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Abstract

We show that by extracting temporal and spectral features from EEG signal and, following, using neural network to classify

those features, one can significantly improve the performance of Brain-Computer Interfaces (BCIs) in predicting which motor

movement was imagined by a subject. Our movement prediction algorithm uses Sequential Backward Selection technique to

jointly select the temporal and spectral features, and a radial basis function neural network for the classification. The method

shows an average performance increase of 5.96% compared to state-of-the-art benchmark algorithms. Using two popular public

datasets, our algorithm reaches 91.73% accuracy (compared to an average benchmark of 81.10%) on the first dataset, and

88.78% (average benchmark: 82.76%) on the second dataset. Given the high variability within- and across-subjects in EEG-

based motion decoding, we suggest that using features from multiple modalities along with neural network feature selection

and classification protocol is likely to increase BCI performance across various tasks.
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Abstract—We show that by extracting temporal and 

spectral features from EEG signal and, following, using 
neural network to classify those features, one can 
significantly improve the performance of Brain-Computer 
Interfaces (BCIs) in predicting which motor movement was 
imagined by a subject. Our movement prediction algorithm 
uses Sequential Backward Selection technique to jointly 
select the temporal and spectral features, and a radial basis 
function neural network for the classification. The method 
shows an average performance increase of 5.96% 
compared to state-of-the-art benchmark algorithms. Using 
two popular public datasets, our algorithm reaches 91.73% 
accuracy (compared to an average benchmark of 81.10%) 
on the first dataset, and 88.78% (average benchmark: 
82.76%) on the second dataset. Given the high variability 
within- and across-subjects in EEG-based motion 
decoding, we suggest that using features from multiple 
modalities along with neural network feature selection and 
classification protocol is likely to increase BCI performance 
across various tasks. 
 

Index Terms: [Science–general, Neuroscience], [Brain-
Computer Interface], [Common Spatial Patterns], [EEG] 
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I. Introduction 
RAIN-Computer Interfaces (BCI) act as a link between 
neural activity and machine operations. The BCI extracts 

data from electrodes or sensors acquiring neural signals and 
translates those data into digital code[1]. Application of BCI 
range from ones focused on improved health outcomes (i.e., 
rehabilitation of impaired motor function[2], restoring sensory 
functions[3], or interpreting thoughts from individuals who 
cannot otherwise communicate them[5]), enhanced control of 
devices (i.e., operating heavy machinery, flying drones[6], or 
driving[7]), and even recreational uses (i.e., gaming[8]). 
Invasive BCIs that access raw neural signals have recently 
shown high accuracy in interpreting human/animal intentions, 
actions, and imagery[3,5]. Similarly, non-invasive tools such as 
electroencephalography (EEG) have demonstrated high 
performance in interpreting thoughts in real-time. For example, 
interpreting imagined motor action – a commonly used task for 
evaluating BCIs – has shown accuracies ranging between 70-
85% in recent works[9]. 

BCIs based on Motor Imagination (MI) task, where a 
participant imagines an action repeatedly over multiple trials, 
typically aim to identify the action class (i.e., clenching of the 
fist) by neural signatures such as significant power changes in 
the alpha and beta rhythm in sensory-motor regions. Given that 
non-invasive signals generated by EEG are often contaminated 
by artifacts derived from eye movement or muscle movement, 
a typical EEG-based BCI requires larger training data and 
isolated trials to accurately identify the action type. The 
repeated trials enable the averaging of the event-related signals 
and the extraction of a synchronized clean input. Variance 
across individual subjects, electrode montages, experimental 
sessions, and trials adds difficulty to the accurate interpretation 
of the signal. 

Given the challenges in BCI development using the noisy 
inputs, numerous methods have been proposed to improve the 
performance of EEG-based BCIs. The suggested methods often 
focus on isolation of either the temporal or spectral components 
of the signal. Algorithms based on spectral feature selection are 
more prominent in the BCI arsenal since the time course of 
event-related synchronization (or de-synchronization) vary 
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heavily among subjects during motor movement (or imagined 
movement) tasks[3-4]. 

