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Underwater soundscapes of coastal zones close to human settlements are heterogeneous in nature.8

Multiple ships and biological sources are often simultaneously present in the passive sonar vicinity.9

Classification of such heterogeneous underwater soundscapes is a challenging task for humans as10

well as machine learning systems. In this work a Bayesian Deep Learning approach is proposed that11

can accurately classify multiple ships simultaneously present in the vicinity of the sensor (multi-label12

classification) and provide uncertainty in the classification. This is achieved by assuming a Bayesian13

formulation of standard convolutional neural network architectures to not only assign multi-labels per14

inference but also to provide per inference uncertainty. By utilizing almost 3,500 hours of passive15

sonar data (spanning more than a year of sensor deployment) labeled through automated fusion with16

automatic identification system information, both multi-class and multi-label classification tasks of ship-17

generated noise are addressed. The best performing Bayesian architecture on the multi-label task achieves18

a weighted F 1 score of 0.84, where each prediction is accompanied by a measurement of uncertainty19

which is used to further enhance the understanding of model predictions.20
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Multi-Label Classification of Heterogeneous21

Underwater Soundscapes with Bayesian Deep22

Learning23

I. INTRODUCTION24

The classification of underwater soundscapes is of interest to several communities, including25

biologists and oceanographers who look to study fish and whale populations through recordings26

from the underwater environment [1]–[3]. Shipping noise can have adverse impacts on marine27

mammal populations. The measurement and modeling of shipping noise is important in predict-28

ing environmental impacts. Such research aids autonomous monitoring of fisheries and fishery29

enforcement by government and environmental groups [4]. Ships, submarines, and unmanned30

underwater vehicles can use passive sonar classification systems to aid in the identification and31

tracking of contacts, to help maintain safety of navigation, to aid in the real-time interdiction32

of illicit activities (such as smuggling and covert vessel transits), and to provide port security33

[5], [6]. The use of machine learning algorithms for the classification of underwater sounds is34

well established [7]. Most research in this area, however, focuses on identification of biological35

sounds [1], [3] with considerably less reported research on man-made or ship sounds.36

This lack of research is partly due to the fact that the datasets used in ship classification37

tasks are often limited, either in size or in similarity to real-world conditions. Zak used sounds38

recorded from just five naval vessels to demonstrate the use of self-organizing maps and neural39

networks to classify ship sounds with greater than 70% accuracy [8]. Santos-Domı́nguez et al.40

report using only two hours of recordings [9], and Niu et al. use just three ships with 30 minutes41

of recording from each ship [10]. Berg et al. [5] and Neilsen et al. [11] both use synthetically42

generated samples for training due to a lack of real-world data.43

An overall lack of data also affects the quality of results by reducing the diversity of conditions44

in which ship noise is recorded. A ship on the ocean creates acoustic signals from operating45
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machinery, propeller cavitation, and the motion of propeller shafts and reduction gears [12].46

Vibrations of operating engines and pumps are transferred through the hull into the water, creating47

a distinctive pattern of sound that can be detected by a hydrophone. The size, speed, and aspect48

to the sensor all affect the type and strength of signals received [12], as do oceanographic49

conditions such as temperature, salinity and pressure (primarily a function of depth) [13]. These50

conditions change regularly depending on factors such as weather, time of day, and time of year.51

Arveson and Vendittis provide an overview of the sound sources and source levels that are52

generated by a bulk cargo ship [14]. McKenna et al. examined recordings of multiple commercial53

ships which show that the sound from container ships predominately falls below 40 Hz and that54

all ships showed asymmetry in their signatures, with bow aspect radiated noise lower than stern55

aspect [13]. These studies illustrate some of the challenges of automatic classification of ships,56

including differences in emitted noise from the same ship due to changes in equipment use,57

variable water conditions that can change how emitted sound from the same ship is picked up58

by the receiver, and changes in ship aspect and/or range relative to the receiver.59

So far, underwater soundscape classification tasks have been treated as acoustic event clas-60

sification, in which a sample contains a single acoustic event to be labeled with one out of a61

number of possible classes (this is known as multi-class classification) [1], [2]. This approach,62

however, is an inaccurate representation of the heterogeneous underwater acoustic environment63

where multiple ship signals are often simultaneously present. Machine learning models trained64

on a multi-class classification task will provide a single label to the input data stream and will65

miss labeling any other ships present in the audio sample. The ability to demonstrate underwater66

soundscape classification on multiple, simultaneous ships using a single element hydrophone67

(measuring scalar pressure only) and provide an uncertainty measurement for those estimates68

has remained a challenge for the community at large.69

This paper addresses that challenge by using a multi-label classification model, which has70

the ability to assign one or more labels to an individual sample. In contrast to the common71

approach of rare acoustic event classification, here the goal is to detect multiple target labels72

per inference (per sample) of the neural network classifier. Similar to the Google YouTube8M73

challenge [15], this is achieved by developing and evaluating a multi-label convolutional neural74
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network (CNN) architecture. To address the lack of uncertainty measurement in the classification75

estimates, a Bayesian Deep Learning (BDL) approach is adopted. BDL blends deep learning with76

Bayesian theory to enable models that provide uncertainty measurements and are more robust to77

overfitting relative to the deterministic (classical) neural network architectures [16]. Uncertainty78

measurements allow for a deeper understanding of the model’s predictions [17].79

In this work, BDL model architectures are developed to not only establish the link between80

the ship acoustic signature and the classification ontology adopted, but also to estimate the81

uncertainty in the classification. Both deterministic and Bayesian configurations of deep Residual82

