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Abstract

Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In
an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are
influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network
models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require
any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95%
Confidence IntervaI: 0.9949 - 0.9951) was obtained. At the rated operating conditions, the neural network model detected and
located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the
thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed
values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with
the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron,
convolutional neural network, and recurrent neural network.
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Neural Networks Detect Inter-Turn Short Circuit
Faults Using Inverter Switching Statistics for a

Closed-Loop Controlled Motor Drive

Mustafa Umit Oner, İlker Şahin, Member, IEEE, and Ozan Keysan, Member, IEEE,

Abstract—Early detection of an inter-turn short circuit fault
(ISCF) can reduce repair costs and downtime of an electrical
machine. In an induction machine (IM) driven by an inverter
with a model predictive control (MPC) algorithm, the controller
outputs are influenced by a fault due to the fault-controller
interaction. Based on this observation, this study developed
neural network models using inverter switching statistics to detect
the ISCF of an IM. The method was non-invasive, and it did not
require any additional sensors. In the fault detection task, an area
under receiver operating characteristics curve value of 0.9950
(95% Confidence IntervaI: 0.9949 - 0.9951) was obtained. At the
rated operating conditions, the neural network model detected
and located an ISCF of 2-turns (out of 104 turns per phase)
under 0.1 seconds, a speedup of more than two times compared
to the thresholding-based method. Moreover, we published the
switching vector data collected at various load torque and shaft
speed values for healthy and faulty states of the IM, becoming
the first publicly available ISCF detection dataset. Together with
the dataset, we provided performance baselines for three main
neural network architectures, namely, multi-layer perceptron,
convolutional neural network, and recurrent neural network.

Index Terms—Condition monitoring, fault diagnosis, induction
motor, machine learning, motor drives, multi-layer perceptron,
neural networks, model predictive control.

I. INTRODUCTION

OWING to its value and significance, fault diagnosis
of electrical machines has been a focus of intensive

research, as reflected by a plethora of publications over the
past years [1]–[4]. The early detection of an incipient fault
can enable repair cost and downtime reduction benefits. Fur-
thermore, provided that the machine is fault-tolerant by design
and proper identification of the inflicting fault is made, the
continuum of operation with a reduced rating is also possible.

Several fault detection methods that address induction mo-
tors (IM) have been reported [5]–[7] as the IM is the most
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Fig. 1: Inverter switching statistics and neural network
model. (a) The voltage vectors of a two-level voltage source
inverter. The controller finds the optimum voltage vector in
view of the control outcomes, and applies it at the next
switching instant. (b) Histograms of switching vectors over
a period for a healthy machine and a machine with inter-turn
short circuit fault are given. While aggregated 0-vectors is
represented as 0, aggregated active vectors are represented as
A, B and C. (c) The neural network model is a multi-layer
perceptron consisting of an input layer (with 4 nodes), two
hidden layers (Layer1 and Layer2 - each with 64 nodes) and
an output layer (with 2 nodes). The model takes a histogram
of switching vectors at the input and predicts whether the
machine is healthy or faulty at the output.
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commonly used AC machine type due to its low cost and
ruggedness. It is estimated that the stator faults constitute
21% of all the faults [8]. Stator faults usually start as inter-
turn short circuit faults (ISCF) [9] and quickly develop further
into complete phase-to-phase or phase-to-ground faults, which
implies the total malfunctioning of the machine. Depending on
the machine and the fault’s structure, the time between ISCF
occurrence and the total loss of insulation is in the order of
seconds [10]. Therefore, a swift and effective identification of
an incipient ISCF is crucial.

An important distinction regarding the fault detection stud-
ies is the control method assumed for the motor. The motor can
be line-fed (uncontrolled, open-loop) or closed-loop controlled
via an inverter. There exists a complex interaction between the
fault and the controller [11]–[14]. The controller inherently
tries to negate the fault’s effect. The bandwidth of the con-
troller, hence the current regulating performance, emerges as
an important parameter influencing fault-controller interaction
[13], [14]. It is shown in [15] that an IM drive implemented
with finite control set model predictive control (FCS-MPC)
continues to exhibit perfectly balanced phase currents under
an ISCF of 3-turns (out of 104 turns per phase). However, a
significant unbalance is observed for the line-fed operation
under the same fault condition. This example implies that
most fault detection methods developed considering line-fed
machines (such as motor current signature analysis) would be
less effective (if not totally useless) for a high-performance
control case. Therefore, it is essential to develop a fault detec-
tion method in conjunction with the main control algorithm.