Within the feature selection arsenal for BCI signals, 
Common Spatial Patterns (CSP) algorithms are dominant[12]. 
These algorithms seek to find an optimal spatial filter that 
distinguishes one brain state from another. In EEG, the 
performance of CSPs is highly sensitive to the choice of 
frequency bands, making the decision on which filter to use 
heavily dependent on the recording configuration. To afford 
some generalization, variants of CSP that use narrower 
frequency bands (termed: sub-band CSP; SBCSP)[13] and 
Filter Banks (FBCSP)[14] were proposed. These variants show 
increased performance for BCIs, yet are still scarce. 

In addition to the extended frequency bands and filters, 
recent attempts to include temporal signals in the BCI emerged 
in the form of the Temporally Constrained Group Spatial 
Patterns (TSGSP) algorithms[5,11]. These algorithms 
optimally select the CSP features by considering different 
temporal windows for signal extraction derived from multiple-
task learnings. That is, instead of collapsing all the trials within 
one MI class (i.e., all left-hand movement trials) various MI 
tasks are combined to suggest the ideal CSP for that individual. 
The TSGSP algorithm uses Support Vector Machines (SVM) 
for the classification of new trials to their corresponding action 
class. The inclusion of temporal data was shown to improve the 
performance of CSP-based BCIs[10,11,15]. 

Neural network based classifiers that often show superiority 
in data-rich non-linear classification tasks such as MI BCI were 
recently suggested as a potential additional improvement for the 
CSP algorithms[12]. Specifically, the usage of Sequential 
Backward Floating Selection method along with a radial basis 
function neural network for optimal CSP features selection was 
suggested as a potential superior algorithm for BCIs[12]. Here, 
we attempt to implement and test those suggested 
improvements for MI BCI.  

Namely, we introduce a number of additions to the BCI 
motor classification algorithms arsenal. First, we incorporate 
both temporal and spectral features in the MI BCI. Second, we 
use sub-bands rather than typical frequency bands (i.e., alpha, 
beta). Third, we separate the feature selection process from the 
following feature classification process. Fourth, we incorporate 
the suggested radial basis function neural network (rather than 
SVM) for the motor classification. 

Inspired by the above literature, we combine the successful 
Sequential Backward Selection method with CSP features for 
the temporal/spectral feature selection. 

We suggest that our enhanced feature set and selection 
optimization process should improve EEG-based BCIs across 
multiple tasks because it is less prone to individual subject’s 
signal variations. We demonstrate the effectiveness of our 
methods on popular public datasets and compare out outcomes 
to the current state-of-the-art BCI benchmark methods. 
 

II. METHODS 
A. Data 

Two popular BCI datasets were used for the algorithm 
testing: 
 
1) Dataset 1 

BCI competition IV, dataset 2a, which contains 22-channel 
EEG data recorded from 9 healthy subjects (A01-A09) 
participating in different MI tasks. In each task subjects 
were asked to imagine movement of the left hand, right 
hand, feet, and tongue. There were 72 trials for each of the 
4 classes of movement. The EEG signals were sampled at 
250Hz and bandpass filtered between 0.5-100Hz (with a 
50Hz notch filter). We used the data from the left- and right-
hand imagery tasks alone to align with the second dataset 
and some of the benchmark algorithms that focused solely 
on those movement classes. 
 

2) Dataset 2 
BCI competition IV, dataset 2b, which contains 3-channel 
EEG data recorded from 9 different subjects (B01-B09) 
participating in two MI tasks. The experimental protocol 
was identical to dataset 1 other than the fact that subjects 
only imaged movements of the left-hand and right-hand and 
had 80 trials for each class. For each subject, a separate 
training and testing set were available. The EEG signals 
were sampled at 250Hz and bandpass filtered between 1-
50Hz (with 50Hz notch filter).  
 
See [16] for additional details on the two datasets. 

