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Abstract

Collection of increasingly voluminous multi-spectral data from multiple instruments with high spatial resolution has posed

both an opportunity and a challenge for maximizing their utilization, analysis, and impact. Obtaining accurate estimates

of precipitation globally with high temporal resolution is crucial for assessing multi-scale hydrologic impacts and providing a

constraint for development of numerical models of the atmosphere that provide weather and climate predictions. Precipitation

type classification plays an important role in constraining both the inverse problem in satellite precipitation retrievals and

latent heat transfer within weather prediction simulations. Precipitation type, however, is often reported deterministically,

without uncertainty attached to an estimate. Machine learning techniques are capable of extracting content of interest from

large datasets and accurately retrieving discrete and continuous properties of physical systems, but with limited insights to the

retrieval components–such as errors and the physical relationship between the observed and retrieved properties. To address this

shortcoming, we perform precipitation type classification to introduce a novel tool for decomposing errors of satellite-retrieved

products. We use Bayesian neural networks to map Global Precipitation Measurement mission Microwave Imager observations

to Dual-frequency Precipitation Radar-derived precipitation type, which perform comparably to deterministic models, but with

the added benefit of providing well calibrated uncertainties. Through uncertainty decomposition, we demonstrate well calibrated

uncertainties as useful for making decisions concerning high uncertainty predictions, model selection, targeted data analysis,

and data collection and processing. Additionally, our Bayesian models enable mathematical confirmation of a data distribution

change as the cause for an unacceptable decline in model accuracy.
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Decomposing Satellite-Based Classification
Uncertainties in Large Earth Science Datasets

Pedro Ortiz, Marko Orescanin, Member, IEEE, Veljko Petković, Scott W. Powell, and Benjamin Marsh

Abstract—Collection of increasingly voluminous multi-spectral
data from multiple instruments with high spatial resolution has
posed both an opportunity and a challenge for maximizing their
utilization, analysis, and impact. Obtaining accurate estimates
of precipitation globally with high temporal resolution is crucial
for assessing multi-scale hydrologic impacts and providing a con-
straint for development of numerical models of the atmosphere
that provide weather and climate predictions. Precipitation type
classification plays an important role in constraining both the
inverse problem in satellite precipitation retrievals and latent
heat transfer within weather prediction simulations. Precipita-
tion type, however, is often reported deterministically, without
uncertainty attached to an estimate. Machine learning techniques
are capable of extracting content of interest from large datasets
and accurately retrieving discrete and continuous properties
of physical systems, but with limited insights to the retrieval
components–such as errors and the physical relationship between
the observed and retrieved properties. To address this shortcom-
ing, we perform precipitation type classification to introduce a
novel tool for decomposing errors of satellite-retrieved products.
We use Bayesian neural networks to map Global Precipitation
Measurement mission Microwave Imager observations to Dual-
frequency Precipitation Radar-derived precipitation type, which
perform comparably to deterministic models, but with the added
benefit of providing well calibrated uncertainties. Through uncer-
tainty decomposition, we demonstrate well calibrated uncertain-
ties as useful for making decisions concerning high uncertainty
predictions, model selection, targeted data analysis, and data
collection and processing. Additionally, our Bayesian models
enable mathematical confirmation of a data distribution change
as the cause for an unacceptable decline in model accuracy.

I. INTRODUCTION

THE Global Precipitation Measurement (GPM) mission
[1] uses a constellation of passive microwave radiometers

to offer a nearly global sampling of rain and snowfall rate
estimates. The GPM core-observatory carries a passive Mi-
crowave Imager (GMI) [2] and an advanced Dual-frequency
Precipitation Radar (DPR) system [3]. The two instruments
are used to build a link between passive microwave (PMW)
brightness temperatures and radar-derived precipitation rates.
This link is then employed by an enterprise precipitation
retrieval [4] to provide global estimates of precipitation rates.
Driven by the globally-observed link, the retrieval delivers
global precipitation estimates but suffers from region-specific
biases [5] induced by unaddressed variability in precipitation
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system morphology. If provided, the information about the pre-
cipitation type significantly mitigates this problem, as shown in
[5] where a simple machine learning model was employed to
predict precipitation class (i.e., convective vs. stratiform type).
Convective rainfall is usually associated with stronger vertical
motions and heavier rainfall than stratiform precipitation [6].

While demonstration studies confirm the great potential of
machine learning (ML) methods in solving this particular
problem, in order to operationally apply ML, a model must
prove not only to be accurate but also to be capable of
quantifying how predictive uncertainty varies when a model
is applied to different types of precipitation systems (e.g.,
tropical cyclones, mesoscale convective systems, disorganized
precipitation) across various regions on Earth. This becomes
especially important when an enterprise retrieval is used, such
as the Goddard Profiling Algorithm (GPROF) [4], which must
operate over the entire globe as observed data distributions
(i.e., brightness temperatures from different PMW radiometric
bands) may change over time. The main drivers of variability
in the information content are commonly seen in technical
characteristics and age of the sensors used for the enterprise
products, such as those from the GPM satellite constellation.
Although the properties of each sensor are well understood,
the effect of their variability on the retrieval performance with
deep learning is not. Providing such information remains a
challenge; however, this study offers one possible solution to
the problem.

