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Abstract

Many full-wave electromagnetic (EM) simulations are needed to design an antenna meeting certain requirements, which involves

a considerable computational burden. A multibranch machine learning-assisted optimization (MB-MLAO) method is proposed

to dramatically reduce the computational complexity involved in this task. This method is then applied to antenna design

and worst-case performance (WCP) searching under a practical manufacturing tolerance. In the conventional Gaussian process

regression (GPR)-based MLAO method, a lower confidence bound (LCB) prescreening strategy with an empirical LCB constant

is used to weigh the predicted value and predicted uncertainty. Using a variable-fidelity machine learning method, an adaptive

LCB variable, and a retraining and repredicting method, the proposed MB-MLAO method can strike a delicate balance between

exploitation and exploration in searching. Moreover, variable-fidelity data from full-wave EM simulations are used in the deep

GPR machine learning method to further reduce the computational burden. Finally, two test functions and four types of

antennas are selected as examples to illustrate the superiority of the proposed MB-MLAO method.
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Multibranch Machine Learning-Assisted
Optimization and Its Application to Antenna Design
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Wei Hong, Fellow, IEEE, and Haiming Wang, Member, IEEE

Abstract—Many full-wave electromagnetic (EM) simulations
are needed to design an antenna meeting certain require-
ments, which involves a considerable computational burden.
A multibranch machine learning-assisted optimization (MB-
MLAO) method is proposed to dramatically reduce the com-
putational complexity involved in this task. This method is then
applied to antenna design and worst-case performance (WCP)
searching under a practical manufacturing tolerance. In the
conventional Gaussian process regression (GPR)-based MLAO
method, a lower confidence bound (LCB) prescreening strategy
with an empirical LCB constant is used to weigh the predicted
value and predicted uncertainty. Using a variable-fidelity machine
learning method, an adaptive LCB variable, and a retraining
and repredicting method, the proposed MB-MLAO method can
strike a delicate balance between exploitation and exploration
in searching. Moreover, variable-fidelity data from full-wave EM
simulations are used in the deep GPR machine learning method
to further reduce the computational burden. Finally, two test
functions and four types of antennas are selected as examples to
illustrate the superiority of the proposed MB-MLAO method.

Index Terms—Antenna design, machine learning, optimization,
worst-case performance (WCP) searching.

I. INTRODUCTION

W ITH the increasing performance specifications of mod-
ern antenna systems, especially in the millimeter-wave

(mmWave) frequency band, taking the relationships between
multiple parameters into account in optimization, sensitivity
analysis (SA) and robust design plays an indispensable role
in antenna and antenna array design [1]–[3]. Due to the
increasing complexities of antenna topology and antenna usage
environments, full-wave electromagnetic (EM) simulators are
generally used to provide reliable simulation results. However,
it is difficult to meet the design targets in a short time through
parameter scanning and manual adjustment using a full-wave
EM simulator. Moreover, it is almost impossible to obtain
analytical solutions for practical antenna optimization prob-
lems; therefore, metaheuristic algorithms, for example, genetic
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algorithm (GAs) [4], differential evolution algorithms (DEAs)
[5], and particle swarm optimization (PSO) [1], [6], have been
utilized to solve such problems. Unfortunately, combining a
metaheuristic algorithm with a full-wave EM simulator results
in another problem; that is, hundreds or thousands of function
calls are made before converging to a good result [7]. Each
function call requires a time-consuming full-wave simulation,
which results in an unbearable computational burden.

An efficient method for reducing the calculation time is
training a low-complexity surrogate model using machine
learning to replace a very time-consuming EM model. A
variety of machine learning-assisted optimization (MLAO)
methods have been studied and applied to the field of EM
device design and have achieved excellent results, such as arti-
ficial neural networks (ANNs) [8], K-nearest neighbor (KNN)
algorithms [9], and support vector machines (SVMs) [10].
To further alleviate the computational budget, the variable-
fidelity-based MLAO method was introduced [11]–[13]. The
low-fidelity (LF) model can be an equivalent-circuit model or
a coarse-discretization EM simulation model, and the high-
fidelity (HF) model can be a high simulation accuracy EM
model. Learning the relationship between data of different
fidelities can achieve a higher-precision surrogate model using
a small amount of HF data.

