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Abstract

Smart contract is an important building block of blockchain. Automated market makers are working without an order book, and

they determine the price of assets automatically. It is reported that he automated market makers have the impermanent loss,

which causes financial damage to liquidity providers. Impermanent loss makes the liquidity providers hesitant to deposit assets

in the liquidity pool. Therefore, their participation incentive from liquidity provision should be anticipated by automatic market

makers inherently. However, the existence of impermanent gain has never been reported. Impermanent gain is important to

attract liquidity providers without giving compensation incentives. This study shows that for some automated market makers,

impermanent gain coexists with impermanent loss. Examples showing the coexistence and conditions are provided.
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Abstract—Smart contract is an important building block of 

blockchain. Automated market makers are working without an 

order book, and they determine the price of assets automatically. 

It is reported that he automated market makers have the imper-

manent loss, which causes financial damage to liquidity providers. 

Impermanent loss makes the liquidity providers hesitant to de-

posit assets in the liquidity pool. Therefore, their participation in-

centive from liquidity provision should be anticipated by auto-

matic market makers inherently. However, the existence of imper-

manent gain has never been reported. Impermanent gain is im-

portant to attract liquidity providers without giving compensation 

incentives. This study shows that for some automated market mak-

ers, impermanent gain coexists with impermanent loss. Examples 

showing the coexistence and conditions are provided. 

 
Index Terms—Blockchain, cryptocurrency, decentralized fi-

nance, impermanent gain, impermanent loss, market maker, 

smart contract. 

 

I. INTRODUCTION 

MART contracts on blockchain [1] are an important building 

block for many applications, including smart grid [2], en-

ergy trading [22], vehicular device [3], cryptocurrency [4], vot-

ing [5], education system [6], identity authentication [7], and 

decentralized finance (DeFi). Smart contracts are automatically 

and autonomously executed in real-time without human inter-

vention. Therefore, smart contracts can exclude human errors 

and cronyism. These unmanned systems are considered fair and 

cost-effective. However, smart contracts become harmful if 

their vulnerabilities are not thoroughly remedied. One famous 

vulnerability that is frequently occurring as security hole is the 

reentrancy attack. DeFi based on smart contracts has grown ex-

plosively from 2020, securing credibility and liquidity. These 

DeFi services include lending, asset management, and decen-

tralized exchange. 

An automated market maker (AMM) smart contract is a cru-

cial part of the DeFi ecosystem, in particular, for the decentral-

ized exchange systems. DeFi ecosystems do their functionali-

ties by the decentralized participants without centralized control 

tower. Meanwhile, AMMs rely on mathematical formulas to fa-

cilitate trading and automatically set the price of an asset or 
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multiple assets. AMMs of the decentralized exchanges recently 

have replaced the traditional order book so that all trades are 

conducted through swaps on their liquidity pools. AMMs allow 

the users to buy and sell in real-time without matching orders. 

The buy-and-sell orders listed in the order book are arranged 

by price. Moreover, the price of the assets at an exchange is 

set by the matching order algorithms, such as price-time pri-

ority algorithm or price pro-rata algorithm. It is determined 

by double auction. Sellers and buyers can offer market, limit, or 

conditional orders on the centralized exchanges. Meanwhile, 

the AMMs have provided the decentralized exchanges mathe-

matical price valuation models. As those formulas are adopted, 

market makers are price setters, whereas traders are price takers. 

That is to say, sellers and buyers have no choice but to accept 

the price determined by the market maker. As long as the for-

mulas cause impermanent loss, the winners are the arbitrageurs, 

and the losers are the liquidity providers. 

Wang [8] suggested the following requirements to be a good 

AMM algorithm. Constant function market maker (CFMM) 

needs to be convex curves or convex hyperplanes to conform to 

the principle of supply and demand. Another requirement is the 

robustness against malicious attacks, such as front-running 

(slippage) attacks [9][21]. Front-running is an action plan where 

an attacker benefits from prior access to privileged market in-

formation about upcoming transactions and trades [9]. Wang [8] 

also suggested the computational efficiency of the asset amount 

determination. 

