
P
os
te
d
on

8
M
ar

20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
92
98
5
13
.v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/T

P
W

R
S
.2
02
2.
3
21
29
19

Co-optimization of Distributed Renewable Energy and Storage

Investment Decisions in a TSO-DSO Coordination Framework

Konstantinos Steriotis 1, Prodromos Makris 2, Georgios Tsaousoglou 2, Nikos
Efthymiopoulos 2, and Emmanouel Varvarigos 2

1National Technical University of Athens
2Affiliation not available

October 30, 2023

Abstract

Stochastic bi-level formulation for optimal DER sizing and sitting decisions in a ESP-DSO-TSO coordination framework.
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Co-optimization of Distributed Renewable Energy
and Storage Investment Decisions in a TSO-DSO

Coordination Framework
K. Steriotis, P. Makris, G. Tsaousoglou, N. Efthymiopoulos, and E. Varvarigos

Abstract—As Distributed Energy Resources (DER) penetration
levels and distributed flexibility investments are continuously
growing, various smart grid actors need to coordinate their
decisions towards optimal DER siting and sizing: First, profit-
based Energy Service Providers (ESPs) want to secure their
long-term profits and avoid economically unsustainable DER
investments. Second, Distribution System Operators (DSOs) need
to ensure the reliable operation of their networks in an eco-
nomically optimal way. Third, Transmission System Operators
(TSOs) want to optimally exploit the available “clean” DERs in
close collaboration with the downstream DSOs. In this paper,
we propose a novel ESP-DSO-TSO coordination scheme to co-
optimize distributed renewable energy and storage planning at
the distribution network level, while modeling the coordinated
TSO-DSO operations. We formulate a bi-level program, the
upper-level of which represents the minimization of DSO’s costs,
ensuring a minimum rate of return on ESP’s investments, while
the lower-level problem models the wholesale market clearing
at the transmission network level. A nested decomposition tech-
nique is used to achieve computational tractability. Simulation
results showcase a trade-off analysis between sustainable DER
investments and system cost minimization and prove that an
ESP-DSO-TSO interaction can benefit all involved actors to
a certain extent. Finally, the computational efficiency of the
proposed nested decomposition algorithm is also demonstrated
via numerical results.

Index Terms—distributed energy resources, sizing and siting,
bi-level optimization, nested decomposition, TSO-DSO coordina-
tion

NOMENCLATURE

A. Sets

Bi Set of nodes at DN i, indexed by n, k, j
H Set of timeslots in the scheduling horizon,

indexed by t
LD
i Set of branches at DN i

LT Set of TN lines
N Set of nodes at TN, indexed by i, j
XU/L/MP Sets of optimization variables
Ω Set of representative days, indexed by ω

B. Superscripts

e/p Superscript indicating the energy/power com-
ponent of ES

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.
This work received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 863876 in the context
of the FLEXGRID project.

es/w/pv Superscripts indicating the Storage/Wind/PV
technology

m/g/d Superscripts indicating TN nodes with
DNs/Generators/Demand Aggregators

(·) Superscript indicating the algorithm’s iteration

C. Variables

dis/ch Scheduled ES discharge/charge power (MW)
fp/q Active/reactive power flow in distribution net-

work (MW/MVAr)
gw/pv Power output of wind/PV units (MW)
h Binary variable denoting the direction of power

traded between DSO-TSO
K Size variables
o/b Quantity offer/bid by the DSO to the electricity

market (MW)
p↑/↓ Power traded (sold/bought) between DSO-TSO

(MW)
pg/d Electricity market dispatch of Genera-

tors/Demand Aggregators (MW)
SOE State-of-Energy of ES (MWh)
V Square voltage magnitude in distribution net-

work (kV 2)
x Binary variable denoting the operating mode

of ES
z/ξ Auxiliary variables in outer decomposition
γω/µ Auxiliary variables in inner decomposition
θ Transmission network’s voltage phase angle
λ Locational Marginal Price (e/ MW)
ϕ Dual variables of the lower-level problem

D. Parameters

c↑/↓ Price offers/bids of DSO (e/MW)
ces/w/pv Marginal operating cost of ES/Wind/PV units

(e/MW)
cg/d Price bids of Generators/Demand Aggregators

(e/MW)
C Capital costs (e/MW)
C̃ Annualized capital costs (e/MW)
Cinv,max Investment budget (e)
D Load of distribution network (MW)
fS Maximum apparent power of distribution net-

work branches (MVA)
I/W PV energy output/Wind intensity factor
K Maximum capacity that can be installed (MW)
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pi TSO-DSO connection point (substation) capac-
ity (MW)

P g/d Maximum power of generation/demand (MW)
r/x Resistance / Reactance of branches
RU/RD Ramping up/down capabilities of Generators

(MW)
T Last timeslot of scheduling horizon
T Transmission network line capacity (MW)
V /V Lower/Upper bounds on square voltage mag-

nitude (kV 2)
y Transmission line admittance
β Minimum ES state of charge at the end of the

scheduling period
γmin Large negative constant
δ Parameters converting active power into their

reactive power – tan(arccos(power factor))
ϵ1/ϵ2 Convergence tolerance for the inner/outer de-

composition procedures
ηd/c Discharging/Charging efficiency of ES
ηpv PV efficiency
κ, ρ, v, τ Algorithm iteration counters
πω Weight of representative day ω
ρ Energy/Power ratio of ES
Φ Large constant
χ Desired rate of return on DERs investments

I. INTRODUCTION

A. Motivation and Goals

Regulatory authorities from the world’s most developed
economies have undertaken clean energy transition initiatives
and respective legislative efforts, towards actively incentivizing
investments in Distributed Energy Resources (DERs) e.g.
photovoltaics, wind turbines, etc., and distributed flexibility
(e.g. battery, storage, etc.) installations at the distribution
network (DN) level [1] - [3]. For example, US FERC [1]
emphasizes the need for coordinated DER planning via the
collaboration of three main actors, namely: the ISO/RTO (i.e.
transmission level), the distribution utility, and the DER aggre-
gator. In EU legislation [2], the DSO’s main role is unbundled
from profit-based Energy Service Providers (ESPs), i.e. DER
and distributed flexibility owners. In other words, ESPs are
the main responsible market actors for DER and distributed
flexibility investments, while DSOs are mainly responsible
for operating the DN in a reliable, secure and economically
efficient manner. As a result, ESPs and DSOs should closely
collaborate towards DN-aware DER investments, while DSOs
should closely collaborate with TSOs in order to facilitate
seamless DER market participation. Complementarily, [3] also
focuses on investment-friendly and system-friendly renewable
energy deployments implying the need for achieving a balance
between these two contradictory objectives.

In this paper, we deal with the co-optimization of distributed
renewable energy and storage investment problem (i.e. optimal
sizing and siting of distributed PV, wind and storage assets),
while modeling also the operational stage of distribution and
transmission network levels. We formulate a bi-level model, in
which the payoff of all DN users is optimized, to incentivize

DERs profitability and maximum exploitation of distributed
energy and flexibility services in both DN and TN levels. The
central contribution lies in the modeling of an integral ESP-
DSO-TSO coordination scheme, which jointly addresses the
current real-life business challenges of these three actors. More
specifically, the main problem of actual ESPs is not having
access to detailed DN topology data, which leads them to inad-
equate, sub-optimal and/or financially unsustainable DER and
flexibility investments. On the other hand, the DSOs cannot
provide access to sensitive network topology data to profit-
based ESPs and would strongly prefer to have full control of
the DN-level investment planning process. However, regulated
investments would dis-incentivize merchant DER investments
and would be in contradiction with previously mentioned
regulatory directives that press the DSOs towards providing
the appropriate transparent, non-discriminatory and market-
based procedures for procuring novel energy and flexibility
services from profit-based ESPs [2]. Finally, today’s TSO
problem is that it cannot optimally exploit the available DERs
and DN-level flexibility due to lack of an efficient TSO-
DSO coordination framework and because profit-based DER
investments are DN-unaware.

