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Abstract

Most impedance-based walking controllers use a finite state machine (FSM) with dozens of user-specific parameters that need

to be manually tuned by technical experts. These parameters are only optimal near the task (\eg walking speed and incline) at

which they were tuned, resulting in decreased performance as task inevitably varies. This paper presents a tuning-free, phase-

based controller that uses a hybrid combination of continuously-variable impedance control during stance and kinematic control

during swing to enable biomimetic locomotion over a continuum of tasks. After generating a data-driven model of variable

joint impedance with convex optimization, we implement a novel task-invariant phase variable and real-time estimates of speed

and incline to enable the controller to autonomously adapt to task variation. Experiments with an amputee participant using

a powered knee-ankle prosthesis show that our tuning-free controller 1) features highly-linear phase estimates and accurate

task estimates, 2) produces more biomimetic joint work trends compared to a hand-tuned FSM impedance controller, and 3)

achieves lower kinematic and kinetic error than the FSM impedance controller in 7 of 8 tested metrics. Our data-driven control

approach may allow easier clinical implementation of variable-activity powered knee-ankle prostheses by replicating biological

behavior across tasks without expert tuning.
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Phase-Based Impedance Control of a Powered Knee-Ankle Prosthesis
for Tuning-Free Locomotion over Speeds and Inclines

T. Kevin Best, Cara G. Welker, Elliott J. Rouse, and Robert D. Gregg

Abstract—Most impedance-based walking controllers use a fi-
nite state machine (FSM) with dozens of user-specific parameters
that need to be manually tuned by technical experts. These
parameters are only optimal near the task (e.g., walking speed
and incline) at which they were tuned, resulting in decreased per-
formance as task inevitably varies. This paper presents a tuning-
free, phase-based controller that uses a hybrid combination of
continuously-variable impedance control during stance and kine-
matic control during swing to enable biomimetic locomotion over
a continuum of tasks. After generating a data-driven model of
variable joint impedance with convex optimization, we implement
a novel task-invariant phase variable and real-time estimates
of speed and incline to enable the controller to autonomously
adapt to task variation. Experiments with an amputee participant
using a powered knee-ankle prosthesis show that our tuning-
free controller 1) features highly-linear phase estimates and
accurate task estimates, 2) produces more biomimetic joint work
trends compared to a hand-tuned FSM impedance controller,
and 3) achieves lower kinematic and kinetic error than the FSM
impedance controller in 7 of 8 tested metrics. Our data-driven
control approach may allow easier clinical implementation of
variable-activity powered knee-ankle prostheses by replicating
biological behavior across tasks without expert tuning.

Index Terms—Prostheses, Impedance Control, Optimization

I. INTRODUCTION

To perform activities that require net-positive energy, such
as ascending ramps and stairs, passive prosthesis users must
supply supplemental power from intact joints [1], leading to
secondary complications including increased energy expendi-
ture [2], osteoarthritis [3], and lower back pain [4]. While
powered prostheses can help avoid these complications by
performing net-positive work [1], [5]–[8], designing prosthetic
control systems for diverse environments remains a challenge.

Impedance control is a common strategy in lower-limb
wearable robotics because of its simplicity and ability to
produce behaviors that are similar to human biology, such
as compliantly controlled interaction with the ground [9]
and short-range dynamics similar to muscles [10]. Further,
empirical studies have shown that ankle joint dynamics during
walking are well described with an impedance controller [11]–
[13]. A standard impedance controller calculates joint torque
τ based on a joint angle θ and joint velocity θ̇ as

τ = −K(θ − θeq)−Bθ̇, (1)
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where K, B, and θeq are parameters defining the joint’s
stiffness, damping, and equilibrium angle, respectively.

Traditional methods of impedance control for lower-limb
prostheses involve segmenting the gait cycle into discrete sub-
phases, where each sub-phase has its own constant values
of K, B, and θeq. Researchers manually tune the impedance
parameters in each sub-phase until the observed gait is sat-
isfactory [5], [11], [14]–[17]. Switching between sub-phases
is controlled by a finite state machine (FSM) with transition
criteria based on sensor readings (e.g., elapsed time, leg
loading, joint angles, etc.). Like the impedance parameters,
these transition criteria are often experimentally tuned for
an individual’s gait by a technical expert. More elaborate
impedance value representations have been suggested [16]–
[19], but these methods still required manual, expert tuning.

Joint kinematics and kinetics vary based on the ground
incline and walking speed [20], [21] (together termed the
user’s task). Therefore, the necessary impedance parameters
and state machine transition criteria also vary. For a standard
FSM impedance controller to operate over a wide array of
tasks, many tunable parameters are required. For example,
one state-of-the-art impedance controller for five ambulation
modes required a total of 140 tunable parameters [16]. While
only a portion of these parameters were considered necessary
to tune, the device’s configuration and tuning still required the
researchers up to five hours to complete. To avoid the expert
tuning burden, other work aimed to eliminate manual tuning
by using biological quasi-stiffness curves [17], [22]–[24] or
using machine learning to perform online parameter tuning
[25], [26]. However, many of these approaches were limited to
level-ground walking. Further, while [24]–[26] addressed the
problem of tuning the impedance parameters, their approaches
still required tuning the FSM switching criteria.

In contrast to the standard FSM-based impedance control
paradigm, some authors have suggested using continuous
functions to define the impedance parameters and how they
evolve over the gait cycle [27]–[30]. In general, controllers
that continually vary a robot’s output mechanical impedance
with time are known as variable impedance controllers [31].
Biomechanical principles suggest that human joints behave
like variable impedance controllers [32] and empirical studies
have observed this behavior at the ankle joint during walking
[11]–[13]. Therefore, variable impedance control may offer a
biomimetic solution for controlling powered prosthetic legs.
However, how to appropriately define the variable impedance
functions to realize walking gaits remains an open question.

A variable impedance controller was suggested in [27] using
linear functions for stiffness and damping during stance. The
linear functions were hand-tuned and held constant regard-
less of task. The variable impedance control method in [28]
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eliminated tuning altogether by using able-bodied kinematic
data to generate continuous impedance parameter functions
of phase. However, this method was limited to the knee
joint, did not consider joint kinetics, and was never experi-
mentally validated. Recently, [29] proposed a similar variable
impedance controller where ankle stiffness and damping were
defined as polynomials in phase, and the coefficients defin-
ing the polynomials were identified using constrained least
squares with an able-bodied kinematic and kinetic dataset.
The authors utilized piecewise-constant equilibrium angles and
demonstrated continuous stiffness and damping expressions
that produced satisfactory gait with a post-optimization tuning
protocol. This work was later extended to include variable
inclines and a phase variable parameterization of stiffness and
damping based on the phase portrait of the thigh angle and
its integral [30]. However, this phase variable is known to
have challenges with non-steady walking [33], and changes in
impedance associated with walking speed were not considered.
The authors of [30] also note that their method of identifying
the impedance parameters is non-convex, which does not
guarantee a globally optimal solution [34] for their controller.

This paper addresses these limitations by presenting a new
phase-based, task-adaptive walking controller built on a hy-
brid combination of continuously-variable impedance control
during stance and kinematic control during swing (Fig. 1).
Stance impedance control allows the controller to regulate
the dynamic interaction between the user and the ground
while swing kinematic control provides the user with indirect
volitional control over foot position. We use an able-bodied
kinematic and kinetic dataset [21] with constrained convex
optimization to create a continuous model of stance joint
stiffness, damping, and equilibrium angle, each parameterized
by phase, walking speed, and ground incline. Paired with
an analogous model of swing joint kinematics, our hybrid
controller produces a biomimetic gait across varying tasks
based on real-time phase and task estimates.

While similar to [30], our approach is distinct in multiple
important ways. First, the convex optimization formulation
provides an approximation of the globally optimal impedance
parameter functions. Second, our variable impedance model
includes a continuous function for equilibrium angle, mirroring
the continuous progression of biological joint dynamics [11]–
[13]. Third, this variable impedance model is further param-
eterized by walking speed, which is critical to reproducing
normative gait energetics [35]. Fourth, we estimate the task
variables in real-time, making the system fully autonomous.
Fifth, we use a phase variable that is more robust to vari-
able speed and incline behavior than prior phase variable
approaches [30], [33], [35], [36]. And sixth, we demonstrate
that our approach works for a novel above-knee amputee
participant without manual tuning over a range of tasks,
resulting in lower kinetic and kinematic error compared to
a standard hand-tuned impedance controller in most metrics.