Recently, data from the GPM mission was used to apply
novel Bayesian deep learning (BDL) models to improve pre-
cipitation type classification of multi-spectral PMW observa-
tions of precipitation events [7]. Orescanin et al. demonstrated
that BDL models can establish a stronger link between raw
GMI data and precipitation system morphology over ocean-
based precipitation events than deterministic deep learning
(DDL) models. Furthermore, these BDL models outperformed
the GPROF precipitation type product, part of the standard
output of the currently operational precipitation retrieval for
the GPM mission [4], [8]. The models successfully combined
deep learning with Bayesian statistics to provide accurate
precipitation type predictions while simultaneously providing
useful measures of uncertainty [7]. Previously, BDL models
have been shown to provide uncertainties in decision making,
to learn useful information about small datasets, and to be
more robust to overfitting to the training data than their
deterministic counterparts [9]–[12]. Recent applications of
BDL to remote sensing tasks include Active Learning tasks
on Synthetic Aperture Radar (SAR) data [13] and hyper-
spectral imagery [11] using MC Dropout as a variational
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Bayesian approximation [10] with rudimentary convolutional
deep learning models. Additional recent work focuses on
seismic facies classification [14] using BDL with a simple
convolutional model containing several hidden layers.

The results from Orescanin et al. [7] provide a realistic
real-world benchmark using a large Earth Science dataset
that provides useful measures of the per-pixel uncertainties,
quantified by predictive entropy, which has been a known gap
in existing literature [12]. Further, those results demonstrated
that high uncertainty was correlated with misclassified pixels
[7]. The models had well calibrated uncertainties demonstrated
by rejecting data points with high entropy values, which
caused model performance on the remaining data points to
increase. However, bulk or total uncertainty information, such
as predictive entropy or variance [7], [12], fails to identify
sources of uncertainty in the developed model. Der Kiureghian
and Ditlevsen [15] characterize uncertainty as epistemic if it
can be reduced or as aleatoric uncertainty if it can not be
further reduced (e.g., caused by noise from the sensor).

Our key contributions in this article are

• Combining BDL with a meaningful real-world remote
sensing application to create models with well calibrated
uncertainties.

• Decomposing uncertainty into its aleatoric and epistemic
components [16] to make decisions about high uncer-
tainty predictions, model selection, targeted data analysis,
data collection/processing.

• Providing a method to detect virtual concept drift using
the components of the decomposed uncertainty.

Additionally, we systematically benchmark several BDL
methods, analyze the quality and consistency of aleatoric and
epistemic uncertainty representations, and provide a visual
example of handling high uncertainty predictions. We accom-
plished this by training a deterministic model and five different
types of Bayesian models and measuring their accuracy on two
temporally distinct case study datasets and one case study
dataset with a distinctly different distribution. If shown as
robust, this Bayesian approach to error decomposition will
provide additional, much needed, information to allow for
easier implementation of ML-models into satellite-derived
multi-platform retrievals of atmospheric, oceanic, or terrestrial
properties.

II. METHODOLOGY

A. Bayesian Deep Learning

Many recent machine learning advances can be attributed to
deep learning, using artificial neural networks with multiple
hidden layers. However, these models are deterministic and
do not provide information about the uncertainty of their
outputs. By incorporating a Bayesian approach, it is possible
to create models that provide information about uncertainty
in prediction. This is achieved by replacing the weights of a
neural network, θ, with a distribution that is updated as the
model is developed on training data, D. Mathematically, the
model weights are treated as a prior distribution, p(θ), and
conditioned on the evidence, the distribution of the training

data, p(D). When Bayes’ Theorem is applied, the posterior
distribution is:

p(θ|D) =
p(D|θ) · p(θ)

p(D)
=

p(D|θ) · p(θ)∫
p(D|θ) · p(θ) dθ

(1)

One of the main difficulties with applying a Bayesian approach
is that the denominator in Eq. 1 often has no closed form
solution and is computationally intractable [9]. As a result, an
approximation of the p(θ|D) is computed instead.

Variational inference is one method to approximate this
posterior. The goal of variational inference is to create an
optimization problem that identifies the distribution in a family
of distributions, q∗(θ) ∈ Q, that is least distant from the
target distribution, p(θ|D). The measure of distance used is the
Kullback-Leibler divergence (KL). The optimization problem
is characterized by these two equations [17]:

q∗(θ) = argmin
q∈Q

KL(q(θ) || p(θ|D)) (2)

KL(q(θ) || p(θ|D)) =

∫
q(θ) log

q(θ)

p(θ|D)
dθ (3)

However, Eq. 3 still contains p(θ|D), which is intractable. To
solve the optimization problem without explicitly calculating
p(θ|D), Eq. 3 can be re-written as [17]:

KL(q(θ) || p(θ|D)) = log p(D)−
∫
q(θ) log

p(θ)p(D|θ)
q(θ)

dθ︸ ︷︷ ︸
Evidence Lower Bound (ELBO)

(4)
Since the first term of Eq. 4 does not depend on q, it can be
ignored to solve the minimization problem. Instead, the min-
imization problem is solved by maximizing the second term
in Eq. 4, the evidence lower bound (ELBO). The optimization
problem then becomes [17]:

q∗(θ) = argmax
q∈Q

ELBO(q(θ)) (5)

ELBO(q(θ)) =

∫
q(θ) log

p(θ)p(D|θ)
q(θ)

dθ (6)

In this study, this problem is further simplified by restricting
Q to the fully factorized Gaussian distributions as described
in [18]. This simplification allows for the application of the
Flipout and Reparameterization methods of variational infer-
ence over the weights. Flipout prioritizes a more exact gradient
computation over computational efficiency in comparison to
other variational inference implementations [19], while Repa-
rameterization prioritizes ease of computation when comput-
ing gradients [20]. In this article, these methods are compared
to Monte Carlo (MC) dropout and a deterministic model
implementation. MC dropout is equivalent to defining Q as
Bernoulli distributions but without explicit KL divergence
calculation [21].