Three main research threads can be identified in the related
literature. The first thread deals with ESP-TSO coordination
schemes for optimal RES and/or storage sizing and siting at the
transmission network (TN) level. The work in [4] proposes a
Bender’s decomposition algorithm to solve a bi-level problem,
in which the upper-level problem represents the wind invest-
ment decisions and operations of the ESP, and the lower-level
problems describe the market clearing under different wind
and load conditions. Authors in [5] - [11] propose various
bi-level models for optimal storage planning at the TN level
together with novel decomposition techniques to deal with
the computational complexity. Works [7] - [10] guarantee
the ESP’s profits ensuring a desirable Return-on-Investment
(RoI) considering the storage asset’s market participation with
respect to the asset’s expected lifetime. In [8] and [11], the
risk management problem of the TN-level storage investment
is also investigated, trying to achieve an acceptable trade-off
between maximum (average) expected profits and minimum
guaranteed profits for the ESP’s investment portfolio. Authors
in [12] co-optimize both RES and storage planning via par-
ticipation in day-ahead, intra-day energy and reserve markets.
While the studies mentioned in this paragraph model assets
connected to the TN, in this paper we consider investments in
DN-level assets. Under this consideration, it is critical to model
the DN topology constraints [13] in order to guarantee DN
reliability and security and ultimately avoid miscalculations
of the DN-level energy and flexibility value [14].

The second related research thread deals with TSO-DSO
coordination schemes. Survey works in [15] and [16] cate-
gorize several TSO-DSO coordination schemes and analyze
the advantages and drawbacks for each one of them with
respect to business interest prioritization of each actor. More
technical papers such as [17] and [18] try to realistically
model the information flows between the TSO and DSO
by proposing decomposition algorithms for the coordinated
economic dispatch of both TN- and DN-level systems that
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can capture the heterogeneous technical characteristics of both
systems. Authors in [19] were the first to propose a modelling
framework for the coordinated storage investment under such
a unified TSO-DSO collaboration scheme. However, [19] does
not consider a co-optimized planning of distributed renewable
energy and storage assets, nor does it consider the latest
regulations (e.g. [2]) dictating the unbundling of profit-based
ESPs and non-profit DSOs. In contrast, this work emphasizes
the need to quantify the impact of privately-owned DER
investment decisions on the Transmission and Distribution
(T&D) systems’ operating costs by aspiring to find an optimal
equilibrium point that satisfies all three involved actors.

Finally, the third research thread is related with ESP-DSO
coordination schemes. The main difference with the current
manuscript’s approach is that related works [20] - [25] do
not take into account the TSO’s objective to optimally exploit
the available distributed energy and flexibility. Thus, a rather
myopic DER planning is realized, that does not consider the
impact of the newly installed low-cost energy and flexibility
units on the transmission-level market prices. The work in [20]
deals with a two-stage stochastic problem, in which initially
the DSO minimizes its DN reinforcement costs and in the
second stage the ESP’s planning and scheduling problem takes
place. Study [21] co-optimizes the ESP’s and DSO’s invest-
ment decisions showing that the ESP’s flexibility significantly
defers costly network upgrades. Authors in [22] achieve an
optimal trade-off between the mobile storage profits during
normal system operations and their ability to enhance DN
resilience in emergency situations. Research work in [23]
formulates an optimization problem in a way that includes
both the ESP’s profits and the DN constraints that guarantee
power quality. Finally, [24] and [25] propose bi-level models
to achieve the collaborative optimization between planning and
operation of DN-level storage assets.

B. Paper Positioning and Contribution

This paper’s contributions can be summarized as follows:
1) We co-optimize network-aware and market-aware dis-

tributed RES and storage investments in multiple DNs
within a TSO-DSO coordination scheme.

2) Instead of modeling a vertical utility actor’s (e.g. DISCO)
objective in the upper-level problem, we follow the recent
regulatory framework updates, which dictate the complete
unbundling of market roles for DER investment planning
between a profit-based ESP and a system operator. Thus,
we conduct a trade-off analysis between sustainable DER
investments and system cost minimization and demon-
strate that ESP-DSO-TSO interaction can achieve T&D
operating costs’ reduction and sufficient levels of prof-
itability for the ESP.

3) We formulate a stochastic bi-level investment model in
order to capture the impact of the newly installed DERs
on the transmission-level energy market prices and avoid
over-investment contexts.

4) The bi-level model is efficiently solved in a scalable fash-
ion using a nested decomposition technique. We compare
the computational performance of the proposed method

to a non-decomposed MILP approach and demonstrate
the algorithm’s accuracy and scalability.

This paper’s structure is organized as follows: Section II
describes the proposed bi-level formulation of the problem.
Section III presents the solution method. Section IV provides
a detailed evaluation of the proposed solution. Finally, Section
V concludes the paper and discusses future work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We model the interaction between a DSO, a TSO and a
private ESP that seeks to invest in distributed wind and PV
generation units as well as in Energy Storage (ES) units in
multiple DNs dispersed in various geographical areas (TN
nodes) and make profit by participating in the TN-level
electricity market. The DSO decides on the DER investments
with respect to its network limitations and ensuring that its
decisions are financially sustainable for the ESP. To this end,
we propose a stochastic bi-level model in order to formulate
the DSO-TSO-ESP coordination, capturing their distinctive
objectives and taking into account the DN and TN constraints.

The objective of the upper level problem, is to decide the
new investments, so as to minimize the total costs (maximize
social welfare) of the DNs’ stakeholders, i.e., achieving a
balance between the ESP’s profits from the new investments
and the electricity cost of consumers already connected to
each DN. The former consists of the ESP’s expected revenues
stemming from the optimal DA market participation minus the
operational costs and investment costs. Note that the relevant
optimal operational decisions are contingent on the investment
decisions as well as the DN constraints, including power flow
and voltage limits. The objective of the ESP is to guarantee the
economic viability of its investments. Therefore, a minimum
rate of return on the investments is imposed on the upper-level
problem.

The lower-level problem represents the TN-constrained day-
ahead electricity market clearing process for each represen-
tative day, with the TSO’s objective being the social welfare
maximization. Thus, the objective of all involved actors (DSO-
TSO-ESP) are taken into account. In order to model the
uncertainty associated with the overall system’s load, the DN’s
demand and the wind/solar production, we produce a plausible
number of scenarios by using data of diverse representative
historical days. As it is customary in static investment analysis
(e.g. [4]- [7], [9], [10]), the study is performed for a single
target year.

A. Upper-Level Problem: Siting and Sizing of DERs

min
XU

S ∪XU
O,ω∪XL

ω ,∀ω

∑
ω∈Ω

(−PrDN
ω + Coper

ω ) + C̃inv (a.1)

where

PrDN
ω = πω ·

∑
i∈Nm

∑
t∈H

(
λitω · (p↑itω − p↓itω)

)
(a.2)

Coper
ω = πω ·

∑
i∈Nm

(∑
t∈H

( ∑
n∈Bes

i

ces · (disintω + chintω)+
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∑
n∈Bw

i

cw · gwintω +
∑

n∈Bpv
i

cpv · gpvintω
))

(a.3)

C̃inv =
∑

i∈Nm

( ∑
n∈Bes

i

(C̃e ·Ke
in + C̃p ·Kp

in) +
∑

n∈Bw
i

C̃w ·Kw
in

+
∑

n∈Bpv
i

C̃pv ·Kpv
in

)
(a.4)

Subject to

0 ≤ gwintω ≤Witω ·Kw
in, ∀i ∈ Nm, n ∈ Bw

i , t ∈ H,ω ∈ Ω
(a.5)

0 ≤ gpvintω ≤ ηpv · Iitω ·Kpv
in ,

∀i ∈ Nm, n ∈ Bpv
i , t ∈ H,ω ∈ Ω (a.6)

0 ≤ Kw
in ≤ Kw, ∀i ∈ Nm, n ∈ Bw

i (a.7)

0 ≤ Kpv
in ≤ Kpv, ∀i ∈ Nm, n ∈ Bpv

i (a.8)

0 ≤ Ke
in ≤ Ke, ∀i ∈ Nm, n ∈ Bes

i (a.9)

0 ≤ Kp
in ≤ Kp, ∀i ∈ Nm, n ∈ Bes

i (a.10)
ρ ·Kp

in = Ke
in, ∀i ∈ Nm, n ∈ Bes

i (a.11)