In summary, this work provides the following novel con-
tributions: 1) A convex, data-driven framework to calculate
joint stiffness, damping, and equilibrium angle during the
stance phase of gait as continuous functions of phase, walking
speed, and incline. 2) An improved phase variable that avoids
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data-driven models. Depending on if the user is in stance or swing, the torque
commands τk, τa are calculated using either an impedance controller or a
position controller, respectively.

kinematic singularities and is robust to a diverse family of
thigh trajectories at variable walking speeds and inclines.
3) An experimental validation with an above-knee amputee
participant demonstrating that the hybrid variable impedance
controller produces more biomimetic joint work trends as
incline varies compared to a hand-tuned FSM impedance
controller, and lower kinematic and kinetic error than the FSM
impedance controller in 7 of 8 tested metrics.

The remainder of this paper is organized as follows. Section
II details the optimization process for calculating the continu-
ous impedance parameter models for stance. Then in Section
III, we define the hybrid controller based on this impedance
model for stance and our previous kinematic model [20] for
swing. We further define a new task-invariant phase variable
and incline and speed estimation methods that allow the
controller to operate fully autonomously. Section IV describes
the experiments in which a participant with an above-knee
amputation compared the controller proposed in this work with
a hand-tuned FSM impedance controller. Finally, in Section V,
we discuss the results, study limitations, and future work.

II. VARIABLE IMPEDANCE MODEL FOR STANCE

A. Model Framework

To use impedance control for the stance phase of the gait
cycle in a continuous, phase-based control framework, we
require a model analogous to the kinematic model developed
in [20] that describes how the impedance parameters (K,B,
and θeq) evolve during stance. Specifically, we require the
impedance parameter model to be continuously parameterized
by both gait phase s and task χ = (ν, γ), where task is defined
by the current walking speed ν and ground incline γ over the
range −10 ≤ γ ≤ 10 deg and 0.8 ≤ ν ≤ 1.2 m/s.

A model that meets these criteria can be constructed from
linear combinations of phase-varying polynomials, where the
linear combination weights depend on task. Polynomial func-
tions of phase are useful to model parameter progression
during stance because they are simply parameterized and can
represent arbitrary aperiodic signals. We use fourth order
polynomials (d = 4), as they allow sufficient flexibility to
model the parameter behavior without overfitting. Once the
appropriate polynomial functions are identified for individual
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tasks in a dataset, bilinear interpolation can be used to create
a unified, continuous model with task and phase inputs

First, we define task-specific polynomial functions that
represent how the parameters vary during stance for a set of
fixed tasks. For convenience, let sst be the stance phase (i.e.,
sst = s/sTO, where sTO is the phase at toe-off). Then, the
impedance parameters for the p-th fixed task χp are

Kχp =

d∑
i=0

kips
i
st, Bχp =

d∑
i=0

bips
i
st, θeq,χp =

d∑
i=0

eips
i
st,

(2)
where κχp

= {(kip, bip, eip) | i ∈ {0, . . . , d}} is a set of
constant coefficients. Then, the coefficients κνγ defining the
impedance parameter trajectories for an arbitrary task (ν, γ)
are calculated through bilinear interpolation of its four nearest
neighboring tasks κνn,γn , where νn ∈ {ν1, ν2}, γn ∈ {γ1, γ2}.
For all j elements in κνγ , this interpolation is

κjνγ =

[
ν2 − ν ν − ν1

]
(ν2 − ν1)(γ2 − γ1)

[
κjν1γ1 κjν1γ2
κjν2γ1 κjν2γ2

] [
γ2 − γ
γ − γ1

]
. (3)

Finally, using κνγ and (2) evaluated at the current stance
phase sst, the impedance parameters are calculated. Therefore,
the model is fully defined once each task-specific set of
coefficients κχp

is calculated.

B. Model Fitting

We use an optimization-based approach to fit the model
for each task χp to a dataset of able-bodied walking [21].
The dataset contains kinematic and kinetic joint information
from 10 participants walking at steady-state at 15 distinct
points in the task space (γ ∈ {−10,−5, 0, 5, 10} deg, ν ∈
{0.8, 1.0, 1.2} m/s). Therefore, for each task χp, we con-
structed an optimization problem to identify the set of
impedance parameter coefficients κ∗χp

that, when used in (2)
and the impedance control equation, best reproduced the mass-
normalized joint torques τ in the dataset given the dataset
kinematics (θ, θ̇) over all n data points at χp:

κ∗χp
= arg min

1

n
||τ − τ̂ ||22,

where τ̂ = Kχp

(
θeq,χp − θ

)
−Bχp θ̇.

(4)

1) Solution Approximation: As written, (4) is difficult to
solve, as the product Kχp

θeq,χp
is nonlinear in the unknown

parameters, and the overall objective function is non-convex.
To avoid this problem, we solve a similar, convex problem
and use its solution to approximate a solution to (4). First, we
combine the product of Kχp

and θeq,χp
into a new, higher-

order polynomial δχp
with independent coefficients δip:

Kχpθeq,χp =

d∑
i=0

kips
i
st

d∑
i=0

eips
i
st =

2d∑
i=0

δips
i
st = δχp . (5)

By treating the δip terms as independent from the kip terms,
the impedance equation for τ̂ becomes linear in the unknown
parameters kip, bip, and δip. We can then write the modified
optimization problem as a standard quadratic program, defin-
ing a new argument vector x ∈ R4d+3×1 as

x =
[
k0p, . . . , kdp, b0p, . . . , bdp, δ0p, . . . , δ2dp

]>
. (6)

Let αj ∈ R4d+3×1 be defined for each data point j as

αj =
[
−θjs0

j , . . . ,−θjsdj ,−θ̇js0
j , . . . ,−θ̇jsdj , s0

j . . . , s
2d
j

]>
.

(7)

Then, the objective function L(κχp
) from (4) becomes

L(κχp
) =

1

n
||τ − τ̂ ||22 =

1

n

n∑
j=1

τ2
j − f>x+

1

2
x>Hx, (8)

where

H =
2

n

n∑
j=1

αjα
>
j , f =

2

n

n∑
j=1

τjαj . (9)

2) Constraints and Regularization: To prevent elements
of x from dominating the solution, we added a diagonal
regularization matrix R = diag(λ) ∈ R4d+3×4d+3 to H to
penalize the L2 norm of x. The k-th diagonal entry for the
regularization weight was λk = 1e−5 for terms associated with
stiffness and damping and λk = 1e−2 for the δi terms.

Next, we added a constraint matrix A to ensure that Kχp

and Bχp
remained within ranges that were both physiological

realistic and feasible for the prosthesis to render. Namely,
the stiffness function was constrained above 1.5 Nm/rad/kg
and the damping function between 0.01 and 1.0 Nms/rad/kg.
In addition, prosthesis users noted during preliminary experi-
ments that a low stiffness at heelstrike was unsettling, as they
were accustomed to a locked knee during early stance with
their take-home prostheses. Therefore, a minimum heelstrike
stiffness of 3.0 Nm/rad/kg was added to increase participants’
confidence in the device. To enforce these constraints, we
discretized stance phase into nj points in the range [0, 1]. We
constructed a constraint matrix A ∈ R3nj×4d+3 from sub-
matrices As ∈ Rnj×d+1, defined as

As =

 s
0
1 . . . sd1
...

