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Abstract

Recent advancements in VR technology facilitate tracking real-world objects and users’ movements in the virtual environment

(VE) and inspire researchers to develop a physics-based haptic system (i.e., real object haptics) instead of computer-generated

haptic feedback. However, there is limited research on the efficacy of such VR systems in enhancing operators’ sensorimotor

learning for tasks that require high motor and physical demands. Therefore, this study aimed to design and evaluate the

efficacy of a physics-based virtual reality (VR) system that provides users realistic cutaneous and kinesthetic haptic feed-

back. We designed a physics-based VR system, named PhyVirtual, and simulated human-robot collaborative (HRC) sequential

pick-and-place lifting tasks in the VE. Participants performed the same tasks in the real environment (RE) with human-human

collaboration instead of human-robot collaboration. We used a custom-designed questionnaire, the NASA-TLX, and electromyo-

graphy activities from biceps, middle and anterior deltoid muscles to determine user experience, workload, and neuromuscular

dynamics, respectively. Overall, the majority of responses (>65%) demonstrated that the system is easy-to-use, easy-to-learn,

and effective in improving motor skill performance. While compared to tasks performed in the RE, the PhyVirtual system

placed significantly lower physical demand (124.90%; p < 0.05) on the user. The electromyography data exhibited similar trends

(p > 0.05; r > 0.89) for both environments. These results show that the PhyVirtual system is an effective tool to simulate

safe human-robot collaboration commonly seen in many modern warehousing settings. Moreover, it can be used as a viable

replacement for live sensorimotor training in a wide range of fields.
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 Abstract—Recent advancements in virtual reality (VR) 

technology facilitate tracking real-world objects and users' 

movements in the virtual environment (VE) and inspire 

researchers to develop a physics-based haptic system (i.e., real 

object haptics) instead of computer-generated haptic feedback. 

However, there is limited research on the efficacy of such VR 

systems in enhancing operators’ sensorimotor learning for tasks 

that require high motor and physical demands. Therefore, this 

study aimed to design and evaluate the efficacy of a physics-based 

virtual reality VR system that provides users realistic cutaneous 

and kinesthetic haptic feedback. We designed a physics-based VR 

system, named PhyVirtual, and simulated human-robot 

collaborative (HRC) sequential pick-and-place lifting tasks in the 

VE. Participants performed the same tasks in the real 

environment (RE) with human-human collaboration instead of 

human-robot collaboration. We used a custom-designed 

questionnaire, the NASA-TLX, and electromyography activities 

from biceps, middle and anterior deltoid muscles to determine 

user experience, workload, and neuromuscular dynamics, 

respectively. Overall, the majority of responses (>65%) 

demonstrated that the system is easy-to-use, easy-to-learn, and 

effective in improving motor skill performance. While compared 

to tasks performed in the RE, no significant difference was 

observed in the overall workload for the PhyVirtual system. The 

electromyography data exhibited similar trends (p > 0.05; r > 0.89) 

for both environments. These results show that the PhyVirtual 

system is an effective tool to simulate safe human-robot 

collaboration commonly seen in many modern warehousing 

settings. Moreover, it can be used as a viable replacement for live 

sensorimotor training in a wide range of fields. 

 
Index Terms—Sensorimotor training and skill acquisition, 

virtual reality, neuromuscular motor learning, simulation fidelity, 

human-robot collaboration.  

I. INTRODUCTION 

HE use of virtual reality (VR) system as an emerging 

Industry 4.0 technology continues to surge across various 

industrial domains to improve operators’ performance through 

sensorimotor training [1], [2]. The main driving force behind 

this popularity of VR technology is that it can simulate any real 

environment safely and reliably with a fraction of the cost. 

Consequently, the scientific discovery of its’ technological 

advancement has been evolved as a distinct field of research to 

provide primarily a realistic and compelling user experience, 

which mainly depends on usability and simulation fidelity of 

the VR system. 

The usability of a VR system refers to many crucial factors 

such as ease-of-use, ease-of-learning, ease-of-interaction, and 
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usefulness, whereas the fidelity of a VR system relates to the 

degree of realism the system provides in an experimental setup 

or a computer simulation [3], [4].  In general, researchers have 

used the terms “immersion” (the objective level of sensory 

fidelity a VR system provides, i.e., realism) [5], [6] and 

“presence” (the psychological sense of being in the virtual 

environment, i.e., engagement) [6] to define the fidelity of a VR 

system. Previous studies showed that the fidelity of a VR 

system is associated with the number of sensory modalities it 

stimulates [7]. For instances, many studies have demonstrated 

that multimodal sensory cues—haptic, auditory, and visual 

(HAV)—enhances experience, motor skill performance, and 

learning of the VR users [8-10] compared to bimodal (audio and 

visual—AV) or unimodal VR system and is as effective as live 

training for motor skill learning [11], [12]. Nevertheless, 

simulating haptic interactions is challenging. Different types of 

haptic devices—such as wearable electromechanical device 

[13] and haptic fabrics [14], finger-mounted 3-DoF haptic 

interfaces [15], and wand-based controllers [16] have been used 

to provide cutaneous and/or kinesthetic haptic feedback in a 

virtual environment (VE). However, all these aforementioned 

haptic devices are expensive and provide computer-generated 

(i.e., non-natural) limited force feedback. Consequently, they 

are not suitable for many applications (e.g., gross-motor tasks 

that require high force demands) due mainly to the complexity 

of simulating force-displacement relationships on the scale and 

precision of human force sensing [17].  Furthermore, their non-

natural haptic feedback fails to provide a high VR interaction 

and display fidelity (i.e., a sense of engagement, haptic realism, 

and motor skills) similar to real-world performance [18]. 