Cinv ≤ Cinv,max (a.12)

where

Cinv =
∑

i∈Nm

( ∑
n∈Bes

(Ce ·Ke
in + Cp ·Kp

in) +
∑

n∈Bw
i

Cw ·Kw
in

+
∑

n∈Bpv

Cpv ·Kpv
in

)
(a.13)∑

ω∈Ω

(Prinvω − Coper
ω ) ≥ χ · C̃inv (a.14)

where

Prinvω = πω ·
∑

i∈Nm

∑
t∈H

(
λitω ·

( ∑
n∈Bw

i

gwintω +
∑

n∈Bpv
i

gpvintω

+
∑

n∈Bes
i

(disintω − chintω)
))

(a.15)

0 ≤ oitω ≤ hitω · pi, ∀i ∈ Nm, t ∈ H,ω ∈ Ω (a.16)
0 ≤ bitω ≤ (1− hitω) · pi, ∀i ∈ Nm, t ∈ H,ω ∈ Ω (a.17)
hitω ∈ {0, 1}, ∀i ∈ Nm, t ∈ H,ω ∈ Ω (a.18)
0 ≤ disintω, chintω ≤ Kp

in, ∀i ∈ Nm, n ∈ Bes
i , t ∈ H,ω ∈ Ω

(a.19)
disintω ≤ Φ · xintω, ∀i ∈ Nm, n ∈ Bes

i , t ∈ H,ω ∈ Ω
(a.20)

chintω ≤ Φ · (1− xintω), ∀i ∈ Nm, n ∈ Bes
i , t ∈ H,ω ∈ Ω

(a.21)
xintω ∈ {0.1}, ∀i ∈ Nm, n ∈ Bes

i , t ∈ H,ω ∈ Ω
(a.22)

SOEintω = SOEin0ω −
t∑

τ=1

(disintω/η
d − chintω · ηc),

∀i ∈ Nm, n ∈ Bes
i , t ∈ H,ω ∈ Ω (a.23)

0 ≤ SOEintω ≤ Ke
in, ∀i ∈ Nm, n ∈ Bes

i , t ∈ H,ω ∈ Ω
(a.24)

SOEinTω ≥ β · SOEin0ω, ∀i ∈ Nm, n ∈ Bes
i , ω ∈ Ω

(a.25)

∑
k∈Ωd(n)

fp
i(nk)tω =

∑
j∈Ωp(n)

fp
i(jn)tω −Dintω + gwintω + gpvintω

+ disintω − chintω, ∀i ∈ Nm, n ∈ Bi, t ∈ H,ω ∈ Ω
(a.26)∑

k∈Ωd(n)

fq
i(nk)tω =

∑
j∈Ωp(n)

fq
i(jn)tω − δdin ·Dintω + δwin · gwintω

+ δpvin · g
pv
intω, ∀i ∈ Nm, n ∈ Bi, t ∈ H,ω ∈ Ω (a.27)

Vintω = Vijtω − 2 · (ri(jn) · fp
i(jn)tω + xi(jn) · fq

i(jn)tω),

∀i ∈ Nm, n ∈ Bi, t ∈ H,ω ∈ Ω (a.28)

(fp
i(nk)tω)

2 + (fq
i(nk)tω)

2 ≤ (fS
i(nk))

2,

∀i ∈ Nm, (nk) ∈ LD
i , t ∈ H,ω ∈ Ω (a.29)

Vin ≤ Vintω ≤ Vin, ∀i ∈ Nm, n ∈ Bi, t ∈ H,ω ∈ Ω
(a.30)∑

k∈Ωd(n0)

fp
i(n0k)tω

= p↓itω − p↑itω, ∀i ∈ Nm, t ∈ H,ω ∈ Ω

(a.31)

where XU
S = {Ke

in,K
p
in,K

w
in,K

pv
in }, XU

O,ω = {gwintω, g
pv
intω,

oitω, bitω, hitω, disintω, chintω, xintω, SOEintω, f
p
i(nk)tω,

fq
i(nk)tω, Vintω}. The objective of the upper-level problem

(a.1) is to minimize the annualized DER investment costs
and the DN assets’ expected costs, the latter including the
expected cost of electricity traded with the upstream grid
and the expected DER operating costs. The set of DNs in
which DERs can be installed is denoted by Nm. The overall
DN assets’ expected profit from the electricity traded in the
day-ahead electricity market are defined in Eq. (a.2), where
the nodal prices at the transmission buses connected to the
root nodes of the DNs (λitω) and the wholesale market
decisions on the power injected from the DSO to the TSO
(p↑itω) and vice versa (p↓itω) are endogenously obtained from
the lower-level problem. The expected DERs’ operating costs
are presented in (a.3) and the annualized investment cost is
computed in (a.4), where parameters C̃e, C̃p, C̃w and C̃pv

are the annualized costs in net present value approach [14]:

C̃ = C · Γ · (1 + Γ)Λ

(1 + Γ)Λ − 1

where Γ is the annual discount rate and Λ is the unit’s lifetime.
The sets of DN’s buses that are eligible for the installation
of wind/PV generation and ES units are Bw

i , Bpv
i and Bes

i

respectively (Bw
i , B

pv
i , Bes

i ⊆ Bi,∀i ∈ Nm). Constraints (a.5)
and (a.6) limit the wind and solar generation to the wind and
solar power availability. Wind power availability is calculated
based on a wind intensity factor [4], while the PV maximum
output in a representative day is calculated based on PV energy
output factor and the efficiency of the PV panels output [26].
Note that in our model, renewable energy spillage is allowed.

Constraints (a.7) - (a.10) limit the available capacity of
wind, PV, ES energy and ES power capacity respectively,
while constraint (a.11) enforces the Energy-to-Power ratio
of the ES units. For the sake of simplicity, the investment
variables are considered continuous. Equation (a.12) enforces
that the total investment cost, which is shown in (a.13), cannot
exceed the total ESP’s investment budget. Constraint (a.14) en-
forces that the ESP’s expected annual financial benefit gained
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from the investment, which is expressed in (a.15), is sufficient
to provide a certain desired rate of return χ. Constraints (a.16)
- (a.18) limit the offer/bid quantity (oitω/bitω) in the wholesale
market by the DN assets with respect to the capacity of
the substations connecting the transmission and distribution
networks. Binary variable hitω (a.18) ensures that the DNs can
either supply or draw power from the main grid for a specific
timeslot in each representative day. Constraints (a.19)-(a.22)
impose the bounds on the charge/discharge schedules of the
ES units. Equation (a.23) describes the State-of-Energy of the
ES units, which is limited in (a.24). Also, constraint (a.25)
declares that the ES units’ State-of-Energy at the end of the
scheduling horizon must be at least equal to a portion (β) of
their initial State-of-Energy at the beginning of the day.

The DN model is described in Eqs. (a.26) - (a.31). We
use the linearized DistFlow equations [27] to model the
DN. Equations (a.26) - (a.28) are the branch flow equations.
Constraint (a.29) sets the apparent power capacity of the lines
and constraint (a.30) sets the bounds of the square voltage
magnitude. Constraint (a.29) is a quadratic inequality con-
straint, which is linearized via a polygonal inner approximation
as in [28]. Finally, equation (a.31) represents the active power
balance in the root of the DN, i.e., the connection point to the
transmission grid.

