G0+Γ0 ⟨âsr (0)⟩ , (27)

⟨âsi (t)⟩ =
√
G0−Γ0 ⟨âsi (0)⟩ , (28)

where the phase-sensitive gains, G0+ and G0−, are defined as follows:

G0+ =
√
G0 +

√
G0 − 1 , (29)

G0− =
√
G0 −

√
G0 − 1 . (30)

The variance of the fluctuations in the real part of the signal electric field can be calculated from
Eqs. (3)–(6) and (25) when the incident signal is in a coherent state, as follows[9, 10]:〈

∆â2sr (t)
〉

=
1

4
+

(G0+Γ0 − 1)nsp+

4
, (31)

where nsp+ represents the spontaneous emission factor, which is expressed as

nsp+ =
g

g − γ
. (32)

Meanwhile, the variance of the imaginary part is calculated from Eqs. (3)–(6) and (26), as follows [10]:〈
∆â2si (t)

〉
=

1

4
+

1

4
(G0−Γ0 − 1)nsp− , (33)

where the spontaneous emission factor, nsp−, is defined as

nsp− =
g

g + γ
. (34)

The real part of the signal electric field can be transmitted over a long distance by using one-mode
PSA-based repeaters, whose net phase-sensitive gain, G0+Γ0, is adjusted such that

G0+Γ0 =
1

Γs
. (35)

Consequently, the variance of the fluctuations in the real part of the signal electric field is given by〈
∆â2sr,n

〉
=

1

4
+

1

4
(1− Γs)nnsp+ . (36)
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3 Analyses of noise in optical transmission systems repeated
by two-mode PSAs

The noise characteristics of an optical-amplifier chain repeated by two-mode PSAs are discussed using
the quantum-mechanical Langevin-equation approach introduced in Sec. 2. We derive a closed-form
expression for the accumulated noise in the transmitted signal.

3.1 Langevin equations for two-mode PSAs and their solutions

Figure 1 illustrates the model for the optical transmission system repeated by two-mode PSAs, where
the signal and idler simultaneously travel through the link. Let the annihilation operator for a signal
electric field generated from the k-th span be âs,k, and the creation operator for an idler electric field

generated from the k-th span be â†i,k. When the phase relation among the signal, idler, and pump
is optimally controlled in each PSA such that ϕ = π, Eqs. (7) and (8) yield the following difference

sequences for âs,k and â†i,k:

âs,k+1 =
(√

G0Γ0âs,k +
√

(G0 − 1)Γ0â
†
i,k + Ĉ†

s,k + D̂s,k

)√
Γs +

√
1− Γsd̂s,k , (37)

â†i,k+1 =
(√

G0Γ0â
†
i,k +

√
(G0 − 1)Γ0âs,k + Ĉ†

i,k + D̂i,k

)√
Γs +

√
1− Γsd̂

†
i,k . (38)

The operators, Ĉ†
s,k, D̂s,k, Ĉ

†
i,k, and D̂i,k, represent fluctuations that originate from the internal loss

of the signal and idler, and are expressed as follows:

Ĉ†
s,k =

∫ t

0

f̂†
i,k (t

′) exp

(
γt′

2

)[√
(G0 − 1)Γ0 cosh

(
gt′

2

)
−
√
G0Γ0 sinh

(
gt′

2

)]
dt′ , (39)

D̂s,k =

∫ t

0

f̂s,k (t
′) exp

(
γt′

2

)[√
G0Γ0 cosh

(
gt′

2

)
−
√
(G0 − 1)Γ0 sinh

(
gt′

2

)]
dt′ , (40)

Ĉ†
i,k =

∫ t

0

f̂†
i,k (t

′) exp

(
γt′

2

)[√
G0Γ0 cosh

(
gt′

2

)
−
√
(G0 − 1)Γ0 sinh

(
gt′

2

)]
dt′ , (41)

D̂i,k =

∫ t

0

f̂s,k (t
′) exp

(
γt′

2

)[√
(G0 − 1)Γ0 cosh

(
gt′

2

)
−
√
G0Γ0 sinh

(
gt′

2

)]
dt′ . (42)

The fluctuation operators, f̂s,k and f̂i,k, result from the internal loss of the signal and idler in the k-th
PSA, respectively, and they satisfy the correlation relations expressed by Eqs. (3)–(6). Moreover, in
Eqs. (37) and (38), the annihilation operator for the vacuum field associated with the span loss of the

signal is given by d̂s,k, and the creation operator for the vacuum field associated with the span loss of

the idler is given by d̂†i,k.