Meanwhile, Hanson [10, 11] has proposed market-scoring 

rule for the market prediction. Recently, Hanson’s [10, 11] mar-

ket-scoring rule, the logarithmic market scoring rule (LMSR), 

showed the potential of the AMM tool. LMSR is one of the 

CFMM and AMMs. Note that the LMSR is quite popular be-

cause of the following three reasons [12]: (1) it was the first 

AMM for prediction markets and decentralized exchanges; (2) 

it has a simple analytical form that is rather complicated than 

constant function market makers; and (3) it has bounded loss. 

Othman et al. [13] have proposed liquidity-sensitive LMSR 

(LS-LMSR) by introducing a parameter and adaptive to the 

market situation; they aim to make the scoring liquidity sensi-

tive. The LMSR and LS-LMSR algorithms set the price of a 
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cryptocurrency pair by keeping the constant cost value un-

changed. A logarithmic function expresses the cost. A bonding 

curve is a mathematical curve that defines a relationship be-

tween price and supply of assets. Bonding curve (between two 

assets as a pair, such as ETH and USDC, where the ETH is a 

cryptocurrency with price volatility, and the USDC is a stable-

coin) or bonding hyperplane (for more than two assets) can be 

used for setting the price.  

CFMM [14] sets the price by maintaining the cost value un-

changed (i.e., equal to a constant). Other types of algorithms, 

such as constant product market maker (CPMM) algorithm [15], 

constant sum market maker (CSMM) algorithm, and constant 

mean market maker (CMMM) algorithm [16], also set the price 

in such a way that the cost value remains unchanged over the 

bonding curves or bonding hyperplanes. Meanwhile, a hybrid 

approach called StableSwap [17] combines the CPMM and 

CSMM algorithms to take the advantages of both methods. 

Constant circle market maker (CCMM) and constant ellipse 

market maker (CEMM) also do similar thing. 

Liquidity providers supply asset pairs to the liquidity pool, 

and they may lose money and suffer from an impermanent loss 

(a.k.a. divergent loss). Impermanent loss is the temporary loss 

of asset values occasionally experienced by liquidity providers 

because of volatility in a trading pair. Liquidity provider’s asset 

value can be increased or decreased after trading. The compo-

sition ratio of assets is changed, and, as a result, the asset price 

and value are changed after asset trading. Impermanent loss oc-

curs when the deposited asset value is decreased; it is still a loss, 

whether large or small. This loss is impermanent because it can 

only be temporary. If the impermanent loss is large, liquidity 

providers are strongly hesitant to supply liquidity to the liquid-

ity pool. Moreover, the loss disappears when the composition 

ratio of the assets returns to the original ratio deposited by the 

liquidity provider. Impermanent loss is a hot topic and has been 

studied [8, 9, 13, 15, 16, 17, 18, 19]. 

The contributions of this paper can be summarized as follows. 

To the best of our knowledge, this study is the first to show that 

impermanent gain and impermanent loss coexist for some 

AMMs. Previous study has already shown  that CPMM has the 

property of impermanent loss [16]. Meanwhile, this present 

study shows that the CPMM does not have impermanent gain 

property at all.  Moreover, CSMM does not have the property 

of impermanent loss because the price is invariant. However, 

this study shows that the relative price in the CSMM is not in-

variant, and the CSMM has both the property of impermanent 

gain and impermanent loss. For the LS-LMSR and CCMM and 

AMMs, this study also shows that both impermanent gain and 

impermanent loss coexist. 

This paper is organized as follows. Section 2 introduces the 

mathematical background of various AMM asset cost functions 

and asset value functions to define the value difference func-

tions, which indicates impermanent loss and impermanent gain. 

Section 3 derives the condition to obtain an impermanent gain 

and shows that impermanent gain can coexist with imperma-

nent loss. Section 4 concludes the paper with some suggestions. 