B. Feature extraction 
1) Preprocessing 

Raw EEG signals were filtered between 4-40Hz with fifth-
order Butterworth filter. For each trial, we used samples 
between 500-4,500ms from the trial onset in the analyses. The 
first 500ms were excluded, in alignment with the instructions 
of the BCI IV competition winners, as the imagined actions 
onset deviated across trials due to response times. 
2) Feature selection 

The neural signals were divided to 5 overlapping 2-second 
windows with a step size of 500ms. This ensured temporal 
generalizability within a trial. Following, we filtered the data 
along 17 overlapping frequency bands ranging from 4-40Hz 
with a 2Hz step. Finally, we identified the common spatial 
filter[12] that maximized the variance within a single class (i.e., 
across all left-hand trials) and minimized the variance across 
classes (i.e., between left-hand and right-hand trials). 

The data for a single trial were represented as a matrix, 𝑋 ∈
𝑅!∙# (with N reflecting the number of channels, and T the time) 
whose normalized covariance matrix, C, is: 

 

𝐶 =
𝑋𝑋#

𝑡𝑟𝑎𝑐𝑒(𝑋𝑋#) 
(1) 

 
Averaging across all trials within a class yielded a matrix, 𝐶$, 

(t indicating the class type). 
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The spatial covariance was calculated by averaging all 

covariance matrices: 
 

𝐶% = 𝐶&'($)*+,-------------- + 𝐶./0*$)*+,--------------- (2) 
 

The Cc matrix was white transformed: 
 

𝐶12𝑈1𝜆1𝑈1# (3) 
 
with 𝑈1 the eigenvector matrix and 𝜆1 the eigenvectors. 
 

Defining P as: 
 

𝑃 = 2𝜆1)3𝑈1# (4) 

 
we transformed the individual class matrices to: 
 

𝑆&'($)*+,-					 = 𝑃𝐶&'($)*+,--------------𝑃# (5) 
𝑆.50*$)*+,- = 𝑃𝐶./0*$)*+,---------------𝑃# (6) 

 
such that the 𝑆$ matrices have the same eigenvectors.  
 

Given that 𝑆$  could be represented as	𝐵𝜆$𝐵#  with B the 
eigenvectors matrix and 𝜆$ the eigenvalues: 

 
𝑆$ = 𝐵𝜆$𝐵# (7) 

 
we derived the projection matrix, W: 
 

𝑊 = 𝐵#𝑃 (8) 
 
Thus, the EEG data were projected to a matrix, Z: 
 

𝑍 = 𝑊#𝑋 (9) 
 

where the columns of Z corresponded to the data’s spatial 
source distribution vectors. The vectors maximized the 
variance across classes and corresponded to the maximum 
eigenvalues (𝜆&'($)*+,- and 𝜆.50*$)*+,-). 

 
Finally, the classification features were represented by: 
 

𝑓6 = log(
𝑣𝑎𝑟(𝑍6)

∑ 𝑣𝑎𝑟(𝑍5),
523

) (10) 

 
where 𝑍6 are the common spatial patterns (p = 1-N). 
 

Typically, a subset of Z (first and last m rows) is used in 
further analyses. 

 
A Sequential Backward Selection (SBS; see [17]) was used 

to reduce the initial 85-feature set (17 frequency bands x 5 time-
windows) from each individual trials to as little as 8 features. 

 
Finally, we used a radial basis function neural network[12] 

to classify the MI signals within each trial. 

 
 

3) Analyses 
We compared our classification algorithm to the state-of-the-

art algorithms available from BCI competition IV: 
 
For dataset 1 we compared our performance to (see results in 
table 01): 
 

a. Weighted Overlap Add Common Spatial Patterns (WOLA-
CSP[18]) 

b. Subject Specific Multivariate Empirical Mode 
Decomposition Based Filtering (SS-MEMDBF[19]) 

c. Regularized Minimum Distance to Riemannian Mean (R-
MDRM[20]) 

d. Spatial Regularized Minimum Distance to Riemannian 
Mean (SR-MDRM[21]) 

e. Temporally Constrained Sparse Group Spatial Patterns 
(TSGSP[11]) 