Recent advancements in VR technology have led to step-up 

changes in designing a high-fidelity VR haptic system. The 

development of VR trackers or the integration of VR and 

motion capture systems can facilitate researchers/practitioners 

tracking the movement of real-world objects or users in the VE 

in a cost-effective manner. This technological advancement in 

haptic technology aids researchers/practitioners to develop 

high-fidelity virtual replications of real-world objects (i.e., 

physics-based modeling), in which users are provided with real 
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cutaneous (object geometries) and kinesthetic (force/vibration) 

feedback of the interactive objects (i.e., physics-based haptics) 

at a much lower cost. A few recent studies have exploited the 

benefits of this physics-based haptic technology in their 

respective research [18], [19].  For instance, Cooper et al. [18] 

simulated a wheel change task on a virtual car by using the 

integration of VR and motion capture system. They used the 

physical prop of the wheel to provide the geometric and force 

feedback and two vibration motors attached to hand gloves to 

provide vibration feedback to the participants. Using the 

subjective measures, they observed that the physics-based 

haptics increased the user experience compared to bimodal 

(audio and video) and unimodal (audio or video only) sensory 

cues.  To our knowledge, the usability of a physics-based VR 

system in terms of engagement and realism, motor skill (i.e., 

neuromuscular dynamics), and workload, and their interplays 

with regard to real-world tasks in a complex dynamic industrial 

environment—which are essential to ensure the degree of 

exactness and the transfer of learning skills from the VE to real 

environments [20], [21]—has yet to be explored. 

Therefore, this study aimed to develop a high-fidelity 

physics-based VR system providing natural haptics to the users 

and the first-hand experience of a complex dynamic industrial 

environment and evaluate its usability. The significance of such 

virtual replications of a dynamic industrial environment was 

that their real-world staging requires high capital investments, 

specific geographic settings, or/and involves safety risks. For 

example, in recent times, human-robot collaboration (HRC) has 

been increasingly used to reduce human operators’ risk of 

injuries and increase productivity in warehousing 

environments. Thus, an ergonomic training program using 

immersive technologies is also crucial to prepare new and old 

operators for the safe and efficient performance of the HRC 

tasks [22]. However, simulating the real-world training 

scenarios of HRC pick-and-place tasks for 

inexperienced/novice users in warehouses (or in advanced 

manufacturing or military settings) is impractical due mainly to 

high capital investment and the risk of injury to the users. On 

the contrary, a combination of some physics-based modeled 

objects (i.e., virtual counterparts of real objects) and high 

fidelity virtual industrial environment may not only address the 

aforementioned concerns at a lower cost but also mitigate the 

limitations of computer-generated haptics. In this study, we 

simulated HRC pick-and-place lifting tasks commonly seen in 

a warehousing environment to evaluate the usability of the 

developed VR system. In particular, we attempted to investigate 

how the system influences users’ sense of engagement and 

realism, functional workload, and neuromuscular dynamics for 

tasks that require high force demand and gross-motor skills. We 

hypothesized that combining the physics-based haptic system 

with high-fidelity virtual objects would provide a same level of 

sense of engagement, functional workload and neuromuscular 

effort similar to tasks performed in the real-world context. 

However, we hypothesized that subjects would experience a 

reduced amount of workload as they get more familiar with the 

task complexity and high-fidelity virtual objects in the virtual 

environment. Our main objective was to find statistically 

insignificant differences between virtual environment tasks 

(VETs) and real environment tasks (RETs) regarding functional 

workload, neuromuscular effort, and task performance, which 

would validate the feasibility of our developed system. 

II. METHODS 

A. PhyVirtual (Physics-based Multimodal Virtual Reality) 

System Design 

We named our developed system the physics-based 

multimodal VR system (PhyVirtual) since we derived the 

virtual replications of the interactive objects based on their 

known-physical geometries to provide users with actual 

cutaneous and kinesthetic haptic feedback of the objects while 

they manipulated their virtual counterparts in the virtual 

environment. We developed the PhyVirtual System using the 

HTC Vive Pro Eye Virtual Reality System (HTC Corporation, 

New Taipei, Taiwan and Valve Corporation, Bellevue, 

Washington, USA), consisting of a head-mounted display 

(HMD), two base stations, two controllers, a link box, wireless 

add-on, and multiple VIVE trackers. The system has dual 

AMOLED 3.5 in diagonal HMD of 2880 x 1600 pixels 

resolution with a 90 Hz refresh rate, embedded eye-tracking 

sensors with 110° field of view (up to 120 Hz sampling rate) for 

a fully immersive experience. To design and display the virtual 

environment on a participant’s HMD, we used the Unity3D 

game engine (Unity Technologies, San Francisco, USA) with 

the SteamVR plugin installed from the Unity3D asset store. 