B. Lower-Level Problem: Day-Ahead Electricity Market
Clearing Process{

min
XL

ω

∑
t∈H

( ∑
i∈Ng

cgit · p
g
itω −

∑
i∈Nd

cdit · pditω+

+
∑

i∈Nm

(c↑it · p
↑
itω − c↓it · p

↓
itω)

)
(b.1)

Subject to

− pgitω + pditω − p↑itω + p↓itω +
∑
j ̸=i

yij · (θitω − θjtω) = 0;

(λitω), ∀i ∈ N, t ∈ H (b.2)

0 ≤ pgitω ≤ P g
i ; (ϕg

itω, ϕ
g
itω), ∀i ∈ Ng, t ∈ H (b.3)

RDi ≤ pgitω − pgn(t−1)ω ≤ RUi; (ϕgrd
itω , ϕ

gru
itω ),

∀i ∈ Ng, t > 1 (b.4)

RDi ≤ pgitω − pgn,0 ≤ RUi; (ϕgrd
itω , ϕ

gru
itω ),

∀i ∈ Ng, t = 1 (b.5)

0 ≤ pditω ≤ P d
itω; (ϕd

itω, ϕ
d
itω), ∀i ∈ Nd, t ∈ H (b.6)

0 ≤ p↑itω ≤ oitω; (ϕp↑
itω, ϕ

p↑
itω), ∀i ∈ Nm, t ∈ H (b.7)

0 ≤ p↓itω ≤ bitω; (ϕp↓
itω, ϕ

p↓
itω), ∀i ∈ Nm, t ∈ H (b.8)

− Tij ≤ yij · (θitω − θjtω) ≤ Tij ; (ϕl
(ij)tω, ϕ

l
(ij)tω),

∀(ij) ∈ LT , i < j, t ∈ H (b.9)}
,∀ω ∈ Ω

where XL
ω = {pgitω, pditω, p

↑
itω, p

↓
itω, θitω}. In the lower-level

problem (b), the TSO clears the wholesale day-ahead elec-
tricity market for each representative day ω, by minimizing

the social cost (or else maximizing the social welfare), given
the DN assets’ supply offers (c↑it) and demand bids (c↓it), offers
from generators (cgit) and bids from demand aggregators (cdit).
The transmission network is modeled using the DC power
flow model. Equation (b.2) expresses the nodal power balance,
while constraints (b.3) and (b.6) set the active power capacities
of conventional generators and demand aggregators respec-
tively. Constraints (b.4) - (b.5) express the ramping capabilities
of the conventional generators and equations (b.7) - (b.8)
limit the power traded between the TN and the DNs. Finally,
constraint (b.9) binds the active power flow in the transmission
lines. The dual variables pertaining to each constraint are
specified following a semicolon.

III. SOLUTION METHOD

The formulated stochastic bi-level program can be solved
through converting it into a Mathematical Program with Equi-
librium Constraints (MPEC) and eventually into a MILP, as
in [9], [19], [29] and [30]. We denote the optimal value of
this single-level mixed integer linear problem as ΨP . The
computational complexity of this method increases dramat-
ically with the number of representative days. In order to
circumvent intractability, we decompose the bi-level problem
in representative days ω. Note that the ESP’s minimum profit
constraint (a.14) and the investment variables (Kw

in,K
pv
in ,K

e
in,

and Kp
in) prevent the decoupling of the problem per represen-

tative day. Thus, we apply a nested decomposition algorithm,
which renders the problem computationally tractable. The
outer decomposition algorithm deals with the complicating
constraint (a.14), while the inner decomposition procedure
deals with the complicating variables (Kw

in,K
pv
in ,K

e
in, and

Kp
in).

A. Outer Decomposition: Relaxing the ESP’s minimum profit
constraint

Initially, we deal with the complicating constraint (a.14)
using the Lagrangian Relaxation (LR) technique [31]. We relax
constraint (a.14) by removing it from the set of constraints
inserting a penalty for violations. Let ξ be a non-negative
scalar and consider the following problem:

ΨD(ξ) = min
XU

S ∪XU
O,ω∪XL

ω ,∀ω

∑
ω∈Ω

(−PrDN
ω + Coper

ω ) + C̃inv

+ξ ·
( ∑
ω∈Ω

(−Prinvω + Coper
ω ) + χ · C̃inv

)
(c.1)

Subject to

(a.5)− (a.13), (a.16)− (a.31), (b.1)− (b.9) (c.2)

The above problem (c) is a relaxed version of problem
(a)-(b). We convert the above bi-level problem into a MILP
using the MPEC method as explained in APPENDIX A. It can
be easily seen that the relaxed problem (c) provides a lower
bound for the initial (non-relaxed) problem, i.e. ΨD(ξ) ≤ ΨP ,
since

∑
ω∈Ω(−Prinvω + Coper

ω ) + χ · C̃inv ≤ 0 and ξ ≥ 0.
Function ΨD(ξ) is the dual function of problem (a)-(b).
Our goal is to find the optimal value of ξ that will result



6

0 5 10 15 20 25 30 35 40 45
8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9
104

| |=1

| |=2

| |=4

| |=8

| |=16

(a) Value of dual function Ψ for different
values of ξ and various numbers of rep-
resentative days |Ω|.

1 2 4 8 16

Number Of Representative Days (| |)

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

D
(

* ) 
/ 

* P
 (

%
)

(b) Optimal value of ΨP and ΨD(ξ) for
different numbers of representative days
|Ω|.

Fig. 1: Simulations on a 6-Bus Transmission System and 15-node DN [33]

in the best bound ΨD(ξ∗) of ΨP , solving the optimization
problem: maxξ{ΨD(ξ)|ξ ∈ R+}, which is the Lagrangian
dual problem of the original problem.

Towards this objective, we use the LR decomposition al-
gorithm. This is an iterative procedure, in each iteration of
which the relaxed problem (c) is converted into a MILP
(cf. APPENDIX A) and solved for a specific value of ξ.
Given the optimal solution and the respective values of
σ =

(∑
ω∈Ω(−Prinvω + Coper

ω ) + χ · C̃inv
)
, we update the

value of ξ using the Cutting Plane (CP) method [32]. This
updating method reconstructs the dual function ΨD(ξ), which
is a concave piecewise linear function as it is demonstrated in
Fig. 1a, using cutting planes. More specifically, in outer-loop
iteration κ, the value of ξ is updated via solving the following
linear program:

max
z,ξ

z (d.1)

Subject to

z ≤ ΨD(ξ(ρ)) + σ(ρ) · (ξ − ξ(ρ)); ρ = 1, .., κ (d.2)
ξ ≥ 0 (d.3)

Constraints (d.2) represent hyperplanes in the variable ξ
space. Problem (d) is a relaxed version of the Lagrangian
dual problem, which approaches the actual Lagrangian dual
problem as the number of iterations increases. The optimal
solution of problem (d) provides an upper bound of the optimal
objective function value of the Lagrangian dual problem
ΨD(ξ∗), since the piecewise linear reconstruction of ΨD(ξ)
overestimates the actual function [32], i.e. z(κ) ≥ ΨD(ξ∗) ≥
ΨD(ξ(κ)). The right inequality follows from the fact that
the optimal objective function value of the aforementioned
Lagrangian dual maximization problem is always greater than
or equal to any other feasible solution provided by the solution
of problem (c). The algorithm terminates when the per unit gap
is below a threshold, that is, z(κ)−ΨD(ξ(κ))

ΨD(ξ(κ))
≤ ϵ1.

Under convexity assumptions, the best bound ΨD(ξ∗) is
equal to the optimal value of ΨP (Strong Duality Theorem).
In general, however, it falls short. The difference between
ΨD(ξ∗) and ΨP is the duality gap. In our model, the LR
provides a high quality bound on ΨP . We confirm this claim
by simulation on a test system in Fig. 1b that the maximum
duality gap (difference between ΨP and ΨD(ξ∗)) is 0.11% (in
case |Ω| = 1), while the average per unit gap is 0.03%.

B. Inner Decomposition: Bender’s Decomposition Technique

We now deal with the investment decision variables, namely
Kpv

in ,K
w
in,K

e
in and Kp

in, that prevent the solution of the
problem (c) by blocks (one for each representative day). We
apply a Bender’s Decomposition (BD) technique, that has
been proposed in [34]. In general, the BD algorithm does
not provide convergence guarantees for non-convex problems.
Nevertheless, studies on the optimal investments in the power
systems using stochastic bi-level modeling ([4], [5], [10],
[34]) have shown that the objective function of the original
(non-decomposed) problem convexifies with respect to the
investment (complicating) variables as the number of scenarios
and their diversity increases. The bi-level problem (c) is
decomposed into a Master Problem (MP) and a number of
subproblems, one per representative day. At first, the linear
and continuous MP is solved and provides updated investment
decisions. In BD algorithm’s iteration v, the MP resulting from
decomposing the original problem (c) follows:

min
XMP

G(v) = (1 + ξ · χ) · C̃inv +
∑
ω∈Ω

γ(v)
ω (e.1)

Subject to

(a.7)− (a.13) (e.2)

γ(v)
ω ≥ γmin, ∀ω ∈ Ω (e.3)

γ(v)
ω ≥ G̃(v)