. . .
...

s0
nj

. . . sdnj

 , A =

−As 0 0
0 −As 0
0 As 0

 . (10)

A column vector b ∈ R3nj×1 contained nj copies of the min-
imum stiffness and damping and maximum damping values,
with the first term modified for the heelstrike constraint:

b =
[
3.0, 1.5, . . . , 1.5, 0.01, . . . , 0.01, 1.0, . . . , 1.0

]>
. (11)

Finally, we arrived at the full quadratic program (QP), with
the positive (sum-of-squares torque) offset in (8) neglected
without loss of generality:

minimize
x

1

2
x>(H +R)x− f>x

subject to Ax ≤ b.
(12)

We solved the QP in (12) for each subject and task χp
combination in the dataset (N = 150) using the MATLAB
Optimization Toolbox. Then, we approximated the solution to
the original problem (4) by fitting a d order polynomial to
δχp

(sst)/Kχp
(sst) = θeq,χp

(sst). We assumed the polynomial
order was sufficiently high to approximate the rational function
δχp(sst)/Kχp(sst) without significant information loss. This
assumption was validated by the model’s low reconstruction
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Fig. 2. Plots of the calculated impedance parameter functions, stiffness K(sst, γ, ν), damping B(sst, γ, ν), and equilibrium angle θeq(sst, γ, ν), for the knee
and ankle, projected onto a speed of ν = 1 m/s. These surfaces show the approximated solution to the original optimization problem (4).

error, detailed in the next section. Then for each task χp, the
inter-subject mean set of coefficients κ̄χp was calculated for
use as the final model. Trials that did not well-represent the
data, measured by a Variance Accounted For (VAF) below
75%, were discarded as outliers prior to averaging.

C. Modeling Results

Fig. 2 shows the calculated impedance parameter model
projected onto a speed of 1 m/s, which was produced by
evaluating (2) and (3) with κ̄χp

. To quantify the impedance
parameter model’s reconstruction error, we calculated τ̂ for
each trial in the dataset using the model:

τ̂ = K(sst, γ, ν) (θeq(sst, γ, ν)− θ)−B(sst, γ, ν)θ̇. (13)

Then, we calculated the root mean squared error (RMSE) in
joint torque over all subjects for each task χp in the dataset
and normalized by the dataset torque’s standard deviation
for χp. This metric, which we call normalized reconstruction
error Ē, describes how many standard deviations τ̂ is from
the mean dataset torque trajectories, on average. Normalized
reconstruction errors below 1.0 indicate that the model is
able to predict joint torque to accuracy levels similar to able-
bodied inter-subject variation [21]. Averaged over all tasks,
the knee and ankle normalized reconstruction errors were
Ēk = 0.78± 0.11 and Ēa = 0.58± 0.09, respectively.

III. HYBRID KINEMATIC IMPEDANCE CONTROLLER

The proposed Hybrid Kinematic Impedance Controller
(HKIC, see Fig. 1) is an evolution of the purely kinematic
controller proposed in [36]. In the HKIC, we use real-time
phase and task estimates with the impedance model developed
in Section II during stance and a kinematic model developed
in [20] during swing. Impedance and position controllers
enforce the respective model outputs as described below. Once
configured with the user’s mass and leg segment lengths, the

controller operates autonomously, requiring no manual tuning
or terrain inputs.

A. Task-Invariant Phase Estimation

An estimate of the user’s progression through the gait cycle
is required to use the impedance parameter model for real-
time control. An ideal version of this estimate (termed a phase
variable) increases from 0 to 1 at a constant rate between
each heelstrike [37]. Similar to [33], [36], the HKIC’s phase
variable ŝ is calculated using a piecewise-linear mapping of the
user’s global thigh angle θth, which has a roughly sinusoidal
trajectory (see Fig. 3a). This angle is measured directly using
an Inertial Measurement Unit (IMU, 3DM-CX5-25, LORD
Microstrain, Williston, VT) mounted to the proximal end of
the prosthesis’s knee joint. This method of phase estimation
is preferable because it allows the user to start and stop the
gait cycle at will, is robust to sensor noise, and enables non-
rhythmic behavior [33].

However, previous iterations of the θth-based phase variable
did not work well for variable-task locomotion because of
assumptions made about the shape of the θth trajectory. For
example, [33], [36] assumed that the θth trajectory could be
divided into two monotonic sections. While this assumption
holds fairly well for level ground and incline walking, it is
invalid for steep declines [21] (Fig. 3a). Previous methods
produced inaccurate, saturated phase estimates for such cases
[36]. Further, previous methods did not account for periods
of low thigh angular velocity (i.e., when the hip joint is
most extended or most flexed), leading to pauses in the
phase estimate and subsequent problems in the controller
behavior [24], [36]. Therefore in this work, we relax previous
assumptions and add flexibility to the phase variable to better
parameterize the gait cycle based on the diverse θth trajectories
observed in variable-task locomotion. First, we introduce short
periods of feedforward phase progression that allow ŝ to
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Fig. 3. Plots of (a) the mean able-bodied thigh trajectories reported in [21], where positive angles correspond to hip joint flexion, and (b)-(c) the resulting phase
variable trajectories at different inclines. Plot (b) shows the trajectories calculated the previous method described in [36] and Plot (c) shows the trajectories
calculated using the new phase variable proposed in this work. The new method shows no phase pause near push-off and improved linearity, especially at the
point of maximum hip extension.

maintain a constant positive rate even when thigh angular
velocity is low, which enables a biomimetic, powerful push-
off. Second, we add states to account for thigh trajectories that
have more than two monotonic sections (especially common
during ramp descent) to prevent phase saturation and resulting
gait desynchronization. Third, we introduce a technique to
improve the linearity of ŝ, correcting for previous steady-
state nonlinearities and thus making it closer to an ideal
phase estimate. For brevity, the mathematical details for these
improvements are presented in Appendix A.

To illustrate the benefits of the new phase variable over its
predecessor [33], [36], we conducted a simulation using thigh
kinematic data from [21] (Fig. 3a). For each trial of treadmill
walking in the dataset, we calculated the phase variable using
both the new method (Appendix A) and the previous method
described in [36]. For each incline, we averaged the phase
trajectories over all strides, participants, and walking speeds,
shown in Figs. 3b and 3c. Notably, the new phase variable
eliminated the phase estimate pause associated with maximum
hip extension that was observed with the previous phase vari-
able. The new method also reduced the early saturation seen in
the previous phase variable, which was particularly prominent
at steep ramp declines. Finally, the new method demonstrated
improved linearity, particularly during midstance. Compared
to an ideal linear phase trajectory, the new method showed
4.50% RMSE with R2 = 0.991 while the previous method
showed 7.48% RMSE and R2 = 0.976 over all tasks.

B. Task Estimation

In addition to the phase estimate, the HKIC requires an
estimate of the user’s current task χ̂, which is calculated at
each TO during steady walking. The estimation methods below
are based on [36], with modifications to improve performance.
Both estimates are filtered with a moving average over 3
strides to account for stride-to-stride variation.

1) Walking Speed: The user’s speed is estimated using a
three-link leg model, comprising thigh, shank, and foot links.
Using forward kinematics and inputs from the joint encoders
and the thigh IMU, we calculate the Cartesian locations of
the heel and toe relative to the hip joint, respectively given by
xheel and xtoe. At each TO event, the forward progression of

the hip relative to the foot’s point of contact with the ground
during the previous stance phase is calculated as

dst = ||xtoe − xHS−
heel ||2, (14)

where xHS−
heel is the value of xheel from the previous HS. Sim-

ilarly by assuming a symmetric gait, the forward progression
of the hip relative to the contrallateral foot’s ground contact
point over a swing phase is approximated at each HS as

dsw = ||xheel − xTO−
toe ||2, (15)

where xTO−
toe likewise is xtoe from the previous TO. Then,

we calculate the total forward progression over the gait cycle
as dst + dsw + `foot, where `foot is a constant accounting for
the length of the prosthetic foot. Finally, walking speed is
estimated by dividing forward progression by stride time.

2) Incline: The global angle of the foot, θf, is a good
approximation for the incline when the foot is flat on the
ground. As it is undesirable to add an inertial sensor to
the foot, we calculate this angle from the thigh IMU using
forward kinematics, along with a correction for foot bending.
Prosthetic feet are designed to deflect for energy storage [38],
so foot deflection significantly impacts the incline estimate.
Offline testing with our prosthesis’s foot [39] (Lo Rider, 1E57,
Ottobock, Duderstadt, Germany) showed that deflection was
correlated with the bending moment in the sagittal plane my .
An on-board 6-axis load cell (M3564F, Sunrise Instruments,
Nanning, China), located at the distal end of the ankle joint,
measures this moment directly. Then, θf is calculated as

θf = θth − θk + θa + θ0
f + kfmy, (16)

where kf is the linear bending coefficient, θk is the relative
knee angle, and θa is the relative ankle angle. All joint angles
are measured positive in flexion and are zero when the user
stands upright. The constant offset term θ0

f accounts for the
angular difference between the prosthetic foot, the cosmesis,
and the sole of the shoe.

