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Abstract

Quantitative trading through automated systems has been vastly growing in recent years. The advancement in machine learning

algorithms has pushed that growth even further, where their capability in extracting high-level patterns within financial markets

data is evident. Nonetheless, trading with supervised machine learning can be challenging since the system learns to predict

the price to minimize the error rather than optimize a financial performance measure. Reinforcement Learning (RL), a machine

learning paradigm that intersects with optimal control theory, could bridge that divide since it is a goal-oriented learning system

that could perform the two main trading steps, market analysis and making decisions to optimize a financial measure, without

explicitly predicting the future price movement. This survey reviews quantitative trading under the different main RL methods.

We first begin by describing the trading process and how it suits the RL framework, and we briefly discuss the historical aspect

of RL inception. We then abundantly discuss RL preliminaries, including the Markov Decision Process elements and the main

approaches of extracting optimal policies under the RL framework. After that, we review the literature of QT under both

tabular and function approximation RL. Finally, we propose directions for future research predominantly driven by the still

open challenges in implementing RL on QT applications.
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Abstract—Quantitative trading through automated systems has
been vastly growing in recent years. The advancement in machine
learning algorithms has pushed that growth even further, where
their capability in extracting high-level patterns within financial
markets data is evident. Nonetheless, trading with supervised
machine learning can be challenging since the system learns to
predict the price to minimize the error rather than optimize a
financial performance measure. Reinforcement Learning (RL), a
machine learning paradigm that intersects with optimal control
theory, could bridge that divide since it is a goal-oriented learning
system that could perform the two main trading steps, market
analysis and making decisions to optimize a financial measure,
without explicitly predicting the future price movement. This
survey reviews quantitative trading under the different main
RL methods. We first begin by describing the trading process
and how it suits the RL framework, and we briefly discuss the
historical aspect of RL inception. We then abundantly discuss RL
preliminaries, including the Markov Decision Process elements
and the main approaches of extracting optimal policies under
the RL framework. After that, we review the literature of QT
under both tabular and function approximation RL. Finally, we
propose directions for future research predominantly driven by
the still open challenges in implementing RL on QT applications.

Index Terms—reinforcement learning, quantitative trading,
machine learning, control theory

I. INTRODUCTION

Quantitative finance is a vast field concerned with applying
mathematical and engineering tools to approach financial

problems. The complex dynamics and severe stochasticity
within financial markets motivate researchers and market par-
ticipants to frame the financial problems under mathematical
and engineering contexts. In the 1950s, Markowitz introduced
a central concept in quantitative investing where he formulated
the problem of portfolio management as a mathematical pro-
gram under a single-stage optimization framework [1]. Quanti-
tative finance also extended to the problems of market-making
and cost-minimum execution of trades. Such problems where
used to be approached through optimal control theory [2]–
[5]. The emergence of the Reinforcement Learning (RL) [6], a
machine learning paradigm that intersects with optimal control
theory, and its successful application in real-life motivated
researchers to explore its potency in the field of quantitative
finance. Specifically, advanced recent RL algorithms have
shown success in defeating world champions in the game
of Go and Chess with RL algorithms such as “AlphaGo”
and “AlphaZero” [7], [8], while the “MuZero” agent showed
superior performance in a wide range of games including shogi
and arcade [9]. That success of RL has led researchers to
investigate its potential in solving the market-making, optimal
trade execution, and investment problems [10]–[35].

Investment in financial markets, generally speaking, can
be categorized into three main paradigms: trading a single
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asset, which can be referred to as Quantitative Trading (QT),
assets allocation, and portfolio management. Transacting a
single instrument is about buying and selling the asset repet-
itively in a short period, usually with an intraday interval.
When applying auto-trading systems, one can also use High-
Frequency Trading (HFT) strategies [36] where multi-trades
can be performed within seconds or even microseconds. From
an engineering perspective, the problem of assets allocation,
where assets with various risk levels are traded at different
investment capital weights, extends the problem of transacting
a single asset. With that approach, one can consider re-
balancing the investment capital at each time interval among
risky (e.g., stocks) or risk-less (e.g., Treasury bonds) assets.
The reflected interval in asset allocation problems is usually
significantly larger than that of single-asset trading, where
holding assets may range from a week to several months.
For portfolio management problems, investors form a portfolio
consisting of an arbitrary number of assets, where re-balancing
the assets’ weights can also occur at large time intervals.

Under all paradigms, the investor’s ultimate objective is
to optimize a financial performance measure that usually
accounts for the potential profits against any associated risks
with that investment. Under the Modern Portfolio Theory
(MPT) proposed by Markowitz [37], the main objective is to
maximize the expectation of investment returns while mini-
mizing its variance, which he relates the latter to an investment
potential risks [1]. Since then, the concept of associating return
variance with investment risks has become common among
researchers and practitioners. For example, Sharpe introduced
the idea of Sharpe ratio as a performance measure, which
is defined as the ratio of a risky asset’s excess returns to
its standard deviation [38]–[40]. That measure, however, is
symmetric since it counts for both the upside and downside
returns variance as an investment risk. An investor is usually
concerned about the variance of the investment downside
returns rather than the overall. Hence, the concept of downside
risk as a performance measure was introduced by Sortino in
[41]. After that, Rockafellar and Uryasev [42] introduced the
notion of the Conditional Value-at-Risk (CVaR) that is only
concerned about the tail of the downside return distribution
instead of the overall as proposed by Sortino.

To meet the investment objective, all paradigms involve
an iterative process of analyzing the market and making
decisions. We note that the type of analysis differs depending
on the followed investment approach. For trading a single
asset, the preferred type of analysis among practitioners is the
so-called technical analysis [43], [44], meanwhile fundamental
analysis [45], [46] and macroeconomic variables [47], [48]
may also be used for markets assessment in the case of
assets allocation, and portfolio management. In its simplest
definition, technical analysis is about generating temporal
signals that are a function of the asset opening, low, high, and
closing prices at a predefined number of past time intervals.
Those prices, within a single time interval, form the well-
known price candlestick [49]. We note here that the use of
technical analysis has proven, theoretically and practically, its
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Fig. 1: A general block diagram of the trading process in
financial markets

usefulness in extracting nonlinear regularities in noisy price
signals [50], [51]. After generating those technical indicators,
technicians use these temporal signals to form a prediction
about the potential future movement of the asset’s price and
decide to either buy or sell the asset accordingly. Among
the most common technical indicators are the Simple Mov-
ing Average (SMA), representing the closing price’s mean
over predefined past time steps, and the Relative Strength
Index (RSI) where it indicates that the traded asset might be
oversold (respectively overbought) and suggests a potential
price increase (respectively decrease) over the near future.
For other common technical indicators and technical analysis
approaches, we refer the reader to these references [52]–[54].