Muscle activity was measured using The Delsys TrignoTM 

Wireless EMG system (Delsys Inc., Natick, Massachusetts, 

USA). In addition, we used the 12-camera motion capture 

system (Motion Analysis Corporation, Rohnert Park, 

California, USA) to record the position, movement, and 

orientation of subjects and real objects. Other apparatus 

consisted of plastic boxes of 0.42 m × 0.28 m × 0.24 m 

 
Fig. 1.  Flowchart of the PhyVirtual system design process. Both ‘Real 

objects’ and ‘Tracked virtual objects’ existed in both real and virtual 

environments. Untracked virtual objects were interior components of the 

virtual environment that did not exist in the real environment. POV and 
VO denote the point-of-view of the participant in the virtual 

environment and virtual object, respectively. 
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dimensions and custom-made wooden pallets of 0.91 m × 0.91 

m × 0.15 m dimensions. 

The VE was designed to simulate the interior of a warehouse 

containing workers, forklifts, pallet racks, pallets, boxes, and 

four industrial collaborative robots (or cobots), which are some 

of the key aspects of an industrial HRC task scenario.  Three 

real-world pallets (one in the front, and one each on the left and 

the right side of the participant), four boxes (weighing 20 lbs. 

with same dimensions), and the participants’ hands (real objects 

in Fig. 1) were registered and connected to the VE via the 

attachment of one HTC VIVE tracker on each real-world 

object. We chose boxes weighing 20 lbs as the Lifting Index for 

our designed tasks with 20 lbs ranged from 1.0 to 1.5 (safe 

range) according to the NIOSH Lifting Equation [23]. Two base 

stations of the VR system located within the experimental setup 

area tracked the position, orientation, and movement of these 

trackers through SteamVR tracking technology. The data were 

then used to simulate the position and movement of real-world 

pallets, boxes, and participants’ hands in the virtual 

environment (tracked virtual objects in Fig. 1), providing the 

cutaneous and kinesthetic haptic feedback to the users in the 

VE. We filled the virtual warehouse with forklifts, workers, 

pallet racks, and other interior components (untracked virtual 

objects in Fig. 1). These objects were added to augment the 

display fidelity (i.e., display realism) of the VE. We simulated 

a sequential HRC task, where cobots and users can perform 

sequential pick-and-place lifting tasks using four boxes (i.e., 

workpieces). Box 1, Box 2, Box 3, and Box 4 indicated initial 

picking locations of a box respectively placed at 30° right to the 

mid-sagittal plane, right mid-frontal plane, 30° left to the mid-

sagittal plane, and left mid-frontal plane of the subjects at a 

horizontal distance of 50 cm (Fig. 2). The movement 

trajectories and destination locations of the boxes were 

controlled (Fig. 2); Target 1 and Target 2 denoted locations at 

10° left to the mid-sagittal plane and 10° right to the mid-

sagittal plane, respectively.  We designed four virtual industrial 

cobots and programmed them to deposit boxes and interact with 

the users in the VE (Fig. 1). Both real and virtual environments 

included a metronome and a varied level of workplace noise 

(85-90 dB), including sound effects of the robots’ movements. 

B. Experimental Design 

Twelve healthy participants (all males; mass: 72.96 ± 6.90 kg, 

height: 1.74 ± 0.05 m, age: 25.92 ± 3.55 years; all university 

students; all right-hand dominants; two with and ten without 

VR experience; free from any musculoskeletal discomfort or 

abnormality at the time of participation) were recruited to 

participate in this study. The participants were recruited by 

distributing flyers and online advertisements across the 

university. All participants provided written informed consent, 

approved by the Institutional Review Board at Texas Tech 

University. 

Participants performed six pick-and-place task trials—three 

in the RE and three in the VE. At the beginning of the task, the 

boxes were placed in their initial locations in the real world; 

however, they were not visible in the participants’ HMD until 

the cobots deposited the boxes at their respective locations (Fig. 

2). As soon as a cobot deposited a box on one of the four slots 

of the side pallets, the participant had to move the box from the 

side pallet (located at a horizontal distance of 40 cm) to one of 

the designated front pallet positions (Target 1 or Target 2) by 

twisting their upper torso in a squat lifting manner (Fig. 2). The 

pace of the lifting was controlled—8 seconds—using a virtual 

metronome (through visual and auditory feedback) in the VR 

environment. A 30-second rest period was provided using a 

virtual timer (through visual and auditory feedback) between 

the box pick-and-place tasks. During the rest period, another 

cobot deposited a box in one of the side pallets. The participant 

had to move the box by repeating the previous steps (Fig. 2). 