Networks (ResNet) model [18], [19] architectures and a custom CNN architecture are adopted83

and benchmarked on the task. The advantage of the Bayesian architecture over its deterministic84

counterpart is outlined and uncertainty of inference of ship classification is presented as a unique85

improvement of Bayesian architectures for underwater soundscape classification applications over86

deterministic counterparts. Moreover, the large size of our dataset, with more than 4,000 unique87

ships and over 3,400 hours of labeled audio data, enabled us to study the impact of seasonal88

variations of sound speed profiles (SSPs) on the bias and quality of classifications of developed89

deep learning models. Additionally, we study the quality of the measured uncertainty through a90

use-case study and correlate the uncertainty of classification to distance from the sensor and the91

bow-stern orientation.92

II. DATASET93

The dataset used for model training and evaluation was recorded at Thirty Mile Bank off the94

coast of southern California from December 2012 to November 2013, totaling more than 6,80095

hours of recordings with 4,470 unique ships recorded. The sensor, a High-frequency Acoustic96

Recording Package (HARP), was deployed in 734 meters of water with the sensor 51 m above97

the sea floor and an original sample rate of 200 kHz [20]. Recordings were downsampled to a98

4 kHz sample rate for labeling and model training [12].99

In parallel to the HARP deployment, we used automatic identification system (AIS) data to100

develop datasets for both multi-class and multi-label tasks [12]. Given that there is no formal101

ontology of ship sounds, in order to utilize the AIS stream this research expands upon the ship102
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ontology described by Santos-Domı́nguez et al. [9], in which ships are divided into four classes103

based upon size and one class is given to samples without ship sounds (see Table I). Having a104

no-ship class enables the development of a flat-classifier instead of using a multi-level classifier,105

which would utilize a detector of ship presence followed by the classification algorithm. For106

the task of multi-class classification, 30 second audio samples were only assigned one label107

indicating which class of ship was present based on AIS messages [12]. In contrast, for the108

multi-labeled dataset, 30 second audio samples with more than one ship present were labeled109

with the class labels of all ships present at that time. Ship class was determined by matching audio110

data segments based on timestamps with AIS messages. Specifically, broadcast Maritime Mobile111

Service Identity (MMSI) numbers (or International Maritime Organization (IMO) numbers where112

MMSI number could not be found) allowed for finding precise ship details in an online ship113

database [21]. For both datasets, a ship was deemed present if within 20 km (10.7 NM) of the114

sensor; time periods where all ships were outside 30 km from the sensor were labeled as the no-115

ship class. For the multi-labeled dataset, samples with more than one ship present were labeled116

with the class labels of all ships present at that time within 20 km [12]. Only 33% (136,044 of117

415,951 samples) of the dataset contained samples with more than one ship present, which is a118

common data imbalance in multi-label classification for audio [15].119

Class Ship Designators
A Fishing Vessel, Tug, Towing Vessel
B Pleasure Craft, Sailboat, Pilot
C Passenger ship, Cruise Ship
D Tanker, Container Ship, Military Ship,

Bulk Carrier
E No ship present, background noise

TABLE I
SHIP CLASSES

To produce intermediate signal representations used for training we use well-established, low-120

level acoustic signal representations in the form of mel-log spectrograms. Mel-log spectrograms121

are dominant features in deep learning [22] and are related to the linear-frequency spectrogram,122

i.e., a Short Time Fourier Transform (STFT) magnitude. They are obtained by applying a mel-123
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filterbank over STFT magnitude which effectively summarizes frequency content with fewer124

dimensions [23]. The mel-filterbank emphasizes details in lower frequencies, which were proven125

to be important in underwater soundscape classification, and deemphasizes higher frequency126

content which generally does not need to be modeled with high fidelity [13].127

Specifically, in this work mel-log spectrograms were computed through a STFT of 30 second128

labeled samples with a 250 ms frame size, 75 ms frame hop, and a Hann window function129

[12]. We transform STFT magnitude to the mel-scale using a 128 band mel-filterbank followed130

by log compression of the signal [23]. Labeled samples for both tasks were further split into131

training/validation/test data with an 80/10/10 ratio, respectively.132

In Fig.1 we visualize mel-log spectrograms for several examples, including having only a133

single target present and having two targets present at the same time. The color bar represents134

a dB down-scale. Relationship between mel scale and frequency [23] is given with mel(f) =135

2595 ∗ log10(1 + f
700

). The sheer drop-off in power at 2000 Hz ( 1521 mel, top of each mel-136

log spectrogram) is related to anti-aliasing filtering and downsampling of the signal. Through137

visual inspection one can observe differences in input features and recognize the challenge of138

having two classes present in a single mel-log spectra given the diversity of target signatures139

and underlying variability of propagation paths from the target to the sensor.140
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The US Navy’s Generalized Digital Environmental Model (GDEM) product database provides141

global, gridded, steady-state ocean temperature and salinity profiles [24]. Monthly temperature142

and salinity profiles were extracted at the nearest GDEM point (32.5N 117.75W) to the HARP’s143

location (32.666N 117.707W). These were used to derive SSPs [25] over the 12-month deploy-144

ment period, see Fig.2.145

In order to evaluate the impact of environmental parameters on the performance of the trained146

models, two studies are conducted involving different data splits for the multi-class classification147

task, from December 2012 to March 2013 and from December 2012 to November 2013. From148

Fig.2a, from December to March low dispersion of the SSPs is observed, while for the overall149

time segment in Fig. 2b dispersion between the SSPs is significantly increased.150

III. METHODOLOGY151

A. Bayesian Deep Learning152

BDL combines the ability of Bayesian probabilistic models to provide uncertainty in predic-153

tions with the ability of neural networks to recognize patterns and relationships [17], [26].154

Specifically, model uncertainty is measured by placing a prior probability distribution over155

the model’s weights in order to construct a Bayesian CNN (BCNN) [27]. Given a supervised156

learning setting and a training dataset, D = {xn, yn}Nn=1, where N represents the dataset size, xn157

represents an input feature vector (where xn ∈ Rm = [x1,n, x2,n, . . . , xm,n]) and yn represents158

the corresponding label (where yn ∈ {1, 2, . . . , C}; C being the number of classes), a neural159

network model’s posterior goal is to estimate ŷn = f(xn). A neural network model with L160

layers is parametrized by the set of weights w = {Wi}Li=1. The Bayesian approach assumes a161

prior distribution over neural network parameters p(w), with the goal of quantifying posterior162

uncertainty over the network parameters p(w | D) given a dataset D. This prior distribution163

represents our assumption as to which functions of neural network parameters were likely to164

generate our data. In inference, one can calculate probability of the model prediction ŷ on a test165

data input x∗ by integrating over all possible values in w:166

p (ŷ|x∗,D) = Ep(w|D)
[
p (ŷ|x∗,w)