During training, it is possible for the KL divergence to
grow rapidly and prevent model convergence. Since the KL
divergence is a penalty on the expected log-likelihood (see Eq
6). One way to address this problem is to decrease the penalty
by placing a weight less than one on this term. In [22], this
term is given a decreasing weight over the course of M mini-
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batches on a schedule of πi = 2M−i

2M−1 , where
∑M

i=1 πi = 1,
and

ELBO(q(θ)) =

M∑
i=1

(E[log p(D|θ)]− πiKL(q(θ)||p(θ)))

(7)
This KL reweighting scheme allows the prior to have a greater
effect at the beginning of each epoch and the data to have a
greater effect at the end of each epoch [22].

The goal of inference with BDL is to make a prediction,
y, from new data, x. For a classification problem with c
classes, the model provides the probability that y is a given
class, p(y = c|x, θ). Since the weights of the models are
distributions, the average probability is calculated by using
Monte Carlo integration with N samples [12], [14]. Using
our Bayesian models, we made 25 predictions (samples) for
each input. The average probability per class (pc) is calculated
as:

pc =
1

N

N∑
n=1

p(y = c|x, θ) (8)

The class that yields the highest pc is chosen as the predicted
class label. The same N predictions are also used to calculate
the variance of pc, providing a measure of uncertainty.

While having the total uncertainty is useful, knowing the
source of the uncertainty is even more helpful. The total
uncertainty can be expressed as the sum of the aleatoric
uncertainty and the epistemic uncertainty [10], [15], [16].
• Aleatoric uncertainty is inherent in the data and

cannot be reduced by providing the model more training
data.

• Epistemic uncertainty is attributed to the uncertainty in
the model and can be reduced by increasing the amount
of training data available in regions of greater epistemic
uncertainty.

Both [23] and [16] propose methods for estimating these
individual uncertainties. However, the method described in
[23] requires the use of extra variables to explicitly model
the mean and the variance on the architecture output, which
we call architectural decomposition, to calculate epistemic and
aleatoric components. In contrast, [16] proposes a method
to calculate epistemic and aleatoric components of the un-
certainty without explicit architectural changes. Kwon et al.
[16] compared both approaches for uncertainty decomposition
on the task of ischemic stroke lesion segmentation. In their
analysis of variance decomposition using the method in [16],
when the prediction disagreed with the truth, high per-pixel
uncertainty correctly identified regions that were misclassified
for both false negatives and false positives. On the other hand,
their analysis using architectural decomposition [23] did not
yield useful information for the same task. In this work, we
adopt the uncertainty decomposition approach of [16] and
using the following formulation of aleatoric and epistemic
components:

V ar(p̂) =
1

N

N∑
n=1

diag(p̂n)− p̂⊗2n︸ ︷︷ ︸
aleatoric

+
1

N

N∑
n=1

(p̂n − p)⊗2︸ ︷︷ ︸
epistemic

(9)

where p̂ = p(y = c|x, θ), diag(p̂n) is a diagonal matrix,
p̂⊗2n = p̂np̂

T
n , and (p̂n − p)⊗2 = (p̂n − p)(p̂n − p)T .

B. Dataset Description

This study uses the well established 12-month dataset
collected over the oceans in 2017 and approach as in [7].
The standard GMI output provides brightness temperatures
observations at 13 different channels, including both vertical
(v) and horizontal (h) polarization, with varying FOV size. The
available GMI frequencies and corresponding field of views
appear in Table I. The GMI product was chosen to define the

Frequency [GHz] Field of View
10.65v/h 19km x 32km
18.7v/h 10km x 18km
23.8v 10km x 16km
36.6v/h 9km x 16km
89v/h 4km x 7km
166v/h 4km x 6km
183+3v/7v 4km x 6km

TABLE I
GMI FREQUENCIES AND FIELDS OF VIEW

observation vector over a 125 km × 125 km area centered on
the observing Field of View (FOV), corresponding to a patch
of 25×9 individual GMI pixels. Brightness temperatures were
collected at these pixels at all of the 13 GMI channels and
stored into 9×25×13 arrays. The arrays were then normalized
using z-score scaling [24].

To ensure accurate matching between DPR- and GMI-
viewing geometries, each individual GMI pixel was labeled
(convective or stratiform) by applying Gaussian weighting
to DPR-observed precipitation rates [5] and calculating a
convective fraction of precipitation volume within the GMI
FOV. Pixels with a fraction of 50% or more were assigned a
convective flag; the remaining pixels were labeled as strat-
iform. Noise in the dataset was minimized by removing
observations containing any missing or non-classified data,
comprising less than 5% of total data. The remaining ∼14
million samples were further split into training/validation/test
data with an 80/10/10 ratio respectively, preserving roughly
equal representation of both classes (i.e., forming balanced
data subsets) [7].

Due to the balanced composition of these data subsets, we
only present the accuracy in remainder of this article as a
metric of model performance. Accuracy is calculated as:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(10)

We treated the DPR-derived classification as the true label for
determining whether or not a prediction was correct.

Separately from the traditional training/validation/test
datasets, with a goal to demonstrate trained models ability to
generalize on unseen data, experiments were also conducted
using two temporally independent, single swath case study
datasets (Case 1 and Case 2), and one year of data collected
over land (Case 3). Case 1 and Case 2 represent instantaneous
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observations of two separate precipitation events over ocean,
captured by DPR and GMI sensors. Case 1 is a subtropical ma-
rine mesoscale convective system (MCS) located near shallow
convection on 11 August 2018 over the North Atlantic. Case
2 is a section of Hurricane Lane observed southeast of Hawaii
by the GMI on 19 August 2018. The scenes observed by GMI
in the 18.7 GHz horizontally polarized band are depicted in
Figure 1 with the smaller DPR swaths enclosed by the black
and white lines. To test the models on input features with a
different distribution, one year of global observations collected
over land was used to form the Case 3 dataset. All three
case study datasets were collected in 2018 and are temporally
independent from the training/validation/test datasets.