II. MATHEMATICAL BACKGROUND 

Consider a pair of two assets where 𝒒𝑡(𝑥𝑡 , 𝑦𝑡) denotes the as-

set pair with the number of assets 𝑥 and 𝑦 at time 𝑡. The AMM 

uses a cost function 𝐶(𝒒𝑡) to set the price of cryptocurrency 

pairs at a trading. Suppose a liquidity provider has deposited an 

asset pair (𝑥0, 𝑦0), where the asset 𝑦 is a stablecoin. Note that  

𝑦 is considered a unit of account because it is a stablecoin; it is 

also divisible, fungible, and countable. Its price is unity. 

Then, the asset value of the liquidity provider at time 0 is 

given as follows [16]: 

 

𝑉(𝒒0(𝑥0, 𝑦0)) =
𝑦0

𝑥0
∙ 𝑥0 + 𝑦0 = 2𝑦0 .              (1) 

 

Composition ratio of the two assets is changed from  (𝑥0, 𝑦0) to 

(𝑥𝑛, 𝑦𝑛) by trading two assets. One can add δ𝑥 to the pool to 

make 𝑥𝑛 = 𝑥𝑛−1 + δ𝑥 ; thus, 𝑦𝑛 = 𝑦𝑛−1 − δ𝑦 . Similarly, one 

can add δ𝑦  to the liquidity pool to make  𝑦𝑛 = 𝑦𝑛−1 + δ𝑦 ; 

hence, 𝑥𝑛 = 𝑥𝑛−1 − δ𝑥. The asset value of the pair (𝑥𝑛 , 𝑦𝑛) at 

time 𝑡 is computed as follows: 

 

𝑉(𝒒𝑛(𝑥𝑛, 𝑦𝑛)) =
𝑦𝑛

𝑥𝑛
∙ 𝑥𝑛 + 𝑦𝑛 = 2𝑦𝑛.           (2) 

 

However, the value of the original pair composition (𝑥0, 𝑦0) as-

sessed by the relative price 𝑦𝑛/𝑥𝑛 at time 𝑛 is computed as  

 

𝑉(𝒒𝑛(𝑥0, 𝑦0)) =
𝑦𝑛

𝑥𝑛
∙ 𝑥0 + 𝑦0.                  (3) 

 

In addition, impermanent loss is computed from the difference 

𝐷  of the two asset values 𝑉(𝒒𝑛(𝑥𝑛 , 𝑦𝑛))  and 𝑉(𝒒𝑛(𝑥0, 𝑦0)), 

such that 

 

𝐷(𝑥𝑛) = 𝑉(𝒒𝑛(𝑥𝑛 , 𝑦𝑛)) − 𝑉(𝒒𝑛(𝑥0, 𝑦0)).            (4) 

 

If the value of 𝐷 is negative, there exists an impermanent loss. 

Many research works [8, 9, 18, 20] have tackled the imperma-

nent loss. Scholars have tried eliminating or mitigating the im-

permanent loss. If the value of 𝐷(𝑥𝑛) is positive, an imperma-

nent gain exists. This paper introduces the concept of imperma-

nent gain for the first time. 

 

A. Constant Product Market Maker 

CPMM starts from the cost function from the product of 𝑥0 

and 𝑦0, such as 

 

𝐶(𝒒0(𝑥0, 𝑦0)) = 𝑥0 ∙ 𝑦0 = 𝑘.                     (5) 

 

At time 𝑛, the number of 𝑦𝑛 given 𝑥𝑛 is computed from the fol-

lowing equation 

 

𝐶(𝒒𝑛(𝑥𝑛 , 𝑦𝑛)) = 𝑥𝑛 ∙ 𝑦𝑛 = 𝑘.                    (6) 

 

Note that the CPMM cost function is a hyperbola. Uniswap, a 

decentralized exchange, uses this formula for a pricing purpose. 

