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Abstract

Traditional convolutional neural network (CNN) methods rely on dense tensors, which makes them suboptimal for spatially

sparse data. In this paper, we propose a CNN model based on sparse tensors for efficient processing of large and sparse

medical images. In contrast to a dense CNN that takes the entire voxel grid as input, a sparse CNN processes only on

the non-empty voxels, thus reducing the memory and computation overhead caused by the sparse input data. We evaluate

our method on two clinically relevant skull reconstruction tasks: (1) given a defective skull, reconstruct the complete skull

(i.e., skull shape completion), and (2) given a coarse skull, reconstruct a high-resolution skull with fine geometric details

(shape super-resolution). Our method outperforms the state of the art in the skull reconstruction task quantitatively and

qualitatively, while requiring substantially less memory for training and inference. We observed that, on the 3D skull data,

the overall memory consumption of the sparse CNN grows approximately linearly during inference with respect to the image

resolutions. During training, the memory usage remains clearly below increases in image resolution - an $\times 8$ increase

in voxel number leads to less than $\times4$ increase in memory requirements. Our study demonstrates the effectiveness of

using a sparse CNN for skull reconstruction tasks, and our findings can be applied to other spatially sparse problems. We

proof this by additional experimental results on other sparse medical datasets, like the aorta and the heart. Project page at

https://github.com/Jianningli/SparseCNN.
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Sparse Convolutional Neural Networks for Medical
Image Analysis

Jianning Li, Christina Gsaxner, Antonio Pepe, Dieter Schmalstieg, Jens Kleesiek, and Jan Egger

Abstract—Traditional convolutional neural network (CNN)
methods rely on dense tensors, which makes them suboptimal
for spatially sparse data. In this paper, we propose a CNN model
based on sparse tensors for efficient processing of large and
sparse medical images. In contrast to a dense CNN that takes the
entire voxel grid as input, a sparse CNN processes only on the
non-empty voxels, thus reducing the memory and computation
overhead caused by the sparse input data. We evaluate our
method on two clinically relevant skull reconstruction tasks: (1)
given a defective skull, reconstruct the complete skull (i.e., skull
shape completion), and (2) given a coarse skull, reconstruct a
high-resolution skull with fine geometric details (shape super-
resolution). Our method outperforms the state of the art in the
skull reconstruction task quantitatively and qualitatively, while
requiring substantially less memory for training and inference.
We observed that, on the 3D skull data, the overall memory
consumption of the sparse CNN grows approximately linearly
during inference with respect to the image resolutions. During
training, the memory usage remains clearly below increases in im-
age resolution - an ×8 increase in voxel number leads to less than
×4 increase in memory requirements. Our study demonstrates
the effectiveness of using a sparse CNN for skull reconstruction
tasks, and our findings can be applied to other spatially sparse
problems. We proof this by additional experimental results on
other sparse medical datasets, like the aorta and the heart.
Project page at https://github.com/Jianningli/SparseCNN.

Index Terms—sparse convolutional neural network, CT, medi-
cal image segmentation, deep learning, shape completion, super-
resolution, cranioplasty

I. INTRODUCTION

One of the challenges of transferring recent advances in
3D shape analysis to the medical field is that the 3D objects
in typical benchmark datasets are of small to moderate sizes.
Thus, memory efficiency is often not a primary concern. When
applied to medical images, these algorithms often exceed avail-
able memory, even on a high-end GPU with many Gigabytes
of memory. For example, the 3D models (e.g., chairs, cars,
airplanes, etc.) in ShapeNet collection typically consist of a
few thousand points, while a typical high-resolution 3D CT
scan yields millions of points when converted to a point cloud
representation [1].

An obvious opportunity to address the memory issues lies
in exploiting spatial sparsity of the 3D data. Some medical
data sets, such as the skull, are inherently sparse, with voxel

This work was supported by the REACT-EU project KITE (Plattform für
KI-Translation Essen).

J. Li, J. K and J. E are with the Institute for Artificial Intelligence
in Medicine, Essen University Hospital, Germany. C. G, A. P, and D. S
are with the Institute of computer graphics and vision, Graz University
of Technology, Austria. (e-mail: Jianning.Li@uk-essen.de; Jan.Egger@uk-
essen.de). Corresponding authors: Jianning Li and Jan Egger

occupancy rates as low as 10%. Since only non-empty voxels
carry geometric information of the 3D shape, a sparse convo-
lutional neural network (CNN) [2–5] can save both memory
and computational effort.

In our work, we construct a sparse CNN using the
Minkowski Engine [5], which was originally designed for
spatio-temporal tensors of 4D and up. We demonstrate how
to apply the same principles to sparse, binary volumetric
data. To that aim, we evaluate our sparse CNN on two skull
reconstruction tasks: skull shape completion and skull shape
super-resolution. With sparse CNN, the skull images can be
processed in their original resolution (512×512×Z, where Z
is the number of axial slices in a head CT scan) with moderate
memory requirement. Results show the superiority of sparse
CNN over conventional dense CNN in terms of both runtime
performance and memory requirements on sparse data.