After two boxes were moved from side pallets to the front 

pallet, the experimenters removed the boxes from the 

experimental setup while the participant was resting. Similarly, 

two additional cobots deposited two other boxes, one by one, 

on the side pallet, and the participant moved them to the front 

pallet one by one. A VE task (VET) was completed when all 

four boxes (from both sides) were moved to the empty pallet, 

signifying one VET trial. Similar to VETs, participants 

performed the same pick-and-place sequential order in the real 

environment using the same background noise level (85 – 90 

dB), metronome pace (8 seconds), and timer to guide both 

sequential tasks and rest period. The real environment task 

(RET) did not include industrial cobots and warehouse interiors 

as we conducted the study in a controlled laboratory setting 

with human-human collaboration (i.e., the experimenter 

instructed the participant through verbal guidance). The box 

deposition order was randomly selected, and a unique order was 

assigned to the individual participants throughout the session 

for both VETs and RETs. We also randomized the order of six 

 
Fig. 2.  The initial and target locations of the boxes and the subject. Box 
1, Box 2, Box 3, and Box 4 denote locations at 30° right to the mid-

sagittal plane, right mid-frontal plane, 30° left to the mid-sagittal plane, 

and left mid-frontal plane of the subjects, respectively. Target 1 and 
Target 2 denote locations at 10° left to the mid-sagittal plane and 10° 

right to the mid-sagittal plane of the subject, respectively. 
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trials, with at least 3 minutes of rest in between trials. No formal 

practice trials were instructed as we investigated the learning 

effect across all VETs and RETs. 

C. Data Collection 

Muscle activation was measured from biceps, anterior 

deltoid, and middle deltoid muscles of the right side for the 

complete task duration. Prior to experimental tasks, participants 

performed two maximum voluntary contractions (MVC) for 

each muscle. The interelectrode distance of the sensors was 1 

cm, and data were collected at a sampling rate of 2148 Hz. We  

followed the procedures as discussed in a previous study for 

surface electrode placement [24]. The position, movement, and 

orientation of all boxes and the subjects were recorded for the 

 

Fig. 3.  Frequency percentage distribution of the questionnaire survey results, reflecting the participants’ agreement-disagreement level for each question in 

the questionnaire. The percentages on the left of the mid-axis line indicate the disagreement percentages (maximum 100%), whereas those on the right 

signify the agreement percentages (maximum 100%). A seven-point psychometric Likert scale was used to rate each question in the questionnaire, where the 
ratings were as follows ‒ ‘1’= ‘Strongly disagree,’ ‘2’ = ‘Firmly disagree,’ ‘3’ = ‘Disagree,’ ‘4’ = ‘Neutral,’ ‘5’ = ‘Agree,’ ‘6’ = ‘Firmly agree,’ ‘7’ = 

‘Strongly agree.’ 
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entire duration of each task using the motion capture system. 

Eight surface markers were placed on each box on the eight 

vertices, and multiple surface markers were placed on the 

subject according to the Plug-in-gait model [25]. Furthermore, 

four markers were placed on the HMD during the VETs. The 

marker data were collected continuously at a sampling 

frequency of 100 Hz. 

As time to completion (TTC) has been widely used for 

measuring performance and motor skills [26-28], we used the 

TTC for lifting each box in seconds as the measure of 

performance and motor skills of the subjects for VETs and 

RETs. The TTC (s) was defined as the time taken for a subject 

to move from an initial upright standing position, lift the box, 

place it, and come back to the initial upright standing position. 

We used the motion capture data to measure the TTC (s) for 

lifting each box. Similarly, the EMG trends were considered as 

another measure of motor skill to understand the synergy of 

neuromuscular dynamics in performing the VE and RE tasks. 

The NASA-TLX [29] based on a weighted average of ratings 

on six subscales: ‘mental demand,’ ‘physical demand,’ 

‘temporal demand,’ ‘performance,’ ‘effort,’ and ‘frustration’ 

was used to measure the overall workload (a score from 0 to 

100) of the subjects for the successful completion of each task. 

Based on previous literature [30-32] and our previous work 

[33], we developed a novel subjective questionnaire to evaluate 

the perceived ease-of-use, usefulness, and ease-of-learning of 

our PhyVirtual system along with the comparison between VET 

and RET (Fig. 3). We asked these structured questionnaires 

after each VET. The questionnaire contained four main 

domains—(1) perceived ease-of-use, (2) ease-of-learning, (3) 

usefulness, and (4) comparison between VET and RET. A 

seven-point psychometric Likert scale was used to rate each 

question in the questionnaire. The “Comparison between VET 

and RET” served as the measure of the system’s performance 

in simulating an engaging and realistic VE (i.e., the measure of 

“engagement” and overall “realism” provided by the system).  

D. Data Analysis 

The EMG signals were processed using a custom-built 

Matlab script in MATLAB (R2019b, The Math Works Inc.) 

program. The raw EMG signals for the complete task duration 

were separated into four sections (one for each box lifting 

exertion). Only the EMG signals for lifting exertions starting 

from the right-hand side of the participants (Box 1 and 2) were 

considered for the muscle activity analysis. We only considered 

the dominant side of the participants as previous studies showed 

that the dominant side effect is not significant for muscle 

activation patterns for healthy cohorts [34-37]. These EMG 

signals, including the MVC trials, were demeaned, notch 

filtered, and band-pass filtered at 10–400 Hz. The 60 Hz 

equipment noise and its harmonics were also attenuated. The 

filtered signals were full-wave rectified and smoothed using a 

moving average window of 25 frames. Then, the smoothed 

signals were normalized with respect to the maximum 

amplitude of the MVC signal to minimize between-subject or 

between-muscle errors. The N-MAV was then calculated for 

each trial using a 200 ms window with 100 ms overlap and 

resampled into 100 data points, with each data point 

representing 1% of the TTC of the box lifting exertion. Each 

exertion consisted of two peaks of neuromuscular dynamics, 

with Peak 1 representing the occurrence instance of maximum 

muscle torque during the acceleration phase and Peak 2 

representing the occurrence instance of maximum deceleration 

phase of the lifting. 