]
=

∫
w
p (ŷ|x∗,w) p (w|D) dw (1)
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Fig. 2. Monthly sound speed profiles at the nearest GDEM point (32.5N 117.75W) to the HARP’s location (32.666N 117.707W).
In 2a sound speed profile is illustrated for Dec-Mar time frame and in 2b sound speed profiles are illustrated for Dec-Nov months.
Significant dispersion can be observed in 2b relative to 2a.

In practice, because inference defined in Eq. 1 is intractable due to calculation of the probability167

distribution p(w | D), an approximate inference is used.168

In this work, we evaluate variational inference (VI) approaches [26], [28], [29] that ap-169

proximate the posterior distribution p(w | D) ∝ p(w)p(D | w) by fitting an approximation170

qθ(w) ≈ p(w | D), where θ are the parameters of the probability distribution over weights. This171
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approximate distribution needs to be as close as possible to the posterior distribution. A common172

approach in information theory is to measure proximity (or similarity) between two distributions173

via Kullback-Leibler (KL) divergence [30]. Therefore, we minimize the KL divergence between174

two distributions:175

KL
(
qθ(w) || p(w | D)

)
. (2)

Minimizing the KL divergence in Eq. 2 is equivalent to minimizing the negative evidence176

lower bound function (ELBO) [16], [28], [31] relative to θ:177

L(θ) = −Eqθ(w)

[
log p

(
D | w

)]
+ KL

(
qθ(w) || p(w)

) (3)

where the first term represents the expected likelihood, which “describes how the variational178

distributions of the neural parameters explain the observed data,” [32] and the second term is179

KL divergence measuring proximity between the posterior and prior densities. This cost function180

definied by Eq. 3 is minimized in a mini-batch stochastic gradient descent fashion during neural181

network training to find the optimal value of θ which defines the parameters of the distribution182

over weights.183

In order to optimize the lower bound with respect to variational parameters θ and model184

parameters w, the expectation term in Eq. 3 must be differentiated with respect to both of these185

variables. The problem of computing the gradient of an expectation of a function with respect to186

the parameters of the distribution is addressed by Monte Carlo gradient estimation [33]. However,187

the standard Monte Carlo gradient estimator of the variational lower bound with respect to the188

variational parameters, θ, exhibits a level of variance that is too high to be practical for deep189

learning purposes [28], [34]. Proposed solutions are based on the reparameterization of qθ(w)190

such that the samples generated from the reparameterized approximate posterior yield a lower191

variance [28], [30], [31]. Some of the well-established solutions that are part of major toolboxes192

such as Tensorflow Probability (TFP) [35] include techniques such as the local reparametrization193
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trick (LRT) [30] and flipout estimators [31]. While both estimators present an improvement over194

standard variational inference, the flipout estimator, given several assumptions and a trade-off in195

computational complexity, can yield decorrelated stochastic gradient estimates on a mini-batch196

that exhibit less variance than the estimated mini-batch gradients computed via an LRT approach197

[31]. Intuitively, from an optimization perspective, decorrelation leads to better conditioning198

of the Hessian for updating the weights by whitening the external and internal network-layer199

inputs. In our evaluations we used a default TFP implementation of 2D Convolutional flipout200

layers which assumes a Gaussian distribution with variational parameters θ = (µ, σ), variational201

distribution qθ(w) = N (µ, σ2) and a prior with p(w) = N (0, 1).202

Given that a flipout estimator effectively doubles the number of parameters of the deterministic203

neural network layer, we evaluated a simpler method that does not explicitly model distributions204

over weights called Monte Carlo (MC) Dropout [16], [27], [36], [37]. MC Dropout is based205

on a standard neural network regularization technique called dropout which was introduced by206

Srivastava et al. [38]. Dropout is applied as a layer in neural networks where it zeros out a random207

subset of the weights in the preceding layer during training only. It was shown [16], [39] that the208

set of mean weight matrices (L layered neural network) and dropout probabilities (variational209

parameters) for a dropout distribution satisfies θ = {Ml, pl}Ll=1, such that qθ(w) =
∏

l qMl
(wl)210

and qMl
(wl) = Ml · [Bernoulli(1 − pl)Kl ] for a single random weight matrix wl of dimensions211

Kl+1 by Kl. Further, the KL term of Eq. 3 can be approximated as shown in Eqs. 4 and 5:212

KL
(
qθ(w) || p(w)

)
=

L∑
l=1

KL
(
qMl

(wl) || p(wl)
)

(4)

KL
(
qM(w) || p(w)

)
∝ l2(1− p)

2
‖M‖2 −BH(p) (5)

where H(p) the entropy of a Bernoulli random variable with probability p [39] and B is213

the constant term related to the number of mini-batches in optimization. The entropy term is214

constant with respect to model weights and, given it does not affect the optimization, can be215

omitted when the dropout probability is not optimized. To calculate KL divergence, one only216

needs to evaluate the probability of the dropout, p, and a second norm on the weights ‖M‖2.217
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It was shown by Gal and Gharmani [16] that any neural network with standard dropout and218

L2 regularization is equivalent to variational inference with the assumption that the dropout is219

active in inference. Explicitly optimizing the dropout probability in the entropy term leads to a220

different technique named Concrete Dropout [39] which we have not evaluated in this work.221