This paper is an extension of our submission [6] to the
AutoImplant 2021 challenge 1. [6] first demonstrated that it
is feasible to use sparse CNN in skull reconstruction tasks
and empirically analysed its advantages over regular CNN.
Compared to [6], the major improvements of this work are
summarized as followed:

• Only the edges of the skulls were used in [6], as the
available GPU memory is rather low (6GB). In this work,
we can use the whole dense skulls thanks to the extended
GPU capacity (12GB).

• The superiority claim in [6] is substantiated by experi-
mental evidence in our work

• Besides shape completion on skull images, we show
experimentally in this work that sparse CNN is effective
in other skull reconstruction tasks such as skull shape
super-resolution, and on additional sparse medical images
besides the skulls.

II. RELATED WORK

a) Shape completion: Shape completion refers to the
process of restoring the missing regions of an object in the
format of point clouds [7], meshes [8] or voxel grids [9–
11]. Using voxel grids for completion takes the advantage of
existent and well-established CNN architectures, such as auto-
encoders, which are designed to process images. However,
an object (e.g., in the form of a points cloud) has to be
voxelized to a high-resolution voxel grid in order to preserve
the geometric details. The use of a voxel grid in deep learning
is expensive, as memory requirements grow cubically with
respect to resolution. The work of Han et al. [9] and Dai et

1https://autoimplant2021.grand-challenge.org/

https://github.com/Jianningli/SparseCNN
https://autoimplant2021.grand-challenge.org/
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Figure 1: Illustration of the MRI and CT skull dataset (a,b) and the synthetic defects (c) created for skull shape completion.

al. [10] addressed the memory issues by reconstructing high
resolution voxel grids in a two-step, coarse-to-fine fashion.
Other studies work around the memory issue by using only
very coarse voxel grids (e.g., 24×54×24) for completion [11].

Compared to voxel grids, point clouds are much more light-
weight. Yuan et al. [7] proposed a deep learning framework
that performs shape completion directly on raw point clouds
data without voxelization. However, since point clouds are
unstructured and objects of the same size differ in their number
of points, deep learning has to deal with irregular memory
access [12, 13]. These CNN methods for shape completion
generally used the auto-encoder architecture and its variants.

b) Skull shape completion and clinical implications:
Skull shape completion has important applications in craniofa-
cial implant design [14, 1, 15]. The skull images are segmented
as binary voxel grids from high-resolution CT scans, typically
at a resolution of 512 × 512 × Z. In CNN applications, the
size of such skull images significantly exceeds the memory
capacity of a standard desktop GPU. Previous methods either
downsample [16] or resample [17, 18] the skull images to a
smaller, intermediate size, or use a patch-wise training and in-
ference strategy [1]. Li et al. [19] proposed a two-step, coarse-
to-fine framework that generates high-resolution implants with
reduced memory usage. All these methods are far from op-
timal, as downsampling or resampling inevitably results in
image quality degradation and, consequently, deformation of
the skull shape. The two-step method proposed by Li et al. [19]
is not end-to-end trainable. The patch-based approach requires
a tailored training strategy to make sure that the CNN captures
the overall shape distribution of the human skull [1]. Besides,
it was reported in [1] that the reconstructed high-resolution
skulls would appear patchy due to the incongruency around
the borders of the individual patches. Furthermore, [19, 20]
also showed experimentally that a network would be more
likely to learn the overall shape distributions of the skulls
when given an entire skull as input2, compared to given only a
portion (e.g., a bounding box [19] or a patch [20]) of the skull.
The full-image context helps increase a network’s robustness

2Due to memory restrictions, [19, 20] used low-resolution images for
experiments on the entire skulls.

against defect patterns and generalizability. On this account, an
ideal CNN for skull reconstruction should take the entire high-
resolution skull images as input and output the reconstructed
skulls or implants in their original resolutions.

c) Data spatial sparsity and sparse CNN: In a recent
approach [20], the authors adopted a hash table to exploit the
sparse and binary 3 structure of the skull images to reduce
the reconstruction time and memory consumption. Instead of
the entire skull volume, the method reconstructs only the
non-zero voxels and stores them as bit-strings, so that each
voxel occupies only one bit of memory. This is a non-CNN
approach and requires that voxel coordinates are stored during
reconstruction to maintain the spatial relationship among the
reconstructed voxels.

In this paper, we propose to take the advantage of such spa-
tial sparsity of the skull data to reduce memory consumption
using only sparse convolutions. Note that by "sparse CNN"
we mean a CNN architecture made for sparse input data (like
the skull) and not a compressed CNN with sparse (e.g., mostly
zero) parameters [21–24].

This makes our approach conceptually similar to methods
which apply a CNN to 3D shapes at high resolutions, such
as Riegler et al. [3] and Wang et al. [2]. Both used an
octree representation for 3D shapes and proposed octree-
based convolutions. Graham et al. [4, 25] and Choy et
al. [5] proposed sparse convolutions defined on the non-empty
points in an object. During execution, features are extracted
only from these non-empty locations, such that the zero-
valued background does not take up memory and computation
resources.

III. DATA GENERATION

We used two public skull datasets in our study, namely,
the MRI skull dataset from the Human Connectome Project
(HCP)4 and the CT skull dataset from the Task 3 of the
AutoImplant 2021 challenge.

3By sparse, the authors mean that the percentage of the non-zero voxels is
rather low in a skull volume. By binary, the voxels in a skull volume have
only two status: zero (background voxels) and one (the non-zero voxels that
contribute to the skull geometry).