After analyzing the market and forming a prediction about
the asset’s price movement, the investor has to make trading
decisions based on that prediction. Under any investment
approach, initiating a trade includes two possible decisions: to
open long or short positions. A long position is about buying
the asset with predicting the price to move higher over time.
On the other hand, short selling is related to borrowing the
asset and selling it to a third party when predicting a decline
in its price. Later on, the asset is repurchased and returned to
the lender in exchange for cash. In that sense, a short position
is profitable in case of an asset’s price drop. We note here that
even closing the initiated position requires thorough analysis
to ensure timing the closing optimally. Intuitively, the trader
sells the asset to close a long position, whereas the trader
“covers” its selling position. Note that each decision in the
process involves transaction frictions. The clearest one is the
commission a broker charges the trader of transacting assets,
usually a percentage of the traded amount [3]. The other charge
is the “spread” cost that results from the difference between
the bid and ask prices of an asset. One can refer to Fig.1 to
visualize the whole process that a trader may go through while
trading within financial markets.

Reinforcement Learning is an experience-based and goal-
oriented learning system that aims to optimize an agent’s be-
havior within an environment. Therefore, it can be categorized
as a machine learning paradigm other than supervised and
unsupervised learning approaches. Trading through supervised
machine learning can be challenging since one trains it to
predict the price to minimize the prediction error rather than
maximize a financial performance function, we refer the reader
to these works that look at the problem with supervised
learning [55]–[59]. To this end, one of the vital privileges
that RL could introduce into approaching Quantitative Trading
(QT) is its potential in performing the two main investment
steps, market analysis and making decisions, without explicitly
predicting the future price movement. More importantly, all of
that may be formulated under an online multi-stage optimiza-
tion framework where the agent interacts within the financial

markets and learns an optimal policy (trading strategy) to meet
the long-term investment objectives.

The root of the RL concept is backed to 1948 when the
so-called "pleasure-pain system" was introduced by Turing in
his report Intelligent Machinery [60]. In that report, Turing
discussed the potential of computer-based artificial intelligence
inspired by the biological theory of "reinforcing" animal
behavior through a trial-and-error learning approach. On the
other side, the research in the field of optimal control theory
was progressing extensively at that time. In the 1950s, Richard
Bellman proposed a pioneering notion in optimal control when
he proposed the utilization of system states dynamics and
control feedback signals to extract a control strategy such
that a predefined function is optimized [61]. Bellman also
proposed solving this function, which is known as the Bellman
optimality equation, by Dynamic Programming (DP). At that
time, computational intractability was imposing limitations in
the use of DP especially when the number of state variables of
a stochastic dynamical system is large. Another shortcoming
in using DP for finding optimal behaviors is the requirement
of complete knowledge about the system dynamics. These
challenges perhaps motivated melting the concept of learning
with DP. This was first devised by Werbos in 1977 in his
efforts to develop advanced forecasting methods for coping
with the global crisis [62] and he, therefore, introduced the
concept of heuristic DP that works as an approximate approach
for solving the problem. About ten years later, a seminal
work in RL was introduced by Watkins whose completely
leveraged DP and optimal control with learning and proposed
the concept of model-free RL in his Ph.D. thesis [63]. In that
context, one does not need to know the dynamical behavior
of a system to extract an optimal control signal (or policy
in RL framework), it is rather learned through estimating the
Bellman equation by experience. Since then, the research in
RL has been extensive and this led to diverse novel algorithms
that in turn grab the attention of other engineering field
researchers, this includes the field of quantitative finance. To
our knowledge, the first two works that considered formulating
the investment problem using RL were the ones by Neuneier
[11], and Moody and Saffel [64]. Neuneier implemented the
critic approach to solve the problem of assets allocation by
extracting a controller’s policy based on estimating value
functions with Q-learning. Instead, Moody and Saffel explored
the actor approach, direct policy search, which they called
Direct Reinforcement Learning (DRL), and tested it on the
Forex market. The reader can refer to Fig.2 to see the progress
and the noticeable contributions of the QT research with RL
since its inception in 1997.

A. Scope and Review Perspectives
The scope of this manuscript is surveying the application of

RL on QT, a branch of quantitative finance. Under that scope,
the objective is to provide the interested readership with an
exhaustive review of how far the ongoing research of QT with
RL reached the frontier of RL algorithms development. In
light of that, we disseminate suggestions about future research
directions endeavoring to prosper the field of QT with RL.
We emphasize that we survey the literature considering the
perspectives discussed below
• Markov Decision Process design: this is concerned about

the overall setup of the Markov Decision Process (MDP),
including states, actions, rewards. The MDP forms the
fundamental structure of any problem approached by RL.

• Handling markets’ uncertainty and non-stationarity: uncer-
tainties in the financial assets price always exist. That mainly
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Fig. 2: A timeline that summarizes noticeable progress of QT with RL since the research inception in 1997. The gray dashed
line represents the directions for future work we propose in this survey.

imposes serious challenges encountered when developing
practical auto-trading systems. This survey evaluates the
different existing approaches for handling such challenges.
For example, we assess the designed methods of tackling
RL’s exploration versus exploitation dilemma.

• RL’s agent risk-sensitivity: traders tend to follow risk-
sensitive strategies. In that sense, they look for strategies
that would result in excess returns while properly controlling
risk measures. So, we assess the reviewed trading systems
in terms of their agent’s risk sensitivity.

• Modelling QT frictions: transaction, slippage, and spread are
undesirable costs traders face. In addition, a trading strategy
under frictions is dissimilar to a policy without frictions, i.e.,
considering frictions leads to path-dependent trading returns.
In the RL context, the optimal policy under both cases,
with or without frictions, is different since the mathematical
structure of the performance measure would also vary.