A majority of closed-loop studies in the literature considers
field oriented control (FOC) and searches for certain frequency
components in phase currents or dq-axes voltages to identify
an ISCF [12], [16]–[22]. Similar frequency domain approaches
have been presented for direct torque control (DTC) in [23]–
[25]. Observing the changes in motor impedance due to an
ISCF can also be addressed as a tool for fault diagnosis [11],
[26]–[28]. The changes in negative sequence impedance [11],
high frequency impedance [26], increased PWM ripple [27],
and current estimation error [28] are utilized for diagnostic
purposes. Other examples include utilization of torque angle
[29], MPC’s cost function [30], and evaluating inverter switch-
ing statistics [15], [31] for ISCF detection.

Recently, the utilization of artificial intelligence (AI) tech-
niques, such as neural networks (NN), has been gaining
increasing momentum in power electronics [32], [33]. A
particular area for which the NN approach is very suitable
is the fault diagnosis of electrical machines. Several studies
have developed AI-based fault detection methods as reviewed
in [34]–[37]. They mostly use stator currents or vibration
signals from additional sensors to extract the fault data.

While most of these studies are for bearing fault diag-
nosis [34], few are for ISCF [38]–[45]. Studies [38]–[41]
use neural networks to detect ISCFs in permanent mag-
net synchronous machines (PMSMs). Convolutional neural
networks using stator phase currents, voltages, or flux as
input, for example, are utilized for ISCF detection in [38],
which requires additional sensors. Similarly, an NN-based
method detects ISCFs down to 4.2% using phase currents

and speed information in a closed-loop controlled machine in
[41]. However, no details regarding the controller structure or
the controller-fault interaction are provided. For IMs, a data-
driven online detection method utilizing multiple classifiers
is proposed in [42]. The fault information is acquired from
phase currents and voltages. ISCFs down to 2% could have
been detected. A multi-layer perceptron is trained to detect
ISCFs down to 0.6% in [43]. The three-phase shifts are
utilized as the input data. An unsupervised learning-based NN
using phase currents for fault detection is reported in [44].
Similarly, ISCF detection is achieved in [45] using an NN-
based method on stator currents of an IM driven by an inverter
via open-loop scalar V/f control. While these studies [42]–[45]
consider IMs that work in an open-loop fashion, a closed-loop
controlled IM, driven by a model predictive control structure
is considered in this paper, which constitutes a fundamental
difference.

The voltage vectors of a two-level voltage source inverter
(2L-VSI) are depicted in Fig. 1a. In the standard FCS-MPC,
the controller finds the optimum voltage vector in view of the
control outcomes and applies it at the next switching instant.
Hence, the controller outcomes are discrete voltage vectors
and convenient for statistical approaches.

The evident benefits of achieving fault detection by examin-
ing controller outcomes are being non-invasive and requiring
no additional sensor or circuit contrary to studies [25]–[27].
Hence, no extra cost or complexity is introduced since switch-
ing vectors produced by the controller are readily available for
analysis.

To the authors’ knowledge, the utilization of inverter switch-
ing statistics for ISCF diagnosis was first proposed by [31].
Later, it was utilized in [15] for ISCF detection in an IM driven
by FCS-MPC using a simple thresholding-based approach
with a manually set threshold level. This paper employs NNs
for ISCF diagnosis using inverter switching vectors of the
same experimental setup of [15]. With the utilization of NNs,
improved fault detection performance over a broader range on
the torque-speed plane is achieved in this study.

A motor drive inverter with model predictive control pro-
duces an (almost) uniform distribution of active switching
vectors while driving a healthy induction machine. However,
an inter-turn short circuit in the stator changes the distribution
of active switching vectors since the driver tries to compensate
for the fault’s influence for the proper operation of the motor
(Fig. 1b). This observation constitutes the basis for this study.
Our primary approach is to train a neural network with the
switching vector data collected for healthy and faulty cases
so that the trained structure can identify and locate an ISCF.
The detection performance results prove the effectiveness of
the proposed approach.

There are three main contributions of this paper.

1) A machine learning-based, non-invasive ISCF detection
method using inverter switching statistics is introduced.

2) The first publicly available ISCF detection dataset con-
taining switching vector data collected at various load
torque and shaft speed values for healthy and faulty
states of an induction machine is released.