4https://humanconnectome.org/study/hcp-young-adult/document/
1200-subjects-data-release/

https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release/
https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release/
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Figure 2: Memory occupancy of the MRI (a) and CT (b) skull
datasets at different resolutions. For the original skull data, the
memory occupancy was down-scaled by a factor of ten and
five for the MRI and CT dataset, respectively, for the plots.
The X axis shows the resolutions and the Y axis shows the
min, max and mean related to the number of voxels.

MRI Dataset: The HCP dataset originally contains 1113
structural MRI scans, and 200 of them were selected in our
study (100 for training and 100 for evaluation). The BrainSuite
(http://brainsuite.org/) software was used to extract the skull
surfaces from the scans [26]. Note that the program extracts
only the inner and outer skull surfaces, and therefore the
resulting skulls meshes are hollow from within (Figure 1
(b)). The skull meshes were further voxelized to binary grid
representation at various resolutions: 303, 603, 903 and 1203

( Figure 1 (a)).
CT Dataset: In CT scans, structures can be distinguished

based on gray values, and therefore the bony skull can simply
be extracted using thresholding, resulting in binary voxel grids
of resolution 512×512×Z (Z varies for different scans). The
resulting skulls are solid, in contrast to the hollow MRI skulls.
The dataset contains 100 skulls for training and 100 for eval-
uation (the 10 out-of-distribution test cases are not included
here). We also created the multi-resolution representation of
the CT skulls at 64 × 64 × (Z/8), 128 × 128 × (Z/4) and

256× 256× (Z/2), as illustrated in Figure 1 (a).
For both the datasets, a portion of the skull bone (around the
cranium area) was removed to simulate the surgical procedure
of craniotomy for the experiments on skull shape completion
(Figure 1 (c)). Figure 2 shows a comparison of the memory
occupancy between the original skull voxel grids and the
non-zero voxels, for the MRI (Figure 2 (a)) and CT dataset
(Figure 2 (b)) at various resolutions specified above. Note that
the plots use the number of voxels to represent the overall
memory occupancy directly, as each voxel occupies a constant
space5. The plots show that the memory usage of the original
skull data grows cubically with respect to image resolutions,
while for the valid voxels, memory usage exhibits approximate
linear growth in comparison. Intuitively, a sparse CNN relying
only on the valid voxels would be more efficient in terms of
memory and computation than a dense CNN that takes the
entire voxel grids as input.

IV. METHODS

We uses the Minkowski Engine proposed by Choy et al. [5]
as the backbone of a sparse CNN. Minkowski Engine is
originally designed as a general-purpose tool for the analysis
of 4D spatio-temporal data and uses sparse tensors as the basic
data type. A sparse tensor F is a generalized representation of
a sparse matrix in which most of the points are empty (zero).
A third order sparse tensor can be expressed as:

F (xi, yi, zi) =

{
fi, (xi, yi, zi) ∈ C
0, others

(1)

where C is the coordinate matrix (row-wise concatenation
of coordinates) of the non-empty points and fi ∈ RNF is
the non-empty value at coordinate (xi, yi, zi). NF is the
number of channels at this point. F =

{
f1, f2, ..., fi, fi+1...

}
is the feature vector. Sparse CNN relies only on C and F
for feature computation. In our study, we use sparse CNN
specifically on sparse binary volumes of static data, i.e., the
skull images, which are typical examples of sparse tensors,
since the majority of voxels in a skull image are zero. The
input of the sparse CNN consists of a coordinate matrix Cin
and the associated feature vectors Fin:

Cin =


x1 y1 z1
x2 y2 z2
... ... ...
xN yN zN

 ,Fin =


1
1
...
1

 (2)

Here, N is the number of non-zero voxels in a skull image.
Note that the coordinates we used in our study refer to voxel
grid coordinates (i.e., from [0, 0, 0] to [512, 512, Z]) instead
of the world coordinates of point clouds. Since the skull data
are binary, and the number of channels per voxel is one (NF =
1), the feature vector has a format of Fin ∈ RN×1, and the
elements in Fin are all 1. For three-dimensional voxel grid
coordinates, Cin ∈ ZN×3. A general data pre-processing step
for using the sparse CNN is to format the input and ground
truth skull images according to Equation 2.

5The MRI dataset was stored as int8 and the CT dataset was stored as
int32.

http://brainsuite.org/
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Similar to existing CNN methods for shape completion,
we use an auto-encoder architecture for the task, but we
replaced the conventional dense convolutional layers with
sparse convolutional layers [5]. Table I shows the configuration
of each layer in the sparse CNN used for experiments. ch is a
list of the channel numbers for each layer. As the number of
output channels (Cout) in each layer is no longer constant
1 as in the input skull image, we use F i

in ∈ RCout
i−1 as a

general notation for the output (i.e., the feature vector) of the
intermediate layer i. The convolution operation at a coordinate
D ∈ Z3 in the sparse CNN can therefore be defined similar
to that of the traditional dense CNN:

