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Abstract

Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In
an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are
influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed a neural network
model using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any
additional sensors. In the fault detection task, the model achieved an area under receiver operating characteristics curve value
of 0.9992 (95% Confidence Interval: 0.9991 - 0.9992). At the rated operating conditions, it detected and located an ISCF of
2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than ten times compared to the thresholding-based
method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy
and faulty states of the IM, becoming the first publicly available ISCF detection dataset.
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Abstract—Early detection of an inter-turn short circuit
fault (ISCF) can reduce repair costs and downtime of an
electrical machine. In an induction machine (IM) driven by
an inverter with a model predictive control (MPC) algorithm,
the controller outputs are influenced by a fault due to the
fault-controller interaction. Based on this observation, this
study developed a neural network model using inverter
switching statistics to detect the ISCF of an IM. The method
was non-invasive, and it did not require any additional
sensors. In the fault detection task, the model achieved an
area under receiver operating characteristics curve value
of 0.9992 (95% Confidence Interval: 0.9991 - 0.9992). At
the rated operating conditions, it detected and located an
ISCF of 2-turns (out of 104 turns per phase) under 0.1
seconds, a speedup of more than ten times compared to the
thresholding-based method. Moreover, we published the
switching vector data collected at various load torque and
shaft speed values for healthy and faulty states of the IM,
becoming the first publicly available ISCF detection dataset.

Index Terms—Condition monitoring, fault diagnosis, in-
duction motor, machine learning, motor drives, multi-layer
perceptron, neural networks, predictive control.

I. INTRODUCTION

OWING to its value and significance, fault diagnosis
of electrical machines has been a focus of intensive

research, as reflected by a plethora of publications over the
past years [1]–[4]. The early detection of an incipient fault
can enable repair cost and downtime reduction benefits. Fur-
thermore, provided that the machine is fault-tolerant by design
and proper identification of the inflicting fault is made, the
continuum of operation with a reduced rating is also possible.

Several fault detection methods that address induction mo-
tors (IM) have been reported [5]–[7] as the IM is the most
commonly used AC machine type due to its low cost and
ruggedness. It is estimated that the stator faults constitute
21% of all the faults [8]. Stator faults usually start as inter-
turn short circuit faults (ISCF) [9] and quickly develop further
into complete phase-to-phase or phase-to-ground faults, which
implies the total malfunctioning of the machine. Depending on
the machine and the fault’s structure, the time between ISCF
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Fig. 1: Inverter switching statistics and neural network
model. (a) The voltage vectors of a two-level voltage source
inverter. The controller finds the optimum voltage vector in
view of the control outcomes, and applies it at the next
switching instant. (b) Histograms of switching vectors over
a period for a healthy machine and a machine with inter-turn
short circuit fault are given. While aggregated 0-vectors is
represented as 0, aggregated active vectors are represented as
A, B and C. (c) The neural network model is a multi-layer
perceptron consisting of an input layer (with 4 nodes), two
hidden layers (Layer1 and Layer2 - each with 64 nodes) and
an output layer (with 2 nodes). The model takes a histogram
of switching vectors at the input and predicts whether the
machine is healthy or faulty at the output.



occurrence and the total loss of insulation is in the order of
seconds [10]. Therefore, a swift and effective identification of
an incipient ISCF is crucial.

An important distinction regarding the fault detection stud-
ies is the control method assumed for the motor. The motor can
be line-fed (uncontrolled, open-loop) or closed-loop controlled
via an inverter. There exists a complex interaction between the
fault and the controller [11], [12]. The controller inherently
tries to negate the fault’s effect. It is shown in [13] that an
IM drive implemented with model predictive control (MPC)
continues to exhibit perfectly balanced phase currents under
an ISCF of 3-turns (out of 104 turns per phase). However, a
significant unbalance is observed for the line-fed operation
under the same fault condition. This example implies that
most fault detection methods developed considering line-fed
machines (such as motor current signature analysis) would be
less effective (if not totally useless) for a high-performance
control case. Therefore, it is essential to develop a fault detec-
tion method in conjunction with the main control algorithm.

Recently, the utilization of artificial intelligence (AI) tech-
niques, such as neural networks (NN), has been gaining
increasing momentum in power electronics [14]. A particular
area for which the NN approach is very suitable is the fault
diagnosis of electrical machines. Several studies have devel-
oped AI-based fault detection methods as reviewed in [15]–
[18]. They mostly use stator currents or vibration signals from
additional sensors to extract the fault data.