E. Statistical Analysis 

We calculated the descriptive statistics (mean ± standard 

error) of the NASA-TLX scores (both individual subscales and 

overall) and TTCs for VETs and RETs separately by averaging 

across all subjects and all trials. We also estimated the N-MAVs 

and the percentile of TTC (%) at Peak 1 and Peak 2 by 

averaging across all subjects and all trials for the individual 

muscles and boxes (Box 1 and Box 2). To observe the trend of 

muscle activation for VETs and RETs separately, we also 

averaged the N-MAV values of every 1% between 0 to 100% 

task completion across all subjects and all trials and computed 

the Pearson’s Correlation Coefficient (r) between them. For the 

subjective questionnaire, we determined the overall rating for 

each domain by averaging the ratings of the individual 

questions under that domain. Then, we averaged the ratings of 

the domains separately across all subjects. Furthermore, we 

analyzed the ratings of each question in the questionnaire 

separately by calculating their frequency percentage 

distributions. 

We calculated the Intra-class Correlation Coefficient (ICC) 

(two-way mixed absolute agreement) and nonparametric 

Spearman correlation coefficient (ρ; with 95% significance 

level) between the subjects to measure the questionnaire's inter-

rater reliability and validity, respectively. At first, we 

performed Shapiro-Wilk’s test to check if the normal 

distribution assumption was met in the individual datasets.  We 

employed independent samples T-tests and pairwise T-tests for 

the normally distributed datasets. If the normality assumption 

was violated, we employed non-parametric Wilcoxon signed-

rank and two-sample Kolmogorov-Smirnov tests for pairwise 

and independent sample comparisons, respectively. We set the 

 
Fig. 4.  Comparison of the mean of weighted ratings for different NASA-
TLX subscales between VETs and RETs averaged across all subjects. 

Each error bar represents one standard error. VET and RET denote 

virtual environment task and real environment task, respectively. A p-

value < 0.05 is denoted by asterisk (*). 
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confidence interval at 95% (α = 0.05).  Except the inferential 

statistics of the questionnaire datasets, the task type (VET 

versus RET) was the independent variable, whereas the overall 

and individual scores of six NASA-TLX subscales, TTC (s), N-

MAV, and TTC (%) (i.e., the occurrence) of Peak 1 and Peak 2 

of all muscles were the dependent variables across all other 

datasets at their respective pairwise tests. We also performed 

pairwise T-tests to examine the effect of trial on the overall 

NASA-TLX workload score and TTC (s). Moreover, we 

implemented multiple independent samples T-tests to 

investigate if the mean rating score of each domain (ease-of-

use, ease-of-learning, usefulness, and comparison between 

VET and RET) of the questionnaire datasets were significantly 

different from the mean score of 4, as it is the borderline score 

between disagree and agree rating. The Shapiro-Wilk’s tests for 

normality showed that the individual scores of six NASA-TLX 

subscales, Peak 2 N-MAV of the anterior deltoid muscle for 

Box 1 lifting exertion, Peak 1 N-MAV and TTC (%) of the 

anterior deltoid muscle for Box 2 lifting exertion, and the mean 

ratings of the “Perceived ease-of-use” domain did not satisfy 

the normality assumption. Thus, we employed non-parametric 

tests for these datasets. 

III. RESULTS 

A. User Experience 

The inter-rater reliability, measured using the ICC, for all 

questions in our questionnaire was found to be 0.866, 

suggesting a high correlation between the ratings of 12 subjects. 

The validity measure also showed that all the questions in the 

questionnaire were valid, except the question “Using this 

system as a training tool would increase productivity in real-

life” in the “usefulness” domain (ρ = 0.060; p = 0.753). As a 

result, we dropped this question from the statistical analysis.  

The overall subjective responses for the “perceived ease-of-

use” domain were 4.87 ± 0.11 (65.00% agreed, 13.33% neutral, 

and 21.67% disagreed; significantly higher than 4 with z = 

6.166 and p << 0.001) (Fig. 3). Similarly, the overall Likert 

ratings were 5.52 ± 0.09  (81.11 % agreed, 11.11% neutral, and 

7.78% disagreed; significantly higher than 4 with t = 16.789 and 

p << 0.001) and 5.06 ± 0.08 (64.29% agreed, 12.38% neutral, 

and 9.05% disagreed; significantly higher than 4 with t = 13.623 

 
TABLE I 

THE NORMALIZED MEAN ABSOLUTE VALUE (N-MAV) AND PERCENTILE OF TIME TO COMPLETION (TTC (%)) RESULTS FOR TWO PEAKS OF BICEPS, ANTERIOR 

DELTOID, AND MIDDLE DELTOID MUSCLES FOR BOX 1 AND BOX 2 PICK-AND-PLACE LIFTING TASKS. 