 
For dataset 2 we compared our results to (see results in table 
02): 
 

a. Robust Support Matrix Machine (RSMM[22]) 
b. Dynamic Joint Domain Adaptation (DJDA[23]) 
c. Frequential Deep Belief Network (FDBN[24]) 
d. Random Forest Dynamic Frequency Feature Selection (RF-

DFFS[25]) 
e. Temporally-constrained Sparse Group Spatial Patterns 

(TSGSP[11]) 
f. Wavelet Package Decomposition Spatio-Temporal Discrepancy 

Feature (WPD-STDF[26]) 
g. Central Distance Loss Convolutional Neural Network (CD-

CNN[27]) 
 
 Additionally, we implemented a version of the Sequential 
Backward Selection Filter Bank Common Spatial Patterns 
(SBS-FBCSP) algorithm, which is an adapted version of the 
Sub-Band Common Spatial Patterns with Sequential 
Backwards Floating Selection (SBCSP-SBFS) proposed in 
[12]. The SBS-FBCSP algorithm resembles our suggested 
method in that it, too, uses sub-bands and common spatial 
patterns feature selection. This contender algorithm did not 
use temporal features and was limited to 12 overlapping 
frequency bands (4-30Hz). 

 
Given that dataset 1 had 22 channels, we varied the 

parameter m from 1-11 (with 2m options yielding up to 22 
features in each trial). For dataset 2 we varied m from 1-3 
yielding up to 6 features. For each subject, we used the first 
3 sessions ([72/80] trials x 2 classes x 3 sessions) as training 
set and the remaining trials for testing. 

III. RESULTS 
A. Performance 

Our algorithm, a Sequential Backward Selection with 
Temporal Filter Bank Common Spatial Patterns (SBS-
TFBCSP), significantly outperformed the average 
(81.10±1.58%) of all other algorithms (T(8)=2.998, p=0.017; t-
test) and each of those algorithms individually when tested on 
the first dataset (table 01).  
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The algorithm also outperformed the contender leading 
algorithm (SBS-FBCSP) by 8.60% (T(8)=2.850, p=0.021, t-
test). 

 
 TABLE I 

PERFORMANCE COMPARISON WITH DATASET 1 
Method Ye

ar 
A 
01 

A 
02 

A 
03 

A 
04 

A 
05 

A 
06 

A 
07 

A 
08 

A 
09 

Mean 
± 

std 
WOLA-
CSP 

20
18 

86.
81 

63.
19 

94.
44 

68.
75 

56.
25 

69.
44 

78.
47 

97.
91 

93.
75 

78.85±
15.15 

SS-
MEMD
BF 

20
18 

91.
49 

60.
56 

94.
16 

76.
16 

58.
52 

68.
52 

78.
57 

97.
01 

93.
85 

79.93±
14.14 

MDRM 20
19 

91.
61 

63.
28 

97.
20 

72.
91 

64.
08 

69.
71 

81.
25 

96.
52 

92.
30 

80.98±
13.86 

SR-
MDRM 

20
19 

90.
21 

63.
28 

96.
55 

76.
38 

65.
49 

69.
01 

81.
94 

95.
14 

93.
01 

81.22±
12.43 

TSGSP 20
18 

87.
00 

64.
70 

93.
80 

74.
30 

90.
40 

63.
90 

91.
40 

95.
80 

81.
30 

82.51±
12.23 

SBS-
FBCSP 

20
19 

85.
71 

73.
21 

94.
64 

82.
14 

78.
57 

71.
43 

78.
57 

98.
21 

85.
71 

83.13±
9.02 

Ours 20
22 

91.
07 

85.
71 

92.
86 

87.
50 

83.
93 

89.
29 

92.
86 

92.
86 

96.
43 

90.28±
4.01 

 
Using the second dataset, our algorithm again significantly 

outperformed the average (82.76±3.08%) of all other 
algorithms by 2.69% (T(8)=3.228, p=0.012; t-test) and each of 
those algorithms individually (table 02). Comparing the 
performance to the leading state-of-the-art contender algorithm 
(CD-CNN), we see a 3.32% increase (T(8)=1.314, p=0.225, t-
test). 
 