ω +
∑

i∈Nm

( ∑
n∈Bw

i

µ
w,(τ)
inω · (Kw,(v)

in −K
w,(τ)
in )+

∑
n∈Bpv

i

µ
pv,(τ)
inω · (Kpv,(v)

in −K
pv,(τ)
in )+

∑
n∈Bes

i

(
µ
e,(τ)
inω · (K

e,(v)
in −K

e,(τ)
in ) + µ

p,(τ)
inω · (K

p,(v)
in −K

p,(τ)
in )

))
∀ω ∈ Ω, τ = 1, ., , v − 1 (e.4)

where XMP = {Kw,(v)
in ,K

pv,(v)
in ,K

e,(v)
in ,K

p,(v)
in , γ

(v)
ω }. In

(e.1), γ(v)
ω is a scalar representing the optimal value of the sub-

problem in representative day ω, in BD algorithm’s iteration v.
Constraint (e.3) imposes a lower bound on γ

(v)
ω to accelerate

convergence. Constraints (e.4) are the Bender’s cuts, where
µw
inω, µ

pv
inω, µ

e
inω and µw

inω are sensitivities obtained from the
subproblems’ solution. Parameters including superscripts (τ)
are obtained from the previous iterations. Note that at each
iteration, we add multiple cuts to the MP (one for each ω),
in order to accelerate the decomposition procedure ([6], [35]).
The solution of the MP updates the values of the DERs’ sizes
and location. The MP is a relaxed version of the original
problem (c) and the objective function (e.1) approximates
from below the objective function of the original problem
(Gv ≤ ΨD(ξ)). Then, for each representative day ω, a
subproblem is formulated:

min
XU

O,ω∪XL
ω

G̃ω = (1 + ξ) · Coper
ω − PrDN

ω − ξ · Prinvω (f.1)

Subject to

(a.5), (a.6), (a.16)− (a.31), (b.1)− (b.9) (f.2)

Kw
in = K̃w

in; (µw
inω), ∀i ∈ Nm, n ∈ Bw

i (f.3)
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Kpv
in = K̃pv

in ; (µpv
inω), ∀i ∈ Nm, n ∈ Bpv

i (f.4)

Ke
in = K̃e

in; (µe
inω), ∀i ∈ Nm, n ∈ Bes

i (f.5)

Kp
in = K̃p

in; (µp
inω), ∀i ∈ Nm, n ∈ Bes

i (f.6)

Algorithm 1: Nested Decomposition Algorithm

1: κ← 1, ξ(κ) := 0, Ψ(κ) := −∞, Ψ̄(κ) := +∞.
2: while ((Ψ̄(κ) −Ψ(κ))/Ψ(κ)) > ϵ1 do
3: κ← κ+ 1
4: v ← 1, Ḡ(v) := −∞, G(v) := +∞
5: while (Ḡ(v) −G(v))/Ḡ(v) > ϵ2 do
6: v ← v + 1
7: Solve problem (e).
8: Obtain K̃

w,(v)
in , K̃

pv,(v)
in , K̃

e,(v)
in , K̃

p,(v)
in , G(v).

9: for all ω ∈ Ω do
10: Convert problem (f) into MILP using the MPEC

method (i.e. formulate SP1).
11: Solve SP1.
12: Obtain optimal set of variables X

U,(v)
O,ω , XL,(v).

13: Convert problem (f) into MILP using the MPPDC
method (i.e. formulate SP2).

14: Solve SP2.
15: Obtain G̃

(v)
ω , µ

w,(v)
inω , µ

pv,(v)
inω , µ

e,(v)
inω , µ

p,(v)
inω .

16: end for
17: Calculate Ḡ(v) using (g.1).
18: Add Bender’s Cuts to the MP (Problem (e)).
19: end while
20: ΨD(ξ(κ)) := Ḡ(v).Ψ(κ) := ΨD(ξ(κ)).
21: σ(κ) :=

∑
ω∈Ω(−Pr

inv,(v)
ω + C

oper,(v)
ω ) + χ · C̃inv,(v)

22: Add cutting hyperplanes to problem (d).
23: Solve problem (d). Obtain ξ(κ), z(κ).
24: Ψ̄(κ) := z(κ)

25: end while
26: ΨD(ξ∗) := Ψ̄(κ)

Note that in the above problem, all variables pertain to
each algorithm’s iteration v, but for notational clarity, such
a superscript is omitted. The objective in the above problem
(G̃ω) is to minimize the operating costs of the DNs assets in
representative day ω plus the part of the dualized ESP profit
constraint that contains only daily operation variables. Equa-
tions (f.3) - (f.6) fix the wind production, solar production, ES
energy rating and ES power rating respectively, to the values
computed in the MP. Consequently, the bi-level subproblems
(f) are converted into MILPs with the MPEC method (SP1), as
described in APPENDIX B. Since the solution of the MILPs
does not provide accurate dual variables to build the Bender’s
cuts, we reformulate the subproblems into equivalent linear
continuous problems, using the Mathematical Programming
with Primal and Dual Constraints (MPPDC) formulation of
the bi-level subproblems (SP2), as explained in APPENDIX C.
Solving SP2 provides G̃ω and dual variables µw

inω, µ
pv
inω, µ

e
inω

and µp
inω . The value of Ḡ(v) to be used in the convergence

check is:

Ḡ(v) =
∑
ω∈Ω

G̃(v)
ω +

∑
i∈Nm

( ∑
n∈Bw

i

C̃w · K̃w,(v)
in

+
∑

n∈Bpv
i

C̃pv · K̃pv,(v)
in +

∑
n∈Bes

i

(C̃e · K̃e,(v)
in + C̃p · K̃p,(v)

in )
)

(g.1)

Each subproblem is a further restricted version of the origi-
nal problem (c). Hence, its optimal objective function value is
an upper bound to the optimal value of the objective function
of the original problem (Ḡ(v) ≥ ΨD(ξ)). The procedure
continues until (Ḡ(v) − G(v))/Ḡ(v) ≤ ϵ2. The details of the
overall algorithm are described in Algorithm 1.

IV. CASE STUDY

Fig. 2: IEEE One-Area Reliability Test System

The proposed methodology is tested on the IEEE One Area
Reliability Test System [36], which is illustrated in Fig. 2.
The generation, load and line data can be found in [37]. We
consider that the DER investments can take place on two
33-bus distribution networks (see [38] for network details)
with their root nodes being connected to transmission buses
4 and 9. Detailed distribution network data can be found
in [37]. Load and renewable energy production profiles are
based on realistic annual data from the European Network
of Transmission System Operators for Electricity (ENTSO-
E) and the Hellenic Distribution Network Operator (HEDNO)
respectively [37], which are reduced to eight representative
days with 24 time intervals using the k-means clustering algo-
rithm. The wind intensity and PV energy output factors were
selected from two different locations (distribution networks)
in Greece, while without loss of generality we assumed that
the demand follows the same pattern in both the transmission
and distribution network. The weighted average of demand,
wind intensity and PV energy output scenarios are depicted in
Fig. 3. The eligible distribution network nodes are presented
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Fig. 3: Expected Values of Load, Wind Intensity and PV Energy Output

in Table I. We assume that the capital costs of DERs are
Cw = 1300e/kW, Cpv = 830e/kW, Ce = 20e/kW and
Cp = 500e/kW, with their marginal operating costs being
cw = 3.5e/MW, cpv = 2.5e/MW and ces = 0.5e/MW.
The lifetimes of DERs are 15 years and the annual discount
rate is 5% (Λ = 15,Γ = 0.05). Due to several restrictions
(e.g. limited available area), we set the maximum capacity of
DERs to Kw = 20MW,Kpv = 10MW and Ke = 20MWh.
The energy-to-power ratio of candidate storage units is set
to ρ = 6h and the charging and discharging efficiencies
are ηc = ηd = 0.93. The initial state-of-charge of the
storage units is assumed to be 50%, while at the end of the
day the state-of-charge should be at least 10% (β = 0.1).
The power factor of the candidate wind and PV generating
units is assumed to be 0.95, while the efficiency of the PV
panels output is ηpv = 0.95. The maximum power flow on
the coupling points between the transmission and distribution
systems (substations) is set to pi = 46MW . The price bids
and offers of the DNs assets are set to c↓it = 450e/MW and
c↑it = 0e/MW in order to ensure they can always be cleared in
the day-ahead electricity market. Finally, the total investment
budget is set to Cinv,max = 200 · 106 e. The algorithm
is implemented in MATLAB and the MILP problems are
solved using Gurobi 9.0.2. All simulations were performed
on a desktop computer with Intel Core i7 4.00GHz and 32GB
RAM.