One can add δ𝑥 to the pool to make 𝑥𝑛 = 𝑥𝑛−1 + δ𝑥; then, 
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𝑦𝑛 = 𝑦𝑛−1 − δ𝑦. The cost function in Equation (6) is used to 

determine δ𝑦  by using 𝑦𝑛 = 𝑘/𝑥𝑛 = 𝑘/(𝑥𝑛−1 + δ𝑥) and ob-

taining δ𝑦 by subtraction such that δ𝑦 = 𝑦𝑛 − 𝑦𝑛−1. 
Hence, 𝑦𝑛 is computed from Equation (6) as follows: 

 

𝑦𝑛 =
𝑘

𝑥𝑛
.                                   (7) 

 

For the CPMM, the relative price of asset 𝑥 with respect to 𝑦 at 

time 𝑛 is computed from Equations (2) and (7): 

 

𝑝𝑛 =
𝑦𝑛

𝑥𝑛
=

𝑘

𝑥𝑛
2.                               (8) 

 

Thus, the asset value of the pair (𝑥𝑛 , 𝑦𝑛) at time 𝑡 is computed 

from Equations (2) and (7) as follows: 

 

𝑉(𝒒𝑛(𝑥𝑛, 𝑦𝑛)) = 2 ∙
𝑘

𝑥𝑛
.                          (8) 

 

Hence, 𝐷(𝑥𝑛) of the CPMM is computed from Equations (2), 

(3), and (9): 

 

𝐷(𝑥𝑛) = 2 ∙
𝑘

𝑥𝑛
− (

𝑘

𝑥𝑛
2 ∙ 𝑥0 + 𝑦0).               (10) 

 

B. Liquidity-Sensitive Logarithmic Market Scoring Rule 

Similarly, for the LMSR and LS-LMSR, the cost function is 

given as follows: 

 

𝐶(𝒒(𝑥𝑛 , 𝑦𝑛)) = 𝑏 ∙ ln(𝑒𝑥𝑛/𝑏 + 𝑒𝑦𝑛/𝑏) = 𝑘.       (11) 

 

Hence, 𝑦𝑛 is computed from Equation (11): 

 

𝑦𝑛 = 𝑏 ∙ ln(𝑒𝑘/𝑏 − 𝑒𝑥𝑛/𝑏).                     (12) 

 

Thus, the asset value of the pair (𝑥𝑛 , 𝑦𝑛) at time 𝑡 is computed 

from Equations (2) and (12) as follows: 

 

𝑉(𝒒𝑛(𝑥𝑛, 𝑦𝑛)) = 2 ∙ 𝑏 ∙ ln(𝑒𝑘/𝑏 − 𝑒𝑥𝑛/𝑏).        (13) 

 

For the LS-LMSR, the relative price of the asset 𝑥 with respect 

to 𝑦 is at time 𝑛 is computed as: 

 

 𝑝𝑛 =
𝑦𝑛

𝑥𝑛
= 𝑏 ∙ ln (𝑒

𝑘

𝑏 − 𝑒
𝑥𝑛
𝑏 ) /𝑥𝑛.               (14) 

 

 

C. Constant Sum Market Maker 

For the CSMM, the cost function is given as follows: 

 

𝐶(𝒒(𝑥𝑛 , 𝑦𝑛)) = 𝑥𝑛 + 𝑦𝑛 = 𝑘.                     (15) 

 

Hence, 𝑦𝑛 is computed from Equation (15) as follows: 

 

𝑦𝑛 = 𝑘 − 𝑥𝑛.                               (16) 

 

Thus, the asset value of the pair (𝑥𝑛 , 𝑦𝑛) at time 𝑡 is computed 

from Equations (2) and (16) as follows: 

 

𝑉(𝒒𝑛(𝑥𝑛, 𝑦𝑛)) = 2 ∙ (𝑘 − 𝑥𝑛).                (17) 

 