TABLE II 
PERFORMANCE COMPARISON WITH DATASET 2 

Met
hod 

Ye
ar 

B 
01 

B 
02 

B 
03 

B 
04 

B 
05 

B 
06 

B 
07 

B 
08 

B 
09 

Mean 
± 

std 
SBS
-
FBC
SP 

20
19 

75.
00 

63.
16 

62.
50 

93.
42 

88.
82 

78.
95 

76.
32 

80.
92 

81.
58 

77.85±
10.30 

RS
MM 

20
16 

72.
50 

56.
43 

55.
63 

97.
19 

88.
44 

78.
75 

77.
50 

91.
88 

83.
44 

77.97±
13.73 

DJD
A 

20
21 

83.
44 

58.
57 

59.
06 

98.
13 

96.
56 

84.
38 

86.
25 

92.
81 

87.
81 

83.00±
14.64 

FDB
N 

20
16 

81.
00 

65.
00 

66.
00 

98.
00 

93.
00 

88.
00 

82.
00 

94.
00 

91.
00 

84.22±
11.93 

RF-
DFF
S 

20
16 

73.
24 

67.
48 

63.
01 

97.
40 

95.
49 

86.
66 

84.
68 

95.
93 

96.
21 

84.06±
12.31 

TSG
SP 

20
18 

84.
00 

62.
60 

56.
30 

99.
40 

94.
80 

83.
80 

94.
10 

93.
30 

90.
10 

84.26±
15.01 

WP
D-
STD
F 

20
19 

69.
50 

64.
00 

86.
50 

96.
00 

94.
00 

87.
00 

83.
00 

95.
50 

92.
00 

85.28±
10.81 

CD-
CN
N 

20
21 

79.
69 

60.
71 

82.
19 

96.
87 

94.
37 

89.
37 

82.
19 

93.
75 

90.
00 

85.46±
10.44 

Ours 20
22 

89.
47 

75.
69 

75.
69 

10
0 

92.
76 

87.
84 

83.
78 

94.
08 

95.
39 

88.30±
8.52 

 
Focusing on the similar SBS-FBCSP algorithm, we note that 

the contender algorithm shows a notable drop in performance 
in classifying dataset 2. While the key difference between our 
algorithm and the SBS-FBCSP is the feature selection method, 
the inclusion of temporal features in the common spatial 
patterns; figure 01) seems to notably contribute to the 
performance increase. This expansion of the frequency range 
used by the radial basis function neural network increases the 
feature selection granularity. As an intuition for the advantage 
of the method with respect to the feature selection, we show an 

example from one of the highest performing subjects (A01, 
chosen arbitrarily; figure 01). We also note that one of the 
dominant features selected was in a frequency band above 30Hz 
(34-38Hz) which would be excluded in the typical SBCSP-
SBFS implementations[12] since it is not typically associated 
with MI. 

 
Fig. 1.  Illustration of the feature selection difference between the SBS-
FBCSP (top rectangle) algorithm and our algorithm (bottom rectangle) 
that includes the temporal features. The data (taken from subject A01, 
arbitrarily chosen) highlights the 10 features selected (black squares) in 
the contender algorithm, and the 15 features selected in our algorithm 
(the performance with 15 features was optimal, hence the selected 
number; all options between 8-85 were evaluated). 

B. Parameter sensitivity 
Given that the performance of our proposed methods heavily 

depends on the selection of the m parameter, we tested our 
results with all m values relevant to dataset 1 (table 03) and 
dataset 2 (table 04) to demonstrate the robustness of the 
method. While, indeed, the choice of m affects the algorithm 
performance across subjects, the average impact of the selection 
on dataset 1 was 4.25±1.18% with the highest drop in 
performance yielding 83.76% accuracy — still placing the 
algorithm above its peers. For dataset 2, the performance 
change with different m values averaged 1.73±1.10%, with the 
bigger performance drop yielding 86.57% accuracy. The lowest 
performance is still higher than peer algorithms’ accuracy. 
Combined, these results suggest that the method is robust and 
maintains its efficiency irrespective of the parameter choice. 