TABLE I: Eligible Nodes for DER Installation

Eligible DN Nodes
DN 1 (TN Bus #4) DN 2 (TN Bus #9)

Wind 11, 16, 18, 19, 21, 23 6, 25, 27, 29, 31, 32
PV 16, 22, 24, 26, 28, 30 1, 2, 7, 17, 20, 25

Storage 5, 8, 16, 21, 22, 28 1, 2, 8, 15, 25, 30

A. Sizing and Siting Decisions

This section describes the DER investment decisions with
the rate of return that the ESP anticipates to receive from the
investment being χ = 1.15. Figure 4 illustrates the DERs’
investment decisions per node of each DN. One can see
that higher DER capacity is installed in DN 2 than in DN
1. This is mainly explained by two factors: first DN 2 is
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Fig. 4: DERs Sizing and Siting

located in a location (TN node #9) with much higher wind
intensity (cf. Fig. 3), and second, the available nodes for
wind and PV units installation in DN 2 allow the ESP to
install higher wind and solar capacity without violating the
distribution network constraints. In DN 1, only solar (28MW)
and wind (10.75MW) production units are installed, with the
investment costs and the eligible nodes for solar production
making the PV technology more attractive investment for the
ESP than the wind production. Wind capacity is installed only
at node #11, while PV units are installed at nodes #22, 24,
26 and 30, where either the lines connected to these nodes
have enough capacity for the generated power to flow through
them, or the local loads are sufficiently high in order for the
net load to flow through the adjacent lines without causing
over- or under-voltage issues. In DN 2, the wind intensity and
the candidate DN nodes for wind capacity installation makes
the wind capacity the most profitable investment in this area.
Thus, a total of 44MW of wind capacity is installed together
with 27MW of solar capacity and 75MWh/12.5MW ES units.
Again for reasons of high adjacent lines capacities and local
loads, 10MW of wind turbines are installed at nodes #6 and
25, and 4MW at node #31. Moreover, two PV units of 10MW
each are installed very close to the DN root (nodes #1 and 2),
and two pv units of 3.5MW each at nodes #7 and 20. In order
for high wind and solar production at DN 2 to be efficiently
exploited and the DN assets’ payoff to be maximized, storage
capacity is chosen to be installed at all eligible nodes. In
more detail, the maximum possible ES capacity is installed
at nodes #1 and 2 to support the PV units installed at these
nodes, and 7.2MWh/1.2MW ES units are installed at node
#25 where 20MW of wind capacity is also installed. Also,
20MWh/3.3MW, 6.40MWh/1.06MW and 1.35MWh/0.23MW
of storage capacity are installed at nodes #8, 15 and 30 to
support the smooth operation of the DN and the profitability
of the DN users. The DER investment decisions, which cost
124.9·106C, benefit all the involved actors. The ESP achieves
the anticipated rate of return on its investments (115%),
while the electricity cost for DN users declines compared
to the case without DER investments. The total annual DN
users’ electricity cost is 19.81·106C without DERs, which is
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reduced by 5.45%. Finally, the TSO benefits from the DER
investments, since expensive TN-level electricity production is
replaced in the generation mix by low-cost renewable energy
units. More specifically, the TN generation cost (428.07·106C
without DERs investments) declines by 4.29%.

B. Impact of the ESP’s minimum profit constraint
In this subsection, we examine the impact that the choice

of the rate of return (χ) has on the DER investments. To this
end, we consider three different values of χ (1.15, 1.20 and
1.25) along with the case where the ESP’s profit constraint
(Eq. (a.14)) is not included in our model. In Fig. 5, the sizes
of the DER investments are compared for the different choices
of χ, while in Table II the ESP investment costs and the
T&D operating cost savings are presented. Without constraint
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Fig. 5: DERs Investments for various values of χ

(a.14), the ESP installs a total of 84MW wind capacity, 58
MW solar production and 165MWh/27.5MW ES capacity,
which are almost evenly distributed between the two DNs, with
the ESP yielding a 111% rate of return, the electricity cost
of the DN consumers declining by 6.79% comparing to the
case where no DERs are installed, and the transmission-level
generation cost dropping by 5.87% (Table II). Incorporating
constraint (a.14) and as the value of χ rises, our investment
model, in order for the ESP to achieve the anticipated rate
of return, decides lower DER capacity, which leads in lower
generation cost reduction and hence higher nodal LMPs. As
a result, the energy cost reduction for the DN consumers
declines and the DERs’ profit increase. This is evident in
Table II. Increasing χ even more (χ = 1.20 and χ = 1.25),
it is in the interest of the ESP to install DERs only in DN 2
and not in DN 1, due to the increased wind intensity in this
area and network characteristics as previously explained (see
Section IV-A). Thus, for all values of χ under study the ESP
installs 44MW of wind turbines in DN 2. In case χ = 1.20,
it also installs 20MW of solar capacity, which (in order to
be profitable and network feasible) is followed by investments
in energy storage, as far as the latter are financially justified
(48MWh/8MW). When χ = 1.25, the only option is wind
technology so as to maximize the DN assets’ payoff ensuring
the ESP’s desired rate of return on the investments.

TABLE II: Investment Cost, Operating Cost Savings of the T&D Systems, for Various
Values of χ

χ - 1.15 1.20 1.25
Investment Cost

(106e) 175.89 124.90 78.20 56.64

DN Users
Cost Savings (%) 6.79 5.45 5.12 4.24

TN Generation
Cost Savings (%) 5.87 4.29 2.83 2.15

C. Effect of co-optimizing RES and Storage Investments

In this subsection we consider three investment scenarios:
• Scenario 1: Only investments in storage units.
• Scenario 2: Only investments in renewable energy.
• Scenario 3: The ESP co-optimizes renewable energy and

storage investments.
In Fig. 6, the DER sizes are compared for the different

investment scenarios in case of not including the ESP profit
constraint (Eq. (a.14)) and in case of χ = 1.15. In the left bar
graph, where Eq. (a.14) is not included, we can see that in
Scenario 3, the ESP, being entitled to invest in storage units,
installs 6% higher wind capacity and 1.2% higher PV capacity
comparing to Scenario 2. This results in 12% higher annual
profits for the ESP than Scenario 2, slightly lower electricity
cost for the local load and lower overall generation costs (see
Table III). Also, the installed storage capacity in Scenario 3
exceeds storage investments in Scenario 1 by 25%, since this
enables larger RES capacity installation and ultimately higher
aggregate DN users market gain. In Table III, one can see that
investing solely in storage assets, not taking into consideration
the ESP’s return on investments, which is the case in [19],
the optimal investment decisions achieve a 4.42% energy cost
reduction for end users. However, the ESP does not cover its
capital costs losing 0.4 million euros annually. In case of
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Fig. 6: DERs Investments in different investment scenarios

χ = 1.15 (right bar graph), in Scenario 1 the ESP does not
invest in energy storage at all, since the storage capital costs,
the market prices, the eligible nodes for storage investments
and the distribution network limitations do not enable the ESP
to make adequate market profits so as to reach the desired rate
of return on its investments. As it is also evident in Section
IV-B, incorporating the ESP’s profit constraint, investments
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in storage increasingly decline with increasing χ. Comparing
investment scenarios 2 and 3 when χ = 1.15, we can see in
Fig. 6 that co-optimizing RES and storage investments, the
ESP achieves 15% profit by installing 5.5% less renewable
energy capacity comparing to the case in which the ESP
installs only renewable energy capacity. The ESP in Scenario 3
achieves 6% higher annual net profits comparing to Scenario 2,
while co-optimizing RES and ES investments, the generation
cost reduction and the DN consumers energy cost reduction
is slightly larger than in the case where only RES units are
considered.