We wanted to point out that the log-likelihood term of the ELBO loss function, see Eq.3,222

can be either calculated in an explicit manner or implicitly takes the form of categorical-cross223

entropy for multi-class classification with a softmax activation function on top of the flipout224

and MC Dropout architectures [40]. Similarly, for multi-label classification, the log-likelihood225

term takes the form of the binary-cross entropy with sigmoid activation. For readers interested in226

implementation details, Filos et al. [36] hosts a code repository that includes details of both flipout227

and MC Droput methods and we followed their implementation approach. Additionally, Google228

LLC hosts a code repository, see Nado et al. [41], with current state-of-the-art benchmarks in229

Bayesian Deep Learning, including methods presented in this manuscript.230

For a trained neural network, with weights ŵt, prediction uncertainty is induced by the231

uncertainty in weights and can be calculated by marginalizing over the approximate posterior232

distribution qθ(w) using Monte Carlo integration [16] with T samples to calculate mean predictive233

probability from Eq. 1:234

p(ŷ = c | x∗,D) ≈
∫
p(ŷ = c | x∗,w)qθ(w)dw

≈ 1

T

T∑
t=1

p(ŷ = c | x∗, ŵt)

≈ 1

T

T∑
t=1

p̂ct = p̄c

(6)

where ŵt ∼ qθ(w) and c represents the true class (e.g., “Class A” or “Class D”). Further,235

final classification is assigned based on Eq. 6 by assigning the class based on the highest mean236

predictive probability. It is important to clarify that, in inference, prediction is repeated T times237

for each input to the trained neural network for both flipout and MC Dropout. Intuitively, with238

every prediction for the given input a different set of weights is sampled from the model and239
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an ensemble of predictions is produced, with final prediction being an ensemble average. For240

further clarification, in contrast to dropout for regularization during training, in the MC Dropout241

approach, dropout is active with probability p during inference as well.242

Input mel-log spectrograms were classified from Eq. 6 by assigning the class based on243

the highest mean probability, argmax p̄c. The uncertainty of BCNN classifiers is quantified244

by predictive entropy and total variance [16], [36]. Predictive entropy is a well-established245

uncertainty metric that measures the average amount of information contained in the predictive246

distribution and is given by:247

Hp(ŷ | x∗) = −
∑
c

p̄c log p̄c (7)

Hp can be normalized to fall between zero and one by dividing by log 2C (which comes out248

to C, the number of classes) [42] as shown in Eq. 8.249

H∗p (ŷ | x∗) = −
∑
c

p̄c
log p̄c
log 2C

(8)

B. Architecture Choices and Tasks250

The popularity of CNNs is due to the state-of-the-art performance that these model achieve251

in large scale image recognition tasks [43]. A desire to train deeper neural networks, potentially252

improving performance further, led to the development of residual connections introduced by He253

et al. [18], who demonstrated the ability to train deeper convolutional models than previously254

possible. We utilize these ResNet architectures in parallel to the custom CNN architecture to255

train and develop deterministic and BDL models for classification.256

In this work, we focus on two classification tasks, multi-class classification and multi-label257

classification. Multi-class classification assumes a multinoulli probability distribution since one258

wants to represent distribution over c classes. This is typically achieved by having c neurons259

in the last layer of the neural network and applying a softmax activation function, p̂ct =260

softmax(f̂t(x
∗)), see Eq.6.261
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Multi-label classification is typically formulated as multiple binary classification problems262

when using a negative log likelihood loss (cross-entropy loss) [44]. A similar approach was263

followed by Hershey et al. [15] for audio classification using c sigmoid activation functions (σ)264

one over each of the c output neurons:265

p̂ct = σ
(
f̂t(x

∗)
)

(9)

where f̂t(x∗) ∈ Rc. This is a common approach in image multi-label classification [45], [46].266

The choice of task drives the choice of activation function on the output of the neural network267

model, however, the number of output neurons is constant across the architectures.268

Multiple labels can be predicted when the individual probabilities on the output neurons are269

greater than the probability threshold, in this work set at 0.5 [40], [44]. The threshold was not270

tuned to maximize any specific metric, such as F 1 score or to reduce the false-alarm rate. Since271

our ontology includes all ships and “no ship” as classes, in the case where none of the classes272

meet the threshold, we select the predicted class in the same manner as the multi-class classifier273

described above. In the case where both the “no ship” class, Class E, and at least one other class274

both meet the threshold, if the probability for Class E is greater than those for any other class,275

the model predicts Class E and nothing else. If at least one of the ship classes has a greater276

than or equal probability than that for Class E, the model predicts every ship class that meets277

the threshold and not Class E.278

For ResNet [18] architectures, we tested standard ResNet32V1, ResNet20V1 and ResNet8V1279

model configurations as a deterministic baseline that we adapted to Bayesian configurations280

following suggestions in Tran et al. and Dillon et al. [35], [47] Typically, CNNs that focus on281

image classification use square kernels of size 3x3 or 5x5; where larger kernels are consid-282

ered inefficient due to computational requirements [40]. Assumptions about image orientation283

invariance do not transfer to spectrograms derived from time-series audio data [12], and multiple284

studies have explored the use of rectangular kernels in audio classification. Several studies use285

rectangular kernels in music classification [48]. Mars et al. use rectangular filters of various sizes286

to vary the convolution of time and frequency domains [49]. In order to adopt these ideas, rather287
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than adjusting a ResNet architecture, a custom CNN architecture is proposed as shown in Fig 3.288

Through a hyperparameter search of kernel size ratios (1:1, 2:1, 3:1, and 4:1), using a kernel289

size of 5x5 as a baseline, it was found that a 2:1 ratio is optimal and a 4:1 ratio performed the290

worst [12] based on the model accuracy as the metric. Kernel ratios of 2:1 and 3:1 performed291

almost identically (with accuracy of 0.89) where a 4:1 ratio had a drop in performance (accuracy292

of 0.87) with a 1:1 kernel being in the middle (accuracy of 0.88). We chose 2:1 over 3:1293

as optimal given that it introduces a lower number of parameters to the network architecture.294