• Benchmark with baseline strategies: Deploying RL-trading
systems adds complexity compared to baseline strategies.
That being said, we see it crucial for any proposed RL-based
QT to be compared with a more straightforward approaches,
for example, Buy&Hold, Dual Moving Average Corssover
[65], Momentum Trading [66] (see [53], [65], [67]–[69] for
other baseline strategies).

• Testing evaluation metrics: due to the importance of risk
management while trading, risk measures along with total
returns associated with back-testing a trading strategy are
better to be reported. That includes, for example, Sharpe
ratio, Sortino ratio, and maximum drawdown.
Noteworthy, there exist several surveys in the literature that

discuss various quantitative investment strategies with the use
of RL [70]–[72]. We need to emphasize that our work has
main differences that we describe as follows:
• We amply discuss the historical aspects of RL, including

its intersection with control theory, and how the research
in implementing these two concepts on quantitative trading
evolved with time along with the emergence of RL. To
this end, we devote one section to discuss the literature of
quantitative trading with the tools of control theory since it
closely relates to RL.

• We endeavor to bind the investment problem with RL
through a conceptual discussion about the problem and the
fundamental mathematical formulation of RL.

• We abundantly review the literature to propose novel model
formulations inspired by recently introduced RL algorithms
that we believe would forwardly drive the research related
to the problem.
The paper is organized as follows: In Section II we discuss

state
st

reward
rt

reward
rt

st+1

action
atrt+1

Fig. 3: The agent-environment interaction in reinforcement
learning [6].

RL preliminaries, which mainly includes the MDP and its
main elements, i.e., the state, actions, and rewards. We also
discuss the general formulation of optimal value functions and
policies that are attained by the agent’s learning process. Fol-
lowing that, the different RL approaches are amply deliberated,
including critic-, actor-, and actor-critic-based methods. Before
proceeding in reviewing the existing literature of QT with RL,
we shed light on the papers that use control theory to develop
trading systems in Section III, and that is mainly driven by the
fact that control is arguably foundational to the inception of RL
notion. We expose our review of RL-based QT in Section IV
where we focus on the trading systems developed under tabular
RL, mainly with Q-learning algorithms. We then extend our
review under function approximation RL in Section V, and we
discuss the literature of QT with all RL paradigms. In light
of that exhaustive review, we propose directions for future
research that we see worth exploring in Section VI whereas
the survey is concluded in Section VII.

II. PRELIMINARIES: REINFORCEMENT LEARNING

Here, we deliberate the fundamental elements of the RL
framework, i.e., the environment and the agent and their
interaction under the Markov Decision Process (MDP). We
then move to discuss and provide general formulations of the
different central RL approaches encompassing, critic-, actor-
and actor-critic-based methods.

A. The Markov Decision Process
The RL notion is fundamentally based on the concept of

MDPs [61], [73]. An MDP composes an environment and
an agent where the interaction produces a tuple of temporal
trajectories. When these interactions are endless in time, we
classify the MDP as an infinite process. However, a finite
MDP has a terminal state and is called episodic MDP. While
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states describe the environment, the agent is represented by
its policy that maps those states into actions. In that sense,
the agent selects an action 𝑎, from a set of actions A, based
on the observed state 𝑠 ∈ S following a stochastic policy
denoted by 𝜋 ∼ 𝑝(𝑎 |𝑠) or a deterministic policy 𝜋(𝑠). The
agent then receives a reward 𝑟 that represents a “reinforcing
signal” showing the action’s effectiveness at 𝑠, and then the
agent observes a new state 𝑠′ as a subsequent of its action 𝑎 at
𝑠. An observed trajectory can represent that whole sequence,
denoted by 𝜏 = {𝑠, 𝑎, 𝑟, 𝑠′}. Those interactions between the
agent and the environment are illustrated in Fig. 3.

The transition between states in the environment is statisti-
cally modeled with a probability distribution 𝑠′ ∼ 𝑝(𝑠′ |𝑠, 𝑎).
Like 𝑠′, the observed reward can also be modeled as 𝑟 ∼
𝑝(𝑟 |𝑠, 𝑎). Combining the probability density of both 𝑠′ and 𝑟
results in a joint distribution that represents the environment’s
one-step-ahead dynamics

𝜓𝑆′,𝑅 := 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) (1)

We note here that the RL algorithm is model-based when the
dynamics of the environment, described in (1) are known. With
that, one can find an optimal policy by solving the well-known
Bellman equation using DP techniques. Yet, we leave the
discussion of obtaining optimal policies with DP under model-
based RL since it is out of this work’s scope; we instead refer
the interested readers to related discussions that can be found
in [6], [61]. If the MDP dynamics are unknown, like financial
markets, one can solve the problem through different model-
free RL approaches. Before discussing those approaches, let us
see the fundamental formulation for finding optimal policies
within a model-free MDP.

B. Optimal Value Functions and Policies
The main objective of the learning process, i.e., trial-and-

error under model-free MDP, is to find a policy 𝜋 that
maps states into actions while simultaneously optimizes an
action-value function1 that counts for the policy’s performance
measure, and we denote it by 𝑄 𝜋 (𝑠, 𝑎). Let us consider a finite
MDP with a length of 𝑇 and time steps indicated by 𝑡, then
𝑄 𝜋 (𝑠, 𝑎) can be described by

𝑄 𝜋 (𝑠, 𝑎) = E[𝑅𝑡 |𝑠 = 𝑠𝑡 , 𝑎 = 𝑎𝑡 ] (2)

With the cumulative reward 𝑅𝑡 being defined as

𝑅𝑡 =

𝑇−1∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 (3)

Where 𝛾 ∈ [0, 1] is a discount factor. We now need to
emphasize several notes. First, the action-value function gov-
erned by (2) and (3) indicate that the state-action value is the
expected discounted cumulative reward when taking action 𝑎𝑡
at 𝑠𝑡 following the policy 𝜋 from that time step and onward.
To determine how farsighted the agent is, one can use the
discount factor 𝛾 that tunes the observed reward’s weights
that contributes to the cumulative reward 𝑅𝑡 .