While most of these studies are for bearing fault detec-
tion [15], few are for ISCF detection. A data-driven online
detection method utilizing multiple classifiers is proposed in
[19]. The fault information is acquired from phase currents
and voltages. ISCFs down to 2% could have been detected.
A multi-layer perceptron is trained to detect ISCFs down to
0.6% in [20]. The three-phase shifts are utilized as the input
data. Similarly, a Hebbian-based unsupervised neural network
is reported in [21], where the phase currents are used for fault
detection. While these studies [19]–[21] consider induction
machines fed from AC supplies, a closed-loop controlled IM is
considered in this paper, which constitutes a fundamental dif-
ference. Although an ISCF detection method detecting ISCFs
down to 4.2% in a closed-loop controlled permanent magnet
machine is reported in [22], no details regarding the controller
structure or the controller-fault interaction are provided. An
attention recurrent neural network is used which accepts phase
currents and speed information as the inputs.

This study directly utilizes the switching sequences gen-
erated by the finite control-set model predictive controller
(FCS-MPC) for ISCF diagnosis, therefore no additional sensor
or hardware is required for fault detection purposes. The
voltage vectors of a two-level voltage source inverter (2L-
VSI) are depicted in Fig. 1a. In the standard FCS-MPC, the
controller finds the optimum voltage vector in view of the
control outcomes and applies it at the next switching instant.
Hence, the controller outcomes are discrete voltage vectors
and convenient for statistical approaches. The switching data
utilized in this paper, which correspond to the healthy oper-
ation and the ISCF case (i.e., the faulty case), are obtained
from the experimental setup of [13], with a stator flux-linkage

magnitude reference of |Ψs| = 0.3Wb. The specifications of
the control approach and the experimental setup will not be
revisited here as they are already described in [13] and further
detailed in [23]. The ISCF condition corresponds to a short-
circuiting of 2-turns out of 104-turns in a phase winding.

A motor drive inverter with model predictive control pro-
duces an (almost) uniform distribution of active switching
vectors while driving a healthy induction machine. However,
an inter-turn short circuit in the stator changes the distribution
of active switching vectors since the driver tries to compensate
for the fault’s influence for the proper operation of the motor
(Fig. 1b). This observation constitutes the basis for this study.
Our primary approach is to train a neural network with the
switching vector data collected for healthy and faulty cases
so that the trained structure can identify and locate an ISCF.
The detection performance results prove the effectiveness of
the proposed approach.

II. NEURAL NETWORK BASED ISCF DETECTION

This study designs a neural network model detecting inter-
turn short circuit faults in an induction machine driven by an
inverter with model predictive control (Fig. 1c). We formulate
ISCF detection as a classification problem using inverter
switching statistics.

A. Problem Formulation
Let X = {x1, · · · ,xN} be a set of training samples such

that each sample xi ∈ RD has a corresponding ground-truth
label yi = [y1i , · · · , yKi ] ∈ {0, 1}K where

∑K
k=1 y

k
i = 1.

Given our model is represented as a function parameterized
by θ, fθ : RD → RK , it predicts the label of an input
sample xi as ŷi = fθ(xi) = [ŷ1i , · · · , ŷKi ] ∈ RK such that
ŷki ≥ 0 ∀k and

∑K
k=1 ŷ

k
i = 1. We train our model end-to-end

using categorical-cross entropy as the loss function (1).

loss =
1

N

N∑
i=1

K∑
k=1

yki log ŷki (1)

B. Neural Network Model Architecture
The neural network model is a multi-layer perceptron con-

sisting of an input layer with 4 nodes, two hidden layers with
64 nodes, and an output layer with 2 nodes (Fig. 1c). The
model accepts a histogram of inverter switching statistics at
the input and predicts the machine’s status (healthy or faulty)
at the output. Hidden layers have a ReLU activation function
(f(x) = max(0, x)) followed by a dropout with a rate of 0.5.
The output layer has a softmax activation function producing
normalized probability values, i.e., adding up to 1.