Based on the online updating surrogate model mechanism
in [14], Gaussian process machine learning (GPML) combined
with DEA to assist optimization was applied [15], and using
the predicted value and predicted uncertainty provided by the
GPML, a lower confidence bound (LCB) prescreening strategy
was introduced to balance exploitation and exploration by
controlling the LCB constant. The setting of the LCB constant
was often based on the designer’s experience [13]. The LCB
constant was set to 1 in [13], while it was suggested to be equal
to 2 in [16]. However, the antenna optimization problem varies
case by case, and the setting of the LCB constant strongly
impacts the performance and robustness of the algorithm.

In this study, a multibranch machine learning-assisted op-
timization (MB-MLAO) method is proposed based on the
application of adaptive LCB variables and a retraining and
repredicting method. In the global optimization algorithm,
the fitness function under different LCB variables is used to
search through different branches to enhance the robustness
of the MLAO algorithm. The data of the LF EM model are
simulated to reduce the computational expenditure, and the
deep Gaussian process regression (GPR) model is retrained
to improve prediction accuracy. Furthermore, the proposed
method adaptively verifies one data point by the HF EM model
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and adds it to the sample set. The main contributions of this
work are as follows.

1) The MB-MLAO method provides not only a balance
between convergence speed and computational com-
plexity but also excellent adaptation regarding different
characteristics and different complexity antenna design
problems.

2) Based on the surrogate model, the MB-MLAO method is
applied using the LCB variable formed by multiple LCB
constants to replace a fixed LCB constant to achieve a
trade-off between exploration and exploitation, and then
multiple converged values and their corresponding input
parameters are obtained.

3) The LF EM model is calculated to reduce the compu-
tational burden, and the surrogate model is retrained.
The reprediction values are more accurate because of
the existence of corresponding LF data. Based on the
reprediction values, one input vector is adaptively se-
lected for the HF EM model to verify. Note that the
LCB constant corresponding to each verification value
is uncertain, and in each iteration, only one HF EM
model is simulated.

The structure of this paper is as follows. Section II briefly
explains the mechanism of GPR, the LCB prescreening strat-
egy, and deep GPR and then introduces the MB-MLAO algo-
rithm in detail. Two nonlinear test functions and four practical
antennas are used to verify the validation and adaptation of
the proposed MB-MLAO in Sections III and IV, respectively.
Finally, Section V concludes the paper.

Notations: Upper (Lower) bold-face letters are used to de-
note matrices (vectors). Superscript (·)T denotes the transpose.
N (µ, σ2) denotes a Gaussian distribution with a mean µ and
variance σ2.

II. MB-MLAO

In this section, GPR, the LCB prescreening strategy and
deep GPR are described first. Next, the details of MB-MLAO
method are presented.

A. GPR

GPR is a machine learning method based on a Gaussian
random process, a kernel trick, and Bayesian inference theory.
It has good adaptability for complex problems such as those
with high dimensions, small samples, and nonlinearities. GPR
is used to obtain a low-cost surrogate model to replace function
computation with high complexity. As the GPR example in
Fig. 1 shows, the predicted value and predicted uncertainty
follow a Gaussian distribution. A brief introduction to GPR is
presented as follows. More details of GPR are given in [17],
[18]. The training set is D = {XN×K ,yN×1}, XN×K =
{xi|i = 1, · · · , N}, xi = (xi

1, x
i
2, · · · , xi

K) ∈ RK , yN×1 =
{yi|i = 1, · · · , N}, yi ∈ R. N is the number of training
samples, and K is the dimension of the input vector. The
GPR model is treated as

yi = f(xi) + ϵi, (1)

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0

- 4 0

- 2 0

0

2 0

y

x

 A c c u r a t e  v a l u e
 T h e  m e a n  o f  G P R  p r e d i c t i o n
 T h e  m e a n  o f  G P R  p r e d i c t i o n  ±  

         2 × P r e d i c t e d  s t a n d a r d  d e v i a t i o n
 S a m p l e d  P o i n t s
 A r b i t r a r y  p r e d i c t i o n  p o i n t
 P r e d i c t e d  G a u s s i a n  d i s t r i b u t i o n

Fig. 1. An illustrated example of predicted values and predicted uncertainties
using GPR.

where f(xi) is a regression term and ϵi is an independent error
term that follows the Gaussian distribution. Assume that

1) yi = µ+ ϵ(xi), ϵ(xi) ∼ N (0, σ2).
2) The correlation of any two points, ϵ(xi) and ϵ(xj), is

dependent on the distance between the corresponding
points, which is described as

corr
(
ϵ
(
xi
)
, ϵ(xj)

)
= exp

(
−

K∑
q=1

θq|xi
q − xj

q|pq

)
,

(2)
where µ, σ2, θ = {θq |θq ⩾ 0, q = 1, · · · ,K } and
p = {pq |1 ⩽ pq ⩽ 2, q = 1, · · · ,K } are hyperparam-
eters that need to be estimated.