This article has been accepted for publication in IEEE Transactions on Energy Conversion. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEC.2023.3274052

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. XX, NO. XX, MONTH YEAR 3

3) Performance baselines on the released dataset for three
main neural network architectures, namely, multi-layer
perceptron, convolutional neural network, and recurrent
neural network are provided.

II. NEURAL NETWORK BASED ISCF DETECTION

This study designs neural network models detecting inter-
turn short circuit faults in an induction machine driven by
an inverter with model predictive control (Fig. 1c and Fig. 2).
We formulate ISCF detection as a classification problem using
inverter switching statistics.

A. Problem Formulation

Let X = {x1, · · · ,xN} be a set of training samples such
that each sample xi ∈ RD has a corresponding ground-truth
label yi = [y1i , · · · , yKi ] ∈ {0, 1}K where

∑K
k=1 y

k
i = 1.

Given a model is represented as a function parameterized by
θ, fθ : RD → RK , it predicts the label of an input sample xi

as ŷi = fθ(xi) = [ŷ1i , · · · , ŷKi ] ∈ RK such that ŷki ≥ 0 ∀k and∑K
k=1 ŷ

k
i = 1. We train a model end-to-end using categorical-

cross entropy as the loss function (1).

loss =
1

N

N∑
i=1

K∑
k=1

yki log ŷ
k
i (1)

B. Neural Network Model Architectures

We constructed three different models using multi-layer
perceptron (MLP), convolutional neural network (CNN), and
recurrent neural network (RNN) architectures. Models are
designed such that they have almost the same number of
learnable parameters, i.e. ‘capacity’ (MLP: 4612, CNN: 4417,
and RNN: 4418 learnable parameters). A model accepts a
histogram of inverter switching statistics at the input and
predicts the machine’s status (healthy or faulty) at the output.

The multi-layer perceptron model consists of an input layer
with 4 nodes, two hidden layers with 64 nodes, and an output
layer with 2 nodes (Fig. 1c). Each layer computes a weighted
sum of its inputs (sj =

∑
i wjixi + bj , where s = [sj ] is the

output vector, x = [xi] is the input vector, W = [wji] is the
learnable weight matrix, and b = [bj ] is the learnable bias
vector), followed by a non-linear activation function. Hidden
layers have a ReLU activation function (f(s) = max(0, s))
followed by a dropout with a rate of 0.5. The output layer has a
softmax activation function producing normalized probability
values, i.e., adding up to 1.

The convolutional neural network model consists of three
convolutional layers with 32, 64, and 2 filters, respec-
tively (Fig. 2a). Each convolutional layer computes a cross-
correlation of its inputs and filter weights (sj =

∑
i wixj+i+b,

where W = [wji] is the learnable and shared filter weights
and b is the learnable bias). Except the last layer, each
convolutional layer is followed by a ReLU activation function
and a dropout with a rate of 0.5. Similar to the MLP model,
outputs at the last layer are normalized using a softmax
activation function.

The recurrent neural network model consists of a recurrent
cell containing 64 hidden nodes and a fully connected layer as
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Fig. 2: Neural network models.

Fig. 3: Experimental setup. An FCS-MPC driven IM is used
in the experiments. The ISCF condition corresponds to a short-
circuiting of 2-turns out of 104-turns in a phase winding.

a linear classifier on top (Fig. 2b). A recurrent cell computes
an affine transformation of the input and the previous hidden
state, adds them up and passes through a non-linear activation
function to compute the current hidden state (ht = f(Wihx+
bih +Whhht−1 + bhh), where Wih and Whh are learnable
weight matrices, and bih and bhh are learnable bias vectors).
Note that non-linear activation function is ReLU, and after
each recurrent step a dropout with a rate of 0.5 is applied on
hidden state.

C. Experimental Setup and Preparation of the Machine Learn-
ing Dataset

The switching vectors of the motor drive inverter were
collected from the same experimental setup utilized in [15].
A photo of the setup is provided in Fig. 3. The parameters of
the IM, on which intentional ISCFs of 2, 3, and 5 turns can be
created for tests, are given in Table I as utilized in the MPC
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TABLE I: Induction Machine (IM) parameters.