The center of pressure in the foot reference frame `cop is
calculated using the load cell to determine when the foot was
flat on the ground. We consider the foot to be flat when 7.5 ≤
`cop ≤ 12 cm from the ankle joint, which corresponds to the
ground reaction force acting between the middle and the ball
of the foot. During this period, θf is averaged to produce the
incline estimate for each stride.
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(a) Overground acclimation (b) SS-Incline: χ = 7 deg, 1 m/s (c) SS-Decline: χ = −7 deg, 1 m/s

Fig. 4. Photos of the participant with an above-knee amputation performing various tasks with the HKIC during the experiment.

C. Impedance and Kinematic Controllers

1) Stance Impedance Controller: During stance, a variable
impedance controller is used to calculate joint torques. First,
the stance phase estimate ŝst is calculated by

ŝst = ŝ/¯̂sTO, (17)

where ¯̂sTO is a low pass filtered (IIR) version of ŝTO from
previous strides. A slow time constant of approximately 10
strides was chosen for this filter, as the toe-off phase exhibits
slow changes with task. Like the thigh trajectory features, the
filter for ¯̂sTO is initialized from able-bodied data. Using ŝst
and χ̂, joint stiffness K, damping b, and equilibrium angle
θeq,χp

are calculated using (2), (3) and the model in Section
II. Then, the joint torque for stance is calculated with the
following impedance control law (scaled by user mass m):

τst = m
(
K(ŝst, χ̂)(θeq,χp

(ŝst, χ̂)− θ)−B(ŝst, χ̂)θ̇
)
. (18)

2) Swing Kinematic Controller: A proportional derivative
(PD) controller uses stiff gains kp and kd to directly track
desired joint angle trajectories. This is in contrast to the
equilibrium angles of the impedance controller, which do not
necessarily align with the normative joint angles. A continuous
model of able-bodied joint kinematics [20], generated using
data from [21], provides the desired trajectories defined as

θd(s, χ) =

N∑
i=1

bk(s)ck(χ), (19)

where bk(s) are Fourier series and ck(χ) are Bernstein basis
polynomials. Similar to the impedance model, (19) is evaluated
in real-time using ŝ and χ̂. Then, the PD torque command
during swing, τsw, is given by

τsw = kp(θd − θ) + kd(θ̇d − θ̇). (20)

3) Stance to Swing Transition Smoothing: A time-varying
weight wsw ensures a smooth transition from impedance
control to position control. Because impedance control may
allow the joint angles to vary from their nominal trajectories
depending on how the user loads the prosthesis, this smoothing
is critical to avoid step changes in joint torque. At the instant
of the stance to swing transition, wsw increases from 0 to 1
over a predefined time frame. For the knee, it increases over

0.25 s and for the ankle over 0.05 s. The actual output to the
joint motors is given by

τ =

{
τst during Stance,
wswτsw during Swing.

(21)

Because the equilibrium angles at heelstrike are close to the
kinematic references at the end of the gait cycle, no smoothing
is necessary for the swing to stance transition.

Close examination of (21) shows that for a brief period just
following TO, minimal control action is applied to the joints.
This is acceptable because the low-impedance actuators used
in our prosthesis [39] allow the joints to continue moving
along their current trajectories according to their passive
dynamics without control input. Passive early swing knee and
ankle dynamics have been shown to produce human-like gait
[40], [41], and these passive dynamics may contribute to the
biomimetic behavior of the controller.

IV. AMPUTEE PARTICIPANT EXPERIMENT

Experiments with an above-knee amputee participant were
performed to investigate the benefits of the continuously-
varying framework and the effectiveness of the optimization-
derived impedance parameters at producing a biomimetic
gait. For comparison, we implemented and tuned a standard,
piecewise-constant impedance controller based on a FSM. This
type of FSM controller has been widely implemented as a
standard, effective method of impedance control for walking
applications [1], and therefore provides a good benchmark
with which to compare our controller. Photos of the experiment
are shown in Fig. 4 and video recordings are available for
download as supplemental media.

A. Benchmark FSM Impedance Controller

A benchmark Finite State Machine controller (FSMC) was
designed based on the FSM impedance controller presented
in [15], with an additional stance state and modified tran-
sition criteria to improve performance (see Appendix B).
The resulting FSM had 5 states, each with its own set of
constant impedance parameters and transition criteria. Similar
to the methods discussed in the introduction, these parameters
needed to be hand-tuned by an expert researcher in order to
produce the desired gait. To enable walking at various inclines,
three sets of tunable impedance parameters and transition
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SS-Level
SS-Incline
SS-Decline

(a) Steady-state task trials

CV-Decline
CV-Incline

(b) Continuously-varying task trials

Fig. 5. Diagrams indicating the locations of the task space sampled during each trial. Each transparent marker indicates the treadmill’s task feedback, sampled
at 2 Hz. Each black dot indicates the task combination commanded to the treadmill for a duration of 45 seconds in (a) and 20 seconds in (b).

criteria were instantiated for each joint (i.e., one set for
level ground, one set for declines, and one set for inclines).
The controller selected between impedance parameter sets
based on the estimated incline γ̂ (Appendix Fig. 13b). In
total, the FSMC required 96 tunable parameters, including 45
impedance parameters per joint and 6 FSM transition criteria.

B. Experimental Methods

A participant with an above-knee amputation (sex: male,
age: 26 years, mass: 116 kg, height: 1.9 m, K-level: 4, cause of
amputation: congenital, time since amputation: 26 years) was
recruited to participate in the experiment. The protocol was
approved by the Institutional Review Board of the University
of Michigan (HUM00166976) and the participant wore a
ceiling-mounted safety harness while walking on the treadmill.

The proposed HKIC and the comparison FSMC were im-
plemented on a backdrivable, powered knee-ankle prosthesis,
shown in Fig. 4 and described in depth in [39]. A licensed
prosthetist fit the prosthesis to the participant and ensured
proper alignment. The participant was instructed on the ex-
pected high-level behavior of each controller and given time
to acclimate to each while walking overground within parallel
bars. Following this overground acclimation, 5 trials with each
controller were conducted on an in-ground split-belt treadmill
(Bertec, Columbus, Ohio, USA). The treadmill had instru-
mented handrails on either side for safety, and the participant
was instructed to limit handrail body weight support when
possible to maximize the realism of the experiment. The
instrumented handrail data showed that the subject did not
heavily rely on the handrails with either controller.

The first 3 trials investigated the behavior differences be-
tween the HKIC and the FSMC during steady walking at
different speed and incline combinations. Each trial focused
on a range of small task deviations (±2 deg, ±0.2 m/s) around
one of three baseline tasks: χ = (0 deg, 1 m/s), χ = (5 deg,
1 m/s), and χ = (-5 deg, 1 m/s). We refer to these steady-
state task trials as SS-Level, SS-Incline, and SS-Decline,
respectively. For the SS-Incline trial, speed was limited to 1.1
m/s to ensure that the participant could safely perform the trial.
The steady-state task trials began with an acclimation period,

where the participant walked at the baseline task until feeling
comfortable. During this time, the FSMC was tuned by the
research team to produce a natural gait, incorporating feedback
from the participant and the prosthetist. The time taken to tune
the controller was recorded. Note that no tuning was done for
the HKIC. Then, the participant walked on the treadmill as it
cycled through each of the 5 tasks within the small range,
each commanded for 45 seconds. The acclimation, tuning,
and testing procedure above was repeated for each baseline
task. These baseline tasks were chosen to be far apart in the
task space so that we could sample a wide range of tasks
without deviating too far from any one of the FSMC’s tuning
points. Fig. 5a shows the recorded task-space profiles from
the treadmill for each trial, where the black dots indicate each
commanded task. Note that both controllers were provided
with true task feedback from the treadmill during these trials
so that task estimate errors did not influence the results.