Hence, the final proposed kernels of 10x5 were used to apply the convolution operation on295

time vs frequency mel-log spectrograms. Given our non-exhaustive ablation study for the kernel296

ratios, we did not change ResNet architectures and left them with the original isotropic kernel297

configurations of 3x3 as a fair and unbiased comparison throughout the manuscript. These kernel298

sizes are fixed throughout every layer of the network. A batch normalization layer is used299

to normalize input mel-log spectrograms. Based on work by Ozyildirim and Kartal [50], an300

increasing number of filters is used throughout the network. The initial layers contain 16 filters301

with 16 added in each additional set. After each block of two convolutional layers, the input size302

to the next block is cut in half by a max pooling layer with a stride of 2 by 2. L2-regularization303

on CNN layers is used to prevent overfitting [12] and to satisfy MC Dropout, see Eq. 5.304
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Fig. 3. Proposed Model Architecture: Each block is described by (number of filters, filter shape) [12].
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C. Training Protocols305

All of the model architectures evaluated were developed using the same training strategy for306

the fairness of benchmarking. Adam optimization was used with a starting learning rate of 0.001307

and default values for beta parameters (0.9, 0.999). We employed learning rate annealing [51] via308

monitoring validation accuracy such that the learning rate was reduced by a factor of 10 if the309

validation accuracy was not increasing for 50 consecutive epochs. To regularize for overfitting,310

an early stopping strategy was utilized [40]. Overall, training was terminated at 500 epochs.311

An MC Dropout model was used with a dropout probability of 0.3. Using a non-exhaustive grid312

parameter search, the best observed L2 regularization on convolutional layers was determined to313

be 0.001, and this value was used throughout all of the deterministic and MC Dropout layers.314

This is similar to Filos et al. [36]. For the flipout and initialization of the posterior, we followed315

TFP [35] recommendations for Bayesian ResNet architectures and have initialized convolutional316

kernel posteriors with µ=-9.0 and σ = 0.1. NVIDIA RTX 8000 48GB GPU graphics cards were317

used for distributed model training and model inference.318

IV. RESULTS319

A. Metrics320

In traditional binary classification tasks, standard metrics such as accuracy (Acc), precision321

(Prec), recall (Rec), F 1 score and area under the Receiver Operating Characteristics (ROC)322

curve are used to evaluate performance [40]. These metrics can also be extended to multi-class323

classification tasks in a fairly straightforward manner, since there is still only one label per324

sample. The performance is calculated per class and then averaged across all classes. This325

technique is known as macro-averaging. Averages can also be weighted by the number of326

instances of each label in the dataset, especially useful in the case of imbalanced datasets [52].327

The ability of a single test instance to be associated with multiple labels simultaneously, however,328

makes multi-label performance evaluation much more complex than in the traditional single-label329

learning environment [53]. With multi-label models, micro-averaging is possible using the total330

number of true and false positives (TP and FP , respectively) and true and false negatives (TN331

and FN , respectively) to calculate the average globally. It is also important to note that any332



15

of the multi-label metrics discussed below can be used to describe multi-class performance by333

treating the multi-class dataset as a multi-label one for which there happen to be no multi-label334

instances (micro-averaging for all multi-class metrics is equivalent to calculating accuracy).335

There are two general categories of multi-label metrics: label-based metrics and instance-based336

(also called example-based or sample-based) metrics [53], [54]. Label-based metrics evaluate the337

machine learning model separately for each class label and then return either the micro- or macro-338

averaged value across all class labels, Eqs. 10 and 11. Given a testing dataset, D∗ = {(x∗i , Yi)}Mi=1,339

where M represents the test dataset size, xi is the i -th feature vector (i.e., the i -th test sample)340

and Yi is the set of true labels associated with the i -th test sample:341

TPj = {|x∗i | yj ∈ Yi ∧ yj ∈ f(x∗i ), 1 ≤ i ≤M |}

FPj = {|x∗i | yj /∈ Yi ∧ yj ∈ f(x∗i ), 1 ≤ i ≤M |}

TNj = {|x∗i | yj /∈ Yi ∧ yj /∈ f(x∗i ), 1 ≤ i ≤M |}

FNj = {|x∗i | yj ∈ Yi ∧ yj /∈ f(x∗i ), 1 ≤ i ≤M |}

(10)

Eq. 10 describes how to calculate the value of TP , FP , TN and FN with respect to the342

j -th class label, yj , where f(x∗i ) (or in case of the BDL f̂(x∗i )) is the set of predicted labels343

output by the model f , or in case of BDL f̂ , on x∗i . Eq. 11 then describes how to use these344

values to compute traditional performance metrics using either macro- or micro-averaging, where345

B ∈ {Acc, Prec, Rec, F 1} and C is the number of classes. Similarly, a macro-averaged area346

under the ROC curve (AUC) can be calculated by first computing the AUC for every class in347

a “one-vs-rest” manner and then averaging over C [53].348
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Bmicro = B

(
C∑
j=1

TPj,

C∑
j=1

FPj,

C∑
j=1

TNj,

C∑
j=1

FNj

)

Bmacro =
1

C

C∑
j=1

B(TPj, FPj, TNj, FNj)

(11)

Since each instance for which the model makes predictions can be associated with more than349

one label, instance-based performance metrics can be aggregated by evaluating each test example350

individually and then averaging across the whole test set (in the multi-class case, the label-based351

and instance-based calculations are the same). For multi-label accuracy, we use subset accuracy352

as defined in Eq. 12, where [[q]] returns 1 if predicate q is true and 0 otherwise. This equates353

to the proportion of samples where the set of predicted labels for each sample, f(x∗i ) exactly354

matches the set of true labels, Yi for the sample. This measure is intuitively the counterpart355

to traditional accuracy (the proportion of samples a model got “correct”) and is the strictest356

measure of multi-label accuracy [53].357

Accsubset =
1

M

M∑
i=1

[[f(x∗i ) = Yi]] (12)