Name Symbol Value

Apparent power S 640 VA
Stator voltage Vab 128 V
Stator current I 2.9 A
Base frequency f 50 Hz
Torque Te 1.2 N.m
Number of poles p 2
Total turns in one phase Ns 104
Stator resistance Rs 2.3 Ω
Rotor resistance Rr 3.1 Ω
Magnetizing inductance Lm 98 mH
Stator leakage inductance Lls 4 mH
Rotor leakage inductance Llr 2 mH
Stator flux magnitude reference |Ψs|ref 0.3 Wb

loop. The motor drive development kit TMDXIDDK379D
from Texas Instruments is used as the motor drive inverter. The
interested reader is referred to [46] for detailed descriptions re-
garding the FCS-MPC structure and equations, the laboratory
implementation, and various test results including motor drive
operation and the ISCF detection through switching vector
analysis based on a simple thresholding method.

For several different combinations of speed and torque at
healthy and faulty states (see Table II), the voltage vectors
(decided by the controller and executed by the inverter) are
recorded as time series of 22000 elements. The FCS-MPC
algorithm has a control frequency of 40 kHz, therefore the
record for the switching vector array of 22000 elements
corresponds to a total of 0.55 second time interval. In the
creation of Table II, frequency and torque values are read from
the waveform analyzer and torque sensor respectively, which
are involved in the experimental setup shown in Fig. 3. ISCFs
were introduced over 2 out of 104 turns in a phase winding of a
star connected IM. Short circuits were created over an external
cable, which introduces an additional resistance of 0.13 Ω
and no additional resistance was utilized to resemble the
fault resistance. Experimental results depicting successful fault
detection performance with the simple thresholding approach
for additional external fault resistances of 0.2 Ω and 0.33 Ω
are provided in [46].

Collected data series (healthy: 30, faulty: 34) were seg-
regated into two sets such that the first set (healthy: 16,
faulty: 18) was for training and validation, and the second
set (healthy: 14, faulty: 16) was for the test. Each data series
in the first set was further split into two. The first 70% of data
points constituted a data series for training, and the remaining
30% constituted a data series for validation. Then, machine
learning datasets of training, validation, and test were prepared
by creating sample and label pairs over respective data series.
The dataset details are available with the released code [47].

Over a data series, multiple samples were created in a
sliding window fashion with a step size of one. A sample
was created by calculating the histogram of switching vectors
over a window of five electrical periods (≈ 92 ms at the rated
speed and torque) (Fig. 1b). Note that switching vectors were
aggregated as 0-vectors (v0 − v7), phase A vectors (v1 − v4),
phase B vectors (v3− v6), and phase C vectors (v2− v5). The
machine’s status (i.e., healthy or faulty) was assigned as the

TABLE II: Data for ISCF detection. Inverter switching
vectors were collected for different conditions (H: healthy
and F: faulty) of an induction machine with a rated speed
of w = 3000 rpm and a rated torque of T = 1.20 N·m. The
collected data series were segregated into two sets such that the
first set (H:16, F:18) was for training and validation, and the
second set (H:14, F:16) was for the test. Speed (w), torque
(T ), measured electrical frequency (fe), and the number of
healthy and faulty data series in the machine learning dataset
are presented. Each data series in the first set was divided
into two such that the first 70% and the remaining 30% were
used to create samples for the training and validation sets,
respectively. Data series in the second set were used to create
samples for the test set.

w
(rpm)

T
(N·m)

fe
(Hz)

Training &
Validation

Test

1500 0.30, 0.90 25.5, 28.0 H:2, F:2 H:2, F:2
2250 0.30, 1.25 38.1, 42.0 H:3, F:4 H:3, F:4
3000 0.30, 1.20,

1.30, 1.35
50.6, 54.4,
54.8, 55.3

H:4, F:4 H:4, F:4

3750 0.30, 1.25 63.1, 67.5 H:3, F:4 H:3, F:4
4500 0.30, 1.15 75.6, 79.8 H:4, F:4 H:2, F:2

sample’s label.

D. Training and Testing of The NN Model

A neural network model was trained on samples created
from training data series using the loss function given in Eq. 1.
Early stopping based on loss in the validation dataset was em-
ployed to avoid overfitting. Finally, the model’s performance
was evaluated on the unseen test dataset. Please note that all
models were trained and tested offline. They require neither
storing the current dataset nor collecting new data during
operation to identify ISCFs.

The area under the receiver operating characteristic curve
(AUROC) was used as the performance metric. We also
calculated the 95% confidence interval (CI) of the AUROC
using the percentile bootstrap method [48].