The latter two trials consisted of more rapid task changes
to investigate each controller’s behavior during continuous
task variations rather than at steady-state and over a wider
range of tasks. Further, the controllers received no real-time
knowledge of the task from the treadmill during these trials,
investigating the autonomous capability of each controller to
operate over the task space. Both controllers utilized the same
task estimation methods (Section III-B). The FSMC used the
task transition logic in Figure 13b with the tuned impedance
parameters at the baseline tasks from the steady-state trials.
Two trials, one with inclines (CV-Incline) and the other with
declines (CV-Decline), started at χ = (0 deg, 1 m/s) and
explored 8 other points within the task space. Each task point
was commanded to the treadmill for 20 seconds. Because the
treadmill required time to change task, smooth task trajectories
with continuous variations were generated, shown in Fig. 5b.

C. Experimental Results

1) FSMC Tuning Time: To produce a normal gait, the
FSMC required 22 minutes of tuning by the research team: 3
minutes for the level ground baseline task, 14 for the incline
baseline task, and 5 for the decline baseline task. The tuned
impedance and state transition parameters for each baseline
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Fig. 6. Average kinematic and kinetic trajectories produced by each controller
during level ground walking at 1 m/s in the steady-state trials. Inter-subject
mean able-bodied data (AB) is also shown [21]. Shaded regions show ±1
standard deviation. At most points in the gait cycle, the HKIC is closer to the
able-bodied reference than the FSMC, particularly in the kinetic trajectories.

task are shown in the Appendix (Table IV). Trends in the tuned
parameters included higher stiffness values during stance than
in swing and highly-varying knee equilibrium angles across
tasks. Also, the observed gait was noted to be quite sensitive
to the tunable FSM transition criteria.

2) Steady-State Trials: The steady-state trials were exam-
ined for kinematic and kinetic similarity relative to able-bodied
data [21]. Bilinear interpolation was used to generate the able-
bodied data for tasks between those reported in the dataset.
Fig. 6 shows the kinetic and kinematic trajectories for the
level ground, 1 m/s trial for each controller and the able-
bodied references. The HKIC is closer to the able-bodied
references than the FSMC at most points in the gait cycle.
Additionally, discontinuities caused by the FSMC’s discrete
FSM states transitions can be seen in the figure, particularly
in the ankle moment near midstance. Next, the RMSE between
the observed data and able-bodied data was calculated during
both stance and swing for all strides in the steady-state task
trials. Stance and swing were treated separately to isolate the
performance of the impedance parameter model (Section II),
as it was only used during stance. The first 15 seconds at each
task was neglected to allow time for the treadmill to reach
steady-state. Fig. 7 shows the mean kinetic and kinematic
RMSE averaged over all strides for the steady-state trials. In 7
of 8 comparisons, the HKIC showed less error than the FSMC.
Only the knee kinematic error during swing showed less error
with the FSMC than the HKIC.

The gait energetics were also examined for able-bodied
similarity. As one of the benefits of impedance control is
the ability to control energy exchange with the environment
[9], both controllers should replicate this biological behavior.
Fig. 8 shows the average knee, ankle, and combined net work
per stride performed by each controller at different inclines
during the steady-state trials, as well as average able-bodied
data calculated from [21]. The HKIC shows similar trends
as the able-bodied data, with a linear increase in net energy
input with incline, particularly at the ankle (increase of 3.81
J/kg/deg, R2 = 0.995). For comparison, able-bodied ankle
work increases linearly at 4.06 J/kg/deg with R2 = 0.987. In

Fig. 7. Mean RMSE in the observed kinematics (left) and kinetics (right)
relative to able-bodied walking data for both the HKIC and FSMC during the
steady-state task trials. The error bars represent ±1 standard deviation. The
HKIC demonstrated lower mean error than the FSMC in 7 of 8 metrics.

TABLE I
AVERAGE KINEMATIC AND KINETIC RMSE OBSERVED DURING THE

CONTINUOUSLY-VARYING TASK TRIALS

Trial Controller Angle (deg) Torque (Nm/kg)
Knee Ankle Knee Ankle

CV-Incline HKIC 6.13 4.59 0.15 0.22
FSMC 9.35 8.77 0.21 0.35

CV-Decline HKIC 7.34 5.17 0.21 0.27
FSMC 8.46 6.57 0.19 0.35

contrast, the energy injection of the FSMC appears discretized
to three levels corresponding to its tuning tasks. Interestingly,
the HKIC and FSMC show less energy absorption at the knee
during declines, which may indicate a compensatory behavior
by the participant.

3) Continuously-Varying Trials: The kinematic and ki-
netic errors were calculated in a similar manner for the
continuously-varying task trials, though this time including
strides that occurred while the treadmill changed task. For
brevity, the error metrics were calculated over the entire stride
(instead of separating stance and swing) and averaged across
all strides of the trial, shown in Table I. The PV controller
showed lower RMSE than the FSM controller in all metrics
for the CV-Incline trial and 7 of 8 metrics for the CV-
Decline trial. In addition, Fig. 9 shows the average error
trajectories at both joints for the CV-Incline trial, calculated
as the able-bodied references subtracted from the observed
values. At most points in the gait cycle, the FSMC showed
higher magnitude kinematic and kinetic error than the HKIC,
particularly in the ankle kinematics near push-off.

The task estimates and HKIC phase estimates contributed to
the kinematic and kinetic errors in these trials. Fig. 10 shows
the average phase estimate trajectories produced by HKIC
during the CV-Incline and CV-Decline trials. The average
phase trajectories were highly linear, even as speed and incline
varied. Also, the task estimate RMSE, averaged over each
stride, is shown in Table II. Although the same task estimation
algorithms were used with both controllers, FSMC showed
higher incline estimate error, suggesting that differences in
controller behavior impacted the incline estimate’s efficacy.
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Fig. 8. Average net work per stride performed by the prosthesis at each of
the inclines tested during the steady-state task trials. Error bars represent ±1
standard deviation. An able-bodied reference (AB) calculated from [21] shows
that the HKIC demonstrated more biomimetic energy injection, particularly
through a linear increase in ankle work as incline increased, corresponding to
93.8% of the able-bodied rate. Both controllers showed less energy absorption
at the knee during steep declines, suggesting that our participant may have
had a habitual aversion to early stance knee flexion.

TABLE II
AVERAGE TASK ESTIMATE RMSE OBSERVED DURING THE

CONTINUOUSLY-VARYING TASK TRIALS

Trial Controller Incline (deg) Speed (m/s)

CV-Incline HKIC 0.76 0.15
FSMC 3.04 0.15

CV-Decline HKIC 0.67 0.15
FSMC 1.52 0.12

V. DISCUSSION

This work presented a data-driven, phase-based walk-
ing controller for a powered knee-ankle prosthesis that au-
tonomously adapted its behavior across a continuous range of
walking speeds and inclines. To achieve this without manual
tuning, we used an able-bodied dataset to optimize for contin-
uous stiffness, damping, and equilibrium angle functions that
reproduced biological joint torques during stance, given bio-
logical kinematics. We showed that our optimized impedance
parameter model produced joint torques with across-task av-
erage normalized RMSE values of 0.78 and 0.58 for the knee
and ankle, suggesting that the model captures the essential
joint dynamics of able-bodied walking.

The subsequent experiment demonstrated that the identi-
fied impedance parameter functions also rendered appropriate
stance phase joint mechanics for a participant with an above-
knee amputation. The participant exhibited qualitatively nor-
mal gait patterns over a wide array of tasks (see Supplemental
Video). Other normative walking features were also observed,
such as increased ankle work with increasing incline. Anec-
dotally, our participant remarked while walking at the 7 deg
incline that he did not feel like he was walking uphill, suggest-
ing appropriate joint dynamics and energy exchange. Further,
HKIC’s kinematic and kinetic errors during stance were better
than those produced using a hand-tuned impedance controller
(Fig. 7). Together, these results suggest that the data-driven

Fig. 9. Plot of the average kinematic and kinetic differences relative to able-
bodied observed in the continuously-varying incline trial. The knee data is
shown in the left column and the ankle in the right. Shaded regions represent
±1 standard deviation. For this trial, the HKIC demonstrated lower RMSE
compared to the FSMC in all 4 metrics, suggesting that it behaved more
biomimetically across the incline and speed variations.

approach to calculating impedance parameters was effective at
producing appropriate joint mechanics across the task-space,
presenting an attractive alternative to the standard hand-tuning
paradigm typically required with impedance controllers.