Finally, a policy is called optimal, denote it by 𝜋∗, if it is
associated with an optimal action-value function, that is

𝑄 𝜋∗ = max
𝜋

𝑄 𝜋 (𝑠, 𝑎); ∀𝑠 ∈ S, 𝑎 ∈ A (4)

Where the controller can reach 𝜋∗ through iterative experiential
learning that can be performed with different model-free RL
approaches, which we discuss in the next subsection.

1The value can also be a function of states only. That is precisely the case
with model-based RL where the optimal policy is derived using DP. However,
with model-free RL, it is better to represent the values with the state-action
pairs, refer to [6].

C. Reinforcement Learning Approaches
1) Critic-Based Methods: Following this approach, the

action-value function under policy 𝜋 can be estimated by
either tabular or function approximation methods [6]. With
tabular methods, each state-action pair forms an entry to a
table and is assigned a value. Clearly, with this method, the
MDP can only be represented by discrete state and action
spaces. On the other hand, function approximation methods
allow for continuous state spaces where a vector of parameters
approximates the values. The optimal value function, with
tabular methods, can be obtained by SARSA (State-Action-
Reward-State-Action) or Q-learning algorithms. Both of those
approximate the solution of the Bellman equation by trial-
and-error experience, which their proof of convergence to an
optimal policy is deliberated in [74] and [75], respectively.
Both algorithms are fundamentally based on the Temporal
Difference (TD) notion [76]. However, they differ in the
learning approach where SARSA learns with the so-called
on-policy learning while Q-learning is off-policy [63]. To this
end, with the SARSA algorithm, learning the value function
depends on the pair value of the currently taken action and
the next observed state. That is, the agent learns an optimal
policy 𝜋∗ with its associated optimal value function 𝑄 𝜋∗ (𝑥, 𝑎)
through an iterative one-step update rule given by

𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) ←𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 )+
𝛼
[
𝑟𝑡+1 + 𝛾𝑄 𝜋 (𝑠𝑡+1, 𝑎𝑡 ) −𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 )

] (5)

Where 𝛼 ∈ (0, 1) is the learning rate. On the other hand, with
Q-learning that follows the off-policy approach, the action-
value update is carried out considering the action that would
reveal maximum value, i.e., greedy, at the next observed state
regardless of the currently taken action; the update rule is
therefore given by:

𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) ←𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 )+
𝛼
[
𝑟𝑡+1 + 𝛾 max

𝑎
𝑄 𝜋 (𝑠𝑡+1, 𝑎) −𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 )

] (6)

Under both algorithms, we note that all state-action pairs shall
be visited frequently to ensure continuous updates for proper
convergence [6]. Clearly, with that, the data and computational
power required to find the optimal policy and having a sat-
isfactory generalization performance grows significantly with
the increase of state-action pairs, which leads to the well-
known chronic dilemma of curse of dimensionality. To this
end, function approximation has been introduced to improve
the generalization performance in large state spaces since the
agent can approximate the value of non-visited state-action
pairs to nearby ones that were visited before. With a parameter
vector Θ ∈ R𝜅 , one can assume

𝑄 𝜋 (𝑠, 𝑎;Θ) ≈ 𝑄 𝜋∗ (𝑠, 𝑎) (7)

and reach an approximation using linear functions or non-
linear ones, similar to the pioneering work of Mnih et al. [77]
where they introduced the concept of Q-network by utilizing
a deep NN as the function approximation method, which
they called DQN. Along with these approximations, one can
iteratively learn the parameter vector Θ by minimizing the
difference between an online and target networks in an off-
policy learning approach, i.e.,

𝐿𝑖 (Θ𝑖) = E
[ (
𝑦
𝐷𝑄𝑁

𝑖
−𝑄(𝑠, 𝑎;Θ𝑖)

)2
]

(8)

Where
𝑦
𝐷𝑄𝑁

𝑖
= 𝑟𝑡+1 + 𝛾 max

𝑎
𝑄(𝑠𝑡+1, 𝑎;Θ−)
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𝐿𝑖 and Θ𝑖 count for the loss and the parameter vector,
respectively, at the 𝑖th iteration, while Θ− is the target network
parameter vector. Then, as proposed in [77], one can update
the parameters in the direction that minimizes the loss in (8)
using Gradient Descent (GD) methods [78]

ΔΘ = −𝛼∇Θ𝑖
𝐿𝑖 (Θ𝑖) (9)

To enhance the data efficiency for the agent’s learning process,
Mnih implemented the concept of memory replay [79] where
the agent not only learns from recent observations, but also
learns from old experiences where they are stored in a memory
buffer and used as mini-batches to update the online network.
Moreover, Schaul et al. proposed an algorithm to further
enhance the use of the memory replay, and that is by using a
prioritized experiences along the learning process (see [80]).

Hasslet observed that an overoptimistic value estimation
is usually attained with DQN [81]. He found out that is
attributed to the fact that the same maximum operator is used
twice during action evaluation, as shown in (8), and executing
actions by the agent. Hasslet, as a consequence, proposed
the concept of Double DQN (DDQN) in [82]. The DDQN
algorithm is quite similar to DQN except for 𝑦

𝐷𝑄𝑁

𝑖
where it

becomes as follows in DDQN architecture

𝑦
𝐷𝐷𝑄𝑁

𝑖
= 𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1,max

𝑎
𝑄(𝑠𝑡+1, 𝑎;Θ𝑖); 𝜃−)

Noteworthy, under either tabular or function approximation
methods, 𝜀-greedy policies are preferred when the agent’s
environment is non-stationary [6], that is precisely the financial
market dynamics behavior. With that exploratory attitude, the
agent takes greedy actions, i.e., 𝑎𝑡 = max𝑎 𝑄

𝜋 (𝑥𝑡 , 𝑎), with
probability 1 − 𝜀, meanwhile it explores the financial market
by taking random decisions with probability 𝜀. Thus, selecting
𝜀 is crucial in having a fair balance between exploitative and
exploratory decisions. In fact, exploration versus exploitation
is one of the main challenges underlying the practical imple-
mentation of RL [6]. Nonetheless, we do not see 𝜀-greedy
policy is the best approach for exploration under QT, and we
will discuss that further in the review sections IV and V.