C. Model Architecture and Training

Based on the results in [7], a residual network (ResNet)
V2 [25] with 38 layers was chosen as a representative de-
terministic architecture to classify precipitation type as either
convective or stratiform. Bayesian ResNet architectures were
adopted in identical configuration as the deterministic archi-
tecture by following the approach in [26]. Bayesian ResNet
model architectures with Flipout layers [19] and Reparameter-
ization layers [20] were implemented utilizing the Tensorflow
Probability library [27].

Model weights were initialized for training following He
et al. [25]. The Adam optimizer was used with a starting
learning rate of 0.001. The validation loss was monitored in
order to conduct learning rate annealing [28]. The learning
rate was reduced by a factor of 10 if there was no reduction
in validation loss after 10 consecutive epochs. To regularize
for overfitting, an early stopping strategy was employed [24].
If early stopping did not occur, training was terminated at
600 epochs. Our Bayesian models using a batch size of 128
required approximately 3 weeks to train on a single NVIDIA
RTX 8000 48GB GPU. Both deterministic and Bayesian
models were trained with the same strategy for the fairness
of benchmarking.

III. RESULTS AND DISCUSSION

A. Effects of KL Reweighting on Optimization

The results of early experiments indicated that the weight
of the KL divergence term (see Eq. 6) for the Flipout and
Reparameterization models needed to be reduced. Similarly
to [22] and [29], we observed that the KL divergence term
rapidly increased during the early stages of the training for
the Flipout and Reparameterization models, preventing these
models from converging. The results in this section show the
accuracy of these models when the KL term is set to zero and
when the KL term weight is reweighted according to Eq. 7.
The model accuracy achieved when using the KL reweighting
scheme in Eq. 7 is comparable to the model accuracy of MC
Dropout, a Bayesian model where the KL divergence term is
not calculated.

The precipitation classification type derived from GPROF,
the NASA operational passive microwave precipitation re-
trieval for the GPM mission, serves as the benchmark for
experimentation. Table II lists the accuracy of all deep learning

models, which achieve higher classification accuracy than the
GPROF benchmark. For Bayesian models, the predicted class
was determined using the mean probability of 25 predictions
(N = 25 in Eq. 8). Table II lists the model type with KL
weighting scheme followed by the classification accuracy of
each model on the test set, a swath of the North Atlantic Ocean
(Case 1), and a swath of the Pacific Ocean southeast of Hawaii
(Case 2).

On the test set, all of the Bayesian deep learning models
performed comparably to or better than the deterministic
ResNet38 V2 model (0.868 accuracy). For this dataset, set-
ting the KL term to zero produced higher accuracy for the
Flipout and Reparameterization models (0.927 and 0.920) than
reweighting the KL term (0.866 and 0.864). Since the test
and training dataset are subsets of the same dataset, these
results indicate that setting the KL term to zero improved
classification accuracy when the test data distributions are
similar to the distributions within training data. However,
while it is possible to control data distributions and splits
during model development, such control is not feasible during
live inference; there is no way to control the observed data
distributions of a live sensor.

All models were also applied to two case study regions
of interest (accuracy listed in Table II) where we emulated
live inference setting by choosing data significantly temporally
separated from the test dataset split. On these two case studies,
KL reweighting produced higher accuracy for the Flipout and
Reparameterization models (0.794 and 0.834; 0.802 and 0.832)
compared to a KL term of zero (0.756 and 0.814; 0.778
and 0.817). Since the case studies were temporally separate
from the training data, this higher accuracy indicates that the
reweighted KL term helps produce models that generalize
better than when the KL term is zero. Furthermore, for the case
study datasets, the models with KL reweighting performed
comparably to MC Dropout (0.784 and 0.824), a Bayesian
model where the KL divergence term is not calculated.

TABLE II
MODEL ACCURACY BY DATASET FOR GPROF (BENCHMARK),

RESNET38 V2 (DETERMINISTIC), AND REMAINING BAYESIAN MODELS.
THE KL TERM IS EITHER SET TO ZERO OR REWEIGHTED (RW) USING

EQ. 7 FOR BOTH FLIPOUT AND REPARAMETERIZATION MODEL.

Model Test Set Case 1 Case 2
GPROF 0.743 0.558 0.695

ResNet38 V2 0.868 0.808 0.832
Flipout, KL = 0 0.927 0.756 0.814

Reparam., KL = 0 0.920 0.778 0.817
Flipout, KL RW 0.866 0.794 0.834

Reparam., KL RW 0.864 0.802 0.832
MC Dropout 0.860 0.784 0.824

B. Well-Calibrated Uncertainties

One of the primary reasons to use Bayesian models is
to make use of the uncertainty measures that accompany a
prediction. According to [12], a model has well-calibrated un-
certainty if its performance improves as more high-uncertainty
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Fig. 1. 18.7 GHz (horizontal polarization) brightness temperatures from GMI depicting the scenes used for analysis in a) Case 1 and b) Case 2. The area
enclosed in the black and white lines denotes the smaller DPR swaths where the analysis was conducted.

predictions are discarded. As suggested by the results in
Table II, reweighting the KL term plays an important role
in producing models with well-calibrated uncertainties that
generalize to unseen data because the accuracy on the Case 1
and Case 2 datasets is higher than when the KL term is set
to zero. Well-calibrated uncertainties are useful for making
decisions about predictions.