TABLE III: Investment Cost, Operating Cost Savings of the T&D Systems, and ESP
Market Profits in Different Investment Scenarios

χ - 1.15
Scenario 1 2 3 1 2 3

Investment Cost
(106e) 12.74 151.48 175.89 0 118.10 124.90

DN Users
Cost Savings (%) 4.42 6.66 6.79 0 5.40 5.45

TN Generation
Cost Savings (%) 0.31 5.13 5.87 0 4.07 4.29

ESP Annualized
Clear Profits

(106e)
-0.40 2.06 2.31 0 2.07 2.19

D. Bi-level Vs. Single-level Modeling

This subsection compares our bi-level model to a single-
level investment model setting χ = 1.25. In the latter case,
only problem (a) is solved with market prices being input
parameters based on price forecasts (as in [20]- [25]). The
price forecasts are produced solving problem (b) for each
representative day considering no DER investments. Hence,
the impact of the DER investments on energy market price is
not taken into consideration, resulting in over-investments that
hamper the ESP’s return on investment.

More specifically, solving the single-level model, 85MW
of wind capacity, 7.5MW of PV capacity and a total of
7MWh/1.16MW storage capacity are installed. These invest-
ments, with a total investment cost of 118·106e are calculated
based on the assumed market prices and seemingly achieve
the desired rate of return on DER investments. However, the
installed DERs lead in market price changes, which eventually
produce lower market profits for the ESP than the ones that
had been calculated solving the single-level model. The T&D
operating cost reduction is higher in case of the single-level
model (see Table IV), since larger DER capacities achieve
lower LMPs at the TSO-DSO coupling points, but on the other
hand the resulting rate of return is insufficient for the ESP.

TABLE IV: Investment Cost, Operating Cost Savings of the T&D Systems, and Rate of
Return on ESP Investments in Single-level and Bi-level Investment Models

Single-Level Model Bi-Level Model
Investment Cost

(106e) 118.36 56.64

DN Users
Cost Savings (%) 6.33 4.24

TN Generation
Cost Savings (%) 4.10 2.15

Rate of Return (%) 113 130

E. Computational Efficiency

We test the computational efficiency of our proposed nested
decomposition algorithm using the IEEE 118-bus system [39]
and the IEEE 33-Node Distribution Test System. Towards this
goal, we compare our algorithm to the non-decomposed MILP
(which results from converting the bi-level problem (a)-(b)
through an MPEC problem as also explained in the beginning
of Section III) for various numbers of representative days (|Ω|)
in terms of solution time.

As we can see in Table V, in case |Ω| = 4, the non-
decomposed MILP (ND-MILP) achieves the optimal solution
much faster than our proposed solution method, which reaches
a sub-optimal solution by 0.42%. However, the computational
burden increases with the number of representative days |Ω|.
Thus, the execution time for the non-decomposed MILP
upsurges for |Ω| = 8, while for |Ω| = 16 and |Ω| = 24, the
non-decomposed MILP cannot find a feasible integer solution
within the predefined time limit (48h or 172,800 sec). On
the other hand, our proposed nested decomposition algorithm
reaches the optimal solution in 4 or 5 outer decomposition iter-
ations. The average number of inner decomposition iterations
reduces with |Ω|, since as also stated in Section III-B the ob-
jective function of the problem convexifies with respect to the
investment variables as |Ω| increases. Since the functioning of
outer and inner decomposition procedures improves with |Ω|
(as explained in Section III), the optimality loss also declines
with increasing number of representative days. Conclusively,
our proposed algorithm reaches an optimal solution within
a finite number of iterations, without sacrificing optimality,
significantly reducing the computational burden that results in
intractability issues for the non-decomposed MILP.

TABLE V: Computational Performance

Solution
Method |Ω| Outer

Iter.
Inner
Iter.

Exec.
Time (s)

Opt.
Result

Opt.
Loss (%)

ND-
MILP

4 - - 637 73826 -
8 - - 10079 76287 -

16 - - 172800 - -
24 - - 172800 - -

Proposed
Method

4 4 55 11594 73517 0.42
8 5 38 15143 76242 0.06

16 5 33 28375 74020 -
24 5 29 43814 75605 -

V. CONCLUSION

In this paper, we model the DER investment problem of a
private ESP, which installs distributed renewable energy and
energy storage units in multiple DNs within a TSO-DSO coor-
dination scheme. The rate of return on the DER investment is
ensured. A stochastic bi-level investment model is formulated,
which is efficiently solved using a nested decomposition
algorithm based on the concepts of Bender’s decomposition
and Lagrangian relaxation. Our algorithm calculates the DER
sizing and sitting decisions in a finite number of iterations
without sacrificing optimality. The proposed framework can
be used by a regulator or policy making entity to efficiently
coordinate the business interests of ESP, DSO and TSO to
facilitate a quicker renewable energy transition. As a future
work, we plan to study the coordination of DER investments
and distribution network expansion. Also, our study can be
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extended taking into account more revenue streams for the
DERs (e.g. ancillary services provision to both the TSO and
the DSO).

APPENDIX

A. Transforming bi-level problem (c) into a MILP

Lower-level problem (b) is an LP and therefore, Slater’s
condition holds. Thus, Karush-Kuhn-Tucker (KKT) conditions
are necessary and sufficient optimality conditions (satisfy
convexity and constraint qualification). The KKT conditions
of problem (b) are presented below:

− pgitω + pditω − p↑itω + p↓itω +
∑
j ̸=i

yij · (θitω − θjtω) = 0,

∀i ∈ N, t ∈ H (h.1)

cgit − λitω − ϕg
itω + ϕg

itω − ϕgrd
itω + ϕgrd

i(t+1)ω + ϕgru
itω − ϕgru

i(t+1)ω

= 0, ∀i ∈ Ng, t < T (h.2)

cgit − λitω − ϕg
itω + ϕg

itω − ϕgrd
itω + ϕgru

itω = 0,

∀i ∈ Ng, t = T (h.3)

− cdit + λitω − ϕd
itω + ϕd

itω = 0, ∀i ∈ Nd, t ∈ H (h.4)

c↑it − λitω − ϕp↑
itω + ϕp↑

itω = 0, ∀i ∈ Nm, t ∈ H (h.5)

− c↓it + λitω − ϕp↓
itω + ϕp↓

itω = 0, ∀i ∈ Nm, t ∈ H (h.6)∑
j ̸=i,(i,j)∈LT

yij · (λitω − λjtω)−
∑
j>i

yji · (ϕl
(ij)tω − ϕl

(ij)tω)

+
∑
j<i

yji · (ϕl
(ij)tω − ϕl

(ij)tω) = 0, ∀i ∈ N, t ∈ H (h.7)

0 ≤ ϕg
itω⊥p

g
itω ≥ 0, ∀i ∈ Ng, t ∈ H (h.8)

0 ≤ ϕg
itω⊥− pgitω + P g

i ≥ 0, ∀i ∈ Ng, t ∈ H (h.9)

0 ≤ ϕgrd
itω⊥p

g
itω − pgi(t−1)ω +RDi ≥ 0, ∀i ∈ Ng, t ∈ H

(h.10)
0 ≤ ϕgru

itω ⊥− pgitω + pgi(t−1)ω +RUi ≥ 0, ∀i ∈ Ng, t ∈ H

(h.11)

0 ≤ ϕd
itω⊥pditω ≥ 0, ∀i ∈ Nd, t ∈ H (h.12)

0 ≤ ϕd
itω⊥− pditω + P d

itω ≥ 0, ∀i ∈ Nd, t ∈ H (h.13)

0 ≤ ϕp↑
itω⊥p

↑
itω ≥ 0, ∀i ∈ Nm, t ∈ H (h.14)

0 ≤ ϕp↑
itω⊥− p↑itω + oitω ≥ 0, ∀i ∈ Nm, t ∈ H (h.15)

0 ≤ ϕp↓
itω⊥p

↓
itω ≥ 0, ∀i ∈ Nm, t ∈ H (h.16)

0 ≤ ϕp↓
itω⊥− p↓itω + bitω ≥ 0, ∀i ∈ Nm, t ∈ H (h.17)

0 ≤ ϕl
(ij)tω⊥yij · (θitω − θjtω) + Tij ≥ 0,

∀(i, j) ∈ L, t ∈ H (h.18)

0 ≤ ϕl
(ij)tω⊥− yij · (θitω − θjtω) + Tij ≥ 0,

∀(i, j) ∈ L, t ∈ H (h.19)