F i+1
in (D′) =

∑
wiF i

in(D) + bi (3)

where wi ∈ RCout
i ×Cout

i−1 and bi is the weight matrix and
bias of intermediate layer i. D′ ∈ Z3 is the corresponding
coordinate in layer i + 1 mapped from D. Note that, unlike
a traditional dense CNN that operates on regular voxel grids
sequentially, a sparse CNN requires specifying a coordinate
mapping in order to know how D is mapped to D′, as the non-
zero voxels can be distributed arbitrarily, and, by extracting
only the non-zero voxels, the spatial context within an image
is lost. For such coordinate mapping, Minkowski Engine uses a
pair of voxel indices from the input and ground truth images to
memorize the mapping relationship as in a regular voxel grid,
leading to coordinates-related computation overhead, compa-
rable to Li et al. [20]. In Minkowski Engine, the coordinates
and the voxel indices were stored in a hash table (the hash
function used is FNV64-1A), where the coordinates were used
as hash keys to retrieve the original voxel indices of the
associated elements in a feature vector. Even if the hash table
is not directly involved in feature computation, they determine
how an element from the input feature vector is mapped to
an element computed according to Equation 3 in the output
feature vector.

A. Shape completion

For skull shape completion, the input is a defective skull
and the output (ground truth) is the complete skull. It can
be divided into two sub-tasks: reconstructing the original
defective skull

{
Cin,Fin

}
and restoring the missing skull bone

(i.e., the implant)
{
Cimp,Fimp

}
:

Csc
out =

[
Cin
Cimp

]
,Fsc

out =

[
Fin

Fimp

]
(4)

where

Cimp =


xN+1 yN+1 zN+1

xN+2 yN+2 zN+2

... ... ...
xN+M yN+M zN+M

 ,Fimp =


1
1
...
1

 (5)

M is the number of non-zero voxels in the generated set of
coordinates Cimp. Fimp ∈ RM×1, and the elements in Fimp

are all 1. According to Equation 4, the sparse CNN needs to
generate new sets of coordinates Cimp at which the values are
non-zero, for the skull shape completion task (M ̸= 0 such that
Cin ⊂ Csc

out). The generative sparse tensor decoder in Table I

Encoder Decoder

Cin Cout Ks Cin Cout Ks

1 ch[0] 3 *ch[6] ch[5] 4
*ch[0] ch[1] 2 ch[5] ch[5] 3
ch[1] ch[1] 3 ch[5] 1 1

*ch[1] ch[2] 2 *ch[5] ch[4] 2
ch[2] ch[2] 3 ch[4] ch[4] 3

*ch[2] ch[3] 2 ch[4] 1 1
ch[3] ch[3] 3 *ch[4] ch[3] 2

*ch[3] ch[4] 2 ch[3] ch[3] 3
ch[4] ch[4] 3 ch[3] 1 1

*ch[4] ch[5] 2 *ch[3] ch[2] 2
ch[5] ch[5] 3 ch[2] ch[2] 3

*ch[5] ch[6] 2 ch[2] 1 1
ch[6] ch[6] 3 *ch[2] ch[1] 2

- - - ch[1] ch[1] 3
- - - ch[1] 1 1
- - - *ch[1] ch[0] 2
- - - ch[0] ch[0] 3
- - - ch[0] 1 1
- - - ch[0] 1 1
- - - sigmoid

Table I: Configuration (number of input channels Cin, output
channels Cout and kernel size Ks) of each layer in the encoder
and decoder of the sparse CNN. The generative transposed
convolutional layers are marked bold. Layers with stride 2 are
marked with *.

are composed of generative transposed convolutional layers
[27] that are capable of generating new non-zero points absent
in the input. Given a sparse tensor F as input, the output of
a transposed convolution F ′ can be written as:

F ′[x, y, z] =
∑

i,j,k∈N (x,y,z)

W[x−i, y−j, z−k]F [i, j, k] (6)

where (x, y, z) ∈ C′ and (i, j, k) ∈ C. W is the kernel
weight. C and C′ are the input and output coordinate matrix
respectively, and they have the following relationship:

C′ = C ⊗ [−K, ...,K]3 (7)

⊗ denotes outer-product. 2K+1 is the transposed convolu-
tion kernel size. A point generated by a transposed convolution
(x, y, z) has the following constraint with the input coordinate
i, j and k according to Equation 6:

N (x, y, z) ={
(i, j, k)||x− j| ⩽ K, |y − j| ⩽ K, |z − j| ⩽ K

} (8)

We can see from Equation 6 - Equation 8 that using a kernel
size greater than two would expand the span (e.g., [−K,K])
of the input coordinates, allowing a transposed convolution
to dynamically generate new non-zero points for generative
tasks like shape completion. In our specific task, the generative
sparse tensor decoder in Table I is trained to generate M new
points, while maintaining the original input coordinates.

Each transposed convolution layer in Table I is followed by
a pruning layer that prunes out undesirable new points, which
is essential for maintaining a low memory and computation
cost during the generative process. During training, the ground
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truth masks teach the network when to keep or prune a point.
During inference, the ground truth masks are unavailable. The
network prunes a point if its feature value is lower than a
pre-defined threshold τ . In our network, we choose τ = 0.

B. Shape super-resolution

Skull shape super-resolution refers to the process of trans-
forming a (completed) coarse binary skull shape to its smooth
high-resolution representation with fine geometric details. The
input is the completed skull at a low resolution Za, and the
output is the same completed skull at a higher resolution Zb,
a < b.