C. Machine Learning Dataset
Switching vectors of an inverter with model predictive

control were collected for different conditions of an induction
machine in an experimental setup explained in [13], and also
further detailed in [23]. The induction machine had a rated
speed of w = 3000 rpm and a rated torque of T = 1.20
N·m. The switching vectors were recorded as data series for



TABLE I: Data for ISCF Detection. Inverter switching vectors were collected for different conditions of an induction machine
with a rated speed of w = 3000 rpm and a rated torque of T = 1.20 N·m. For each data series, speed (w), torque (T ), measured
electrical frequency (fe), and machine status as “Healthy” or “Faulty” are presented. Each data series in the first part was
divided into two such that the first 70% and the remaining 30% were used to create samples for the training and validation
sets, respectively. Data series in the second part were used to create samples for the test set.

Training and Validation Test

id w (rpm) T (N·m) fe (Hz) Machine Status id w (rpm) T (N·m) fe (Hz) Machine Status

001 1500 0.30 25.5 Healthy 035 1500 0.30 25.5 Healthy
002 1500 0.30 25.5 Faulty 036 1500 0.30 25.5 Faulty
003 1500 0.90 28.0 Healthy 037 1500 0.90 28.0 Healthy
004 1500 0.90 28.0 Faulty 038 1500 0.90 28.0 Faulty
005 2250 0.30 38.1 Healthy 039 2250 0.30 38.1 Healthy
006 2250 0.30 38.1 Healthy 040 2250 0.30 38.1 Faulty
007 2250 0.30 38.1 Faulty 041 2250 0.30 38.1 Faulty
008 2250 0.30 38.1 Faulty 042 2250 1.25 42.0 Healthy
009 2250 1.25 42.0 Healthy 043 2250 1.25 42.0 Healthy
010 2250 1.25 42.0 Faulty 044 2250 1.25 42.0 Faulty
011 2250 1.25 42.0 Faulty 045 2250 1.25 42.0 Faulty
012 3000 0.30 50.6 Healthy 046 3000 0.30 50.6 Healthy
013 3000 0.30 50.6 Healthy 047 3000 0.30 50.6 Healthy
014 3000 0.30 50.6 Faulty 048 3000 0.30 50.6 Faulty
015 3000 0.30 50.6 Faulty 049 3000 0.30 50.6 Faulty
016 3000 1.20 54.4 Healthy 050 3000 1.20 54.4 Healthy
017 3000 1.30 54.8 Faulty 051 3000 1.30 54.8 Faulty
018 3000 1.35 55.3 Healthy 052 3000 1.35 55.3 Healthy
019 3000 1.35 55.3 Faulty 053 3000 1.35 55.3 Faulty
020 3750 0.30 63.1 Healthy 054 3750 0.30 63.1 Healthy
021 3750 0.30 63.1 Healthy 055 3750 0.30 63.1 Faulty
022 3750 0.30 63.1 Faulty 056 3750 0.30 63.1 Faulty
023 3750 0.30 63.1 Faulty 057 3750 1.25 67.5 Healthy
024 3750 1.25 67.5 Healthy 058 3750 1.25 67.5 Healthy
025 3750 1.25 67.5 Faulty 059 3750 1.25 67.5 Faulty
026 3750 1.25 67.5 Faulty 060 3750 1.25 67.5 Faulty
027 4500 0.30 75.6 Healthy 061 4500 0.30 75.6 Healthy
028 4500 0.30 75.6 Healthy 062 4500 0.30 75.6 Faulty
029 4500 0.30 75.6 Faulty 063 4500 1.15 79.8 Healthy
030 4500 0.30 75.6 Faulty 064 4500 1.15 79.8 Faulty
031 4500 1.15 79.8 Healthy
032 4500 1.15 79.8 Healthy
033 4500 1.15 79.8 Faulty
034 4500 1.15 79.8 Faulty

the induction machine operating at different combinations of
speed and torque at healthy and faulty states (see Table I).
Each data series consisted of 22000 switching vectors. Inter-
turn short circuit fault was introduced over 2 turns (out of 104
turns) in one phase of the machine (see [13] for details).

Collected data series were segregated into two sets such that
the first set was for training and validation, and the second set
was for the test. Each data series in the first set was further split
into two data series. The first 70% of data points constituted a
data series for training, and the remaining 30% constituted a
data series for validation. Then, machine learning datasets of
training, validation, and test were prepared by creating sample
and label pairs over respective data series.