The likelihood function is given by

L
(
µ, σ2,θ,p

)
=

exp
(
− 1

2σ2 (y − 1µ)
T
C−1 (y − 1µ)

)
(2πσ2)

N
2 |det (C)|

1
2

,

(3)
where 1 denotes an N -dimensional column vector of ones and
C is a correlation matrix of size N×N . Two hyperparameters
µ and σ are estimated by using the maximum likelihood
criterion for (3)

µ̂ =
1TC−1y

1TC−11
, (4)

σ̂2 =
(y − 1µ̂)

T
C−1(y − 1µ̂)

N
. (5)

Then, θ and p can be estimated by maximizing (3). For test
point x∗, the best linear unbiased predictor is

ỹ(x∗) = µ̂+ rTC−1(y − 1µ̂), (6)

s2(x∗) = σ̂2

[
1− rTC−1r+

(1− 1TC−1r)
2

1TC−11

]
, (7)

where rT = [corr(ϵ(x∗), ϵ(x1)), · · · , corr(ϵ(x∗), ϵ(xN ))],
ỹ(x∗) is the prediction mean, and s2(x∗) is the prediction
uncertainty.
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B. LCB prescreening strategy

In the LCB prescreening strategy [19], [20], the prediction
value and uncertainty given by (6) and (7) are combined as

yLCB(x
∗) = ỹ(x∗)− ωs(x∗), ω ∈ [0, 3] , (8)

where s(x∗) is the square root of s2(x∗). A qualitative analysis
is given that balances the exploration and exploitation of the
LCB constant ω. More details are shown in [17].

Let us consider two extreme cases. In case I, the test point
x∗ is very far from every observed point, r ≈ 0, and s is
approximately σ. In case II, the test point x∗ is the same as
one observed point. Let x∗ = xi and C−1r = ei, where ei is
the i-th unit vector. The second item of (7) is expressed by

rTC−1r = rTei ≡ corr(ϵ(xi), ϵ(xi)) = 1, (9)

and the last item is given by

1TC−1r = 1Tei = 1. (10)

Then, we have s = 0. The size of s depends on the distance
between the test point and the observed points, that is, the
correlation between them. The LCB prescreening strategy is
used in minimization problems; that is, when ω is small, the
optimal solution is more likely to be the most promising
candidate points, and when ω is large, the searching path
trends toward unexplored areas, where the observed points are
sparse.

C. Deep GPR

The HF model yields accurate simulation results but is
time-consuming, and the LF model has a short simulation
time but low accuracy. To learn the relationships between
different fidelities, a small amount of HF data is used to train
the surrogate model to reduce the computational burden. For
multifidelity models, a recursive Gaussian process can be used
to establish a regression surrogate model. The fidelity training
set of T levels is organized as Dt = {xt, yt}, t = 1, · · · , T ,
and the subscript from small to large represents the fidelity
level from low to high. xt and yt represent the input and output
of the training set, respectively, and yt denotes the simulation
data of the t-level fidelity model. The autoregressive model of
[21] is

ft(x) = ρt−1ft−1(x) + δt(x), 2 ≤ t ≤ T, (11)

where ft−1 and ft are the regression items at the fidelity levels
t−1 and t, respectively, ρt−1 is the correlation factor between
them and δt ∼ GP(µδt , kt(x

i
t,x

j
t ; θt)). kt is the covariance

function. The mean µδt and hyperparameter θt need to be
estimated. Inspired by deep learning [22], we generalize (11)
to

ft(x) = gt (x, f∗t−1 (x)) , (12)

where gt is a function that maps the LF model to
the HF model following a Gaussian distribution, gt ∼
GP

(
0, kt

((
xi, f∗t−1

(
xi
))

,
(
xj , f∗t−1

(
xj
))

; θt
))

, and the
GP prior ft−1 is replaced by the GP posterior f∗t−1.
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Fig. 2. Schematic diagram of the proposed MB-MLAO method.
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Fig. 3. Flow diagram of the proposed MB-MLAO method.