The test set was served to each of the models for prediction.
Next, the aleatoric and epistemic uncertainties of each test
set prediction were calculated using Eq. 9. Table III contains
the model type followed by the test set prediction uncertainty
value for the 80th percentile of each type of uncertainty.
There is relatively little change in the threshold value for the
aleatoric uncertainty across all models (approximately 0.4),
but the value for epistemic uncertainty thresholds is three
orders of magnitude smaller for models with a KL term of
zero (10−6 and 10−5), meaning these models do not capture
as much of the epistemic uncertainty as when the KL term
is reweighted (10−3 and 10−2). The epistemic uncertainty

threshold values for the reweighted KL models (1.544e-03
and 1.033e-02) are comparable to the epistemic uncertainty
threshold for MC Dropout (1.438e-02), a Bayesian model
where the KL divergence term is not calculated.

TABLE III
THRESHOLD UNCERTAINTY VALUE (80TH PERCENTILE) FOR EACH

BAYESIAN MODEL AND EACH UNCERTAINTY TYPE.

Model Epistemic Aleatoric
Flipout, KL = 0 4.210e-06 3.831e-01

Reparam., KL = 0 1.328e-05 4.059e-01
Flipout, KL RW 1.544e-03 4.718e-01

Reparam., KL RW 1.033e-02 4.638e-01
MC Dropout 1.438e-02 4.620e-01

The values in Table III were used as thresholds to discard
predictions made on the test set and the two case studies.
The accuracy values reported in Tables IV-VI were calculated
using only the predictions that had uncertainty values less than



6

or equal to the values in Table III. For example, in Table IV,
the Flipout model with a KL term of zero had an accuracy
of 0.927 that was calculated using all test set predictions; an
accuracy of 0.972 that was calculated using only predictions
with epistemic uncertainty less than or equal to 4.210e-06; and
an accuracy of 0.975 that was calculated using only predictions
with aleatoric uncertainty less than or equal to 3.831e-01.

After removing predictions with uncertainty values above
the threshold values, the same accuracy trend appears between
the test set and the two case studies that appeared when the
accuracy was calculated using all predictions. A KL term
of zero led to higher accuracy on the test set. However,
this accuracy did not generalize as well to the case studies.
A reweighted KL term produced higher accuracy on the
case studies. The reappearance of this trend reinforces the
conclusion that the reweighted KL term helps produce models
that generalize better that when the KL term is zero.

With the exception of the epistemic uncertainty associated
with Case 1 predictions made by the Reparameterization
model with a KL term of zero, all other uncertainties are
well calibrated since model accuracy improved after removing
high uncertainty predictions. This demonstrates the additional
utility that Bayesian models provide over deterministic mod-
els. A deterministic ResNet cannot provide a measure of
uncertainty about its predictions, let alone provide a measure
of whether or not the uncertainty is well-calibrated. Not only
can Bayesian models provide a prediction with uncertainty
metrics, it is possible to determine if these uncertainties
are well calibrated. Model predictions accompanied by well
calibrated uncertainties allow for a decision to be made about
whether to keep the prediction, to discard the prediction, or
to pass the prediction to another system or a human being,
whichever is more useful for the task at hand.

TABLE IV
ACCURACY ON TEST SET USING ALL PREDICTIONS, PREDICTIONS WITH

EPISTEMIC UNCERTAINTY LESS THAN OR EQUAL TO THE THRESHOLDS IN
TABLE III, AND PREDICTIONS WITH ALEATORIC UNCERTAINTY LESS

THAN OR EQUAL TO THE THRESHOLDS IN TABLE III.

Model All Epistemic Aleatoric
Flipout, KL = 0 0.927 0.972 0.975

Reparam., KL = 0 0.920 0.967 0.972
Flipout, KL RW 0.866 0.914 0.930

Reparam., KL RW 0.864 0.913 0.927
MC Dropout 0.860 0.909 0.923

TABLE V
AS IN TABLE IV BUT FOR CASE 1.

Model All Epistemic Aleatoric
Flipout, KL = 0 0.756 0.820 0.817

Reparam., KL = 0 0.778 0.778 0.799
Flipout, KL RW 0.794 0.862 0.871

Reparam., KL RW 0.802 0.849 0.879
MC Dropout 0.784 0.849 0.847

TABLE VI
AS IN TABLE IV BUT FOR CASE 2.

Model All Epistemic Aleatoric
Flipout, KL = 0 0.814 0.859 0.847

Reparam., KL = 0 0.817 0.817 0.842
Flipout, KL RW 0.834 0.904 0.881

Reparam., KL RW 0.832 0.885 0.876
MC Dropout 0.824 0.899 0.876

C. Predictive Implications of Well-Calibrated Uncertainties

Having established that the uncertainties of the models are
well-calibrated, these uncertainties can now be used for the
task at hand, precipitation type classification. Figure 2a depicts
the variance (sum of aleatoric and epistemic uncertainty) asso-
ciated with each prediction for Case 2. Figures 2b and 2c show
the separated uncertainty types as defined by Eq. 9. Brighter
colors represent higher levels of variance and uncertainty.
Figure 2d and e display the predictions from the GPROF
algorithm and the DPR-derived labels (used as true label for
training). Figure 2f details the predictions for the Flipout KL
Reweighting model on Case 2; lighter shades of blue and red
represent classifications with epistemic uncertainty above the
threshold of 1.544e-03 from Table III.

When compared side-by side, the aleatoric and epistemic
uncertainty maps show exactly how much of the predictive
uncertainty is caused by the dataset (aleatoric) and how
much is caused by the model (epistemic). The scales of the
uncertainty maps show that the majority of the uncertainty is
a result of the aleatoric component; even the brightest portions
of Fig. 2c are an order of magnitude smaller than the darker
portions of Fig. 2b.