D. Constant Circle Market Maker 

CCMM has been proposed by Wang [8]. For the CCMM, the 

relative price and the change in the asset values are computed 

with the given cost function as follows: 

 

𝐶(𝒒(𝑥𝑛 , 𝑦𝑛)) = (𝑥𝑛 − 𝑎)2 + (𝑦𝑛 − 𝑏)2 = 𝑘.          (18) 

 

Hence, 𝑦𝑛 is computed from Equation (18) as follows: 

 

𝑦𝑛 = √𝑘 − (𝑥𝑛 − 𝑎)2 + 𝑏.                    (19) 

 

Thus, the asset value of the pair (𝑥𝑛 , 𝑦𝑛) at time 𝑡 is computed 

from Equations (2) and (19): 

 

𝑉(𝒒𝑛(𝑥𝑛, 𝑦𝑛)) = 2 ∙ (√𝑘 − (𝑥𝑛 − 𝑎)2 + 𝑏).         (20) 

 

III. IMPERMANENT LOSS AND IMPERMANENT GAIN 

The asset value difference is a good barometer to show 

whether there is impermanent loss. The difference value 𝐷(𝑥𝑛) 

is calculated from Equations (2) and (3) as follows: 

 

𝐷(𝑥𝑛) = 2𝑦𝑛 − (
𝑦𝑛

𝑥𝑛
𝑥0 + 𝑦0).                   (21) 

 

Equation (21) is simplified: 

 

𝐷(𝑥𝑛) = (2 −
𝑥0

𝑥𝑛
) 𝑦𝑛 − 𝑦0.                    (22) 

 

If 𝐷(𝑥𝑛) is zero, then impermanent loss does not exist. A 

negative 𝐷(𝑥𝑛) denotes impermanent loss, whereas a positive 

𝐷(𝑥𝑛)  denotes impermanent gain. The sign of the difference 

𝐷(𝑥𝑛) is determined by Equation (22). 

 

Theorem 1: If 𝑥𝑛 = 𝑥0, then 𝐷(𝑥𝑛) is zero, no matter what 

AMM is used. 

 

Proof: If 𝑥𝑛 = 𝑥0, then 𝑦𝑛 = 𝑦0. Thus, from Equation (22), 

when 𝑥𝑛 = 𝑥0  and 𝑦𝑛 = 𝑦0 , then 𝐷(𝑥𝑛) is zero regardless of 

the type of AMM.                                        ∎ 

 

A. Constant Product Market Maker 

For the CPMM, the CPMM AMM has the property of imper-

manent loss because showing that the sign of 𝐷(𝑥𝑛)  is 

nonnegative is easy. For the CPMM, 𝐷(𝑥𝑛) is computed from 

Equations (7) and (22) as follows: 
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𝐷(𝑥𝑛) = (2 −
𝑥0

𝑥𝑛
) (

𝑘

𝑥𝑛
) − (

𝑘

𝑥0
).               (23) 

 

Note that 𝐷(𝑥𝑛) in Equation (23) is rewritten as 

 

𝐷 =
1

𝑥𝑛
2 [− (

𝑘

𝑥0
) 𝑥𝑛

2 + 2𝑘𝑥𝑛 − 𝑘𝑥0].             (24) 

 

Equation (24) contains a quadratic function of 𝑥𝑛  inside the 

square brackets. Note that the determinant ∆ of the quadratic 

function is zero. It implies that 𝐷(𝑥𝑛) is convex upward; hence, 

its maximum value is zero. Thus, we can easily show that 

𝐷(𝑥𝑛) is always negative except for 𝑥𝑛 = 𝑥0  no matter what 

the values of 𝑥𝑛, 𝑥0, and 𝑘 are. For 𝑥𝑛 = 𝑥0, D(𝑥𝑛) is zero. It 

implies that CPMM AMM never has the property of imperma-

nent gain. The CPMM liquidity providers always have high 

chance of losing money. Thus, liquidity providers do not want 

to provide their assets to the liquidity pool if they are not given 

enough incentives to offset the losses. 