D. MB-MLAO framework

The schematic of the proposed MB-MLAO method is shown
in Fig. 2, where UL, UH and US represent the LF EM
simulation model, HF EM simulation model, and surrogate
model, respectively. The flow diagram is shown in Fig. 3, and
the steps of the MB-MLAO procedure are shown as follows:

Step 1. Initialize settings:
Define the optimized parameters, optimized speci-
fications, search space [a, b]K , the number of LCB
constants M and their values ω = ωi, i = 1, · · · ,M .
NL parameter vectors are sampled by Latin hy-
percube sampling (LHS) [23] within the searching
space, denoted as XL.

Step 2. Obtain the initial database:
Calculate XL by LF EM simulation, and obtain
the response RL = UL(XL). Select NH parameter
vectors from XL, denoted as XH, calculate XH by
HF EM simulation, and obtain RH = UH(XH). The
initial database is

D =

[
XL RL

XH RH

]
. (13)
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Step 3. Train the surrogate model:
Use deep GPR learning for the relationship between
the input parameters and response to obtain a low-
cost surrogate model US.

Step 4. Optimize based on the surrogate model:
Use a global algorithm such as a GA to optimize the
surrogate model constructed in Step 3. The fitness
function can be expressed as

F (xi) = min
xi

{ỹ(xi)− ωiŝ(xi)}, i = 1, · · · ,M.

(14)
Obtain the optimal values and input parameters
XS = {xi |i = 1, · · · ,M } under M groups of
different branches.

Step 5. Simulate and retrain the surrogate model:
To control the additional computational budget and
to improve the prediction accuracy, use the LF EM
simulation to calculate the above M groups of input
parameters XS. Then, add the M groups LF data
into the database D, and retrain the surrogate model.

Step 6. Repredict and validate:
By repredicting the M group input parameters, due
to the existence of LF data, the prediction accuracy of
the M group input parameters is improved. Select the
input parameter vector corresponding to the optimal
repredicted value for the HF EM model to verify.
Note that the validated input parameter vector is
the algorithm adaptively selected from M groups
of parameters. If the termination condition, such as
the optimized target or the maximum number of
iterations, is met, stop the loop; otherwise, update
the database, and repeat Step 3.

III. VERIFICATION USING TEST FUNCTIONS

To illustrate the superiority of the MB-MLAO algorithm
over the conventional single-branch MLAO (SB-MLAO) algo-
rithm, two test functions are listed as examples. The function
libraries of emukit [24] and geatpy [25] based on Python are
used here.

The K-dimensional, multimodal and variable-fidelity test
problem Ackley (Function I) and 5-dimensional, unimodal and
variable-fidelity test problem Ellipsoid (Function II) [26] are
used here. Function I is defined by

yH = −20 exp

−1

5

√√√√ 1

K

K∑
i=1

(xi − ai)
2


− exp

{
1

K

K∑
i=1

cos (2bπxi − ai)

}
+ 20 + exp {1}

yL = −20 exp

−1

5

√√√√ 1

K

K∑
i=1

x2
i


− exp

{
1

K

K∑
i=1

cos 2πxi

}
+ 20 + exp {1}

(15)
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Fig. 4. The exact and predicted values of Function I. (a) K=5, without LF
data; (b) K=5, with LF data; (c) K=10, without LF data; (d) K=10, with LF
data; (e) K=20, without LF data; (f) K=20, with LF data.

TABLE I
THE SETTINGS OF FUNCTION I AND MMSE WITHIN 200 TESTS.

Dimension and
Search Range

NH NL

MMSE

Case I Case II

[−3, 3]5 20 100 (101) 0.53 0.31

[−3, 3]10 20 100 (101) 0.49 0.28

[−3, 3]20 50 100 (101) 0.33 0.13

where K = {5, 10, 20}, b = 1.3 and a = [1.2, 0.2, 1.4, 0.8,
1.8, 1.0, 1.6, 0.6, 2.0, 0.4, 1.3, 0.3, 1.5, 0.9, 1.9, 1.1, 1.7, 0.7,
2.1, 0.5]. In addition, Function II is expressed as

yH =

5∑
i=1

iai(xi − bi)
2

yL =

5∑
i=1

ix2
i

(16)

where a = [0.3, 0.4, 0.2, 0.6, 1.0] and b = [1.8, 0.4, 2.0, 1.2,
1.4].