The instanced-based methods of calculating other traditional performance metrics are listed in358

Eq. 13. Precision and recall are calculated for each instance by taking the size of the intersection359

of the set of true labels, Yi, and the set of predicted labels f(x∗i ), or f̂(x∗i ), divided by the size of360

the set of predicted labels or the size of the set of true labels, respectively. F 1 is then calculated361

in the usual way using the instance-based precision and recall.362
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Precinst =
1

M

M∑
i=1

|Yi
⋂
f(x∗i )|

|f(x∗i )|

Recinst(m) =
1

M

M∑
i=1

|Yi
⋂
f(x∗i )|
|Yi|

F 1
inst =

2 · Precinst ·Recinst
Precinst +Recinst

(13)

The final metric we discuss here is Hamming loss (HL), which evaluates the fraction of labels363

which are incorrectly predicted, that is, a relevant label is not predicted or an irrelevant label is364

predicted [53]. For each test instance, HL (Eq. 14) is the size of the symmetric difference, ∆365

(equivalent to XOR in Boolean logic), between the set of predicted labels, f(x∗i ), and the set of366

true labels, Yi, divided by the number of classes, C [55]. The individual instance HLs are then367

averaged across all instances, and lower values indicate better performance. In the multi-class368

case, HL is equivalent to 1− Acc.369

HL =
1

M

M∑
i=1

1

C
|f(x∗i )∆Yi| (14)

In this paper, in order to give a broad picture of the comparative performance of the several370

models tested, for both multi-class and multi-label models we report the macro-averaged and371

weighted-averaged label-based precision, recall, and F 1 score as calculated in Eq. 11, as well as372

the macro-averaged AUC and the HL (see Eq. 14). For multi-label performance, we also report373

label-based micro-averaged and instance-based precision, recall and F 1 score as shown in Eqs.374

11 and 13. Accuracy is reported as discussed in the examination of Eqs. 11 and 12 above.375

B. Performance Overview and Comparison376

Our experiments examined the performance of traditional deterministic (non-Bayesian), MC377

Dropout, and flipout versions of both our custom CNN and ResNet models. For the ResNet mod-378

els, the ResNet32V1 versions consistently performed better than the other ResNet configurations379
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tested. For example, weighted average F 1 scores for the multi-label MC Dropout versions of the380

model were 0.78, 0.76, and 0.71 for ResNet32V1, ResNet20V1 and ResNet8V1, respectively.381

Because this general pattern held across all versions, only the ResNet32V1 results are reported382

here. We trained models of each of the versions on the full HARP dataset for multi-class and383

multi-label classification, respectively. The results for multi-class classification are reported in384

Table II while the results for multi-label classification are in Table III. In both tasks, the models385

based on the custom CNN outperformed their ResNet model counterparts in every metric. In386

most cases, the best performing version of the custom CNN was the MC Dropout BCNN,387

generally reflective of the performance enhancements seen in ensemble learning (MC Dropout388

can be viewed as an ensemble classifier where each inference is a different model) [17]. The389

exception to this was in multi-label classification, where the deterministic and MC Dropout390

versions performed almost identically, varying at most by 2% in any one metric. We speculate,391

based on uncertainty measurements discussed below, that the greater predictive uncertainties392

involved in multi-label classification offset the performance gains often seen with ensemble393

learning by introducing enough variation that the MC Dropout model was unable to make more394

accurate predictions than the deterministic model.395

Custom ResNet32v1
Det Drop Flip Det Drop Flip

HL 0.193 0.174 0.204 0.284 0.248 0.279
AUC 0.967 0.976 0.964 0.910 0.938 0.916
Acc 0.807 0.826 0.796 0.716 0.752 0.721

Precmacro 0.75 0.78 0.74 0.66 0.68 0.66
Recmacro 0.72 0.74 0.70 0.58 0.65 0.61
F 1
macro 0.73 0.76 0.72 0.60 0.66 0.63

Precweight 0.80 0.82 0.79 0.71 0.75 0.72
Recweight 0.81 0.83 0.80 0.72 0.75 0.72
F 1
weight 0.80 0.82 0.79 0.71 0.75 0.71

TABLE II
MULTI-CLASS PERFORMANCE METRICS

To further examine the performance of multi-label classification, we present per class analysis396

in Table IV for both custom CNN and ResNet32v1 model architectures in Bayesian config-397
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Custom ResNet32v1
Det Drop Flip Det Drop Flip

HL 0.068 0.071 0.089 0.117 0.096 0.120
AUC 0.860 0.848 0.814 0.770 0.797 0.763

Accsubset 0.743 0.737 0.695 0.627 0.676 0.616
Precmacro 0.94 0.94 0.88 0.76 0.85 0.75
Recmacro 0.74 0.72 0.67 0.61 0.64 0.60
F 1
macro 0.82 0.81 0.75 0.67 0.73 0.66

Precmicro 0.95 0.94 0.89 0.81 0.87 0.80
Recmicro 0.77 0.76 0.73 0.68 0.72 0.68
F 1
micro 0.85 0.84 0.80 0.74 0.79 0.74

Precweight 0.95 0.94 0.89 0.81 0.87 0.80
Recweight 0.77 0.76 0.73 0.68 0.72 0.68
F 1
weight 0.85 0.84 0.80 0.74 0.78 0.73

Precinst 0.95 0.94 0.89 0.82 0.87 0.81
Recinst 0.84 0.84 0.79 0.74 0.78 0.74
F 1
inst 0.88 0.87 0.82 0.76 0.81 0.75

TABLE III
MULTI-LABEL PERFORMANCE METRICS

urations. Consistent with previous analysis, we observe better performance with the custom398

CNN and MC Dropout BCNN model. Table V presents the same information for multi-class399

classification and demonstrates the same broad trends discussed below.400

In general, models perform the best on Classes D and E and worse on Classes A, B, and C.401