 

B. Constant Sum Market Maker 

The number of assets for the CSMM AMMs is determined 

by Equation (15). The price of 𝑥𝑛 is determined as 

 

𝑝𝑛 =
𝑦𝑛

𝑥𝑛
=

𝑘−𝑥𝑛

𝑥𝑛
.                              (25) 

 

Here, note that the relative price of 𝑥𝑛 is varying because the 

relative price is a function of 𝑥𝑛, as shown in Equation (25). 

The range of the relative price 𝑝𝑛 is (0, ∞) because the domain 

of 𝑥𝑛 is (0, 𝑘). Thus, the price of 𝑥𝑛 is varying, and not a con-

stant, which contradicts existing research works [16]. 

For the CSMM, from Equations (15) and (22), 𝐷(𝑥𝑛) is com-

puted as follows: 

 

𝐷 = (2 −
𝑥0

𝑥𝑛
) (𝑘 − 𝑥𝑛) − (𝑘 − 𝑥0).               (26) 

 

Note that 𝐷(𝑥𝑛) in Equation (26) is rewritten as 

 

𝐷 =
1

𝑥𝑛
[−2𝑥𝑛

2 + (𝑘+2𝑥0)𝑥𝑛 − 𝑘𝑥0].              (27) 

 

 

 
Figure 1. Loss and gain regions of a CSMM AMM 

Equation (27) contains a quadratic function of 𝑥𝑛  inside the 

square brackets. Note that the determinant ∆ of the quadratic 

function is given as ∆= (𝑘 − 2𝑥0)2. The determinant shows us 

two important facts. The first fact is that both impermanent loss 

and impermanent gain coexist for 𝑥0 ≠ 𝑘/2. The second fact is 

that only impermanent loss exists for 𝑥0 = 𝑘/2. Thus, we can 

easily show that 𝐷(𝑥𝑛) can be either positive or negative or 

zero, depending on the values of 𝑥𝑛, 𝑥0, and 𝑘. When Equation 

(27) has two roots 𝑥𝑛 = 𝑘/2 and 𝑥𝑛 = 𝑥0, both impermanent 

loss and impermanent gain coexist. 

 

    Theorem 2: If 𝑥0 ≠ 𝑘/2, then CSMM AMM has the prop-

erty of impermanent gain for 𝑥0 < 𝑥𝑛 < 𝑘/2 or 𝑘/2 < 𝑥𝑛 <
𝑥0. 

 

    Proof: See the paragraph above the Theorem 2.                 ∎ 

 

    Observation 1: If 𝑥0 = 𝑦0 = 𝑘/2, CSMM AMM for Equa-

tion (15) has an impermanent loss property only for all 𝑥𝑛 and 

𝑦𝑛, which are both positive. 

 

Figure 1 shows that impermanent gain occurs for a set of two 

𝑥0 values. In this case, the asset cost function is 𝑥 + 𝑦 = 1000, 

and the initial asset pair is given as 𝒒0 = (10, 990), for exam-

ple. The difference 𝐷(𝑥𝑛) is given as follows: 

 

𝐷 =
1

𝑥𝑛
[−2𝑥𝑛

2 + 1020𝑥𝑛 − 10000].                 (28) 

 

Thus, for 𝑥𝑛 = 10 or 𝑥𝑛 = 500, 𝐷(𝑥𝑛)  is zero, which states 

that this CSMM AMM system has no loss or gain at these points. 

For 10 < 𝑥𝑛 < 500, the CSMM AMM has impermanent gain. 

Note that impermanent gain is innate in this case for the given 

initial asset pair. In Figure 1, at 𝑥𝑛 = 10, zero crossing happens. 

Naturally, 𝑥𝑛  is equal to 𝑥0 . However, at 𝑥𝑛 = 500, another 

zero crossing happens. Thus, the left-hand side region from 

𝑥𝑛 = 10 is the impermanent loss region. Similarly, the right-

hand side region from 𝑥𝑛 = 500 is the impermanent loss region. 