Over a data series, multiple samples were created in a
sliding window fashion with a step size of one. A sample was
created by calculating the histogram of switching vectors over
a window of five electrical periods (≈ 92 ms at the rated speed
and torque) (Fig. 1b, see supplementary Fig. S1, Fig. S2, and
Fig. S3 for the histograms over the data series in the training,
validation, and test sets). Note that switching vectors were
aggregated as 0-vectors (v0 − v7), phase A vectors (v1 − v4),
phase B vectors (v2− v5), and phase C vectors (v3− v6). The

machine’s status (i.e., healthy or faulty) was assigned as the
sample’s label.

D. Training and Testing of The NN Model
The neural network model was trained on samples created

from training data series using the loss function given in Eq. 1.
Early stopping based on loss in the validation dataset was em-
ployed to avoid overfitting. Finally, the model’s performance
was evaluated on the unseen test dataset.

The area under the receiver operating characteristic curve
(AUROC) was used as the performance metric. We also
calculated the 95% confidence interval (CI) of the AUROC
using the percentile bootstrap method [24].

E. Data and Code Availability
The data and code have been deposited at IEEE DataPort

under the https://doi.org/10.21227/chp0-5x97 [25].

III. EXPERIMENTS

A. The NN Detects ISCF
We checked the performance of the neural network model

on ISCF detection. For each sample in the test dataset, we
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Fig. 2: The neural network models detect ISCF. Different
NN models using the same architecture with different number
of nodes in the hidden layers were trained and tested on
the ISCF detection task. The area under receiver operating
characteristics curve (AUROC) calculated on the test set was
used as performance metric. We trained and tested the models
using histogram of all vectors (0-vector included) and active
vectors only (0-vector excluded).

obtained a prediction from the trained model and plotted the
receiver operating characteristic curve. We got an AUROC of
0.9992 (95% CI: 0.9991 - 0.9992).

We checked the effect of the model’s capacity on the
model’s performance by varying the hidden layer sizes. As
expected, we observed that the model’s performance decreased
with decreasing model capacity (Fig. 2). Nevertheless, the
performance decrease was not drastic. Hence, smaller net-
works could be preferable for real-world deployment since
they require less computational power.

Besides, we checked the model’s performance on identify-
ing if a data series was collected at the healthy or faulty state
of the machine. Prediction for a data series was obtained as
the average of predictions of all samples created from the data
series. Although we observed wrong predictions at the sample
level in the few data series, the model perfectly identified the
machine’s status at the data series level (Fig. 3, supplementary
Fig. S4, and Fig. S5).

B. 0-vectors Help The NN Detect ISCF
We know that the proportion of 0-vectors provides infor-

mation about the speed and torque of the machine, which can
be valuable for the model. To test the effect of 0-vectors on
the performance of the neural network model, we excluded
0-vectors from histogram calculation and reran our exper-
iments. As expected, we observed a performance decrease
(Fig. 2). Hence, we concluded that 0-vectors helped the neural
network models detect ISCF.

Furthermore, we observed a decrease in fault detection
performance for the speed values beyond 3750 rpm (Fig. 3).
This region corresponds to the verge of overmodulation in
an inverter control system with a carrier-based modulation,
where the percentage of zero vectors significantly decreases.
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Fig. 3: Sample-level ISCF predictions on the data series
in the test dataset. At each point of a data series (i.e.,
for a sample), inter-turn short circuit fault (ISCF) probability
was obtained from the trained model. ISCF probability and
predicted machine status (MS) obtained by thresholding the
predicted probability value with 0.5 are presented for four
data series having wrong predictions. For each data series,
id, speed (rpm), torque (N·m), and MS ((H)ealthy, (F)aulty)
are also given. See supplementary Fig. S4 and Fig. S5 for all
data series.
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Fig. 4: Statistics over longer intervals improve perfor-
mance. Switching vector histograms were calculated over an
interval of multiples of electrical frequency (5,4,3,2, and 1)
while training the NN models. We compared the effect of
interval length on the model’s performance using AUROC on
the test set both for 0-vector included and 0-vector excluded
cases.

The switching vector statistics were also not as responsive to
the occurrence of the fault as they were at the slower speeds.

C. Statistics Over Longer Intervals Improve Performance
We trained and tested our models with sample and label

pairs. A sample was created by calculating the histogram of
switching vectors over a window of five electrical periods
(≈ 92 ms at the rated speed and torque). In an ideal system
(where there is no noise), an ISCF can be detected using in-
verter switching statistics calculated over one electrical period.
However, the system is noisy in practice, and the noise directly
affects the model’s performance.