To compare the differences between the predicted data
with and without the corresponding LF data, Function I with
dimensions of 5, 10, and 20 is tested. The numbers of HF
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Fig. 5. Average and standard deviation (Std) of test functions. (a) Function
I with [−3, 3]5; (b) Function I with [−3, 3]10; (c) Function II with [−3, 3]5.

and LF training sets are shown in Table I. After the surrogate
model is trained, case I indicates that the test data are directly
predicted. Case II indicates that the test data are first calculated
using the LF model, and the LF data are added to the training
set for retraining; then, the test data are predicted. There are
200 sets of test data. Note that for each set of test data, case II
has only one more LF data point than case I. In Fig. 4, the blue
dots and red dots represent case I and case II, respectively. The
blue shade and red shade represent the area covering 95% of
the predicted points for 200 sets of test data for case I and

case II, respectively. The red dots are more concentrated on
the black line in the middle than the blue dots. In Table I,
after retraining, the mean of the mean square error (MMSE)
is smaller, which means that the accuracy of the prediction is
improved.

We assume that the calculation time of the HF model τHF,
training time τtrain, optimization time τopti, and calculation
time of the LF model τLF follow the relationships

τHF = 20τLF, τtrain = 0.2τLF, and τopti = 0.5τLF. (17)

The total optimization time τtotal can be expressed as

τtotal = τinitial + I(MτLF + τHF + ρτtrain +Mτopti), (18)

where

ρ =

{
1, SB−MLAO,

2, MB−MLAO,

τinitial represents the time to prepare the initial database,
M is the number of LCB variables, and I is the number
of iterations of MLAO. For SB-MLAO, M equals 1, and
τtotal,S = τinitial + 21.7ISτLF. For MB-MLAO, τtotal,M =
τinitial + (20.4 + 1.5M)IMτLF. In the case of IS = 100,
τtotal,S ⩾ τtotal,M can be obtained if IM=3 ⩽ 87, IM=4 ⩽ 82
and IM=5 ⩽ 77. When IS = 35, the condition IM=3 ⩽ 30,
IM=4 ⩽ 28 and IM=5 ⩽ 27 should be satisfied such that
τtotal,S ⩾ τtotal,M .

The results of MB-MLAO and SB-MLAO are exhibited in
Fig. 5. For Function I and Function II, 10 and 30 independent
runs are performed, respectively. As shown in Fig. 5(b), the
worst performance using the proposed algorithm with ω =
[0, 1, 2, 3] falls back to that using SB-MLAO. Even in this
group, the average minimum value using MB-MLAO in 10
iterations is still better than that using SB-MLAO with ω =
1, 1.5, or 3. In other tests, it is inferred that for problems with
different features and different complexities, MB-MLAO has
better optimization efficiency and robustness than SB-MLAO.

IV. APPLICATION TO ANTENNA DESIGN

To verify the superiority of the proposed algorithm, four
antennas are listed as examples. The input parameters before
and after optimization are shown in Appendix A.

ls lp

s0

l0

h

a1

a0

wp

w0

ws

Fig. 6. The geometry of the UWB antenna (Antenna 1) [27].
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Fig. 7. Convergence curves and the reflection coefficients for Antenna 1 using different methods. (a) and (b) Initial database 1; (c) and (d) Initial database 2.
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A. UWB planar dipole antenna (Antenna 1)

The ultrawideband UWB antenna proposed in [27] is fab-
ricated with a Rogers 5880 substrate of relative permittivity

l2
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ls2

Ws2

h

lstub

Wstub

lp

ls3

ws1

ls1

wp

Fig. 9. The geometry of the triband patch antenna (Antenna 2) [28].

εr = 2.2 and with h = 1.58 mm. Its geometry is shown in
Fig. 6. The design parameters are [l0, w0, a0, lp, wp, s0]. The
low bounds are [18, 12, 0.3, 12, 5, 0.8] mm, and the high
bounds are [20, 14, 0.7, 14, 7, 1.2] mm.

The HF model of the UWB antenna is simulated through
CST Microwave Studio [29] with approximately 9.6 million
mesh cells and an evaluation time of 1600 seconds. The LF
model uses approximately 126 thousand mesh cells with a
computational time of 43 seconds. The optimization goal is to
maximize |S11| to less than −10 dB within 3− 11 GHz. The
LF training data input parameter vector XL is sampled by the
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Fig. 10. Convergence curves and the reflection coefficients of Antenna 2 using different methods. (a) and (b) NL = 100, NH = 20. (c) and (d) NL = 50,
NH = 10.