 
TABLE III 

PERFORMANCE COMPARISON OF DIFFERENT VALUES OF m FOR 
OUR METHOD, USING DATASET 1 

m A01 A02 A03 A04 A05 A06 A07 A08 A09 
1 85.71 80.36 80.36 87.50 83.93 85.71 92.86 91.07 83.93 
2 78.57 78.57 92.86 80.36 83.93 89.29 91.07 89.29 91.07 
3 83.93 85.71 85.71 76.79 73.21 82.14 85.71 91.07 92.86 
4 83.93 83.93 89.29 78.57 76.76 76.79 82.14 89.29 92.86 
5 83.93 76.76 92.86 73.21 80.36 83.93 76.79 92.86 96.43 
6 91.07 80.36 87.50 73.21 80.36 85.71 83.93 92.86 94.64 
7 82.14 80.36 89.29 76.79 76.79 89.29 78.57 92.86 91.07 
8 83.93 76.79 91.07 71.43 82.14 78.57 76.79 92.86 89.29 
9 87.50 69.64 91.07 73.21 76.79 75 76.79 89.29 83.93 

10 82.14 76.76 83.93 73.21 80.36 76.79 83.93 83.93 87.50 
11 83.93 76.76 91.07 69.64 82.14 76.79 71.43 89.29 89.29 
STD 3.17 4.26 3.93 5.01 3.41 5.28 6.52 2.68 4.02 

 
 

TABLE IV 
PERFORMANCE COMPARISON OF DIFFERENT VALUES OF m FOR 

OUR METHOD, USING DATASET 2 
m B01 B02 B03 B04 B05 B06 B07 B08 B09 
1 86.81 74.31 75.69 99.32 91.22 86.49 80.41 89.47 92.76 
2 89.47 75.66 70.39 100 92.76 84.87 81.58 91.45 94.08 
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3 81.94 75.69 70.83 100 91.22 87.84 83.78 94.08 95.39 
STD 3.81 0.78 2.94 0.39 0.88 1.48 1.71 2.31 1.31 

 

C. Comparison of computational time 
Finally, to demonstrate that the new method is useful for BCI 

implementation, we tested its computational efficiency. As 
BCIs require not only high decoding accuracy but also 
relatively fast parsing of the intended motion, a speedy 
classification is important. We used a 2.67GHz i5-M480 
processor with 4Gb RAM for the analyses. 

Runtime profiling of the algorithm took 366.91±51.29 
seconds for the entire assessment. While this is nearly 2.8 
orders of magnitude longer than the contender algorithm (SBS-
FBCSP) which took only 8.05±3.02 seconds) this test compares 
both the feature selection/validation and classification. As the 
feature selection is only required for the model training, a 
comparison of the online classification alone shows that our 
algorithm is on par with competing algorithms that report their 
computational efficiency[11]. Namely, it is within 3 seconds 
from the SBS-FBCSP algorithm (n.s.). Together with the 
improved classification accuracy, we argue, the sacrifice in 
computational efficiency still renders our method ideal for BCI 
applications. 

IV. DISCUSSION 
A. Performance comparison with other methods 

We compare the performance of a novel neural decoding 
algorithm, which use both temporal and spectral EEG signals 
for MI. Our algorithm shows increased accuracy of 3.32-8.60% 
above benchmark algorithms (tables 01-02). Investigating 
individual cases (rather than solely the aggregate performance) 
shows that the algorithm outperforms all benchmark 
comparisons across 8 out of 18 individuals tested. The highest 
improvement above the average benchmark for a single 
individual reaches 25%. Comparing our method to an algorithm 
that uses similar routines (SBS-FBCSP) shows an average 
increased performance of 11% (8.60% for dataset 1, and 13.42% 
for dataset 2). As the main difference in our method and the 
SBS-FBCSP algorithm is the addition of temporal signals to the 
feature set, we suggest that these features capture information 
that controls for the variance within trials of a single individual 
and therefore increase the performance. 