When viewed in conjunction with the prediction map (Fig.
2f), the aleatoric and epistemic uncertainty maps in Fig. 2b
and c provide information beyond what is available when
viewing the prediction map in isolation. In a similar fashion
to [16], when the spatial predictions (Fig. 2f) disagree with
the DPR-derived labels (Fig. 2e), the epistemic uncertainty
(Fig. 2c) identifies the incorrect classifications because of the
larger magnitude of these uncertainties compared to the rest of
the epistemic uncertainty map. From 12◦ to 14◦ latitude and
from -143◦ to -142.5◦ longitude, the Bayesian model over-
predicts convective precipitation, but the epistemic uncertainty
map identifies many of these predictions as high uncertainty
(depicted in pink on the prediction map). This same type of
prediction error occurs along 15◦ latitude, where the Bayesian
model over-predicts convective precipitation, and again, the
epistemic uncertainty map identifies these predictions as high
uncertainty (depicted in pink in Fig. 2c). If a downstream
application requires high accuracy predictions, a decision
could be made to discard these types of predictions since
they have both high epistemic uncertainty and high aleatoric
uncertainty. However, in some instances, it may be beneficial
to keep predictions with low epistemic uncertainty, but higher
aleatoric uncertainty (see Fig. 2b and c at 13◦ latitude, -
141.5◦ longitude). For these predictions, the model has low



7

uncertainty (epistemic) about its prediction despite noise that is
inherent in the data (high aleatoric uncertainty). When making
these types of decisions, the uncertainty-source component
is of particular interest. Compared to deterministic models,
this new information about model predictions provides the
ability to make informed decisions about how to handle high
uncertainty predictions based on the level and the source of
the uncertainty. Furthermore, such a decision cannot be made
when the variance alone is considered.

D. Utility of Uncertainty Decomposition Beyond Prediction

The results of these experiments offer more than establish-
ing whether or not model uncertainties are well calibrated
and making decisions about predictions using well-calibrated
uncertainties. Figure 3 shows the mean aleatoric uncertainty
(Fig. 3a) and epistemic uncertainty (Fig. 3b) for the predictions
made by each model on each dataset. All models have similar
levels of aleatoric uncertainty across each dataset (∼0.19 for
the test set, ∼0.22 for Case 1, ∼0.13 for Case 2). However, the
models differ with respect to amount of epistemic uncertainty
for each dataset (∼0.0005–0.005 for the test set, ∼0.001–
0.0085 for Case 1, ∼0.00075–0.0055 for Case 2). Across
datasets, there is a general trend in epistemic uncertainty.
MC Dropout has the highest epistemic uncertainty; Reparam-
eterization with KL reweighting has the second highest; and
Flipout with KL reweighting has the lowest. By decomposing
the variance into aleatoric and epistemic uncertainties, these
measures enable informed decision-making about model se-
lection, data collection/processing, and targeted data analysis.

Visualizing the uncertainty decomposition in this way can
be useful when making decisions about model selection and
data collection. Since all models in Fig. 3 equally represent
the aleatoric uncertainty and have comparable accuracy, it
is prudent to select the Flipout KL Reweighting model for
deployment because it has lower epistemic uncertainty values
and a smaller range of epistemic uncertainty (∼ 0.0005-
0.001) across the datasets compared to MC Dropout (∼
0.005-0.0085) and Reparameterization with KL reweighting
(∼ 0.003-0.006). From this visualization, it is also possible to
gain insight about what type of data to collect. If it is possible
to collect more data, the epistemic (model) uncertainty values
in Figure 3 indicate that data similar to Case 1 (cyan) would be
more beneficial than data similar to Case 2 (green) because
the epistemic uncertainty values for Case 1 are higher and
epistemic uncertainty can be reduced with more training data.
This observation is strengthened when taking the dataset sizes
into account. Case 2 epistemic values are close to the Test Set
values, but the Test Set has close to 1000 times more samples.
Case 1 is only about 200 samples smaller than Case 2. New
data similar to Case 1 or augmentation of existing Case 1 data
will lower the epistemic uncertainty for each model, which
could lead to models that generalize better in live inference
than the current models. These types of conclusions cannot
be drawn when using a deterministic model since it provides
no measure of uncertainty about its predictions. Additionally,
these conclusions cannot be made without decomposing the
variance into aleatoric and epistemic uncertainty, particularly

when the epistemic uncertainty values are much smaller than
the aleatoric values (see Table III and the scales of Fig. 3a
and b). This is also true when analyzing Bayesian model
performance with predictive entropy, a bulk uncertainty metric,
such as in Orescanin et al. [7].

This same type of analysis can also be useful to identify
when targeted data analysis may be useful. All considered
models were less accurate when run on the case study datasets
than when run on the much larger training set (see Table II).
For Case 1, this difference in accuracy can be explained by the
models not seeing enough data during training that is similar
in underlying distribution to the data in Case 1 since the mean
epistemic uncertainty values in Fig. 3 are higher for Case 1
than for the Test Set. The same holds true when running the
MC Dropout model and the Flipout KL Reweighting model on
the Case 2 dataset for which the mean epistemic uncertainty
values in Fig. 3 are also higher for Case 2 than for the Test Set.
However, the Reparameterization KL Reweighting model has
lower epistemic uncertainty for Case 2 than for the Test Set.
This means the model is less uncertain about its predictions
when run on the Case 2 than when run on the Test Set, but it is
getting the prediction wrong more often for Case 2 (accuracy
0.832) than for the Test Set (accuracy 0.864). Seeing this
curious trend, the false positives and the false negatives for the
Reparameterization KL Reweighting model can be aggregated
and further analyzed. In this case, it is possible that the false
positives and false negatives arise because the model is applied
to the inner core of a tropical cyclone, where the precipitation
is dynamically neither completely convective nor stratiform.
Regardless of the reason, this is yet again another type of
observation that cannot be made when using deterministic
models or without decomposing the uncertainty.