LHS method with NL = 40, and HF training data are selected
from XL with NH = 5. The maximum within bandwidths of
|SL

11,i|, i = 1, · · · , NL and |SH
11,i|, i = 1, · · · , NH are used as

the output of the surrogate model. The fitness function can be
described as

f (xi) = min
xi

{R̃S(xi)−ωiR
s
S(xi)}, i = 1, 2, · · · ,M, (19)

where R̃S(xi) and Rs
S(xi) represent the predicted value and

predicted uncertainty, respectively. The termination condition
is reaching the optimization goal or 50 iterations. In the
MB-MLAO method, multiple LCB variables are denoted as
ω = [0, 1, 2], and they are compared with the LCB constant
in the SB-MLAO method in which ω equals 0, 1, or 2,
respectively. Figs. 15(a) and 15(b) show the changes in the
LCB variables of the corresponding HF EM simulation in
the iteration of the MB-MLAO method. Fig. 7 gives the
convergence curves of two initial sample sets and their S11.
In Fig. 7(a), the optimal LCB constant is ω = 2. However, in
Fig. 7(c), the case of ω = 2 is the worst. In this example, the

proposed MB-MLAO method can achieve the goal within 9
hours in both tests and is more robust than SB-MLAO. The
estimated computation times of different strategies are given in
Fig. 8. Single-fidelity multibranch optimization means setting
multiple LCB constants in the optimization process, but HF
models are utilized during the modeling and verification stages
without the need for retraining and repredicting. Multifidelity
verification, retraining, and repredicting greatly shorten the
calculation time.

B. Triband patch antenna (Antenna 2)

A triband antenna is utilized to verify the MB-MLAO
method. The geometry of the triantenna is shown in Fig. 9, and
more design details are given in [28]. The design parameters
are [l2, ls1, ls2, ls3, ws1, ws2, lp, wp, lstub]. The low bounds
are [5, 19, 20, 5, 0.2, 1.5, 32, 31, 16] mm, and the high bounds
are [9, 26, 25, 7.5, 2.2, 2.5, 35, 34, 20] mm.

The HF simulation model has approximately 2 million
mesh cells, and the computation time is 960 seconds. The LF
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simulation model uses approximately 109 thousand mesh cells,
with a computational time of 94 seconds. The optimization
goal is for the |S11| values of 2.5 GHz, 3.5 GHz, and 5.2
GHz to be less than −10 dB. The output vector is the |S11|
of the three frequency points, and the three frequency points
are added to the training database as a feature dimension. The
optimization problem can be converted such that the maximum
of the three frequency points is less than −10 dB, expressed
as

f (xi) = min
xi

{max
fj

{R̃S(xi, fj)− ωiR
s
S(xi, fj)}}, (20)

where fj ∈ [2.5, 3.5, 5.2], j = 1, 2, 3, and i = 1, · · · ,M .
R̃S(xi, fj) represents the predicted value of xi at fj . Fig.
15(c) and Fig. 15(d) are the changes in LCB variables of the
corresponding HF EM simulation. Fig. 10 gives some typical
results. In Fig. 10(a), NL = 100, NH = 20, and the necessary
time to generate the initial sample is 7.94 hours. Only ω = 0
and ω = [0, 1, 2] reach the optimization target within the
specified number of 80 iterations. In Fig. 10(c), NL = 50,
NH = 10, and only the proposed MB-MLAO method reaches
the goal, taking 17.15 hours. The proposed method is more
robust than the SB-MLAO method when the amounts of HF
and LF data are different for the same antenna.

C. Dual-band monopole antenna (Antenna 3)

A dual-band monopole antenna for wireless local area
network (WLAN) application is used as an example. As the
geometry in Fig. 11 shows, Antenna 3 is designed based on
a single-layer substrate with height h = 1 mm and a relative
permittivity of εr = 4.4, and those monopoles are printed on
both sides of the substrate. The patch on the front is similar to
the patch on the back but with two more L-shaped branches.
The design parameters are [l1, l2, l3, l4, ls1, ls2, w3, ws1]. The
low bounds are [2.4, 0.7, 1.8, 12, 15.5, 0.5, 1.1, 0.5] mm, and
the high bounds are [2.8, 0.9, 2.2, 13, 16.5, 0.8, 1.3, 0.8] mm.
The other parameters shown in Fig. 11 are w1 = 3.87 mm and
w2 = 9.67 mm.
NH = 6, and NL = 30. Different from Antenna 2, which