E. Data and Code Availability

All original code and the dataset have been deposited
at Zenodo under the https://doi.org/10.5281/zenodo.6774360
and made publicly available [47]. The dataset, code, and
performance baselines are valuable resources to the research
community for enabling reproducible and comparable experi-
ments.

III. RESULTS

A. The NNs Detect ISCF

We checked the performance of neural network models on
ISCF detection. For each sample in the test set, we obtained
a prediction from each trained model and plotted the receiver
operating characteristic curves. We obtained AUROC values of
0.9946 (95% CI: 0.9945 - 0.9947), 0.9942 (95% CI: 0.9940 -
0.9943), and 0.9950 (95% CI: 0.9949 - 0.9951) for the MLP,
CNN, and RNN models, respectively.
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TABLE III: ISCF detection performance comparison. We compared our models’ performances on ISCF detection task
with the performances of the models in [38]. We also presented the type of neural network models, the number of learnable
parameters in each model, input signals to the models, and the number of healthy and faulty samples in the test sets. If there
is an extra sensor requirement for an input signal, it is also indicated.

Reference NN type # learnable parameters Input signal # samples in the test set Accuracy

[38] CNN ≈12,000 Stator phase currents Healthy: 1,800 - Faulty: 5,400 0.9114
[38] CNN ≈32,000 Stator phase-to-phase voltages (extra sensors) Healthy: 1,800 - Faulty: 5,400 0.9501
[38] CNN ≈6,000 Axial flux signal (extra sensor) Healthy: 1,800 - Faulty: 5,400 0.9940

Ours MLP 4,612 Inverter switching statistics Healthy: 248,844 - Faulty: 284,466 0.9632
Ours CNN 4,417 Inverter switching statistics Healthy: 248,844 - Faulty: 284,466 0.9634
Ours RNN 4,418 Inverter switching statistics Healthy: 248,844 - Faulty: 284,466 0.9611
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Fig. 4: The neural network models detect ISCF. Different
NN models using the same architecture with different number
of nodes in the hidden layers were trained and tested on
the ISCF detection task. The area under receiver operating
characteristics curve (AUROC) calculated on the test set was
used as performance metric. We trained and tested the models
using histogram of all vectors (0-vector included) and active
vectors only (0-vector excluded).

We also compared our models’ performances with the
performances of the models in [38] (Table III). Our models
were about 1.3 to 7 times smaller, and our test set was about 74
times bigger than the models and test set in [38], respectively.
Our models performed better than the models of [38] using
stator currents and voltages. On the other hand, the model
using the axial flux signal in [38] had a better performance
than ours. However, it required an additional sensor for flux
measurements, which was not the case for our models.

To check our models’ generalization ability, we excluded
data series collected at w = 2250 rpm and w = 3750 rpm from
the training set (Table II). We retrained our MLP model from
scratch. Similar to the performance of our MLP model trained
on the whole training set, an AUROC value of 0.9946 (95% CI:
0.9945 - 0.9947) was obtained on the test set. Furthermore,
the model achieved an AUROC value of 0.9998 (95% CI:
0.9998 - 0.9998) on data series collected at w = 2250 rpm
and w = 3750 rpm in the test set (Table II), showing our
model’s generalization ability. Please note that the model had
never seen data from a data series at these speeds.

We also analyzed the effect of training set size on the
model’s performance. We excluded some of the data series
having similar speed and torque values from the training set
(i.e., data series 6, 8, 11, 13, 15, 21, 23, 26, 28, 30, 32, and
34 were excluded (Table II)). Our MLP model was retrained
from scratch and tested on the test set. Although the model was
trained on less than 65% of the original training set, it achieved
an AUROC value of 0.9944 (95% CI: 0.9943 - 0.9945) on the
test set, which was similar to the performance of the model
trained on the whole training set.

To determine the MLP model’s architecture, we conducted
a hyperparameter search on hidden-layer sizes in the MLP
model. By varying the hidden layer sizes (16, 32, or 64 nodes
in each hidden layer), we analyzed the effect of the model’s
capacity on its performance. As expected, we observed that
the model’s performance decreased with decreasing model
capacity (Fig. 4). Therefore, we performed our experiments
using the MLP model with 64 nodes in its two hidden layers.
Nevertheless, the performance decrease was not drastic in the
smaller networks, which could be preferable for real-world
deployment since they require less computational power.

Besides, we checked the model’s performance on identify-
ing if a data series was collected at the healthy or faulty state
of the machine. Prediction for a data series was obtained as
the average of predictions of all samples created from the data
series. Although we observed wrong predictions at the sample
level in the few data series, the model perfectly identified the
machine’s status at the data series level (Fig. 5).