Note that for the skull super-resolution task, the coarse and
high-resolution skull (i.e., the ground truth) have to be in the
same coordinate system for the coordinate mapping in the
sparse CNN to work properly, meaning that the coarse skull
image needs to be up-scaled to the same size as the target
high-resolution image, i.e., a = b.6 By a = b we do not mean
that the input and the ground truth have the same resolution
from the perspective of image quality. Rather, we mean that
the input is interpolated to the same size as the ground truth.
The up-scaled input still appears blurry and coarse, and lacks
geometric details.

According to [20], the difference between a (up-scaled)
coarse skull voxel grid and a high-resolution voxel grid is
simply the arrangement patterns of the zero and non-zero
voxels, and, by rearranging the voxels, a coarse skull shape
can be upgraded to the high-resolution representation. The
total number of non-zero voxels between the two types of
skulls shows no statistical differences. Therefore, we use the
following to represent the ground truth coordinate matrix Csr

out

and feature vector Fsr
out for the super-resolution task:

Csr
out =


x1 y1 z1
x2 y2 z2
... ... ...
xN0

yN0
zN0

... ... ...
x′
N y′N z′N

 ,Fsr
out =


1
1
...
1
...
1

 . (9)

If we assume that the input Cin and the ground truth share N0

common points (N0 < N ), N − N0 non-zero points in the
input need to be pruned while N − N0 new non-zero points
need to be generated. Therefore, the sparse CNN specified in
Table I is still applicable to the super-resolution task.

C. Memory usage and computation complexity

The memory consumption of a neural network comes pri-
marily from the following sources during training time: (1)
input and ground truth image batches, (2) the output of the
intermediate layers (forward pass), (3) network parameters, (4)
memory usage from back-propagation (errors and gradients at
each parameter) and (5) optimizers. In test time, the parameters
of the network, input image batches and intermediate layers’
output are the main sources of memory usage. In our study, we

6The network would fail to converge when, for example, the input is of
resolution 64 × 64 × (Z/8), while the ground truth is of resolution 256 ×
256× (Z/2).

compare the memory consumption of sparse and dense CNN
when the networks have the same configurations (Table I) and
number of parameters Nparam. For both dense and sparse
CNN configurations, Nparam can be estimated as

Nparam =
∑
i

Cout
i × Cin

i ×Ks3 + Cout
i . (10)

The number of bias in layer i is the same as the number
of output channels of the layer Cout

i . Assuming that the
parameters are stored as float32 (32-bit), sparse and dense
CNN consume the same amount of memory in storing these
parameters. However, the input and ground truth for a dense
CNN are the original voxel grids, while, for a sparse CNN,
only the valid non-zero voxels are required, and thus a sparse
CNN consumes significantly less memory than dense CNN in
loading the input and ground truth image batches, as shown in
Figure 2. Similarly, the size of the output Nfi corresponding
to intermediate layers i is linear to the feature dimension of
the (i− 1)th layer Nfi−1 and is calculated as

Nfi =
1

s
(Nfi−1 + 2p−Ks), (11)

where p and s are the padding and stride size, respectively.
According to Equation 11, the memory consumption of the
intermediate layers’ output is also linear to the input image
size (Figure 2).

The memory consumption related to back-propagation and
optimizer is tricky to calculate. In our study, we estimate the
overall GPU memory usage during training using the nvidia-
smi command provided by NVIDIA. We query the system
GPU memory usage at 50-millisecond intervals for Ntrain

training iterations (Ntrain is the number of training samples,
and the batch size was set to 1) and take the average of all
the queried values as the final amount of memory consumed
for training, considering that the number of non-zero voxels
are different for each training sample. The static memory
occupancy that is not caused by training the network was
subtracted from the measurement. For inference, we used the
same method except that the measurement was taken when
the network loaded the trained parameters and was run on the
test set.

Floating points operations (FLOPS) is commonly used to
measure computational complexity of a CNN. The FLOPS
consumed in CNN layer i is the product of Nfi , Ks and Cout

i ×
Cin
i . Given the same network configurations (Cout

i , Cin
i , Ks),

the FLOPS are linear to Nfi and thus to the input image size
(Figure 2). The sparse CNN therefore is significantly faster
than a dense CNN in both training and inference time under
the same configurations.

V. EXPERIMENTS AND RESULTS

We trained the sparse CNN (Table I) for two tasks: The
first task is skull shape completion on the CT and MRI skull
dataset at different resolutions (303, 603, 903 and 1203 for the
MRI dataset and 642 × (Z/8), 1282 × (Z/4), 2562 × (Z/2)
and 5122 × Z for the CT dataset). For the CT dataset,
ch is set to ch1 = [8, 8, 16, 16, 32, 32, 64] (0.435M
parameters), for the MRI dataset, ch is set to ch2 = [22,
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Table II: Quantitative results - DSC (top row) and RE (%, second row) for the skull shape completion task.

MRI CT (sparse) CT (dense)

30 60 90 120 64(ch1) 64(ch2) 128 (ch1) 128 (ch2) 256 512 64 128 256

0.8794 0.9915 0.9920 0.9879 0.9798 0.9859 0.9876 0.9892 0.9876 0.9903 0.4801 0.4928 0.6069
2.5593 0.1324 0.1333 0.1095 0.2237 0.1561 0.1423 0.1229 0.1443 0.1144 7.9719 6.0845 4.8014

Table III: Quantitative results - DSC (first row) and RE (second row, %) for the skull shape super-resolution task.