requires the optimization of the response of three frequency
points, this example requires the optimization of the response
of two frequency bands. The number of mesh cells of the HF
model is approximately 5.26 million, and the evaluation time is
0.65 hours. The LF model uses approximately 740 thousand
mesh cells, with a computational time of 218 seconds. The
optimization goal is for the |S11| values from 2.4 GHz to

w1

w2

w3

ws1

ls1

ls2

l1

l2

l2

l3

l4 port

h

GNDPEC

l1Front Back

Fig. 11. The geometry of the dual-band antenna (Antenna 3).
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Fig. 12. Convergence curves and reflecting coefficients of Antenna 3 using
different methods.

2.484 GHz and 5 GHz to 6 GHz to be less than −10 dB. The
output vector of the training data is the maximum of the |S11|
of the two bands. The optimization problem is formulated as

f (xi) = min
xi

{R̃S(xi)− ωiR
s
S(xi)}, i = 1, · · · ,M. (21)

The termination condition is reaching the optimization goal
or a maximum iterations of 30. The necessary time to generate
the initial sample is 5.69 hours. Fig. 15(e) shows the changes
in the LCB variables of the corresponding HF EM simulation.
The comparison result is shown in Fig. 12. The proposed
algorithm is the fastest to reach the goal, and the optimization
is completed in 5 iterations.

port

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

Fig. 13. The geometry of a series-fed microstrip array antenna (Antenna 4).
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Fig. 14. The WCP searching convergence and normalized patterns of Antenna
4 using different methods.

D. Series-fed microstrip array antenna (Antenna 4)

Antenna 4 is fabricated on a single-layer Rogers RO3003
and is designed for 77 GHz automotive radar applications with
12 series-fed microstrip antenna elements [30]. Its worst-case
performance (WCP) is determined using the proposed MB-
MLAO. In the 77 GHz band, the size of the antenna is smaller,
and the manufacturing tolerance requirement is stricter. WCP
searching is a popular method for analyzing the sensitivity
of antennas when manufacturing tolerances are known prior
[1]. The geometry of Antenna 4 is shown in Fig. 13. The
design parameters are [w1, w2, w3, w4, w5, w6, w7, w8, w9,
w10, w11, w12]. The design points are x0 = [0.56, 0.7, 0.84,
1.12, 1.19, 1.4, 1.47, 1.47, 1.47, 0.84, 0.7, 0.21]T mm. The
input tolerances are δ = [0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2, 0.1, 0.1, 0.05]T mm. The searching range is x0 ± δ.
The HF responses are simulated in CST Microwave Studio
with approximately 5 million mesh cells, and the computation
time is 0.52 hours. The LF responses are simulated with
approximately 201 thousand mesh cells, and the computation
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Fig. 15. The changes in the LCB variables corresponding to the HF EM
simulation at each iteration. (a)-(b) Antenna 1; (c)-(d) Antenna 2; (e) Antenna
3; (f) Antenna 4.

time is reduced to 163 seconds. The target of Antenna 4 is to
maximize the side-lobe level (SLL) within the input tolerance,
which can be converted to a minimization problem

f (xi) = min
xi

{−{R̃S(xi) + ωiR
s
S(xi)}}, i = 1, · · · ,M. (22)

First, the LF input parameters are randomly sampled by
the LHS method around the design point, NL = 50, and HF
input data are selected from LF parameter vectors, NH = 20.
Moreover, the LF and HF data of the design point are added
to the initial database. Fig. 15(f) shows the changes in LCB
variables of the corresponding HF EM simulation in the WCP
search process. The results of different search methods are
shown in Fig. 14. Within 25 hours, the worst case SLL of
the two optimization algorithms is approximately −16.26 dB,
and MB-MLAO can reach this value in approximately 20.7
hours. Fig. 14(b) is the normalized pattern when the LCB
constant equals 0, 1, 2, iterated 17, 19, 17 times, and the
LCB constant equals [0, 1, 2], iterated 39 times. Since the input
parameters corresponding to the worst cases of the three cases
where the LCB constant is a fixed value are on the same
searching boundary, the response curves are coincident. Within
the specified number of 50 iterations, the worst value found by
the proposed algorithm is −15.8 dB, and the optimization time
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is 39.76 hours. However, for the algorithm with a fixed LCB
constant, the worst value found within the specified number
of iterations is not higher than −16 dB.