 

Box 1 lifting exertion Box 2 lifting exertion 

Peak 1 Peak 2 Peak 1 Peak 2 

NMAV (%) TTC (%) NMAV (%) TTC (%) NMAV (%) TTC (%) NMAV (%) TTC (%) 

Biceps 

VETa 4.54±0.84 34.86±1.05 5.57±0.77 63.29±2.66 4.47±1.16 37.07±2.55 5.53±1.57 61.93±2.57 

RETa 7.70±1.54 34.43±2.05 5.63±1.27 68.07±2.25 4.68±1.32 31.21±2.22 5.72±1.43 61.79±4.30 

Stat -2.005 0.164 -0.058 -1.146 -0.329 2.008 -0.170 0.058 

p-value 0.092 0.875 0.956 0.295 0.754 0.091 0.871 0.956 

 Anterior deltoid 

VETa 7.28±1.90 32.75±2.06 8.79±3.49 62.82±2.33 4.19±1.27 31.86±0.75 7.65±2.61 61.71±2.71 

RETa 6.77±1.28 33.86±1.51 9.55±3.18 62.64±3.40 5.14±1.16 32.93±4.11 6.66±1.58 58.71±3.03 

Stat 0.559 -1.062 -0.338 0.085 -1.014 -0.338 0.404 1.637 

p-value 0.596 0.329 0.735 0.935 0.310 0.735 0.700 0.153 

 Middle deltoid 

VETa 4.95±1.40 33.18±2.02 7.75±1.96 65.50±2.22 5.81±0.97 28.33±1.74 11.27±3.50 59.71±2.01 

RETa 5.11±0.88 34.79±1.69 6.44±2.42 67.36±2.18 6.18±1.04 27.17±1.85 11.79±2.42 55.17±2.59 

Stat -0.114 -1.534 1.114 -1.508 -0.313 1.016 -0.111 2.603 

p-value 0.913 0.176 0.308 0.182 0.767 0.356 0.916 0.048* 

Both N-MAV and TTC are in percentage (0 ~ 100%). Peak 1 and Peak 2 denote maximum acceleration and deceleration instances of the lifting task, 

respectively. A p-value < 0.05 is denoted by asterisk (*). 
aMean ± Standard error 

 

 

 

 
Fig. 5.  Comparison between VETs and RETs in terms of the mean N-MAV of biceps, anterior deltoid, and middle deltoid muscles throughout the 

progression of the task cycle for two different box positions, averaged across all subjects and all trials with bands denoting the standard error. Box 1 and 
Box 2 lifting exertions denote moving a box from 30° right to mid-sagittal plane to 10° left to mid-sagittal plane and from right mid frontal plane to 10° 

right to mid-sagittal plane, respectively. VET and RET denote virtual environment task and real environment task, respectively. r denotes Pearson’s 

correlation coefficient. 
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and p << 0.001) for the “ease-of-learning” and the ”usefulness” 

domain, respectively (Fig. 3). On the contrary, the overall rating 

was 3.90 ± 0.13 (39.17% agreed, 15.83% neutral, and 45.00% 

disagreed; not significantly lower than 4 with t = -0.770 and p 

= 0.442) for the “comparison between the VE and the RE” 

domain. Nevertheless, the responses to Questions 1 and 2 in this 

domain revealed that almost half of the participants found no 

inconsistency (47% of total responses) between VET and RET 

and performing the VET in the PhyVirtual system to be more 

comfortable (50% of total responses) than RET (Fig. 3).  

B. Functional Workload and User Performance 

The NASA TLX data showed that the overall workload 

scores for VETs (41.20 ± 3.40) were not significantly (t-stat = 

0.052, p = 0.959) different from RETs (41.05 ± 2.76). The TTC 

(s) for VETs (8.68 ± 0.28) was comparatively lower (t-stat = -

1.445, p = 0.157) than RETs (9.17 ± 0.23) though the pace of 

all tasks was controlled using a metronome. The NASA-TLX 

scores of ‘physical demand’, ‘performance’, and ‘effort’ 

subscales were observed to be 124.90% (highly significant), 

7.04%, and 18.33% higher for RETs compared to VETs, 

whereas ‘mental demand’, ‘temporal demand’, and ‘frustration’ 

subscales of the NASA-TLX showed respectively 39.88%, 

57.45%, and 75.55% (significant) greater scores for VETs 

compared to RETs (Fig. 4). Nevertheless, the consecutive VET 

trials showed decreasing trends of both workload (47.25 ± 5.57, 

39.05 ± 6.04, and 37.30 ± 6.14 for first, second, and third VET 

trials, respectively; t = 1.508 and p = 0.160 between first and 

second trials; t = 0.351 and p = 0.732 between second and third 

trials) and TTC (s) (9.09 ± 0.50 s, 8.57 ± 0.47 s, 8.38 ± 0.50 s 

for first, second, and third VET trials, respectively; t = 2.036 

and p = 0.067 between first and second trials; t = 1.940 and p = 

0.078 between second and third trials). In contrast, both 

workload and TTC (s) data did not show any trend across the 

three consecutive RET trials (workload: 40.86 ± 4.80, 43.41 ± 

5.15, and 38.88 ± 4.72 for first, second, and third VET trials, 

respectively; t = -0.792 and p = 0.445 between first and second 

trials; t = 1.133 and p = 0.281 between second and third trials 

and TTC (s): 9.01 ± 0.28 s, 9.56 ± 0.48 s, and 8.95 ± 0.40 s for 

first, second, and third RET trials, respectively; t = -1.625 and 

p = 0.133 between first and second trials; t = 2.995 and p = 

0.012 between second and third trials). 