2) Actor-Based Methods: These methods aim to directly
learn a policy that optimizes an objective function indepen-
dently from action-value estimation. The learning process
involves a parametric policy whose parameters are updated
to optimize the objective function. We refer the reader to
the pivotal work of Williams that originally introduced these
methods, see [83], [84]. Notwithstanding, here we discuss the
formulation of actor-based approach following Moody and
Saffell [64], and we call it DRL to be consistent with the
literature. Under that approach, let

𝜋(𝑠;Θ) (10)

denote a deterministic policy function that has Θ as its decision
vector. One can represent the function by a linear or non-linear
universal approximators, for example, feed-forward NN, Long
Short-Term Memory NN [85], [86], or even Convolutional
NN (CNN) [87]. Note that the policy in (10) is a function
of the environment’s states. Obviously, with that formulation,
the policy’s actions are based on the sensed state of the system.

When DRL is applied to trading problems, one can evaluate
the action efficacy, at each time step, by observing the achieved
investment returns due to that action. Hence, we can define
the reward with neglecting the discount factor, i.e., 𝛾 = 0 and
consequently 𝑅𝑡 = 𝑟𝑡+1. Based on that, let us now define a
general performance measure that is a function of the received

rewards within 𝑇 , indicated by U𝑇 (𝑅); then one can set up
the problem as

max
Θ

U𝑇 (𝑅) (11)

Where 𝑅 ∈ R𝑇 is the reward vector, and the objective is to
find the decision vector Θ that maximizes2 our performance
measure U𝑇 (𝑅). To improve the policy with respect to the
performance criterion in (11), the decision vector Θ can be
updated in an offline manner. That is, after a full sweep on
all trajectories in an episode, one can apply gradient ascent as
follows

ΔΘ = 𝛼∇ΘU𝑇 (𝑅) (12)

However, one may be interested in having an online algorithm
where the parameters are updated at each time step 𝑡. That can
be attained by redesigning the performance criterion to be a
function of the received rewards up to and including time 𝑡,
i.e.,

U𝑡 (𝑅1, 𝑅2, ..., 𝑅𝑡 ) (13)

In that sense, the policy is now a function of Θ𝑡 , denoted by
𝜋𝑡 (𝑠𝑡 ;Θ𝑡 ), and the parameter vector can be updated through
Stochastic Gradient (SG) methods [88]

Θ𝑡+1 = Θ𝑡 + 𝛼∇Θ𝑡
U𝑡 (𝑅1, 𝑅2, ..., 𝑅𝑡 ) (14)

We need to point out that optimization with SG has an
attractive privilege. Since SG provides “noisy” gradient in-
formation, it enhances the exploratory behavior of the agent.
That behavior can be altered by tuning the learning rate.

3) Actor-Critic Methods: The actor-critic method is an
approach that is between critic- and actor-based methods.
Under that paradigm, the agent learns an estimate for the value
function while simultaneously follows a policy represented by
a function. In that sense, the estimation error, i.e., the TD
error, of the value function represents the critic part, whereas
the actor part is used to update the agent’s policy based on
that error. The reader can refer to Fig.4 that illustrates the
general learning process under this RL method. Following the
fundamental formulation of this approach in [6], consider the
action-value in (6) under off-policy learning, then one can
define the value estimation error as

𝛿𝑡 = 𝑟𝑡+1 + 𝛾 max
𝑎

𝑄 𝜋 (𝑠𝑡+1, 𝑎) −𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) (15)

Also, considering a policy that, for example, is given by a
softmax function

𝜋𝑡 (𝑠, 𝑎) =
𝑒𝑝 (𝑠,𝑎)∑
𝑏 𝑒

𝑝 (𝑠,𝑏) (16)

Then one can update the value and policy functions indepen-
dently

𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼𝛿𝑡
𝑝(𝑠, 𝑎) ← 𝑝(𝑠, 𝑎) + 𝛼𝑎𝛿𝑡

(17)

Where 𝛼𝑎 ∈ (0, 1) is the learning rate for the actor part. With
that, the tendency of taking 𝑎 at 𝑠𝑡 increases or decreases
depending on the value of the error 𝛿𝑡 . In critic-based meth-
ods, besides their limited applications to discrete action-space
problems, a small perturbation in the value estimation results
in a significant change in the followed policy, which imposes
serious convergent intricacies in many practical applications.
The actor-critic algorithm can improve that unstable behavior
by approximating the policy with a function whose parameters
are updated with SG methods to improve the performance

2It also can be a minimization problem. That all depends on the defined
performance measure.
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Fig. 4: The RL actor-critic architecture [6].

measure, i.e., the estimation of the value function. These
methods have been extended to function approximation where
separate parameter vectors approximate the critic and actor
parts independently; for example, see the work of Konda and
Tsitsiklis [89]. Further, Sutton et al. [90] proposed an actor-
critic approach under function approximation that is based on
stochastic policy gradient. Recently, Silver et al. [91] proposed
the deterministic policy gradient (DPG) algorithm that is
significantly more sample-efficient than its stochastic counter
algorithm, especially in problems with large continuous action
spaces. Gradient computation in DPG only requires integration
over the state space, whereas the stochastic algorithm neces-
sitates integration over both state and action space. Note here
that even policy gradient algorithms do have on-policy and
off-policy learning, and the details of those can be found here
[91]. Let us consider, under on-policy learning, a performance
measure associated with a parametric policy 𝜋(𝑠;Θ), denoted
by 𝐽

(
𝜋(𝑠;Θ)

)
, that counts for the reward expectation, as the

right hand side of (2), then the policy gradient with respect to
theta considering a stochastic policy can be given by [91]

∇Θ𝐽
(
𝜋(𝑠;Θ)

)
=

E𝑠′∼𝑝 (𝑠′ |𝑠,𝑎) ,𝑎∼𝜋
[
∇Θ log 𝜋(𝑎 |𝑠;Θ)𝑄 𝜋 (𝑠, 𝑎)

] (18)

While if one considers a deterministic policy, then the gradient
would be
∇Θ𝐽

(
𝜋(𝑠;Θ)