We investigated the effects of the interval length, over
which switching vector histograms were calculated, on the
performance of neural network models. We observed that as
the length of the interval decreased (multiples of electrical
period: 5, 4, 3, 2, and 1), the model’s performance also
decreased (Fig. 4). In short, we concluded that statistics over
longer intervals improved the model’s performance.

One interesting observation was that the performance decay
was gradual from five to two periods. Nevertheless, it was
drastic from two periods to a single period. Our observation
was also consistent with the findings of [13], which uses
a thresholding-based method over switching vector statistics.
Besides, the contribution of 0-vectors in the model’s perfor-
mance was evident (Fig. 4).

D. The NN Identifies Faulty Phase in a Machine with ISCF
After we showed that a neural network model successfully

detected ISCF, we also checked if it could identify the faulty
phase. We prepared a small dataset using data series collected
at the rated speed and around the rated torque of the induction
machine (Table II).

We modified the neural network architecture used in ISCF
detection to a multi-class classification model with four classes
corresponding to the machine’s status of healthy, faulty (A),

TABLE II: Data for Faulty Phase Detection. For each data
series, speed (w), torque (T ), measured electrical frequency
(fe), and machine status as “Healthy” or “Faulty” with phase
info indicated in parentheses (A/B/C) are presented. Each data
series in the top part was divided into two such that the first
70% and the remaining 30% were used to create samples for
the training and validation sets, respectively. Data series in the
bottom part were used to create samples for the test set.

Training and Validation

id w (rpm) T (N·m) fe (Hz) Machine Status

016 3000 1.20 54.4 Healthy
018 3000 1.35 55.3 Healthy
017 3000 1.30 54.8 Faulty (A)
065 3000 1.25 54.6 Faulty (B)
066 3000 1.25 54.6 Faulty (C)

Test

id w (rpm) T (N·m) fe (Hz) Machine Status

050 3000 1.20 54.4 Healthy
052 3000 1.35 55.3 Healthy
051 3000 1.30 54.8 Faulty (A)
067 3000 1.25 54.6 Faulty (B)
068 3000 1.25 54.6 Faulty (C)

TABLE III: Faulty phase detection. The same NN archi-
tecture was modified to a multi-class classification model
detecting faulty phase as well. The confusion matrix obtained
on the test set is presented.

Predicted

Healthy Faulty (A) Faulty (B) Faulty (C)

Truth

Healthy 1.000 0.000 0.000 0.000
Faulty (A) 0.000 1.000 0.000 0.000
Faulty (B) 0.000 0.000 1.000 0.000
Faulty (C) 0.003 0.000 0.000 0.997

faulty (B), and faulty (C). Then, we trained the model on the
training set with early stopping based on loss in the validation
set and evaluated its performance on the test set. The model
successfully detected ISCF and identified the faulty phase
(Table III). It achieved an accuracy of 0.9995. As in the ISCF
detection task, our neural network model perfectly detected
ISCF and identified the faulty phase at the data series level.

E. The NN Outperforms Thresholding Based Method
The duration of high electrical currents passing through

the shorted turns during an ISCF is critical for the repair
and possible fault-tolerant operation of the machine. As ISCF
detection time takes longer, the chance of successfully repair-
ing and running the machine gets lower. Therefore, we com-
pared the performance of our neural network model with the
thresholding-based method of [13] in terms of ISCF detection
time. At various load torque and shaft speed values, while the
thresholding-based method detected ISCF in between 0.5 to 2
seconds, the neural network model detected ISCF in between
0.074 to 0.196 seconds. There was a speedup of more than
ten times at the rated operating conditions (≈ 1 second for the
thresholding-based method and 0.092 seconds for our neural
network model).



IV. CONCLUSION

Early detection of an ISCF in an electrical machine is vital
for its maintenance. This study developed a neural network
model that detects an ISCF in an IM driven by an inverter
with an MPC algorithm. The model accepted the histogram of
inverter switching vectors, which are readily available, as input
and predicted the machine’s status (healthy or faulty) at the
output (Fig. 1). An ISCF in the IM was successfully detected
under 0.1 seconds with almost perfect performance (Fig. 2).
Besides, the faulty phase was identified with an accuracy of
0.9995 (Table III).

In our experiments, while the largest network (with two
hidden layers of 64 nodes) performed the best in the ISCF
detection task, the performance of the smallest network (with
two hidden layers of 16 nodes) was also good enough for real-
world deployment (Fig. 2). Moreover, it requires less memory
and computational resources, facilitating its deployment in the
same processor alongside the controller algorithm.