,0
ˆ

ia

2-PSA #1 2-PSA #2 2-PSA #n

Signal

Idler

,0
ˆ

sa

,
ˆ

s na

,
ˆ

i na

,1
ˆ

sa

,1
ˆ

ia

,2
ˆ

sa

,1
ˆ

ia
Span #1 Span #2 Span #n

Figure 1: Transmission system repeated by two-mode PSAs; the signal and idler simultaneously travel
through the link.

6



Equations (37) and (38) are transformed into

âs,k+1 + â†i,k+1 =
√
G+

(
âs,k + â†i,k

)
+
√
Γs

(
Ĉ†

s,k + Ĉ†
i,k + D̂s,k + D̂i,k

)
+
√

1− Γs

(
d̂s,k + d̂†i,k

)
, (43)

âs,k+1 − â†i,k+1 =
√
G−

(
âs,k − â†i,k

)
+
√
Γs

(
Ĉ†

s,k − Ĉ†
i,k + D̂s,k − D̂i,k

)
+
√

1− Γs

(
d̂s,k − d̂†i,k

)
, (44)

where the net phase-sensitive gains, G±, are defined as

G± = G0±Γ0Γs . (45)

We find that âs,0 + â†i,0 is amplified with a gain
√
G+ in each span, whereas âs,0 − â†i,0 is deamplified

with a factor
√
G−. Consequently, the solutions to Eqs. (43) and (44) are expressed as follows:

âs,n + â†i,n =
√
Gn

+

(
âs,0 + â†i,0

)
+
√
Γs

n∑
k=1

√
Gk−1

+

(
Ĉ†

s,k + D̂s,k + Ĉ†
i,k + D̂i,k

)
+
√

1− Γs

n∑
k=1

√
Gk−1

+

(
d̂s,k + d̂†i,k

)
, (46)

âs,n − â†i,n =
√
Gn

−

(
âs,0 − â†i,0

)
+
√
Γs

n∑
k=1

√
Gk−1

−

(
Ĉ†

s,k + D̂s,k − Ĉ†
i,k − D̂i,k

)
+
√

1− Γs

n∑
k=1

√
Gk−1

−

(
d̂s,k − d̂†i,k

)
. (47)

Finally, from Eqs. (46) and (47), we obtain the following expression for the signal output from the
n-th span:

âs,n =
1

2

[(√
Gn

+ +
√

Gn
−

)
âs,0 +

(√
Gn

+ −
√
Gn

−

)
â†i,0

]
+

√
Γs

2

[
n∑

k=1

(√
Gk−1

+ +
√
Gk−1

−

)(
Ĉ†

s,k + D̂s,k

)
+

n∑
k=1

(√
Gk−1

+ −
√
Gk−1

−

)(
Ĉ†

i,k + D̂i,k

)]

+

√
1− Γs

2

[
n∑

k=1

(√
Gk−1

+ +
√
Gk−1

−

)
d̂s,k +

n∑
k=1

(√
Gk−1

+ −
√
Gk−1

−

)
d̂†i,k

]
. (48)

Preparing the idler input such that ⟨âi,0⟩ = ⟨âs,0⟩∗ through four-wave mixing and proper phase ad-
justment processes [5], we can obtain the following expression for signal output:

⟨âs,n⟩ =
√

Gn
+ ⟨âs,0⟩ . (49)

Therefore, to compensate for the span loss, the gain of each amplifier is adjusted such that G+ = 1.
Note that both IQ components of the signal electric field can be transmitted even exploiting the
phase-sensitive gain.
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3.2 Close-form expression for noise in two-mode PSAs

Let the real parts of Ĉs,k, Ĉi,k, D̂s,k, and D̂i,k be expressed as Ĉsr,k, Ĉir,k, D̂sr,k, and D̂ir,k, respectively.
Equations (39)–(42) yield the following averages for the operators:〈

Ĉ2
sr,k

〉
=
〈
D̂2

ir,k

〉
=

1

4

[
γ

4 (g + γ)
(1− Γ0G0−) +

γ

4 (−g + γ)
(1− Γ0G0+)−

1− Γ0

2

]
, (50)〈

Ĉ2
ir,k

〉
=
〈
D̂2

sr,k

〉
=

1

4

[
γ

4 (g + γ)
(1− Γ0G0−) +

γ

4 (−g + γ)
(1− Γ0G0+) +

1− Γ0

2

]
, (51)〈

Ĉsr,kĈir,k

〉
=
〈
D̂sr,kD̂ir,k

〉
=

1

16

[
γ

−g + γ
(1− Γ0G0+)−

γ

g + γ
(1− Γ0G0−)