)
=

E𝑠′∼𝑝 (𝑠′ |𝑠,𝑎)
[
∇Θ𝜋(𝑠;Θ)∇𝑎𝑄 𝜋 (𝑠, 𝑎) |𝑎=𝜋

] (19)

While the critic can be updated through (9), one can then
update the policy’s parameter Θ in the ascent direction of
the performance measure using (18) and (19) for stochastic
and deterministic policies, respectively. Note that for com-
puting the gradients in (18) and (19) one would need to
estimate the value functions, similar to what we described
in (7). Noteworthy, various advancements related to actor-
critic were exposed in the literature since the work of Silver,
mainly inspired by the successful enhancements implemented
on DQN. For instance, Lillicrap et al. [92] extended the
concepts of memory replay and target networks to the DPG
framework, which he called Deep DPG (DDPG). Moreover,
Mnih et al. [93] proposed different asynchronous deep RL
algorithms, and the most remarkable performance was found
in the asynchronous actor-critic, which they called A3C. The
A3C is an on-policy learning method that to some extents
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(a) Actor-Critic
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Fig. 5: Quantitative trading systems based on the main, and
common, function approximation RL approaches; (a) Illus-
trates the configuration of the system under actor-critic with
DPG; (b) Shows the configuration of a critic with DQN
architecture; (c) Demonstrates the actor part under feedforward
NN as the function approximation for the agent’s policy. The
dashed grey signals under all figures represent the possibility
of the recurrent structure where the agent remembers its last
action (or holding), that is to learn a path-dependent policy
and hence reduce transaction costs.

has similar impact to memory replay on learning from data.
During the learning process in A3C, instead of memory replay,
A3C asynchronously executes multiple agents in parallel on
various states of each. In that sense, the de-correlation of
samples is evident, similar to the impact of the memory replay
concept while enhancing the use of data. Further, DDPG is
similar to DQN in the overestimation of the value function
since the evaluation and execution of actions are based on the
greedy policy. Therefore, Fujimoto et al. [94] overcome this
challenge by implementing double DDPG, which they called
twin delayed deep deterministic RL (TD3). The most current
state-of-art actor-critic method under function approximation
is the Proximal Policy Optimization (PPO). Instead of learning
from one sample at each gradient step in DPG, PPO offers a
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novel performance function that allows multi-epoch of mini-
batch updates; it thus has better empirical sample complexity
[95]. Moreover, Haarnoja et al. [96] proposed a Soft Actor-
Critic (SAC) algorithm that deploys the concept of maximum
entropy RL [97] under the actor-critic framework. That was
shown to boost data efficiency during the learning process due
to enhancing the exploratory behavior of the agent. At the
same time, it also uses target networks and memory replay
over the learning process.

We need to underscore that auto QT systems can be
developed using the different RL approaches we discussed
earlier. For visualizing those systems, the reader can refer to
Fig.5 where it shows the interaction of the agent and financial
markets during the trading process under the common RL
approaches. Before discussing the literature related to QT with
RL, let us first shed light on the QT research using control
theory in the next section.

III. CONTROL-THEORETIC APPROACH

Essentially, one can view financial markets as dynamical
systems in which temporal aspects govern their behavior.
Control theory is a very attractive tool for decision mak-
ing in dynamical systems, however, it often requires good
knowledge of the dynamics governing how the states evolve
with time. In control, the dynamics are assumed to take a
certain form and the reward needs to be well-defined, and
then, the controller (or agent, in the context of this paper) is
designed. Given the severe stochasticity of financial markets,
it often becomes challenging to have a clear description of
the dynamics. Nevertheless, there are techniques in control
theory that proved useful for trading under uncertainty. From
a control perspective, computing the policy in reinforcement
learning can be viewed as an approximation to the optimal
control policy, which maximizes the reward over the entire
horizon subject to system dynamics and constraints.

In [98], a risk-free stochastic control approach was con-
sidered for optimal pairs trading, and the optimal control
policy was derived via the Hamilton-Jacobi-Bellman equation.
Uncertain parameters were computed via maximum-likelihood
estimation. For mean-reverting assets, conditions for the opti-
mal control policy to buy low and sell high were derived in
[99]. A different paradigm in [100] was considered, where the
control design is model-free, that is, there is no parametrization
nor estimation of the stock price dynamics. The work provides
robust performance guarantees, but for a frictionless market.
For Simultaneous Long-Short trading, the performance limits
of feedback control were discussed in [101] and the work in
[102] demonstrated that linear feedback control, which works
well for time-invariant price dynamics (not realistic in financial
markets), and has good potential for time-varying dynamics.

To deal with uncertainty, one can also use what is called
robust control [103], a control paradigm which optimizes
under the worst-case scenarios of uncertain parameters. For
risk-averse stock trading, the work in [104] looked into mean-
variance considerations, and concluded that mean-variance
measures might be inappropriate when feedback control is
used, which motivates the use of other risk measures.

On another note, control methods can be useful in portfolio
optimization. For example, in [105], the multi-period portfolio
optimization problem was addressed by using linear control
policies, which is suboptimal but can be computed by a convex
quadratic program, making its computation attractive. Further-
more, in [106], stochastic interest rates were considered, and
explicit solutions to control strategies were provided.

For real implementation of control methods, reinforcement
learning provides an attractive approximation to optimal con-

trol policies, and in this section, we have provided examples
from the control literature to shed light into some interesting
efforts, which remain mostly idealized.

IV. QUANTITATIVE TRADING VIA TABULAR
REINFORCEMENT LEARNING

In the context of QT, the market’s environment is complex
and requires large and continuous state space for appropriate
representation. As we discussed earlier, QT practitioners have
a common approach of using temporal data to generate trading
signals; this includes technical indicators, past price returns, or
any financial metrics related to fundamental analysis. Although
we believe that tabular methods are with limited practical use
for QT. However, we still offer a detailed discussion about
noticeable works, while providing a general overview of many
other relevant papers.