Fig. 15 illustrates that the LCB variable corresponding to
the input parameters of the HF model verification is possibly
different at different iterations. The proposed algorithm adap-
tively selects one LCB variable to obtain the optimal value
under multiple branches for verification in the optimization
process.

V. CONCLUSION

An MB-MLAO method that balances exploitation and ex-
ploration is proposed. The LCB variable is utilized to real-
ize multibranch optimization, considering the most promis-
ing candidate points and sampling sparse areas. A variable-
fidelity model reduces the computation time. The retraining
and reprediction method improves the prediction accuracy and
adaptively selects one parameter vector for verification by the
HF EM model. To show the superiority of the MB-MLAO
method, two test problems and four practical antennas are
verified. For different antennas, the optimal LCB constant is
usually a priori unknown. Even for the same antenna, due
to different initial sample sets or different numbers of HF
and LF data sets, the setting of the LCB constant affects the
performance of the algorithm. For problems with different
characteristics, different complexities, and different design
specifications, the MB-MLAO method maintains effectiveness
while obtaining robustness.

APPENDIX A

For ease of verification, the input parameters for four
antennas before and after optimization are given in Tables II
to VII.

TABLE II
ANTENNA 1, CASE I

Initial ω = 0 ω = 1 ω = 2 ω = [0, 1, 2]

Iter. - 48 21 9 12

l0 18.23 19.65 19.50 19.19 19.62

w0 12.43 12.00 12.00 12.00 12.00

a0 0.39 0.30 0.30 0.30 0.43

lp 13.37 14.00 13.26 13.10 13.55

wp 6.30 6.00 5.97 5.88 5.99

s0 1.19 1.20 1.20 1.20 1.20

Goal reached? No Yes Yes Yes

TABLE III
ANTENNA 1, CASE II

Initial ω = 0 ω = 1 ω = 2 ω = [0, 1, 2]

Iter. - 11 8 28 9

l0 19.20 19.55 19.24 19.41 19.67

w0 12.21 12.00 12.23 12.00 12.00

a0 0.41 0.30 0.30 0.30 0.30

lp 13.78 13.88 13.66 13.84 13.52

wp 6.45 6.19 5.84 6.08 6.19

s0 1.04 1.20 1.20 1.20 1.20

Goal reached? Yes Yes Yes Yes

TABLE IV
ANTENNA 2, CASE I

Initial ω = 0 ω = 1 ω = 2 ω = [0, 1, 2]

Iter. - 63 71 49 59

l2 6.32 6.43 6.01 5.67 5.98

ls1 22.63 23.48 23.54 24.33 22.79

ls2 24.35 23.37 22.01 22.56 22.60

ls3 6.60 7.33 5.41 5.93 5.98

ws1 0.70 0.68 2.05 1.99 0.95

ws2 2.24 1.95 2.47 2.21 2.42

lp 33.75 34.11 33.76 32.64 34.12

wp 32.93 32.90 32.92 32.85 33.49

lstub 17.15 18.57 17.18 17.53 19.66

Goal reached? Yes No No Yes

TABLE VI
ANTENNA 3

Initial ω = 0 ω = 1 ω = 2 ω = [0, 1, 2]

Iter. - 14 9 18 5

l1 2.79 2.42 2.57 2.40 2.40

l2 0.72 0.78 0.71 0.90 0.70

l3 1.81 1.94 1.84 2.20 1.80

l4 12.13 12.2 12.15 12.25 12.07

ls1 16.20 16.04 15.91 16.50 16.50

ls2 0.65 0.78 0.55 0.65 0.80

w3 1.12 1.28 1.17 1.30 1.30

ws1 0.79 0.70 0.80 0.50 0.80

Goal reached? Yes Yes Yes Yes

TABLE V
ANTENNA 2, CASE II

Initial ω = 0 ω = 1 ω = 2 ω = [0, 1, 2]

Iter. - 71 43 44 36

l2 6.32 6.43 5.94 6.79 5.84

ls1 22.63 23.04 24.50 22.95 23.80

ls2 24.35 23.98 23.53 22.30 22.97

ls3 6.60 6.06 7.16 7.22 6.68

ws1 0.70 1.59 1.28 1.03 1.31

ws2 2.24 2.12 2.38 2.13 2.40

lp 33.75 33.94 33.01 34.93 33.45

wp 32.93 32.70 33.17 33.98 33.73

lstub 17.15 17.81 18.95 18.56 18.59

Goal reached? No No No Yes
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