The middle region between 𝑥𝑛 = 10  and 𝑥𝑛 = 500 is the im-

permanent gain region. 

 

 
Figure 2. Loss and gain regions of an LS-LMSR AMM 

 

In this example, impermanent loss region and impermanent 
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gain region coexist for all initial asset pairs 𝒒0 = (𝑥0, 𝑦0) ex-

cept the value 𝑥0 = 500. The CSMM AMM with the initial as-

set pair, for example, 𝒒0 = (500, 500) and the asset cost func-

tion 𝑥 + 𝑦 = 1000, there is no impermanent gain region only 

in this condition. The existence of the impermanent gain region 

depends on the type of AMM, asset cost function with different 

constant 𝑘, and initial asset pair with different values of 𝑥0. 

 

C. B. Liquidity-Sensitive Logarithmic Market Scoring Rule 

For the LS-LMSR, the value of 𝐷(𝑥𝑛) is a high-order func-

tion of 𝑥𝑛. Therefore, the closed-form solution cannot be easily 

derived, and we cannot show analytically whether this AMM 

has the property of impermanent loss or impermanent gain. Fig-

ure 2 shows an example of a situation similar to Figure 1. 

The asset cost function, in this case, is given as Equation (13), 

where 𝑏 = 1000 . For 𝒒 = (1000, 1000) , the value of 𝑘  is 

2386.294632. If the initial asset pair is 𝒒0 = (2, 1662.72), we 

can obtain Figure 2 that contains both impermanent loss and 

impermanent gain regions. Two zero crossings exist: one occurs 

at 𝑥𝑛 = 2, and the other one is somewhere between 𝑥𝑛 = 1154 

and 𝑥𝑛 = 1156. In this example, impermanent loss region and 

impermanent gain region coexist for all initial asset pair 𝒒0 =
(𝑥0, 𝑦0) for the values 𝑥0 < 271. 

 

Observation 2: If 𝑥0 = 𝑦0, LS-LMSR AMM for Equation (11) 

has an impermanent loss property only for all 𝑥𝑛 and 𝑦𝑛, which 

are both positive. 

 

D. Constant Circle Market Maker 

For the CCMM AMMs, the value of 𝐷(𝑥𝑛) is also a high-

order function of 𝑥𝑛. Therefore, the closed-form solution can-

not be easily derived, and we cannot show analytically whether 

this AMM has the property of impermanent loss or imperma-

nent gain. Figure 3 shows an example of the situation similar to 

Figures 1 and 2.  

 

 
Figure 3. Loss and gain regions of a CCMM AMM 

 

The asset cost function, in this case, is given as Equation (18), 

where 𝑎 = 0, 𝑏 = 0, and 𝑘 = 1002 . For 𝒒 = (100/√2, 100/

√2), the value of 𝑘 is 1002 . If the initial asset pair is 𝒒0 =

(5, 99.8749), we can obtain Figure 3 containing both imperma-

nent loss and impermanent gain regions. Similarly, there are 

two zero crossings: one occurs at 𝑥𝑛 = 5, and the other one is 

somewhere between 𝑥𝑛 = 85  and 𝑥𝑛 = 87 . In this example, 

impermanent loss region and impermanent gain region coexist 

for all initial asset pair 𝒒0 = (𝑥0, 𝑦0)  except the value 𝑥0 =

100/√2. 

Appendix A shows the condition when the 𝐷(𝑥𝑛) has the 

property of impermanent loss only for the asset cost function 

𝑥2 + 𝑦2 = 𝑘. Based on this simple case, we can derive the con-

dition having both impermanent loss and impermanent gain 

property. 

 

Observation 3: If 𝑥0 =
𝑘

√2
+ 𝑎, and 𝑦0 =

𝑘

√2
+ 𝑏, then CCMM 

AMM for Equation (18) has impermanent loss property only for 

all 𝑥𝑛 and 𝑦𝑛, which are both positive. 