64→128 64⇒128 64→256 64 ⇒256 64→512 64 ⇒ 512 128 → 256 128 ⇒ 256 completion

0.8750 0.8359 0.8779 0.8359 0.6640 0.6402 0.9372 0.9146 0.9876
1.3821 1.8685 1.3589 1.8942 3.7850 4.2358 0.7187 0.9867 0.1443

Figure 3: DSC (left) and RE (right, %) on the MRI dataset
at different resolutions (303, 603, 903, 1203) for the shape
completion task. The dash-lined boxes contain the zoomed-in
boxplots.

Figure 4: DSC (top) and RE (%, bottom) for the sparse CNN
on the CT dataset at different resolutions. (a) 64 (ch1) (b) 64
(ch2) (c) 128 (ch1) (d) 128 (ch2) (e) 256 (f) 512.

32, 32, 128, 156, 256, 388] (about 18.14M parameters). The
second task is skull shape super-resolution on the CT skull
dataset on different scales: 642 × (Z/8) → 1282 × (Z/4),

Figure 5: Memory consumption during training and inference
for the sparse and dense CNN at different resolutions (left).
Memory consumption of sparse CNN with different batch sizes
at resolution 64 (right).

Table IV: Comparison of estimated memory consumption (in
GB) during training and inference between the sparse and
dense CNN at different image resolutions.

cat. \ Is 64 128 256 512

sparse train 1.5119 1.6256 2.7341 11.3049
sparse test 1.4519 1.5097 1.8905 2.7993
dense train 1.6543 1.9043 4.8145 -
dense test 1.6699 1.8184 2.6934 -

642 × (Z/8) → 2562 × (Z/2), 642 × (Z/8) → 5122 × Z
and 1282 × (Z/4) → 2562 × (Z/2). For comparison, we also
trained a standard dense CNN with the same configuration
as the sparse CNN for the shape completion task on the CT
dataset. For both tasks, we used dice similarity coefficient
(DSC) and reconstruction error (RE), i.e., the percentage of
misclassified voxels, to evaluate the predictions. The sparse
CNN was trained using a binary cross-entropy loss Lbce:

Lbce = y′ · logσ(y) + (1− y′) · log(1− σ(y)) (12)

and the dense CNN was trained using a dice loss Ldice for
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Table V: Sparse CNN memory consumption (in GB) with different batch sizes at resolution 642 × (Z/8) during training.

ch \batch 2 3 4 5 6 7 8 9 10 16 32

ch1 1.5119 1.5494 1.5780 1.6164 1.6557 1.6867 1.7151 1.7950 1.8459 2.1180 3.8395
ch2 1.9071 - 2.0054 - - - 2.3729 2.3232 2.5116 - -

Figure 6: DSC (top) and RE (bottom, %) for the super-
resolution task on the CT dataset. (a) 64 → 128 (b) 64 → 256)
(c) 64 → 512 (d) 64 ⇒ 128 (e) 64 ⇒ 256 (f) 64 ⇒ 512 (g)
128 → 256) (h) 128 ⇒ 256 (i) shape completion at 256. The
dash-lined boxes contain the zoomed-in boxplots.

the background (i = 0) and the target (i = 1):

Ldice = −2

1∑
i=0

∑
yi ◦ y′i∑

yi ◦ yi +
∑

y′i ◦ y′i
, (13)

σ is a sigmoid non-linearity. y and y′ denote the predictions
and the ground truth, respectively. ◦ denotes element-wise
multiplication between two matrices.

Table II shows the quantitative evaluation results (mean
DSC and RE) for the shape completion task. In Table II,
we also reported a performance comparison of the sparse
CNN with different numbers of parameters at resolutions
642×(Z/8) and 1282×(Z/4). Results indicate that increasing
the model complexity of the sparse CNN would also lead to
increased prediction accuracy, a phenomenon well observed in
traditional dense CNN models. It is worth noting that, using
a sparse CNN, we are able to train on the CT skull images at
their full resolutions (5122 ×Z) and the results are promising
with over 0.99 DSC and less than 0.12% reconstruction error
(e.g., in a 5122×256 image, only 76772 voxels are misclassi-
fied on average). In contrast, GPU memory restrictions made
training on the 5122×Z image resolution using a dense CNN

unsuccessful. Furthermore, the quantitative results of the dense
CNN were significantly worse than the sparse CNN, as can
be seen in Table II. Note that the shape completion results
in Table II are not directly comparable to the AutoImplant
challenge results for two reasons: 1) for a fair comparison,
the dense CNN used the same vanilla network configuration
as the sparse CNN, while the challenge submissions used
more complex (and different) dense network architectures
combined with tailored pre- and post-processing (e.g., data
augmentation) to achieve the results [14]. Besides, Table II
reported the results at resolutions 642 × (Z/8), 1282 × (Z/4)
and 2562 × (Z/2) for the dense CNN, while the challenge
reported the results at resolution 5122 × Z. 2) the results
reported in Table II apply to the skulls while the challenge
results apply to the implants [14]. Therefore, Table II is
solely to show a comparison of sparse and dense CNN under
one vanilla setting. To provide an external comparison for
the proposed sparse CNN, we refer to [20], in which a
dense network with over 82M parameters was trained on the
same CT dataset for skull shape completion. DSC from three
variants of the method was reported: 0.7547 for interpolation,
0.7529 for voxel rearrangement and 0.8587 for patch-based
training and inference. Quantitatively, the sparse CNN with
only 0.435M parameters performs significantly better (DSC
of 0.9903). Figure 3 and Figure 4 shows the DSC and RE
distributions over the test sets on the MRI and CT skull
datasets, respectively.