By exploring the relationship between aleatoric and epis-
temic uncertainty in another way, it is possible to have still
more insight into model selection. In Fig. 4, each line indicates
the expected epistemic uncertainty for a prediction given that
the aleatoric uncertainty for the prediction is less that or equal
to the value on the abscissa. This demonstrates that as aleatoric
uncertainty (inherent in the data) increases epistemic (model)
uncertainty increases. However, the magenta (Reparameteriza-
tion KL = 0) and cyan (Flipout KL = 0, hidden by magenta)
lines indicate that no change in epistemic uncertainty occurs
as aleatoric uncertainty increases when the KL term equals
zero. In other words, when the KL term is zero, the model
fails to represent the epistemic uncertainty in a meaningful
way. The lines for the other models have greater slope that
corresponds with an increasing effect on model uncertainty by
noise inherent in the data. This trend reinforces the choice of
the Flipout KL Reweighting model (red lines) for deployment
since it has low epistemic uncertainty even as aleatoric uncer-
tainty increases and has accuracy that generalizes to Cases 1
and 2. The models with KL equal to zero, on the other hand,
have low epistemic uncertainty, but their accuracy does not
generalize to Cases 1 and 2 (see Table II).

Decomposing the variance into uncertainty types provides
the opportunity for yet one more insight, identifying challenges
due to data collection and processing. When the observed
trend in Fig. 4 is combined with two orders of magnitude
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Fig. 2. Plots of the northeast section of Hurricane Lane observed by the GMI instrument at 1645 UTC 19 Aug 2018 (Case 2). The top row contains spatial
plots of uncertainty metrics; specifically, a) variance, b) aleatoric uncertainty, and c) epistemic uncertainty. The bottom row contains d) GPROF predictions of
precipitation type, e) DPR-derived precipitation type, and f) Flipout KL Reweighting predictions with uncertainty above a threshold of 1.544e-03 (from Table
III) shown in lighter shades. Note that the range of magnitudes for variance and aleatoric uncertainty are similar (0.0-0.5) and much larger than the values
for epistemic uncertainty (0 to 0.01).

difference in uncertainty values seen in Fig. 3, it can reason-
ably be concluded in this example that reducing the aleatoric
uncertainty would likely yield higher accuracy since the mod-
els that have higher aleatoric uncertainty (MC Dropout and
Reparameterization with KL reweighting) also have accuracy
comparable to the Flipout with KL reweighting model. Having
made this conclusion, attempts could now be made to reduce
the aleatoric uncertainty, such as by re-calibrating collection
sensors, augmenting the existing data with new features, or
preprocessing the data differently to increase the signal to
noise ratio. Without knowing that the aleatoric uncertainty far
outweighs the epistemic uncertainty, it would be impossible to
understand that reducing the noise inherent in the data provides

more opportunity to improve model accuracy than providing
a model more training data.

E. Virtual Concept Drift Detection

Virtual concept drift occurs when the data distribution
changes so much that model error is no longer acceptable
[30]. Case 3 consists of one year of observations collected
over land surface across the entire globe. We expect that
the distribution of GMI brightness temperatures over land
is completely different than that over ocean because the
emissivity of land is significantly different from that of water.
Table VII shows the accuracy of the models, which were
trained on data collected over oceans, on this third case study
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b)

a)

Fig. 3. a) Mean aleatoric uncertainty and b) epistemic uncertainty for each
dataset by model (listed on abscissa) for the test dataset (dark blue), Case 1
(cyan), and Case 2 (green).

data. Because this dataset was balanced, these accuracy results
(∼ 50%) are akin to guessing the correct class. Seeing this
dramatic decrease in accuracy may be an indicator that virtual
concept drift has occurred. The decomposed variance can help
confirm this intuition.

TABLE VII
ACCURACY USING MODELS TRAINED ON DATA COLLECTED OVER THE

OCEAN TO PREDICT ON DATA COLLECTED OVER LAND IS AKIN TO
GUESSING THE CORRECT CLASS (∼ 50%). THE MEAN EPISTEMIC AND

ALEATORIC UNCERTAINTIES ARE CLOSER IN MAGNITUDE COMPARED TO
THE VALUES IN TABLE III

Model Accuracy Epistemic Aleatoric
ResNet38 V2 0.526 N/A N/A

Flipout, KL = 0 0.500 5.565e-02 4.557e-02
Reparam., KL = 0 0.500 1.024e-01 7.083e-02
Flipout, KL RW 0.500 3.308e-02 1.426e-01

Reparam., KL RW 0.501 5.828e-02 2.760e-01
MC Dropout 0.501 6.856e-02 2.030e-01

Unlike the previous case studies and the test set where the
epistemic uncertainty was much smaller than the aleatoric
uncertainty (∼ 0.4 difference), the aleatoric and epistemic
uncertainties for Case 3 are much closer in magnitude (< 0.23
difference); the models with the KL term set to zero even have
epistemic uncertainty that exceeds the aleatoric. These higher

Fig. 4. Expected epistemic uncertainty (E) given that a prediction has aleatoric
uncertainty (A) less than or equal to the values on the abscissa for the test
dataset (solid lines), Case 1 (dashed lines), and Case 2 (dotted lines). Different
models are denoted by different colors as follows: MC Dropout (dark blue),
Flipout with KL Reweighting (red), Reparameterization with KL Reweighting
(green), Flipout with KL = 0 (cyan), and Reparameterization with KL = 0
(magneta). The models with the KL term of zero (magenta and cyan) are both
essentially 0 at all values of A.

values of epistemic uncertainty suggest that the accuracy is
suffering because the model did not see enough similar data
in training. In Fig. 5a, the aleatoric values of Case 3 (yellow)
are similar to the test set and the other case studies. This
makes it unlikely that the decrease in accuracy is due to sensor
degradation or some other source of noise inherent in the data.
Furthermore, in Fig. 5b, the epistemic values are much higher
for this dataset. These high values confirm that the Case 3
data is indeed not part of the same distribution as the model
development datasets. This is to be expected given the contrast
in brightness temperature (i.e., input features) distributions
originating over radiometricaly cold ocean- and warm land-
surfaces; however, during live inference, this difference would
not be known ahead of time. Separating the uncertainties math-
ematically confirms that this is indeed virtual concept drift.
This confirmation allows model developers to focus decisions
on how to handle this new distribution, instead of blindly
adding more data to development data splits or conducting
time consuming hyperparameter tuning (three weeks for these
models).