]
. (52)

Using Eqs. (50)–(52), Eq. (48) yields the variance of the fluctuations in the real part of the signal
electric field from the n-th span, which is expressed as follows:

〈
∆â2sr,n

〉
=

1

8

(
Gn

+ +Gn
−
)
+

Γs

2

[(
n∑

k=1

Gk−1
+

)
γ

4 (−g + γ)
(1− Γ0G0+)

+

(
n∑

k=1

Gk−1
−

)
γ

4 (g + γ)
(1− Γ0G0−)

]
+

1− Γs

8

n∑
k=1

(
Gk−1

+ +Gk−1
−
)
. (53)

4 NF of single-stage two-mode PSAs

After deriving the theoretical expression for the NF of single-stage two-mode PSAs, we calculate the
NF as functions of the net gain and internal loss.

4.1 Theoretical expression for NF

The average of the real part of the signal electric field from the single-stage two-mode PSA is expressed
as follows:

⟨âsr,1⟩ =
√

G+ ⟨âsr,0⟩ . (54)

Meanwhile, the variance of its fluctuations is derived from Eq. (53), setting n = 1 and Γs = 1, as
follows: 〈

∆â2sr,1
〉
=

1

4
+

(G+ − 1)nsp+

8
+

(G− − 1)nsp−

8
, (55)

which demonstrates that the noise of the two-mode PSA stems from the vacuum fluctuations and ASE
associated with the phase-sensitive gains of G±. The equivalent input noise is expressed as follows:

〈
∆â2sr,1,eq

〉
=

〈
∆â2sr,1

〉
G+

. (56)

Meanwhile, fluctuations of the input signal and idler are expressed as follows:〈
∆â2sr,0

〉
=

1

4
, (57)〈

∆â2ir,0
〉
=

1

4
. (58)

Note that the signal and idler have the same modulation but their noise is uncorrelated. Thus, we can
consider that the noise variance of the input signal reduces to 1/8 through the averaging process. The

8



NF of amplifiers can be generally defined as the power ratio of the equivalent input noise to the actual
input noise. Consequently, the NF of the single-stage two-mode PSA is obtained as follows:

NF = 8
〈
∆â2sr,1,eq

〉
. (59)

In the limit where G+ → ∞, Eq. (59) leads to

NF = nsp+ , (60)

which is the same as the NF of the one-mode PAS. We find that when g ≫ γ, the NF approaches 0 dB.

4.2 Numerical results on NF

Figure 2 represents the NFs of single-stage two-mode PSAs calculated as a function of the net gain,
G+. The black, red, blue, and green curves correspond to Γ0 values of 0 dB, -3 dB, -5 dB, and -10 dB,
respectively. The solid curves were calculated using Eqs. (55), (56), and (59), whereas the broken
curves were obtained from the approximated formula provided in Eq. (60). We find that nsp+ is a
good approximation of NF when G+ is sufficiently larger than unity.

0 0 dB =

0 3 dB = −

0 5 dB = −

0 10 dB= −

Net gain      [dB] G+

Figure 2: NFs of single-stage two-mode PSAs calculated as a function of the net gain G+, when Γ0 was
set to 0 dB (black), -3 dB (red), -5 dB (blue), and -10 dB (green). The solid curves were calculated
using Eqs. (55), (56), and (59), whereas the broken curves were obtained from the approximated
formula NF = nsp+.

Figure 3 depicts the NFs of single-stage two-mode PSAs calculated as a function of the internal loss
expressed as 1/Γ0. The blue, red, and black curves represent the results obtained when the net gain
G+ was fixed at 5 dB, 10 dB, and 20 dB, respectively. The solid curves were obtained from Eqs. (55),
(56), and (59), whereas the broken curves were obtained from the approximated formula provide in
Eq. (60). This approximated formula is valid when G+ ≳ 10 dB.

5 NF of an optical-amplifier chain using two-mode PSAs

We next derive the theoretical expression for the NF of the optical-amplifier chain repeated by two-
mode PSAs and calculate the NF as a function of the number of spans with the preamplifier gain and
internal loss as parameters.