 

IV. CONCLUDING REMARKS 

This study reviews four constant function market makers: 

LS-LMSR, CPMM, CSMM, and CCMM. For the first time, this 

study showed the existence of impermanent gain mathemati-

cally and computationally thorough experiments. This paper 

showed that CPMM has impermanent loss property only. 

Meanwhile, LS-LMSR, CSMM, and CCMM can have both im-

permanent loss and impermanent gain altogether. For a specific 

condition, they have impermanent loss property only (see Ob-

servations in the previous section). 

Even though an impermanent loss exists in CPMM AMM, 

this market maker attracted a large amount of total valued 

locked and leads the decentralized exchange markets. Liquidity 

providers want impermanent gain rather than impermanent loss. 

The existence of impermanent gain will be fully exploited in the 

future DeFi systems. However, impermanent gain also has the 

problem. Liquidity providers want to withdraw the assets from 

the liquidity pool when impermanent gain occurs. When liquid-

ity providers encounter impermanent gain, the liquidity pro-

vider earns extra profits in addition to the deposited assets. Thus, 

the liquidity providers are motivated to leave the pool, taking 

advantage of the assets they deposited and the kind of windfall 

profit that comes from impermanent gain. Meanwhile, imper-

manent loss makes the liquidity providers passive in joining the 

pool as they lose by depositing the asset, whereas impermanent 

gain makes the liquidity providers take extra profit and leave 

the pool. However, liquidity providers may prefer impermanent 

loss to impermanent gain. 
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APPENDIX A 

For the CCMM asset cost function 𝑥𝑛
2 + 𝑦𝑛

2 = 𝑘, 𝐷(𝑥𝑛) is 

given from Equation (21) as follows: 

 

𝐷(𝑥𝑛) = 2𝑦𝑛 − (
𝑦𝑛

𝑥𝑛

𝑥0 + 𝑦0). 

 

The condition that 𝐷(𝑥𝑛) is to be zero is given as 

 

2𝑦𝑛𝑥𝑛 − 𝑦𝑛𝑥0 − 𝑦0𝑥𝑛 = 0, 
 

2𝑦𝑛𝑥𝑛 − 𝑦𝑛𝑥0 = 𝑦0𝑥𝑛 , 
 

where 

 

𝑦𝑛 = √𝑘 − 𝑥𝑛
2 ≥ 0, 

 

and hence, 

 

2√𝑘 − 𝑥𝑛
2𝑥𝑛 − √𝑘 − 𝑥𝑛

2𝑥0 = 𝑦0𝑥𝑛 

 

(2√𝑘 − 𝑥𝑛
2𝑥𝑛 − √𝑘 − 𝑥𝑛

2𝑥0)
2

= (𝑦0𝑥𝑛)2 

 

−4𝑥𝑛
4 + 4𝑥0𝑥𝑛

3 + (4𝑘 − 𝑥0
2)𝑥𝑛

2 − 4𝑘𝑥0𝑥𝑛 + 𝑘𝑥0
2 = 𝑦0

2𝑥𝑛
2. 

 

The left-hand side of the equation is a fourth-order polynomial 

open downward, whereas the right-hand side is a quadratic pol-

ynomial open upward. Thus, the following three possibilities 

exist:  

 

1. When both side polynomials do not meet, then the right-

hand side polynomial has larger value for all 𝑥𝑛, and thus, 

𝐷(𝑥𝑛) is negative. It means that the AMM has the prop-

erty of impermanent loss only. 

2. When both side polynomials meet at a single point, then 

the situation is similar to the case of 1 (i.e., impermanent 

loss only). 

3. When both side polynomials meet at more than a single 

point, then 𝐷(𝑥𝑛) is either negative or positive, depending 

on the value of 𝑥𝑛. It means that the AMM has the prop-

erty of impermanent loss and impermanent gain altogether. 
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