Figure 5 shows a comparison of the estimated memory
consumption of dense and sparse CNN at different image res-
olutions during training and inference, as well as a comparison
of memory consumption of sparse CNN with different batch
sizes at image resolution 642×(Z/8) during training. Table IV
and Table V report the estimated memory usage (in GB). With
each increase in the image resolution, the image size increases
cubically (×8). During training, the memory consumption of
the sparse CNN increases in an approximately linear manner
when the image resolution is no more than 2562 × (Z/2). At
5122 ×Z resolution, the memory usage quadruples (×4). For
the dense CNN, the memory usage demonstrates non-linear
growth. During inference, the memory usage of the sparse
CNN increases linearly at all resolutions, and the memory
consumption of the sparse CNN increases linearly with respect
to batch size. Furthermore, the sparse CNN with ch2 channels
possesses over 40 times the parameters than with ch1 channels,
whereas the memory increases by less than two times. We take
this as indication that, for a sparse CNN, raising the model
complexity to improve the prediction accuracy does not cause
dramatic increases in memory usage. Figure 7 and Figure 8
show the qualitative completion results on the MRI and CT
datasets at different resolutions.

We use the average GPU execution time per skull image to
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portray the runtime speed of the sparse CNN. For training, we
measure the duration of training for 100 iterations and compute
the average time per iteration. For inference, we measure
the time it takes to run on the entire test set (100 images).
Batch size is set to one in both cases. We experimented on
the CT data using the shape completion model (ch1). At
resolution 642 × (Z/8), 1282 × (Z/4) and 2562 × (Z/2), the
training/inference time (s) per image is roughly 0.28/0.22,
0.32/0.30 and 0.71/0.54, excluding data loading. We can see
that both training and inference time increases linearly with
respect to resolutions. Note that the time measured the same
way for the dense CNN is not directly comparable to that of the
sparse CNN, as the variable i.e., the amount of computational
resources they occupy in runtime, can not be controlled during
measurement.

Keep in mind that the time and memory growth reported
above is not strictly linear, especially during training at high
resolutions. The memory and time overhead includes space
and computation reserved for voxel coordinates, coordinate
mapping and other implementation-related costs.

Table III shows the quantitative evaluation results for
the super-resolution task. In Table III, → represents super-
resolution using the sparse CNN, and ⇒ represents up-scaling
using interpolation. Figure 6 shows the DSC and RE distribu-
tions. We can see that super-resolution with a sparse CNN
outperforms interpolation-based up-scaling. Besides, super-
resolution directly from the lowest-resolution to the highest
resolution (i.e., 642×(Z/8) → 5122×Z) has the worst results,
and the sparse CNN shows better performance at smaller
resolution gaps (1282 × (Z/4) → 2562 × (Z/2) is better than
642 × (Z/8) → 2562 × (Z/2)). Table III compares super-
resolution and shape completion at resolution 2562 × (Z/2).
The results suggest that sparse CNN might be better at the
completion task as well.

The qualitative results in Figure 9 further demonstrate
the advantages of super-resolution using a sparse CNN. We
can see that the missing geometric details in and around
the craniofacial area of the coarse skulls can be effectively
recovered in the final super-resolution output.

VI. DISCUSSION, CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a comprehensive evaluation
of sparse CNN architectures in two medical image analysis
tasks: skull shape completion and skull shape super-resolution.
Results show that a sparse CNN significantly outperforms
a traditional dense CNN with respect to speed, quality and
memory efficiency on sparse data. One of the limitations
of current sparse CNN frameworks, such as the Minkowski
Engine used in our study, is that the voxel coordinates as
well as the associated coordinate management tools need to
be created and stored to memorize the spatial relationship of
the non-zero voxels during convolutions, causing computation
overhead in comparison to dense CNN. Another limitation
is that, if not initialized properly, the generative transposed
convolutional layers might generate a large amount of points
and cause false out-of-memory errors during training. There-
fore, one future direction worth investigating is to regularize

Figure 7: Examples of skull shape completion results with
sparse CNN on the MRI skull dataset at different resolutions.
The first to third column in each example shows the input
defective skull grids, the predictions and the ground truth,
respectively.