A summary of all reviewed papers that use RL with tabular
methods is presented in Table I. The work of Dempster et al.
in [107] was instrumental in integrating QT with RL through
implementing the notion of Q-learning [113]. In their work, the
environment is represented by technical indicators that form
a string with sixteen bits while the actions follow a discrete-
deterministic policy 𝜋(𝑠) ∈ {0, 1} where 0 indicates selling
signal whereas 1 represents indicates buying. Moreover, their
action-value function is modeled as the expectation of the
multiplicative returns, rather than the additive described in (3),

𝑄(𝑠𝑡 , 𝑎𝑡 ) = E
[
𝑇−1∏
𝑡=1

(
𝑝𝑡+1
𝑝𝑡

) 𝜋 (𝑠𝑡 )
(1 − 𝑐) |𝜋 (𝑠𝑡 )−𝜋 (𝑠𝑡−1) |

]
(20)

Where 𝑝𝑡 represents the asset’s price at time 𝑡, and 𝑐 is a fixed
percentage representing the transaction cost. That expectation
in (20) is approximated using Q-learning where the update
rule takes the back-recursion form described in (6).

They compared the performance of their trading system
with strategies extracted from Genetic Algorithm, Markov-
Chain Linear Programming approximation, and simple heuris-
tic. Interestingly, in their back-testing of the trading strategy,
they observed significant adverse change in the result when
transaction cost is imposed.

We see that Yang et al. in [110] had a novel contribution in
the field of QT using RL where they implemented the concept
of Gaussian Process Inverse Reinforcement Learning (GPIRL)
to generate trading signals. The Inverse Reinforcement Learn-
ing problem was originally formulated by Russell in [114],
and Ng et al. in [115]. In the IRL context, rather than finding
an optimal policy from a sequence of observations, we aim to
extract a reward function by observing a given policy in an
MDP. The concept was enhanced further by Ramachandran
et al. in [116] when he formulated the idea of IRL in the
Bayesian framework. Qiao et al. in [117] then extended this
work by discussing GPIRL to handle the problem of partially
observed optimal behaviour (policy) in IRL setup (For further
reading related to IRL and recent advancements, we refer the
reader to [97], [118], [119], [120], [121] and [122]). Back to
Yang’s work in [110], the authors used the extracted reward
function by GPIRL as features space to train a supervised-
learning-based trading system. Noteworthy, IRL could help in
overcoming the challenge of a handcrafted reward function,
and that may be combined with RL to train an agent based on
the learned reward by the IRL algorithm [123].

It is observed that most of the works are using model-
free Q-learning algorithm to estimate the action-state value
function, except for Chen et al. in [112] where the authors
used SARSA and Yang et al. in [110] where a model-based
algorithm is used based on IRL. We have observed the limited
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TABLE I: Summary of Quantitative Trading with Reinforcement Learning - Tabular Methods

Reference RL Algorithm
Policy Value Function

Assets
QT Frictions Evaluation Metrics

Deterministic Stochastic Risk-Neutral Risk-Averse Trans. Spread Slippage Total
Returns

Sharpe
Ratio

Sortino
Ratio

Max.
Drawdown

Dempster et al. [107] Model-free,
Q-learning * * Forex [15m] * * * * * *

Zhu et al. [108] Model-free,
Q-learning * * USETF [days] *

Jangmin et al. [109] Model-free,
Q-learning * * KSM [1d] * * * *

Yang et al. [110] Model-based * * USETF [15m] * * * * *

Elder et al. [111] Model-free,
Q-learning * * * USI [15m] * *

Chen et al. [112] Model-free,
SARSA * * JSM [1d] *

Notes:
1) US Exchange Traded Fund (USETF); Korea Stock Market (KSM); US Indexes (USI); Japan Stock Market (JSM)
2) m = minute; d = day

use of the eligibility traces concept in estimating the Q-
function [124], [125]. The eligibility traces concept is useful
when the table entries of state-action values are large. These
traces track recently visited entries and give more weights
to them when they are updated. The use of eligibility traces
weights while learning enhances the computation efficiency;
it also provides better sample complexity. Generally speaking,
the states implemented to represent the environment satisfy the
Markovian property to some extent, where we found that most
of the papers use technical indicators or price signals. All these
states are temporal data that summarizes the price trends over
predefined past time steps, and they also can be related to the
agent’s external environment. With formulating QT following
RL framework in case of retail investors, we recommend to
include agent’s internal states, for example, the agent holding
positions and its performance while holding as it is seen in the
work of Elder in [111]. When we use internal states, we make
the agent more self-aware by having its action at 𝑠𝑡 cause a
partial influence on the next observed state 𝑠𝑡+1. Moreover,
we have noticed that most presented algorithms implement
stochastic policies to produce trading signals. Specifically,
the most common policy used in these works follows the
concept of 𝜀-greedy policy in which the exploratory actions
are taken with pure randomness; this approach is also called
the undirected exploration method as stated by Thrun in
[126]. With that policy design, we can say the dilemma
of exploitation versus exploration is moderately addressed.
However, as stated earlier in this survey, price signals of
financial assets usually experience uncertainty that can be
characterized as a non-stationary stochastic process. To this
end, we believe that environments with financial assets require
more robust policy designs in which exploration actions are
also taken strategically, see for example the work of Agostini
et al. where they advocated the use of directed exploration
strategy using the variance of action-state value estimates in
non-stationary environments [127]. The value function design
was found mostly as risk-neutral, that is the expected return
with a different selection of the discount rate constant 𝛾. Elder
in [111], however, used a risk-averse design that accounts for
the agent’s reward variance. From the trading aspect, when
looking at modeling QT frictions during policy learning, it can
be observed that it is well-addressed in the work of Jangmin
et al. in [109] where they modeled all possible frictions,
including transaction, slippage, and spread costs. Elder in
[111], on the other hand, included QT frictions while back-
testing instead of during learning. As we emphasized earlier,
modeling frictions while learning the policy is preferred since
it helps the agent to learn path-dependent trading policy.
Finally, most of the results are reported using the annualized
return as a performance metric. We, however, observed that

Yang focused more on reporting risk measures such as Sharpe
Ratio, Sortino Ratio, and maximum drawdown [110].