Our experiments validated that 0-vectors contained valuable
information for ISCF detection (Fig. 2), and statistics over
longer intervals improved the performance (Fig. 4). Neverthe-
less, there was a trade-off between better performance and
faster ISCF detection in determining the optimum interval for
statistics calculation. We concluded that an interval of three to
five electrical periods was reasonable.

Lastly, we observed that the model’s performance started to
degrade beyond the rated speed and torque values (Fig. 3),
which corresponds to the operation on the verge of over-
modulation, where the utilization of zero vectors significantly
decreases. This could be due to the limited available data
around these operation regions of the IM. We had around
300k samples in our training set; however, they were created
from only 26 independent data series (Table I). Since data
collection is quite expensive, our dataset was minimal com-
pared to traditional deep learning datasets containing millions
of independent samples [26].

Hence, the collection of an extensive dataset with broad
coverage of the IM’s operation regions and the real-world
deployment of our ISCF detection models are reserved for
future work.
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Fig. S1: Histograms of switching vectors in data series used to create the samples in the training set. While aggregated
0-vectors is represented as 0, aggregated active vectors are represented as A, B and C. For each data series, id, speed (rpm),
torque (N·m), and MS ((H)ealthy, (F)aulty) are also given.
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Fig. S2: Histograms of switching vectors in data series used to create the samples in the validation set. While aggregated
0-vectors is represented as 0, aggregated active vectors are represented as A, B and C. For each data series, id, speed (rpm),
torque (N·m), and MS ((H)ealthy, (F)aulty) are also given.
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Fig. S3: Histograms of switching vectors in data series used to create the samples in the test set. While aggregated
0-vectors is represented as 0, aggregated active vectors are represented as A, B and C. For each data series, id, speed (rpm),
torque (N·m), and MS ((H)ealthy, (F)aulty) are also given.
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(k) id=057, w = 3750, T = 1.25
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(l) id=058, w = 3750, T = 1.25
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(m) id=061, w = 4500, T = 0.30
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(n) id=063, w = 4500, T = 1.15

Fig. S4: Machine status predictions on the data series in the test set, collected from a healthy machine. At each point
of a data series, inter-turn short circuit fault (ISCF) probability was obtained from the trained model. ISCF probability and
predicted machine status (MS) obtained by thresholding the predicted probability value with 0.5 are presented for each data
series. For each data series, id, speed (rpm), and torque (N·m) are also given. Note that the machine’s rated specifications are
w = 3000 rpm and T = 1.20 N·m.
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(a) id=036, w = 1500, T = 0.30
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(b) id=038, w = 1500, T = 0.90
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(c) id=040, w = 2250, T = 0.30
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(d) id=041, w = 2250, T = 0.30
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(e) id=044, w = 2250, T = 1.25
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(f) id=045, w = 2250, T = 1.25
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(g) id=048, w = 3000, T = 0.30
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(h) id=049, w = 3000, T = 0.30

H

F

Pr
ed

ic
te

d 
M

S

0 10000
Data Points

0.0

0.5

1.0

IS
C

F 
Pr

ob
ab

ili
ty

(i) id=051, w = 3000, T = 1.30
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(j) id=053, w = 3000, T = 1.35
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(k) id=055, w = 3750, T = 0.30
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(l) id=056, w = 3750, T = 0.30
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(m) id=059, w = 3750, T = 1.25
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(n) id=060, w = 3750, T = 1.25

H

F

Pr
ed

ic
te

d 
M

S

0 10000 20000
Data Points

0.0

0.5

1.0

IS
C

F 
Pr

ob
ab

ili
ty

(o) id=062, w = 4500, T = 0.30

H

F

Pr
ed

ic
te

d 
M

S

0 10000 20000
Data Points

0.0

0.5

1.0

IS
C

F 
Pr

ob
ab

ili
ty

(p) id=064, w = 4500, T = 1.15

Fig. S5: Machine status predictions on the data series in the test set, collected from a faulty machine. At each point
of a data series, inter-turn short circuit fault (ISCF) probability was obtained from the trained model. ISCF probability and
predicted machine status (MS) obtained by thresholding the predicted probability value with 0.5 are presented for each data
series. For each data series, id, speed (rpm), and torque (N·m) are also given. Note that the machine’s rated specifications are
w = 3000 rpm and T = 1.20 N·m.
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