For online implementation of the continuous impedance pa-
rameter model, gait phase needed to be estimated in real-time.
We employed a novel phase variable based on the user’s thigh
angle that improved on previous limitations associated with
a θth-based approach. The improved phase variable behavior
observed in simulation in Section III-A was confirmed in the
participant experiment. Fig. 10 shows how the phase variable
eliminated the previously observed phase pause near push-off.
The result of this monotonicity is visible in the kinematics
of Fig. 9, as there is not a sharp increase in kinematic error
near push-off, which was observed previously in [36]. Further,
minimal saturation is observed near the end of the gait cycle
in both continuously-varying trials. As the CV-Decline trial
contained strides at steep declines, previous iterations of the
phase variable would have resulted in early saturation, as
the maximum θth is much larger than θth at HS. The lack
of phase saturation illustrates that the new phase variable
effectively handled task-varying θth trajectories. Finally, the
general linearity of the average phase trajectories in Fig. 10
(mean RMSE of 3.33% and R2 = 0.997 with respect to an
ideal linear trajectory) is improved compared to [36]. Because
both the impedance and kinematic models in HKIC assume a
perfectly linear phase estimate, the observed linearity keeps the
model outputs of the controller synchronized with the user’s
gait.

The task estimates are other critical components required
for walking over continuously-varying tasks. Seen in Table
II, the error in the speed estimate was fairly constant over
the trials, with RMSE between 0.12 and 0.15 m/s for both
controllers. This error is likely due to a slightly asymmetric
gait, which violates the assumptions made in the speed esti-
mator’s formulation. Gait asymmetries may be the result of
our participant’s habitual compensations, socket comfort, or
the significant mass difference between the robotic prosthesis
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Fig. 10. Average phase estimate progression calculated in real-time by the
HKIC during the continuously-varying task trials. Shaded regions represent
±1 standard deviation. The linearity and consistency of the trajectories
illustrate the phase variable’s ability to adapt to continuous task variations
and appropriately parameterize the gait cycle.

and participant’s passive prosthesis. Interestingly, the incline
estimate produced lower error with the HKIC (0.67 to 0.76
deg) than the FSMC (1.52 to 3.04 deg) in both trials. We spec-
ulate that the higher error in the FSMC is due to a feedback
interaction between incline estimate errors and the impedance
parameters. Due to the discrete switching behavior of the
impedance parameters (see Fig. 13b), a small incline estimate
error can result in large changes in prosthesis behavior. If this
change is inappropriate for the current task, such as when
γ = 1.5 but γ̂ = 3.5, the resulting progressions of θf and
`cop may be atypical and further skew the incline estimate.
Therefore, the continuous nature of the HKIC is preferable,
as it does not display step changes in behavior with small
changes in task inputs.

Experimental validation demonstrated that, overall, the
HKIC was able to better reproduce normative joint biome-
chanics than the FSMC, despite requiring no subject-specific
tuning. During the steady-state trials, which tested tasks at
or near the tuned tasks of the FSMC, the HKIC resulted in
lower kinematic and kinetic error relative to able-bodied data
for all metrics at the ankle and most metrics at the knee.
The only metric in which the FSMC outperformed the HKIC
was the knee kinematic error in swing. This was expected,
as we intentionally allowed the phase variable to saturate
early and, as the knee displays large kinematic changes
during swing, small phase shifts result in large kinematic
errors. We made this tradeoff to ensure full knee extension
prior to heelstrike, as pilot testing showed that consistent
full knee extension helped eliminate participants’ problematic
instinctive compensations (see Section III-A). Although the
knee kinematic error values appear relatively large, it did not
interfere with the participant’s gait or cause toe stubbing.
In comparison, the FSMC required 22 overall minutes of
tuning for just three tasks, and it displayed overall lower
performance than the HKIC. Its performance likely could
have been improved to better mimic normative data, but this
would have required either more tuning time at each baseline
task or additional tuning points throughout the task space.
Adding tuning time or points is likely impractical in a clinical
setting, especially without specialized equipment such as a
variable-incline treadmill. Therefore, a tuning-free approach
like the HKIC is advantageous because it produces biomimetic
behavior regardless of task, and it is quickly configured with
only physical measurements of the user.

Further differences between the HKIC and the FSMC were
illustrated in the continuously-varying task trials, in which
the two controllers operated fully autonomously. While it is
difficult to isolate the influence of task estimate errors on
the resulting kinematics and kinetics, some comparisons can
still be made. For example, the FSMC’s large sinusoidal-
shaped ankle kinematic error just after push-off (Fig. 9) is
indicative of a phase shift between the observed and able-
bodied kinematics, suggesting improper gait cycle timing.
The kinematic error after push-off was lower for the HKIC,
suggesting that the new phase variable was better at adapting
gait cycle timing than the FSMC transition criteria. In addition,
the FSMC produced a larger standard deviation in both joints’
kinematic error trajectories and the ankle’s kinetic error. This
suggests that the FSMC produced less consistent mechanics
stride-to-stride than the HKIC, which is likely due to its
discrete switching nature. The more consistent behavior of the
HKIC is desirable because it allows the user to better predict
the prosthesis’s behavior and walk more confidently.

However, this study was not without limitations. Our ex-
periment provided a somewhat limited view of the HKIC’s
behavior, as it involved a single participant and only one ex-
perimental session. We expect that the tuning-free impedance
parameter model identified in Section II will yield similar
performance for a wide array of participants, as it was created
without a priori knowledge of the participant or their pref-
erences. Preliminary studies of able-bodied users testing the
HKIC over varying tasks suggest that this assumption holds
[42]. However, this assumption should be validated in future
studies with wider prosthesis user participant pools.

Similarly, it is likely that there are users for which the
population average impedance parameters are not optimal. A
study investigating users’ preferred stiffness in ankle prosthe-
ses showed that the preferred joint stiffness varies by user [43],
which is likely true for knee-ankle prosthesis users as well.
While one of the major advantages of HKIC is that it required
no manual tuning, it could be limited by the lack of an ability
to customize to an individual’s preferred behavior. Future work
will investigate methods to incorporate user preferences in the
impedance model, such as weighting the optimization with
a single baseline personalization for level-ground walking,
as suggested in [44]. This baseline personalization could be
gathered using tools in a standard clinic, maintaining the
minimal-tuning nature of the controller.

Further, future studies investigating the HKIC’s performance
over multiple experimental sessions would be beneficial be-
cause they would allow the participant to better acclimate to
and leverage the benefits the powered prosthesis. For example,
the lack of early stance knee flexion in both controllers
(Fig. 9) and the low knee energy dissipation (Fig. 8) are
likely less due to controller behavior and more due to the
participant’s habitual compensations developed through years
of using a passive prosthesis [45]. Future work may show that
as the participant becomes more comfortable with a powered
prosthesis, these gait features become more similar to able-
bodied gait, even with the same controller.

In addition, this work did not fully explore the capabilities of
the HKIC, as it only investigated rhythmic walking. One of the
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unique strengths of the proposed phase variable is the ability
to intuitively control non-rhythmic tasks [33]. This capability
of the HKIC should be explored further and demonstrated in
future studies involving rapid start/stop, lateral movements,
and other behaviors that are prominent in agile locomotion.
Such studies may also highlight the limitations of using the
current impedance parameter model for non-rhythmic tasks.
Although we were able to achieve start/stop behaviors in
this experiment, additional able-bodied data may need to be
included in the optimization to produce appropriate impedance
parameters for other non-rhythmic tasks.