Intuitively, given that Class E represents the ”no ship” class and Class D encompasses the largest402

targets, this might not be a surprising result. Classes A, B, and C are more challenging for the403

models to distinguish and perform well on. We speculate that the main reason behind this could404

be the similarity of some target signatures across the three classes and large intra-class signature405

variation (see the ontology in Table I).406

Fig. 5 illustrates a key benefit of the use of BCNNs as compared to traditional CNNs: the407

ability to get uncertainty measurements on each prediction. Not only does this value give us more408

insight into the performance of our model, it can also be used to triage only the most ambiguous409

classifications for further analysis by experts [36]. Examining the multi-class MC Dropout model410

in Fig. 5 reveals that filtering out all samples with H∗p greater than 0.375 retains about 80% of the411
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Custom ResNet32v1
Dropout Flipout Dropout Flipout

Class Prec Rec F 1 Prec Rec F 1 Prec Rec F 1 Prec Rec F 1

A 0.95 0.74 0.83 0.91 0.67 0.77 0.86 0.66 0.75 0.77 0.62 0.69
B 0.94 0.61 0.74 0.83 0.53 0.65 0.81 0.46 0.59 0.64 0.4 0.49
C 0.94 0.58 0.72 0.89 0.52 0.66 0.88 0.51 0.64 0.73 0.49 0.59
D 0.94 0.79 0.86 0.91 0.78 0.84 0.88 0.79 0.84 0.85 0.76 0.80
E 0.92 0.88 0.90 0.84 0.84 0.84 0.83 0.80 0.82 0.77 0.73 0.75

TABLE IV
MULTI-LABEL PER-CLASS METRICS

Custom ResNet32v1
Dropout Flipout Dropout Flipout

Class Prec Rec F 1 Prec Rec F 1 Prec Rec F 1 Prec Rec F 1

A 0.71 0.55 0.62 0.68 0.49 0.57 0.55 0.48 0.51 0.55 0.38 0.45
B 0.70 0.59 0.64 0.60 0.55 0.58 0.49 0.48 0.49 0.51 0.45 0.48
C 0.75 0.77 0.76 0.74 0.71 0.72 0.72 0.61 0.66 0.68 0.57 0.62
D 0.80 0.85 0.83 0.77 0.84 0.80 0.73 0.81 0.77 0.69 0.81 0.74
E 0.94 0.95 0.94 0.91 0.92 0.91 0.89 0.87 0.88 0.85 0.82 0.84

TABLE V
MULTI-CLASS PER-CLASS METRICS

samples but improves the weighted F 1 score from 0.82 to 0.90. For the multi-label MC Dropout412

model, using the same filter results in retaining 86% of the data and increases the weighted F 1
413

score from 0.84 to 0.88. Thus the model is able to achieve significantly higher performance on a414

relatively large portion of the original dataset by removing the samples it is most uncertain about.415

These samples can then be put in a queue for further expert analysis. In crowded hydroacoustic416

environments, prioritizing samples by their uncertainty for analysis by sonar operators can enable417

ships, submarines, or shore monitoring stations to more efficiently process and categorize sonar418

contacts and more effectively allocate the scarce resources of operator time and attention.419

Mean predictive probability, Eq. 6, is calculated through Monte Carlo integration with T420

samples. We evaluate the consistency of the prediction relative to the number of samples for a421

custom model in both dropout and flipout configuration, Table II. It can be observed that in both422
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Bayesian configurations the weighted F 1 score becomes consistent within T=10 Monte Carlo423

samples for flipout and T=20 Monte Carlo samples for dropout, see Fig.4.424
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Fig. 4. Consistency of the prediction, in terms of weighted F 1 score, as a function of Monte Carlo sample size T .

In this work we chose to use T=50 given that it provided consistent predictive probability and425

that it was comparable to T sizes reported in the literature. For example, Filos et al. [36] used426

T=100 when comparing dropout and flipout methods in medical applications.427

We recognize that the number of Monte Carlo samples required to achieve consistency in428

prediction is affected by numerous hyperparameters, including the underlying data distribution,429

model architecture and the choice of the Bayesian method (e.g. flipout, dropout, reparametriza-430

tion), to name some. In practice, especially in live inference applications, one will likely choose to431

utilize a smaller sample size after conducting similar analysis to the one above. This involves the432

likely trade-off between computational and/or power requirements on one hand and consistency433

of prediction and/or calibration of uncertainty on the other.434

Both MC Dropout and flipout Bayesian architectures produce calibrated uncertainties, see435

Fig.5. However, our overall results indicate better performance for MC Dropout model archi-436

tectures across the evaluated metrics for both multi-class and multi-label classification tasks437

as shown in Table II and Table III. Given that the MC Dropout models have significantly438

fewer parameters and take less computational time than their flipout counterparts, MC Dropout439

is a promising option for sonar classification, especially for use on unmanned vehicles and440

other embedded systems. By producing calibrated uncertainties we also confirm that the used441
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uncertainty formulation, Eq. 8, suffices for our purposes in spite of additional uncertainty from442

approximation errors (e.g. Monte Carlo gradient estimation).443
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Fig. 5. Each point represents the the model’s weighted average F 1 score vs. the ratio of overall number of samples retained
when filtering out all samples above a certain predictive uncertainty value (measured by H∗

p )

C. Case Studies and Analysis444

To explore how all of these results fit together in practice, we selected a ship and examined445

in detail the predictions our model made as that ship transited past the HARP sensor, which we446

have called Case Study I. The ship selected was a car carrier which sailed near the HARP sensor447

over about a four-hour period on February 25, 2013. We used the corresponding AIS information448

to build a range versus time plot and examined the model’s predictive output and uncertainty449

along the track as shown in Fig. 6. As the ship approached, the model made several erroneous450

predictions and had high uncertainty until a range of roughly 15 km. With decreasing range,451

more sound information began to reach the sensor, making the predictions both more accurate452

and more certain. As the ship passes its closest point of approach and begins increasing range,453

we see the same effect, with less accurate and less certain predictions farther from the sensor.454