B. 0-vectors Help The NN Detect ISCF

We know that the proportion of 0-vectors provides infor-
mation about the speed and torque of the machine, which can
be valuable for the model. To test the effect of 0-vectors on
the performance of the neural network model, we excluded
0-vectors from histogram calculation and reran our exper-
iments. As expected, we observed a performance decrease
(Fig. 4). Hence, we concluded that 0-vectors helped the neural
network models detect ISCF.

Furthermore, we observed a decrease in fault detection
performance for the speed values beyond 3750 rpm (Fig. 5).
This region corresponds to the verge of overmodulation in
an inverter control system with a carrier-based modulation,
where the percentage of zero vectors significantly decreases.
The switching vector statistics were also not as responsive to
the occurrence of the fault as they were at the slower speeds.
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Fig. 5: Sample-level ISCF predictions on the data series in the test dataset. At each point of a data series (i.e., for a
sample), inter-turn short circuit fault (ISCF) probability was obtained from the trained model. ISCF probability and predicted
machine status (MS) obtained by thresholding the predicted probability value with 0.5 are presented for data series. For each
data series, id, speed (rpm), torque (N·m), and MS ((H)ealthy, (F)aulty) are also given.
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Fig. 6: Statistics over longer intervals improve perfor-
mance. Switching vector histograms were calculated over an
interval of multiples of electrical period (5,4,3,2, and 1) while
training the NN models. We compared the effect of interval
length on the model’s performance using AUROC on the test
set both for 0-vector included and 0-vector excluded cases.

C. Statistics Over Longer Intervals Improve Performance

We trained and tested our models with sample and label
pairs. A sample was created by calculating the histogram of
switching vectors over a window of five electrical periods
(≈ 92 ms at the rated speed and torque). In an ideal system
(where there is no noise), an ISCF can be detected using in-
verter switching statistics calculated over one electrical period.
However, the system is noisy in practice, and the noise directly
affects the model’s performance.

We investigated the effects of the interval length, over
which switching vector histograms were calculated, on the
performance of neural network models. We observed that as
the length of the interval decreased (multiples of electrical
period: 5, 4, 3, 2, and 1), the model’s performance also
decreased (Fig. 6). In short, we concluded that statistics over
longer intervals improved the model’s performance.

One interesting observation was that the performance decay
was gradual from five to two periods. Nevertheless, it was
drastic from two periods to a single period. Our observation
was also consistent with the findings of [15], which uses
a thresholding-based method over switching vector statistics.
Besides, the contribution of 0-vectors in the model’s perfor-
mance was evident (Fig. 6).

D. The NN Identifies Faulty Phase in a Machine with ISCF

After we showed that a neural network model successfully
detected ISCF, we also checked if it could identify the faulty
phase. We prepared a small dataset using data series collected
at the rated speed (w = 3000 rpm) and around the rated torque
(T = 1.20 N·m) of the induction machine.

Training, validation, and test sets were prepared similar to
the previous data segregation. Two healthy and three faulty
(one for each phase) data series were used for preparing data
samples in each set. The dataset details are available with the
released code [47].

We modified the neural network architecture used in ISCF
detection to a multi-class classification model with four classes

TABLE IV: Faulty phase detection. The same NN archi-
tecture was modified to a multi-class classification model
detecting faulty phase as well. The confusion matrix obtained
on the test set is presented.

Predicted

Healthy Faulty (A) Faulty (B) Faulty (C)

Truth

Healthy 1.000 0.000 0.000 0.000
Faulty (A) 0.000 1.000 0.000 0.000
Faulty (B) 0.000 0.000 1.000 0.000
Faulty (C) 0.003 0.000 0.000 0.997

corresponding to the machine’s status of healthy, faulty (A),
faulty (B), and faulty (C). Then, we trained the model on the
training set with early stopping based on loss in the validation
set and evaluated its performance on the test set. The model
successfully detected ISCF and identified the faulty phase
(Table IV). It achieved an accuracy of 0.9995. As in the ISCF
detection task, our neural network model perfectly detected
ISCF and identified the faulty phase at the data series level.