Finally, there is much interesting work to be done investigat-
ing the relationship between biological joint impedance mea-
sured in empirical studies [11]–[13] and the impedance param-
eters used in impedance controllers. Mechanical impedance
can only be characterized through perturbation studies, so the
impedance parameters found by optimizing over non-perturbed
gait data will not necessarily reflect these dynamics. We plan
to study the effects of constraining the optimization with
known empirical impedance values, as well as to investigate
the HKIC’s behavior during gait perturbations.

VI. CONCLUSION

This work proposed a tuning-free walking controller de-
signed to work over a continuum of speeds and inclines.
We developed continuous models of joint stiffness, damp-
ing, and equilibrium angle for an impedance controller us-
ing a data-driven approach. We also presented an improved
phase estimation algorithm, showing increased monotonicity
and linearity. A prosthesis user demonstrated the controller’s
ability to autonomously produce biomimetic behavior over
continuously-varying tasks during treadmill experiments. The
experiments showed that, when compared with able-bodied
data, the proposed controller performed as well as a hand-
tuned FSM impedance controller near the FSM controller’s
tuning points, and had superior performance as task varied.

APPENDIX

A. Task-Invariant Phase Variable Algorithm

The new phase variable ŝ is calculated through a series of
linear equations with θth as an input. An FSM controls when
each equation is used. Although the FSM contains discrete
states, the structure of the linear equations ensures that ŝ is
continuous. Each equation is defined by quantitative features
of the θth trajectory, which are measured in real-time. Table
III lists the features’ definitions and notations. First, we give
the rationale for each FSM state and its corresponding phase
variable equation. Then, we present methods to estimate the
thigh trajectory features in real-time, as well as the steps taken
to promote closed-loop stability of the phase estimate.

1) Phase Variable FSM: Consider the average θth trajectory
for an able-bodied individual walking at 1 m/s on level ground,
shown in Fig. 11. The pertinent θth trajectory features used in
the phase estimate are labeled, as well as the standard timing
of the FSM states. The overall structure of the FSM used to
control the phase estimate is shown in Fig. 12.

The FSM begins in S1, occurring just after a heelstrike (HS)
event. During S1, θth is linearly scaled as the hip joint extends
from θHS

th to θMHE
th such that ŝ increases and ŝ = sMHE when

θth = θMHE
th . Mathematically, this is given by

ŝ =
θHS

th − θth

θHS
th − θMHE

th
sMHE in S1, S2. (22)

The FSM transitions to S2 at a phase estimate threshold
ŝ1→2 = 0.1, which typically corresponds to the point in the
gait cycle where the θth trajectory becomes linear.

In S2, ŝ is calculated using the same linear relationship as in
S1 (22), but is denoted as a distinct state because it represents
a portion of the gait cycle where θth (and therefore ŝ) has
constant velocity. The average rate of change of ŝ during S2
( ˙̂sS2) is recorded for use in S3. The FSM transitions to S3
once ŝ2→3 = 0.9sMHE, which typically corresponds to the end
of the linear portion of the thigh trajectory, or if θ̇th > 0. This
second case rarely occurs during steady walking, but is an
important path to S3 in the event of an unusually short stride.

S3 occurs during the section of the gait cycle where θth
reaches its minimum, and thus has a period of low angular
velocity θ̇th. Previous work has shown that sections of low
θ̇th are problematic because they cause a pause in the phase
variable trajectory [24], [33], [36]. This pause violates the
assumption that ŝ increases monotonically and at a constant
rate, resulting in incorrect kinematic and impedance model
outputs. Therefore, during S3, we decouple ŝ from θth and
instead assume that phase continues progressing at ˙̂sS2:

ŝ = ŝ23 +

∫ ∆t

0

˙̂sS2dτ in S3. (23)

This feedforward phase progression continues until a toe-off
(TO) event. Although this approach limits the user’s ability
to stop phase progression during S3, such cases are unlikely
because stopping would inhibit power delivery from the ankle
during push-off. Moreover, the under-actuated dynamics of
bipedal walking dictate that once the user’s gravity vector
passes anterior of the stance foot, the user must continue the
gait cycle until the contralateral foot lands [46]. Therefore,
we expect the sacrifice in direct control of phase progression
during this section of the gait cycle to be negligible.

After TO, the FSM transitions to S4, where phase is again
estimated via a linear scaling of θth. This mapping is defined
such that ŝ increases from ŝTO towards sMHF as θth increases:

ŝ =
θth − θTO

th

θMHF
th − θTO

th
(sMHF − ŝTO) + ŝTO in S4. (24)

The FSM transitions to S5 when θth is equivalent to the average
of θHS

th and θMHF
th , which typically corresponds to the end of

this linear section of the thigh trajectory.
Two problems typically occurred with the previous phase

variable methods when θth ≈ θMHF
th , which occurs during S5 in

the new FSM. First, a pause in ŝ would occur as θ̇th slowed and
θth approached θMHF

th , similar to the effect seen in S3. Second,
the previous methods assumed that θMHF

th = θHS
th . In cases

where θMHF
th > θHS

th , such as the trajectory shown in Fig. 11, the
resulting ŝ would saturate prematurely. Excessive saturation
in the phase variable can cause desynchronization between
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TABLE III
SYMBOL DEFINITIONS FOR FEATURES USED TO CALCULATE ŝ

θHS
th θth at heelstrike

θMHE
th θth at maximum hip extension
θMHF

th θth at maximum hip flexion
θTO

th θth at toe off
sMHE s at maximum hip extension
sMHF s at maximum hip flexion
ŝTO ŝ at toe off
˙̂sS2 Average rate of change of ŝ during S2
˙̂sS4 Average rate of change of ŝ during S4
∆t Time since state transition
tMHE Time at maximum hip extension
tMHF Time at maximum hip flexion
t0 Time at heelstrike
tf Time at gait cycle completion
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Fig. 11. The average global thigh angle trajectory θth (positive flexion) for
1 m/s 0 deg able-bodied walking, segmented by the phase variable FSM
states. The phase variable is defined by linear mappings of θth during S1,
S2 and S4, and by a feedforward phase variable rate during S3 and S5. The
feedforward rates for S3 and S5 are given by the average rate of change of
the phase estimates during the preceding states, which correspond to periods
of constant thigh angular velocity.

the prosthesis and the user, leading to problems such as toe-
stubbing. This effect was most exaggerated during declined
walking, as the difference between θMHF

th and θHS
th was most

pronounced [21]. To avoid both excessive saturation and a
phase variable pause, a feedforward phase progression is again
enforced based on the average phase rate in S4, ˙̂sS4:

ŝ = ŝ45 +

∫ ∆t

0

˙̂sS4dτ in S5. (25)

This feedforward phase rate continues until either a heelstrike
occurs or ŝ = 1. If the user is walking consistently and the
θth trajectory feature estimates are correct, ŝ = 1 should occur
simultaneously with heelstrike, returning the FSM to S1. If
ŝ = 1 prior to HS, the FSM transitions to S6.

S6 is primarily encountered if the user pauses at the end of
the gait cycle, so it does not appear in Fig. 11. During S6, ŝ is
again calculated using a linear scaling of θth, giving the user
volitional control of ŝ through θth:

ŝ =
θth − θMHE

th

θHS
th − θMHE

th
(1− sMHE) + sMHE in S6. (26)

This volitional control during S6 is important because it allows
movements such as kicking and non-steady leg swinging [33].
As in S5, a HS event returns the FSM to S1.

2) Thigh Trajectory Feature Prediction: The θth features
used in (22)-(26) vary from stride-to-stride with changes
in speed, incline, and natural gait variation. Some of these

S2S1 ŝ > ŝ1→2

S6

ŝ = 1

S3

ŝ > ŝ2→3

θ̇th > 0

TO

S5 S4
θth ≥ θHS

th +θMHF
th

2

HS

HS or

Fig. 12. Flow chart depicting the FSM states and transition criteria used
in the phase variable calculation. States 1-3 (green) occur during the stance
phase and states 4-6 (blue) occur during swing. States where phase is
directly calculated based on thigh angle are shown as squares and states with
feedforward definitions are shown as circles. State 6 is only necessary for
non-steady gait and is typically bypassed during steady walking.

features are used in the phase estimate calculation before they
occur in the gait cycle, specifically θHS

th , θ
MHE
th , θMHF

th , sMHE and
sMHF. For example, θMHE

th is used to calculate ŝ during S1
and S2, but it does not typically occur until S3. Therefore,
we predict these features in real-time based on observations
from recent strides. At controller initialization, estimates of
the thigh trajectory features are calculated using able-bodied
data [21] and updated as new strides became available.