Given that our method relies on the choice of a parameter, m, 
we tested the algorithm’s robustness to the parameter selection 
and show that the results remain consistent (tables 03-04). 

B. Prior works 
Our method is not the first to consider the temporal structure 

of EEG signals during MI task classification. For example, 
previous work[15] has combined temporally constrained group 
LASSO with Convolutional Neural Network aiming at 
interpretating the mechanism of the EEGNet[28] model. 
Similarly, a framework for time frequency CSP smoothing was 
recently implemented to improve EEG decoding performance 
through ensemble learning[29]. Both those methods focused on 
selecting the features of the CSP by ranked weight. Our method 
both incorporates the temporal features, as well as uses a neural 

network based feature selection strategies for the classification. 
A different approach that showed highly promising results in 

MI classification focused on the selection of the relevant 
channels subset from a single individual’s data. This method – 
Spatio-Temporal filtering-based Channel Selection (STECS) 
proves superior to state-of-the-art methods that use the entire 
EEG dataset with about half the channel count. In BCIs that rely 
on high channel numbers this method is likely to outperform 
many of the methods we evaluated here[30]. 

Neural networks classifiers were suggested to outperform 
SVM classifiers[12] and, together, with the additional features 
seem to drive the notable performance increase. 

Additionally, as our method separated the feature selection 
process from the following classification task, we suggest that 
this two-stage process, which enabled the reduction of features 
number, contributed to the performance increase. Indeed, recent 
work using EEG-based BCI — in the domain of emotional 
memory recall — used similar two-stage process to, first, 
determine a suitable features set and train a model, and 
following perform the real-time classification, and has shown 
remarkable results[31]. 

C. Limitations 
The proposed MI decoding method suffers from a number of 

limitations that are driven by the addition of the temporal 
components. First, the method requires a-priory intuition about 
the data in order to accurately choose the EEG temporal 
segments. To prove the method’s superiority in datasets where 
no prior knowledge is available it would be useful to test either 
arbitrary datasets, or randomly selected temporal windows. If 
the method proves superior even with those selections, it will 
be regarded more robust. 

Second, our method is orders of magnitude slower in its 
initial computation time. This means that usage of the method 
for BCIs that continuously update the feature set would either 
be challenging or require extensive computational resources. 
To overcome this challenge, one should investigate whether 
smaller time-window sizes (presumably yielding faster 
processing) could produce higher performance. Shorter time-
window that maintain the high performance would elevate the 
usefulness of the algorithm. 

Third, it is not clear whether the method would easily 
generalize to BCI tasks outside of MI ones. Specifically, 
because MI tasks are less likely to show the types of noise that 
pollutes active movement tasks, the fact that our method shows 
superiority in one domain does not guarantee its success in 
others. 

D. Future directions 
Accordingly, two research venues that directly extend our 

work are suggested: i) enhancing the features selection 
granularity (while attempting to maintain the feature-
classification performance), and ii) generalizing the temporal 
features classification process. Specifically, as EEG and other 
biological signals are heavily dependent on temporal dynamics, 
usage of feature selection process with tools such as the recently 
proposed attention guided neural networks[32]  may improve 
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the ability to extract the appropriate features without a-priori 
knowledge on the data. This would make the algorithm 
generalizable to other BCI inputs. 

Further, as the majority of the benchmark algorithms we 
compared used neural networks for the full classification 
process (thereby effectively using all the available features 
without pre-selection) we suggest that amending the benchmark 
algorithms to incorporate the two-step selection-classification 
process may increase the performance of all the benchmark 
methods. 

It has not escaped our notice that as SVMs were previously 
shown to be superior with respect to feature classification 
(whereas deep learning networks were shown to be superior in 
BCI feature selection[15,23,24,27]) a combination of both 
methods might improve our algorithm further and allow it to 
generalize to tasks outside of motor imagination or control (i.e., 
non-verbal communication, language decoding, or parsing of 
thoughts). 
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