C. Neuromuscular Effort 

The N-MAV results of all muscles showed similar 

neuromuscular activation trajectories for both VETs and RETs 

with high values of r, revealing consistencies in the 

neuromuscular dynamics, i.e., evincing similar movement 

patterns for both tasks (Fig. 5). The N-MAV and TTC (%) data 

of Peak 1 and Peak 2 instances showed statistically insignificant 

(p > 0.05) differences across all muscles except the TTC (%) 

data for the middle deltoid muscle for the Box 2 lifting task (p 

= 0.03) (Table I).  In general, the occurrences of Peak 1 and 

Peak 2 were approximately at 2.5 s – 3 s and 5.5 s – 6 s of the 

lifting exertions, respectively. N-MAV values of biceps muscle 

exhibited comparatively higher (0.06% to 3.16%) activation 

levels consistently for RETs than VETs for both Box 1 and Box 

2 lifting tasks (Table I and Fig. 5). Interestingly, N-MAV values 

of anterior and middle deltoid muscles were found to be 

relatively lower during the decelerating phase (Peak 2) but 

comparatively higher during the accelerating phase (Peak 1) for 

RETs than VETs (Table I and Fig. 5). Overall, the N-MAV 

magnitudes and trends revealed similar neuromuscular effort 

for VETs and RETs. 

IV. DISCUSSION 

This study focused on designing and evaluating the efficacy 

of a physics-based VR (PhyVirtual) system that can provide the 

users realistic cutaneous and kinesthetic haptic feedback 

through the use of physical props. Participants performed the 

same asymmetric pick-and-place lifting tasks in both virtual 

and real-world environments, while the virtual environment 

simulated sequential human-robot collaborative (HRC) task 

scenarios that are seen in real-world industrial settings. Overall, 

the results showed that performing the tasks using the 

PhyVirtual system exerted workload similar to real-world tasks 

and facilitated increased user performance with task familiarity 

compared to real-world pick-and-place tasks. Moreover, the 

physical interaction and high-fidelity objects in the virtual 

environment provided the users with a sense of engagement and 

realism similar to the real world and thus augmented the 

effectiveness of the virtual sensorimotor training. 

The results of the subjective questionnaire demonstrated that 

the system provided users a sense of engagement and realism 

that were similar to a real-world industrial workplace 

environment. Two key features—“presence” and “realism”—

of a VR system play vital roles in providing users a sense of 

actual presence in and control over the simulated virtual 

environment. For instance, Pedroli et al. [38] evaluated the 

usability of a VR system consisting of a cycle-ergometer, which 

was integrated with an immersive virtual reality system. In that 

study, participants provided two crucial feedbacks: 1) they did 

not feel active in the VE while performing the cycling task, and 

2) the simulated VE did not feel real. Although the authors 

simulated cutaneous haptic feedback by using a real control 

interface, i.e., the cycle-ergometer, there was no kinesthetic or 

proprioceptive feedback as no movement was induced in the 

ergometer while simulating the cycling task. In our developed 

system, the subjective rating of the “Comparison between VET 

and RET” were not significantly different from neutral, 

suggesting that that the system provided the users with a sense 

of engagement and realism similar to the real world. This 

implies that the presence of kinesthetic haptic feedback 

increased the realism and a sense of engagement compared to 

non-natural haptic feedback. Additionally, one study that has 

used passive kinesthetic haptic feedback to improve interaction 

and learning in VR environments [18] evaluated the user 

experience (including comfort and enjoyment) of the system 

using a 10-point scale (0: strongly disagree, 10: strongly agree). 

The mean score of 7.51 ± 0.37 for their system containing 

auditory, visual, and haptic feedback is consistent with the high 

scores for the “perceived ease-of-use” and “usefulness” 

domains of our developed system.  
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Out of six subscales of the NASA-TLX, data from four 

subscales: temporal demand, mental demand, performance, and 

frustration, exhibited a higher workload for the VETs than 

RETs. The participants experienced higher temporal demand 

(Fig. 4) for the VETs mainly due to the temporal requirement 

to match their reaction times with the movement time of the 

cobots in the VE [29]. On the contrary, this modulation of the 

individual temporal components of the lifting task by the cobots 

has yielded a lesser TTC compared to RETs as the task 

commands were modulated by the experimenter instead of 

cobots in the RE. This finding suggests that computer-generated 

high-fidelity audiovisual stimuli (e.g., digital metronome, 

cobots, etc.) can not only enhance the user performance 

(reduced task completion time) but also regulate users to gain 

the required motor skills. Previous VR studies have shown that 

virtual environments that can provide a high sense of 

“immersion” can help users to improve task performance [39]. 