Previous work showed that care must be exercised when
predicting features of the thigh trajectory to prevent unwanted
interaction between the prediction algorithms and the user’s
gait progression. For example, [36] observed that if a simple
moving average was used to calculate θMHE

th , a divergent
behavior occurred that resulted in the user taking progressively
larger strides. To avoid this behavior, the kinematic features
θHS

th , θ
MHE
th , and θMHF

th were estimated using a combined median
and moving average filter. This filter recorded the previous 5
strides and averaged the median 3 feature values, thus rejecting
non-representative strides. The history window of 5 strides
balanced between filter response time and variance rejection.

Another closed-loop interaction was observed during pilot
studies regarding the predictions of sMHE and sMHF. In cases
when the feature predictors were updating following a rapid
change in task, we observed rare strides where ŝ underesti-
mated the true phase at the end of the gait cycle, causing the
knee joint to not fully extend before heelstrike. Participants
instinctively responded by asymmetrically extending the late
swing portion of the gait cycle to try force the knee to full
extension. Moving average estimates of sMHE and sMHF, like
those used for the kinematic features, caused sMHE and sMHF
to decrease, resulting in further underestimation of ŝ on the
subsequent stride. We suspect that participants behaved this
way because they were accustomed to passive prostheses,
which will collapse upon loading if the knee is not fully
extended. Therefore, new prediction methods were developed
for sMHE and sMHF that favored ŝ saturation over underestima-
tion to combat this instinctive behavior. Let tŝ=1 be the first
time during the stride that ŝ = 1. Then, the sMHE and sMHF
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estimates were calculated as

sMHE =
1

2

(
tMHE − t0
tf − t0

+
tMHE − t0
tf − tŝ=1

)
,

sMHF =
1

2

(
tMHF − t0
tf − t0

+
tMHF − t0
tf − tŝ=1

)
.

(27)

The first quotient in each line of (27) is the true phase where
θMHE

th and θMHF
th occurred. The second quotient is an upper

bound on this true phase. We average the two so that ŝ favors
saturation and full knee extension in late swing, avoiding the
potential unstable feedback loop with the user’s instinctive
compensations. Eventually, as tŝ=1 → tf in steady-state, the
two quotients become equal and ŝ no longer saturates. The
results of (27) were likewise low-pass filtered with an infinite
impulse response (IIR) filter to reject stride-to-stride variation
and to prevent step changes in the estimates.

3) Phase Variable Linearization: The phase variable de-
scribed above produces a consistent phase estimate trajectory
over each stride during steady walking. This consistency
allows a linearization map to be formed in order to further
improve the phase estimate. Once the θth feature predictions
converged to steady values, the average progression of ŝ was
recorded for each steady walking stride and low-pass filtered
to produce an average trajectory, ¯̂s. The time constant of the
IIR low-pass filter was chosen to be sufficiently slow (19
strides) such that the transients of the θth feature predictors
were rejected. As a further precaution, any saturated portions
of ŝ were discarded prior to averaging, as they diminish as the
θth trajectory feature predictions converge.

The average phase was written as a function of true phase,
given by ¯̂s = σ(s). Although the shape of the thigh trajectory
may cause σ(s) to be nonlinear, it is monotonic during normal
walking. This implies that an inverse relationship s = σ−1(¯̂s)
exists, which can be applied to correct for nonlinearities in
ŝ. First, σ(s) was fit with a 6th order polynomial σ̄(s) that
was constrained with a minimum slope of 0.2. This minimum
slope ensured strict monotonicity and numerical stability of
the inverse. At each HS event, σ̄(s) was recalculated to
incorporate the previous stride’s effect on ¯̂s. Then the final,
linearized phase estimate was calculated by applying the
inverse map σ̄−1 to the results of (22)-(26).

B. Benchmark FSM Impedance Controller
The Finite State Machine controller (FSMC), based on the

FSM impedance controller presented in [15], was constructed
to provide a benchmark with which to compare the HKIC.
The flow of the FSMC’s state machine is depicted in Figure
13. A tunable center of pressure threshold, `∗cop, controlled the
transition from S1 to S2. Then, after a tunable duration, t2→3,
the FSM transitioned to S3. Next, a TO event triggered the
transition to S4. Finally, knee extension (θ̇k < 0) caused a
transition to S5, where the FSM remained until returning to
S1 at HS. During transitions, the impedance parameters were
rate-limited to prevent step changes in torque. In the FSMC,
the torque command was given by (1), where K, B, and θeq
depended on the current FSM state (given in Table IV).

Many methods have been proposed for deciding when to
switch between sets of impedance parameters for different

S2S1
`cop ≥ `∗cop t ≥ t2→3

TO

S4HS

S3

S5
θ̇k < 0HS

(a)

Level
Params

Decline
Params

γ̂ ≥ 3

γ̂ ≤ 2

γ̂ ≥ −2

γ̂ ≤ −3

Incline
Params

(b)

Fig. 13. (a) The structure and transition logic of the benchmark finite
state machine controller. Tunable parameters `∗cop and t2→3 controlled the
transitions from S1 to S2 and S2 to S3, while constant ground contact and knee
velocity thresholds controlled the other three. States in green occur during
stance and blue states during swing. (b) Task transition logic indicating how
the impedance parameter sets are selected based on the incline estimate γ̂.

tasks, including simple threshold methods [15] and more
complex machine learning methods [47], [48]. We employed a
strategy similar to [15] where the prosthesis directly estimated
the ground incline using the method described in Section
III-B. Then a secondary FSM was used to select between
parameter sets based on the estimated incline γ̂. To prevent
rapid switching between parameters at the boundaries, overlap
was included in the switching thresholds (Fig. 13b).

TABLE IV
TUNED IMPEDANCE PARAMETERS FOR EACH BASELINE TASK OF FSMC

SS-Level - Baseline Task (0 deg, 1 m/s)
Transition Parameters `∗cop = 0.08 cm t2→3 = 0.091 s
Impedance Parameters S1 S2 S3 S4 S5

Knee
K (Nm/kg) 2.25 2.00 1.00 1.25 0.75
B (Nms/kg) 0.140 0.126 0.120 0.070 0.065
θeq (rad) 0.15 0.25 1.20 1.30 -0.15

Ankle
K (Nm/kg) 1.50 3.50 4.50 0.10 0.50
B (Nms/kg) 0.140 0.140 0.140 0.130 0.100
θeq (rad) -0.10 -0.30 -0.35 0.20 0.00

SS-Incline - Baseline Task (5 deg, 1 m/s)
Transition Parameters `∗cop = 0.05 cm t2→3 = 0.190 s
Impedance Parametes S1 S2 S3 S4 S5

Knee
K (Nm/kg) 1.50 1.50 0.75 1.00 1.00
B (Nms/kg) 0.090 0.090 0.090 0.075 0.065
θeq (rad) 0.35 0.25 0.50 1.20 0.30

Ankle
K (Nm/kg) 3.50 3.50 4.00 0.35 1.00
B (Nms/kg) 0.140 0.140 0.140 0.150 0.100
θeq (rad) 0.10 -0.10 -0.23 0.20 0.10

SS-Decline - Baseline Task (-5 deg, 1 m/s)
Transition Parameters `∗cop = 0.10 cm t2→3 = 0.061 s
Impedance Parameters S1 S2 S3 S4 S5

Knee
K (Nm/kg) 2.25 2.00 1.00 1.00 1.00
B (Nms/kg) 0.090 0.100 0.100 0.050 0.07
θeq (rad) 0.15 0.35 0.75 1.25 0.05

Ankle
K (Nm/kg) 3.50 3.50 3.50 1.00 1.00
B (Nms/kg) 0.100 0.100 0.100 0.100 0.100
θeq (rad) -0.100 -0.050 0.00 0.10 0.10
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