IV. SUMMARY AND CONCLUSION

Machine learning techniques can efficiently extract discrete
and continuous properties of physical systems. However, ex-
isting techniques have limited ability to provide insights to
errors and the physical relationship between the observed and
retrieved properties, a major downside of their application. In
the present study, we use a problem of detecting precipitation
type from satellite observations to introduce a novel tool for
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Fig. 5. As in Fig. 3 but for all models and including the mean a) aleatoric
and b) epistemic uncertainties for land data in Case 3 (yellow).

decomposing errors of satellite-retrieved products and allow
for better understanding of the links between observed and
retrieved features. Typically, precipitation type is reported
without quantitative uncertainty attached to an estimate. We
use Bayesian models to classify precipitation type by map-
ping Global Precipitation Measurement mission Microwave
Imager observations to Dual-frequency Precipitation Radar-
derived precipitation type. These Bayesian models perform
comparably to deterministic models, but with the added benefit
of well calibrated uncertainties. Well calibrated uncertainties
are useful for making decisions concerning high uncertainty
predictions, model selection, targeted data analysis, and data
collection and processing. Additionally, our Bayesian models
enable mathematical detection of virtual concept drift, which
occurs when the data distribution changes so much that model
error is no longer acceptable [30].

From a pool of ∼ 14 million samples collected in 2017, we
created a development dataset that we used to create traditional
training/validation/test datasets with an equal representation
of each type of precipitation. To simulate live-inference, we
used two temporally independent, single-overpass case study
datasets (Case 1 and Case 2) from 2018. Case 1 is a subtrop-
ical marine mesoscale convective system (MCS) located near
shallow convection. Case 2 is a section of Hurricane Lane
observed southeast of Hawaii. To observe model behavior on
data with a different distribution, we used a third case study

dataset (Case 3) comprised of one year of global observations
collected over land in 2018.

In our experiments, we developed Bayesian models using
the evidence lower bound (ELBO in Eq. 6) as our loss func-
tion, which is dependent on the KL divergence term between
the prior and posterior distributions. The KL divergence can
grow rapidly and can prevent a model from converging during
training. We adopted a KL reweighting scheme (Eq. 7) to con-
trol the KL divergence term during optimization. Our results
(Table II) indicate that a reweighted KL term helps models
achieve accuracy that generalizes better to live inference than
setting the KL term to zero. The models with a reweighted KL
term had comparable accuracy to the MC Dropout model, a
Bayesian model where the KL term is not explicitly computed.
All our Bayesian models also had well calibrated uncertainties
that proved useful for making decisions about high uncertainty
predictions. This information can be used to decide to keep a
prediction, to discard a prediction, or to pass a prediction to
another system or a human being, whichever is more useful
for the task at hand. By decomposing the uncertainty into
aleatoric and epistemic components, decisions can be made
about how to handle high uncertainty predictions. Figure 2
provides a visualization of different uncertainty metrics and
high uncertainty predictions. By separating out the epistemic
uncertainty, we identified the Flipout with KL reweighting
model as the model most ready for deployment because it
had comparable accuracy to all other models but with a lower
and smaller range of epistemic uncertainty across the test set
and the two case studies (Case 1 and Case 2). Using this same
analysis of epistemic uncertainty, we also concluded that false
positives and false negatives from the Reparameterization with
KL reweighting model were candidates for targeted analysis.
Furthermore, we were able to conclude that samples similar to
Case 1 would be more beneficial for future training. Analysing
the aleatoric uncertainty of predictions made using data col-
lected over the ocean showed that the aleatoric uncertainty
far outweighed the epistemic uncertainty. Knowing this fact,
attempts can be made to reduce the aleatoric uncertainty, such
as by re-calibrating collection sensors, augmenting the existing
data with new features, or preprocessing the data differently to
increase the signal to noise ratio. The aleatoric uncertainty of
predictions made using data collected over land surface was
similar to the other datasets collected over the ocean. This
similarity coupled with much higher epistemic uncertainty that
the other datasets provided a mathematical means to verify that
concept drift (a change in distribution) caused the accuracy to
plummet.

For precipitation type classification, Bayesian deep learn-
ing models perform comparably to their deterministic coun-
terparts. Decomposing the uncertainty available from these
Bayesian deep learning models allows users to make informed
decisions concerning high uncertainty predictions, model se-
lection, targeted data analysis, data collection/processing, and
virtual concept drift. The ramifications of these capabilities
for just atmospheric science applications are potentially wide-
ranging. For example, if Bayesian neural networks are applied
to regression tasks (i.e., predicting microwave brightness tem-
perature using infrared radiances), the uncertainty included
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may inform proper weighting of insufficiently certain pre-
dictions of synthetic values of commonly assimilated fields
into global numerical models of the atmosphere. Features
associated with large epistemic uncertainties highlight areas
for which additional observations could be beneficial. For
example, in this article, the model could improve by training
on additional observations of deep convection in tropical
cyclones. If predictions using the same model are applied to
the same instrument over time (i.e., several years), increasing
aleatoric uncertainty could be an early indicator that various
issues (e.g., sensor malfunctions, orbital drift) are causing
degradation to predictions. None of these are possible using
traditional deterministic models.
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