9



Internal loss           [dB] 
01/ 

20 dBG+ =

5 dBG+ =

10 dBG+ =

Figure 3: NFs of single-stage two-mode PSAs calculated as a function of the internal loss 1/Γ0, when
G+ was set to 5 dB (blue), 10 dB (red), and 20 dB (black). The solid curves were calculated using
Eqs. (55), (56), and (59), whereas the broken curves were obtained from the approximated formula
NF = nsp+.

5.1 Theoretical expression for NF

We assume the use of an optical preamplifier, which is an ideal two-mode PSA without internal loss,
in an optical transmission system repeated by two-mode PSAs. The phase-sensitive gains of the
preamplifier are G′

+ (≫ 1) and G′
−
(
= 1/G′

+

)
. Consequently, Eq. (53) is modified as follows:

〈
∆â2sr,n

〉
=

1

8

(
Gn

+G
′
+ +Gn

−G
′
−
)
+

Γs

2

[(
n∑

k=1

Gk−1
+

)
γ

4 (−g + γ)
(1− Γ0G0+)G

′
+

+

(
n∑

k=1

Gk−1
−

)
γ

4 (g + γ)
(1− Γ0G0−)G

′
−

]

+
1− Γs

8

[(
n∑

k=1

Gk−1
+

)
G′

+ +

(
n∑

k=1

Gk−1
−

)
G′

−

]
. (61)

Using Eq. (61), we obtain the equivalent input noise as

〈
∆â2sr,n,eq

〉
=

〈
∆â2sr,n

〉
G′

+

, (62)

and the NF of the optical-amplifier chain using the two-mode PSAs is expressed as

NF = 8
〈
∆â2sr,n,eq

〉
. (63)

Equations (61)–(63) show that when G′
+ → ∞, the NF is reduced to

NF = 1 + (1− Γs)nnsp+ , (64)

which is the same as the NF of the optical-amplifier chain using one-mode PSAs. We find that the
phase-sensitive gains of the preamplifier, G′

±, can filter the noise, and that the noise associated with

10



G− is eliminated, as expressed in Eq. (61). Therefore, the NF approaches its theoretical limit given
by Eq. (64).

5.2 Numerical results on NF

Figure 4 represents the NFs of the optical-amplifier chain using two-mode PSAs calculated as a function
of the number of spans, n, when Γs = −10 dB and Γ0 = 0 dB. The black, red, and blue circles represent
the NFs obtained using Eqs. (61), (62), and (63) when the preamplifier gain G′

+ was set to 0 dB, 3 dB,
and 10 dB, respectively. The broken curve represents the theoretical limit given by Eq. (64). The blue
circles are in good agreement with the theoretical limit. This is because when G′

+ ≳ 10 dB, the noise
associated with G− in Eq. (61) is sufficiently suppressed.

 ' 0 dBG + =

 ' 3 dBG + =

10 dB'G + =

Theoretical limit

n

Figure 4: NFs of the optical-amplifier chain using two-mode PSAs calculated as a function of n. We
assume that Γs = −10 dB and Γ0 = 0 dB. The black, red, and blue circles are the NFs obtained when
G′

+=0 dB, 3 dB, and 10 dB, respectively, using Eqs. (61), (62), and (63). The broken curve shows the
theoretical limit given by Eq. (64).

Figure 5 represents NFs calculated as a function of n by using Eqs. (61), (62), and (63), when
G′

+ =10 dB and Γs = −10 dB. The black, red, and blue circles correspond to Γ0=0 dB, -3 dB, and
-10 dB, respectively. In addition, the solid curves are the theoretical limits calculated from Eq. (64).
The circles are in good agreement with the theoretical limits owing to the sufficient preamplifier gain,
G′

+ =10 dB.

6 Conclusions

We analyzed the noise characteristics of an optical transmission system repeated by two-mode PSAs
using the quantum-mechanical Langevin-equation approach. To the best of the author’s knowledge,
this is the first study that derives a theoretical expression for the amount of accumulated noise. We
calculated the NF under the influence of the internal loss of the PSAs and the transmission loss of
the link, theoretically demonstrating the low-noise characteristics of the system and elucidating the
physical origin of this low noise.
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0 0 dB =

0 3 dB = −

0 5 dB = −

n

Figure 5: NFs of the optical-amplifier chain using two-mode PSAs calculated as a function of n using
Eqs. (61), (62), and (63), when G′

+ =10 dB and Γs = −10 dB. The black, red, and blue circles
correspond to Γ0=0 dB, -3 dB, and -10 dB, respectively. The solid curves represent the theoretical
limits calculated using Eq. (64).
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