Figure 8: Shape completion results with sparse CNN on the CT
skull dataset at different resolutions. The first to third column
in each example shows the input defective skull grids, the
predictions and the ground truth, respectively.

the generative layers or to use shape priors on the output
to prevent the network from generating random amount of
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Figure 9: Qualitative results of skull shape super-resolution.
The first column shows coarse, completed skulls at 64 reso-
lution. The second to last column show the super-resolution
results at 128, 256, 512 resolutions. The first row in each
example shows the input of the super-resolution network (up-
scaled coarse skulls at 128, 256, 512 resolutions), while the
second row shows the corresponding network output.

points. Additionally, the sparse CNN failed on the out-of-
distribution test set of the AutoImplant Challenge, meaning
that the network was overfitting to skull defect patterns and
lacking generalizability, even if given a full-image context

during training. We presume that the network would fail on
real craniotomy skulls as well, since craniotomy defects tend
to be more irregular than the synthetic defects used in our
shape completion experiments. We have yet to decide on
the cause of the failure, and future efforts on this issue are
still required. In the supplementary material, we provided
additional experiments and results on other spatially sparse
medical images, such as the heart, aortic vessels, trachea
and esophagus, in a segmentation task. The results indicate
that, with moderate increase of computation and memory, the
quality of the initial segmentation masks from a dense CNN
can be substantially improved using the proposed sparse CNN
model.
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APPENDICES

A. ADDITIONAL RESULTS ON SKULL SHAPE
SUPER-RESOLUTION.

Figure A.1 shows a visual comparison of shape completion
and super-resolution results at the same resolution level.

Figure A.1: Comparison of completed skulls at resolution 256.
In each example, the first column shows the skull obtained
from shape completion at resolution 256. The second and
third column show the skull obtained from skull shape super-
resolution from 64 and 128. The second row shows the
colormap of signed mesh distance between predictions and
the ground truth.

B. IMPLANT GENERATION RESULTS

Figure B.1 shows the generated implants at resolution
5122 × Z (without any post-processing).

Figure B.1: Implants (second row) obtained by taking the
difference between the defective skulls (first row) and the
completed skulls at resolution 512. The last row shows the
ground truth.

C. ADDITIONAL EXPERIMENTS ON OTHER SPATIALLY
SPARSE MEDICAL IMAGES

In this section, additional experiments and results of sparse
CNN-based super-resolution on other spatially sparse med-
ical images were provided. The dataset used in the exper-
iments was obtained from the SegTHOR challenge (https:
//competitions.codalab.org/competitions/21145) that addresses

Figure C.1: A CT scan and the ground truth organ segmenta-
tion masks of the heart (green), aorta (yellow), trachea (blue)
and esophagus (red) from the SegTHOR challenge.

the problem of automatic segmentation of organs at risk. The
dataset contains 40 CT scans as well as the segmentation
masks of the heart (green), aorta (yellow), trachea (blue)
and esophagus (red), as can be seen from Figure C.1. The
segmentation masks are spatially sparse with very low voxel
occupancy rate (VOR), as can be seen from Table C.1.
The dataset contains 20 CT scans without the ground truth
segmentation masks for evaluation. The CT scans as well as
the segmentation masks are of resolution 512× 512× Z.

Workflow: Firstly, we downsampled the images to 1283

and trained a U-Net style dense CNN (1803988 trainable
parameters) for automatic segmentation of the organs from the
CT scans. Secondly, inference was run on the CT scans in the
training and test set to generate the coarse (1283) segmentation
masks. Thirdly, the coarse masks were up-scaled to their
original resolution 512× 512× Z via interpolation. Fourthly,
we used the up-scaled masks as well as the original ground
truth masks from the training set to train a sparse CNN (the
same sparse CNN used for skull super-resolution in the main
manuscript) for super-resolution. Lastly, we run the inference
of the trained sparse CNN on the up-scaled masks from the
test set, to obtain the final high-resolution segmentation masks
for these organs.

organ train test VOR (%)

aorta 2.05 1.75 0.20
heart 2.46 2.38 0.79

trachea 1.73 1.64 0.04
esophagus 1.77 1.64 0.05

Table C.1: Voxel occupancy rate (VOR) and the memory usage
(in GB) during training and inference for different organs.

Figure C.2 - C.5 show the qualitative results of the aorta,
heart, esophagus and trachea images. It is worth noting that, as
the organs in the dataset are even more sparse than the skulls
(Table C.1), training on the full 512 × 512 × Z resolution
for the super-resolution task takes only moderate amount of
GPU memory (Table C.1), while the super-resolution step can
substantially improve the quality of the segmentation masks,
as can be seen from Figure C.2 - Figure C.5. Figure C.6 shows
the combined segmentation masks of the organs viewed in 2D
and 3D, from sparse CNN.

https://competitions.codalab.org/competitions/21145
https://competitions.codalab.org/competitions/21145
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Figure C.2: Super-resolution results of the aorta images. The
first to last row shows the coarse aorta mask predictions (1283)
from the dense CNN, the up-scaled aorta masks (512×512×Z)
and the super-resolution output from sparse CNN (512×512×
Z).

Figure C.3: Super-resolution results of the heart images. The
first to last row shows the coarse heart mask predictions (1283)
from the dense CNN, the up-scaled heart masks (512×512×Z)
and the super-resolution output from sparse CNN (512×512×
Z).

Figure C.4: Super-resolution results of the esophagus images.
The first to last row shows the coarse esophagus mask pre-
dictions (1283) from the dense CNN, the up-scaled esophagus
masks (512× 512× Z) and the super-resolution output from
sparse CNN (512× 512× Z).

Figure C.5: Super-resolution results of the trachea images. The
first to last row shows the coarse trachea mask predictions
(1283) from the dense CNN, the up-scaled trachea masks
(512× 512× Z) and the super-resolution output from sparse
CNN (512× 512× Z).

Figure C.6: The segmentation masks of the organs viewed in
2D (second column) and 3D (third column). The first column
shows a slice of the CT scan.