In this study, we designed high-fidelity static and dynamic 

visual stimuli to provide a high sense of “immersion” as well as 

to represent real-world HRC task scenarios. However, an 

increase in visual stimuli and task complexity in the VE has 

increased the users' mental demand compared to tasks 

performed in the RE. Moreover, the majority of the participants 

(10 out of 12) did not have any prior experience of using a VR 

system. As a result, the first-hand familiarity of these 

audiovisual stimuli in the VE led to a higher degree of 

‘frustration’ and a lower degree of ‘performance’ in the NASA-

TLX scale. Nevertheless, as the participants became more 

familiar with the visual stimuli and task complexity in the VE, 

the overall workload score decreased across the consecutive 

VET trials, which is consistent with the findings of a previous 

study on VR systems with haptic feedback [40]. The workload 

trend for the RETs did not show any such increasing or 

decreasing trend, which demonstrated the learning effect of the 

physics-based VR system. 

In addition to facilitating a sense of actual presence in the 

virtual environment, another cardinal feature of a VR training 

system is the precision in movement kinematics. The 

neuromuscular movement of a task made in virtual 

environments must be similar to movements in the real 

environment to ensure the transfer of training benefits to the 

real-life situation [21]. In this respect, our developed 

PhyVirtual system showed neuromuscular dynamics similar to 

real-world tasks (i.e., similar kinematic patterns and 

insignificant differences between VET and RET), which 

showed the effectiveness of the system for real-world 

sensorimotor rehabilitation and training applications. The 

aberrant finding that the occurrence of peak activation (N-

MAV) of only the middle deltoid muscle at Peak 2 instance of 

the lifting task was significantly different between VETs and 

RETs (Table I) can be explained by the fact that although both 

lifting load and technique were same and the dynamics (pace 

and trajectory) of the lifting were controlled, some differences 

existed due to subject-specific differences in the lifting 

dynamics, namely individual differences in movement 

trajectories (i.e., movement kinematics). 

Surprisingly, even though the neuromuscular effort did not 

show any statistically significant differences in the muscle 

activation between VET and RET, the subjective workload data 

showed that the physical demand was significantly lesser for 

VETs compared to RETs. As a result, the overall workload 

score was found to be slightly lower for the VETs compared to 

RETs, which is not in line with previous VR studies based on 

haptic [12] and no-haptic feedback [41], [42]. For example, 

roller-based and joystick-based control interfaces for multiple 

VR driving scenarios [41] and the Phantom Omni® Haptic 

Device for a psychomotor test in a VE [12] have been used to 

provide haptic feedback to users. The relatively higher physical 

demand and effort scores reported in those studies for VETs 

could have been due to inconsistencies in the geometries and 

weights of the haptic control interfaces between virtual and 

real-world environments. On the other hand, we used real 

objects as the control interface for the virtual objects, which 

could have felt more natural to the users, leading to lower 

physical demand in the VETs compared to the previous studies. 

The implication of this interesting finding is that while 

designing a real-world work system or product based on VR-

based sensorimotor training performance, human factors 

practitioners should consider a higher margin of workload (i.e., 

safety margin) for the real-world counterpart. Nevertheless, this 

finding also warrants a large-scale biomechanical study (e.g., a 

gender-balanced large sample size with an equal proportion of 

experienced and inexperienced study subjects) to investigate 

any differences in the physical workload experience as the 

EMG trends for VETs were not significantly different (albeit 

slightly lower) than RETs. 

There are a few limitations of this study that need to be 

acknowledged. Firstly, our sample size was small and did not 

include any female subjects. This might have influenced the 

statistical power and the Type II error of the tests, i.e., some of 

the non-significant results might have been observed due to the 

small sample size and effect size. In future studies, we aspire to 

evaluate this system diverse age and sex groups to get better 

insights into its’ usability and investigate whether males and 

females show similar performance patterns. Additionally, we 

seek to evaluate the construct validity of the survey 

questionnaire for a larger and diverse participant pool by 

implementing standard statistical analyses, such as factor 

analysis. Secondly, the simulation of human-robot 

collaborative tasks with the presence of actual robots in the real 

environment could provide a fairer comparison between VETs 

and RETs and more insights (e.g., task complexity, safety 

issues, functional workload etc.) about human-robot physical 

interaction. Lastly, our future studies aspire to focus on 

analyzing the movement kinematics of the participants as they 

perform VETs and RETs to further validate the training 

effectiveness of the PhyVirtual system. 

V. CONCLUSION 

In this study, we presented the design of a novel physics-

based VR system and evaluated the system by simulating a 

pick-and-place task scenario. The user evaluation and 
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neuromuscular dynamics results showed that, while compared 

to similar tasks in the real environment, the PhyVirtual system 

is highly effective in simulating tasks that require high gross-

motor demand, with a high sense of engagement and realism. 

We believe that our developed system can be used as a viable 

replacement for live sensorimotor training in a wide range of 

fields. Moreover, it can inspire a new generation of other 

researchers to adopt physics-based VR haptic system, which is 

affordable compared to haptic gloves, as a valuable tool to 

explore how humans learn and transfer motor skills in various 

real-world contexts.  
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