E. The NN Outperforms Thresholding Based Method

The duration of high electrical currents passing through
the shorted turns during an ISCF is critical for the repair
and possible fault-tolerant operation of the machine. As the
detection time takes longer, the ISCF condition will evolve
further into the unmanageable situations such as complete
phase to phase or phase to ground shorts. Therefore, we com-
pared the performance of our neural network model with the
thresholding-based method of [15] in terms of ISCF detection
time. At various load torque and shaft speed values, while the
thresholding-based method detected ISCF in between 0.5 to 2
seconds, the neural network model detected ISCF in between
0.074 to 0.196 seconds. There was a speedup of more than
two times at the rated operating conditions (≈ 0.2 second for
the thresholding-based method in [46] and 0.092 seconds for
our neural network model).

IV. CONCLUSION

Early detection of an ISCF in an electrical machine is
vital for its maintenance. This study developed neural network
models that detect an ISCF in an IM driven by an inverter
with an MPC algorithm. The models accepted the histogram of
inverter switching vectors, which are readily available, as input
and predicted the machine’s status (healthy or faulty) at the
output (Fig. 1). An ISCF in the IM was successfully detected
under 0.1 seconds with an almost perfect performance (Fig. 4).
Besides, the faulty phase was identified with an accuracy of
0.9995 (Table IV).

In our experiments, while the large networks performed
slightly better in the ISCF detection task, the performance of
the smaller networks were also good enough for real-world
deployment (Fig. 4). Moreover, a small network requires less
memory and computational resources, facilitating its deploy-
ment in the same processor alongside the controller algorithm.

Our experiments validated that 0-vectors contained valuable
information for ISCF detection (Fig. 4), and statistics over
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longer intervals improved the performance (Fig. 6). Neverthe-
less, there was a trade-off between better performance and
faster ISCF detection in determining the optimum interval for
statistics calculation. We concluded that an interval of three to
five electrical periods was reasonable.

Lastly, the proposed approach evaluates the inverter switch-
ing vectors that are already available as controller outputs, i.e.,
it is non-invasive. Besides, different than some online signal-
processing-based techniques requiring extra sensors [25]–[27],
our method does not require any extra sensors. Hence, no
significant cost or complexity is introduced.

A. Limitations and Future Work

To avoid data leakage in our experiments, we used data
series collected at different runs in training and test sets
(Table II), i.e., we tested the models on unseen data [49].
Besides, our model successfully detected ISCFs in data series
collected at speed and torque values that were different from
the speed and torque values of the data series in the model’s
training set, showing our model’s generalization ability. Our
model could perform quite well for machines of the same
manufacturer with similar specifications. However, it might
require fine-tuning for machines of different manufacturers or
specifications, known as domain adaptation and a hot topic
in machine learning research [50], [51]. Therefore, it would
have been better to test the trained model on data from another
machine, which we have kept as future work.

Furthermore, we observed that the model’s performance
started to degrade beyond the rated speed and torque values
(Fig. 5), which corresponds to the operation on the verge of
overmodulation, where the utilization of zero vectors signif-
icantly decreases. This could be due to the limited available
data around these operation regions of the IM. We had around
300k samples in our training set; however, they were created
from only 26 independent data series (Table II). Since data
collection is quite expensive, our dataset was minimal com-
pared to traditional deep learning datasets containing millions
of independent samples [52]. Besides, all healthy data points
in our dataset were collected in a short period of time relative
to lifetime of a machine, so our dataset did not capture
the aging effects, such as the change of motor parameters
or insulator degradation over time. Hence, the collection of
an extensive dataset and the real-world deployment of our
ISCF detection models are reserved for future work. The
prospective dataset should broadly cover the IM’s operation
regions, including different operating scenarios, temperatures,
and DC-bus voltages, over a sufficiently long time interval to
include the aging effects.

Lastly, this study focused on detecting ISCF of ∼2% of
turns (2 out of 104). It did not consider severe cases, like
ISCFs of high percentages or phase-to-phase and phase-to-
ground short circuits. Nevertheless, their effects on the input
variables would be more evident, and NNs would have easily
identified them. Similarly, this study did not consider rotor and
bearing faults. Although controller-fault interactions would be
anticipated for the rotor and bearing faults, an ISCF can be
discriminated from these fault types by their characteristics.

A rotor fault’s influence would be effective on each phase
equally, and the bearing fault’s rate of progression would be
considerably slower compared to the ISCF case. In addition to
detecting a fault independent of the inflicting fault type, iden-
tification of fault type would be valuable. Hence, preparing an
extensive dataset including different fault types and operating
scenarios is essential in future work.
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