The model predictions and uncertainties also capture two other hydroacoustic phenomena. The455

first is the bow null effect acoustic shadow zone, which occurs when the radiated engine and456

propeller noise (most often the main source of ship noise and generated towards the aft end of457

the ship) is partially blocked by the hull of an approaching ship [56]. When the ship is moving458

away, the stern is exposed and the noise reaches the sensor unimpeded. This is seen most clearly459
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in the large uncertainties and missed predictions on the approaching track, which continue in to460

a range of about 12 km. In contrast, on opening range, the uncertainties do not consistently rise461

until roughly 17 km, which is also where we observe the first missed prediction. Uncertainties462

also show a small spike as the ship is very close to the sensor, revealing the second phenomena:463

interference and acoustic bleed-over caused by the high sound pressure levels reaching the sensor.464

The observation of these two phenomena, as well as better performance at closer ranges, in Case465

Study I matches what would be expected in real-world conditions and demonstrates the model’s466

ability to reflect reality in its performance and uncertainty measurements.467

Fig. 6. Case Study I - February 25 2013, Car Carrier; range vs. time plot of a known target AIS track overlaid with BCNN
classification output and predictive entropy, Hp. Classification outputs are color coded relative to the class where Car Carrier
(classD) is correctly classified with magenta. Hp is scaled such that the size of the gray transparent circle corresponds to the
percentile of the value range of Hp, with smaller circles corresponding to lower Hp values, and thus higher certainty. Predictions
and Hp are from the custom multi-class MC Dropout BCNN trained on the full HARP dataset (see third column, Custom/Drop,
in Table II).

As another case study, we trained additional versions of our custom model on a seasonal468

subset of the data. We preserve training strategy reported in Section III-C. In Case Study II,469

we looked at the performance of our general multi-class models trained on the whole year’s470

data (see Table II) compared to the performance of models trained only on data from the winter471

months (December to March). The results of cross-testing both sets of models on the large and472
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small dataset are summarized in Table VI. While the models trained only on the winter data473

had excellent performance on a held-out test set from the winter, their predictive power was not474

generalizable, with poor performance on the full year’s data. The models trained on the whole475

dataset, in contrast, were unable to reach the peak performance of those trained on the smaller476

dataset, but are able to perform much better on the whole range of data. They also lose only a477

small amount of their overall performance when making predictions on the smaller dataset.478

These results demonstrate the effects of seasonal variation on model performance as well as479

the diverse set of underlying distributions required in order to train a generalizable classifier for480

underwater soundscapes. As seen in Fig. 2, seasonal changes to the water column’s SSP affects481

how the noise from even the same ship on the same track is received by the sensor depending482

on the time of year. Datasets which are based on samples collected over a relatively brief period483

are likely to be biased. This decreases the practical utility of models trained on them, even if the484

models seem to have solid performance. In order to capture all of these differences, datasets with485

samples from all throughout the year, and ideally across multiple years, are needed. Another486

approach could be to train multiple models with data from different years but the same season,487

thus creating several ”seasonal expert” classifiers.488

Multi-Class Trained on: Small Large
Performance on: Det Drop Flip Det Drop Flip

Small

Acc 0.922 0.937 0.917 0.798 0.780 0.782
Precweight 0.92 0.94 0.92 0.80 0.78 0.78
Recweight 0.92 0.94 0.92 0.80 0.78 0.78
F 1
weight 0.92 0.94 0.92 0.79 0.77 0.77

Large

Acc 0.482 0.481 0.472 0.807 0.826 0.796
Precweight 0.51 0.50 0.49 0.80 0.82 0.79
Recweight 0.48 0.48 0.47 0.81 0.83 0.80
F 1
weight 0.44 0.44 0.44 0.80 0.82 0.79

TABLE VI
CASE STUDY II - CROSS-COMPARISON OF THE MULTI-CLASS PERFORMANCE OF MODELS TRAINED ON THE FULL DATASET
VS. MODELS TRAINED ON A SEASONAL SUBSET. ALL MODELS ARE BASED ON OUR CUSTOM ARCHITECTURE. THE LARGE

DATASET CONSISTS OF SAMPLES FROM A FULL YEAR, FROM DECEMBER 2012 TO NOVEMBER 2013. THE SMALL DATASET
IS A SUBSET OF THE LARGER, CONSISTING ONLY OF THE SAMPLES FROM DECEMBER 2012 TO MARCH 2013.
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V. CONCLUSION489

The classification of underwater sounds is of great interest to the community and has seen sig-490

nificant progress with the proliferation of deep learning. This work addressed several challenges491

of using deep learning models for classification in acoustically heterogeneous environments and492

effectively establishes benchmark performance for both the multi-label and multi-class classifica-493

tion of underwater soundscapes. Additionally, this is also a first study demonstrating the quality494

and the utility of the uncertainty of neural network classification with a ship-based ontology on495

underwater soundscapes. Our best performing Bayesian model developed for the multi-label task496

achieves a weighted F1 score of 0.84 and the model developed on the multi-class task achieves a497

weighted F 1 score of 0.82. In both of those tasks, models simultaneously offered measurement of498

uncertainty in per sample classification. This was achieved by adopting Bayesian Deep Learning,499

a new and emerging field, which can have significant implications on the proliferation of deep500

learning models in production. The presented analysis is universal and applicable to any other501

classification or regression task in soundscape monitoring. The demonstrated results and analysis502

of uncertainty in the first case study correlated well with a physical understanding of sound503

propagation. Moreover, in the second case study we demonstrated the ability to preserve model504

performance with the seasonal variation of underlying sound speed profiles, which was enabled505

by training on one of the largest datasets used in this type of analysis. Overall, the proposed506

approaches can have significant impact on autonomous monitoring of ocean resources through507

passive sonar.508
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