Equation (h.1) is the equality constraint of the Lower-Level
problem, while Eqs. (h.2)-(h.7) are the stationarity conditions.
Finally, (h.8)-(h.19) are the complementarity slackness con-
ditions. We use the perpendicular symbol (⊥) to indicate

complementarity. Replacing the constraining problem (b) with
its KKT conditions results in the following MPEC problem:

min
XU

S ∪XU
O,ω∪XL

ω ,∀ω

∑
ω∈Ω

(−PrDN
ω + Coper

ω ) + C̃inv

+ξ ·
( ∑
ω∈Ω

(−Prinvω + Coper
ω ) + χ · C̃inv

)
(i.1)

Subject to

(a.5)− (a.13), (a.16)− (a.31), (h.1)− (h.19) (i.2)

Problem (i) is a single-level MINLP. The nonlinearities due to
the complementarity conditions are linearized using the Big-
M approach [40]. Complementarity constraints of the type
0 ≤ α⊥β ≥ 0 are replaced by the following set of linear
constraints:

0 ≤ α ≤M · u
0 ≤ β ≤M · (1− u)

where M is a large constant and u is an auxiliary binary
variable. In order to tackle the nonlinearities in the objective
function concerning expression in (a.2), we first multiply Eqs.
(h.5) and (h.6) by p↑itω and p↓itω respectively:

c↑it · p
↑
itω − λitω · p↑itω − ϕp↑

itω · p
↑
itω + ϕp↑

itω · p
↑
itω = 0,

∀i ∈ Nm, t ∈ H

− c↓it⊥p
↓
itω + λitω⊥p↓itω − ϕp↓

itω⊥p
↓
itω + ϕp↓

itω⊥p
↓
itω = 0,

∀i ∈ Nm, t ∈ H

Then, using the complementarity conditions (h.14)-(h.17) and
re-arranging terms, we have:∑

i∈Nm

∑
t∈H

(
λitω · (p↑itω − p↓itω)

)
=∑

i∈Nm

∑
t∈H

(
c↑it · p

↑
itω − c↓it · p

↓
itω + ϕp↑

itω ˙oitω + ϕp↓
itω · bitω

Now, we make use of the Strong Duality Theorem for problem
(b), which states:∑
t∈H

( ∑
i∈Ng

cgit · p
g
itω −

∑
i∈Nd

cdit · pditω +
∑

i∈Nm

(c↑it · p
↑
itω−

c↓it · p
↓
itω)

)
= −

∑
t∈H

( ∑
i∈Ng

(ϕg
itω · P

g
i + ϕgrd

itω ·RDi + ϕgru
itω ·

RUi) +
∑
i∈Nd

(ϕd
itω · P d

itω) +
∑

i∈Nm

(ϕp↑
itω · oitω + ϕp↓

itω · bitω)+

+
∑

i<j,(i,j)∈L

(Tij · ϕl
(ij)tω + Tij · ϕl

(ij)tω)
)

Re-arranging the terms in the above expression, we obtain:∑
t∈H

( ∑
i∈Nm

(c↑it · p
↑
itω − c↓it · p

↓
itω + ϕp↑

itω · oitω + ϕp↓
itω · bitω)

= −
∑
t∈H

( ∑
i∈Ng

(cgit · p
g
itω + ϕg

itω · P
g
i + ϕgrd

itω ·RDi + ϕgru
itω

·RUi) +
∑
i∈Nd

(−cdit · pditω + ϕd
itω · P d

itω)+
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∑
i<j,(i,j)∈L

(Tij · ϕl
(ij)tω + Tij · ϕl

(ij)tω)

Hence, nonlinear expression (a.2) is replaced by its linear
equivalent expression:

PrDN
ω = −πω ·

∑
t∈H

( ∑
i∈Ng

(cgit · p
g
itω + ϕg

itω · P
g
i + ϕgrd

itω ·RDi

+ ϕgru
itω ·RUi) +

∑
i∈Nd

(−cdit · pditω + ϕd
itω · P d

itω)+∑
i<j,(i,j)∈L

(Tij · ϕl
(ij)tω + Tij · ϕl

(ij)tω)

Finally, in order to linearize the expression in (a.15), since we
have considered a lossless DN model, we use the active power
balance equations of the DN (i.e. (a.26) and (a.31)):

πω ·
∑

i∈Nm

∑
t∈H

(
λitω ·

( ∑
n∈Bw

i

gwintω +
∑

n∈Bpv
i

gpvintω+∑
n∈Bes

i

(disintω − chintω)
))

=

πω ·
∑

i∈Nm

∑
t∈H

(
λitω ·

(
(p↑itω − p↓itω) +

∑
n∈B

Dntω

))
Then the remaining nonlinear term λitω · (p↑itω − p↓itω) is
linearized as previously mentioned. Thus, we have transformed
the bi-level problem (c) into a MILP.

B. Formulation of SP1
We transform the bi-level problem (f) into a MILP using the

MPEC method. We replace the lower-level problem (b) with
its KKT conditions. Hence, problem (f) can be recast into the
following MINLP problem:

min
XU

O,ω∪XL
ω

G̃ω = (1 + ξ) · Coper
ω − PrDN

ω − ξ · Prinvω (j.1)

Subject to

(a.5), (a.6), (a.16)− (a.31), (h.1)− (h.19), (f.3)− (f.6)
(j.2)

The above MINLP is transformed into a MILP as explained
in Section V-A, which can be solved using off-the-shelf
solvers. The optimal values h∗

itω, x
∗
intω, ϕ

p↑∗
itω , ϕ

p↑∗
itω , ϕ

p↓∗
itω , ϕ

p↓∗
itω

provided by the solution of problem (j) will be used in the
formulation of SP2 (cf Section V-C).

C. Formulation of SP2
Now, we transform the bi-level problem (f) into an LP using

the MPPDC method. We replace the lower-level problem (b)
with its primal constraints, its dual constraints and the Strong
Duality Theorem expression. Also, we relax the integrality
conditions (a.18) and (a.22), and we fix the values of hitω and
xintω to their optimal values calculated in SP1. Furthermore,
bilinear terms in the Strong Duality Theorem expression are
linearized replacing dual variables ϕp↑

itω, ϕ
p↓
itω with their respec-

tive optimal values calculated solving SP1 (i.e. ϕp↑∗
itω , ϕ

p↓∗
itω ).

Therefore, problem (f) is converted into the following NLP:

min
XU

O,ω∪XL
ω

G̃ω = (1 + ξ) · Coper
ω − PrDN

ω − ξ · Prinvω (k.1)

Subject to

(a.5), (a.6), (a.16), (a.17), (a.19)− (a.21), (a.23)− (a.31)

(k.2)
(b.2)− (b.9) (k.3)

ϕg
itω, ϕ

g
itω, ϕ

grd
itω , ϕ

gru
itω , ϕd

itω, ϕ
d
itω, ϕ

p↑
itω, ϕ

p↑
itω, ϕ

p↓
itω, ϕ

p↓
itω,

ϕl
(ij)tω, ϕ

l
(ij)tω ≥ 0 (k.4)

(h.2)− (h.7) (k.5)∑
t∈H

( ∑
i∈Ng

cgit · p
g
itω −

∑
i∈Nd

cdit · pditω +
∑

i∈Nm

(c↑it · p
↑
itω−

c↓it · p
↓
itω)

)
= −

∑
t∈H

( ∑
i∈Ng

(ϕg
itω · P

g
i + ϕgrd

itω ·RDi + ϕgru
itω ·

RUi) +
∑
i∈Nd

(ϕd
itω · P d

itω) +
∑

i∈Nm

(ϕp↑∗
itω · oitω + ϕp↓∗

itω · bitω)+

+
∑

i<j,(i,j)∈L

(Tij · ϕl
(ij)tω + Tij · ϕl

(ij)tω)
)

(k.6)

(f.3)− (f.6) (k.7)
hitω = h∗

itω (k.8)
xintω = x∗

intω (k.9)

ϕp↑
itω = ϕp↑∗

itω (k.10)

ϕp↑
itω = ϕp↑∗

itω (k.11)

ϕp↓
itω = ϕp↓∗

itω (k.12)

ϕp↓
itω = ϕp↓∗

itω (k.13)

The above problem (k) is a continuous non-linear optimization
problem. Non-linearities in the objective function (k.1) are
linearized as explained in Section V-B and eventually problem
(f) is converted in an LP.
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