V. QUANTITATIVE TRADING VIA REINFORCEMENT
LEARNING WITH FUNCTION APPROXIMATIONS

QT with function approximation solutions is observed to
be dominant over tabular approaches in the literature. That
perhaps is attributed to their potential use with deep learning
[128]. In a sense, integrating the RL notion with deep learning
reveals novel insights into QT applications. One aspect is the
capability of function approximation to better represents the
complexity of financial assets’ environments. The ability to de-
velop a more feasible representation for financial instruments’
price signals using function approximation and deep learning
lay in their potency of capturing complex patterns in large
and continuous state spaces. In principle, an agent designed
to trade financial assets should have a flexible strategy that can
work with never-encountered situations, and to our belief, this
is the significance of function approximation with deep learn-
ing in the field of QT. To this end, we confer a detailed review
for function approximation methods with all RL paradigms,
and we discuss them in separate subsections. Similar to our
discussion in the tabular methods section, here we focus our
review on selected works that we see have novel strides in the
field of QT following the RL function approximation paradigm
under each approach, and we give an overall discussion about
the remaining related literature.

A. Critic-Based Methods
As we stated earlier, function approximation under critic

RL aims to approximate the action-value function to handle
large and continuous state space, which is usually the case
in financial markets. The value function plays the role of
the performance index that the agent shall learn to optimize
with experiential trial and error. In most cases, the index
is the expectation of the returns obtained over the learning
process; however, this leads to a risk-neutral agent that lacks
dealing with risks associated with QT. The agent is usually
greedy in taking the action that would reveal the highest
action-state pair value. At the same time, it can explore the
environment with random activities from time to time, i.e., the
well-known 𝜀-greedy policy we discussed earlier. Exploring
with random actions may lead to unnecessary losses. During
our review, we will see how some works creatively strategize
the exploratory behavior of the agent rather than the pure
randomness associated with the 𝜀-greedy policy. Next, we
review some foundational works based on the perspectives we
discussed earlier, then state our general notes and remarks.

The summary of QT under critic-methods with function
approximations is demonstrated in Table II. Lee et al. in [129]
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TABLE II: Summary of Quantitative Trading with Reinforcement Learning - Critic-Based Methods

Reference RL Algorithm
Policy Value Function

Assets
QT Frictions Evaluation Metrics

Deterministic Stochastic Risk-Neutral Risk-Averse Trans. Spread Slippage Total
Returns

Sharpe
Ratio

Sortino
Ratio

Max.
Drawdown

Lee at el. [129] Q-learning
with NN 𝜀-greedy * KSM [1d] * * *

Bertoluzzo and
Corazza [130]

Q-learning
with linear

function
𝜀-greedy * ISM [1d] * *

Eilers et al. [131] Q-learning
with NN 𝜀-greedy * USI, GI [1mo] * *

Cumming [132]

Least-Square
Temporal
Difference

[133]

𝜀-greedy * Forex [1m] *

Corazza and Sangalli
[134]

Q-learning
and SARSA
with linear

function

𝜀-greedy * ISM [1d] * *

Carapucco [135] Q-learning
with NN 𝜀-greedy * Forex [2h] * * *

Huang [136] DQN with
LSTM * * Forex [15m] * * * * *

Gao [137]
DQN with

LSTM,
GRN, CNN

𝜀-greedy * APS *

Chen and Gao [138] DQN, DQN
with LSTM 𝜀-greedy * USETF [1d] *

Lucarelli and Borrotti
[139]

DDQN and
Duelling

DDQN with
CNN

𝜀-greedy * Crypto [1m] * * *

Sornmayura [140] DQN 𝜀-greedy * Forex [1d] * *

Tsantekidis et al.
[141]

DDQN with
LSTM 𝜀-greedy * Forex [60m] * * * *

Carta et al. [142] Duelling
DDQN 𝜀-greedy * USSM [60m] * * *

Theate and Ernst
[143] DDQN 𝜀-greedy * VSM [1d] * * * * *

Notes:
1) US Stock Market (USSM); Various Stock Markets (VSM) ;Korea Stock Market (KSM); Italy Stock Market (ISM); German Indexes (GI); US Indexes (USI); US Exchange Traded Fund (USETF); Artificial Price Signal (APS)
2) m = minute; h = hour; d = day

presented a unique methodology of trading with a buy-only
strategy with critic-based methods where they applied it on
the Korean stock market. The primary approach is to train
four agents that collaboratively learn the following sequential
tasks: agent to generate a buy signal, agent to advise the best
buy price, agent to generate a sell signal after the purchase
is done, and finally, an agent to recommend the best-selling
price. All agents are developed with the Q-learning algorithm
that estimates the state-action values using a feedforwad neural
network. Interestingly, all states and actions are specified using
an encoding scheme, and each agent has its own state-action
space. The states of signal generation agents are matrices with
a binary representation for their elements. Fibonacci numbers
[144] are used to represent predefined and discrete past periods
within those matrices columns. In contrast, the rows represent
the change in the price within Fibonacci intervals, forming
what they call the Turning Point matrices. Note that the state of
the selling signal agent is the unrealized profit resulting from
holding a specific asset. The action of the buy signal agent
is whether to buy or not, whereas the sell signal is to sell or
hold. For order agents, the states are Japanese Candlesticks’
bodies, upper and lower shadows, and technical indicators.
The actions of order agents are to determine the best price for
execution with discrete fractions of the simple moving average
for the closing prices, and they are also encoded through
binary representation. The main reward for the buying agent
is simply the resultant profit of the whole buy/sell process
of all agents after discounting the transaction costs, including
slippage. Interestingly, the slippage cost is represented by
random perturbation of the prices. They also performed a
trading cost analysis to evaluate the performance at different
transactions and slippage costs.

We observed that most of the recent works consider deep
Q-learning at different architectures tested on various financial
markets. One remarkable work was carried out by Tsantekidis

et al. [141] where they implemented DDQN with a recurrent
structure through the use of an LSTM network [145]. With
their temporal signals of technical indicators as the states,
the implementation of DDQN with an LSTM enhances the
environment’s representation by capturing time-dependency
within the data and, more importantly, avoiding overfitting
due to the high noise embedded within the financial markets.
Moreover, Huang in [136] also implemented a Recurrent DQN
(RDQN) with LSTM as the function approximator and applied
it on the forex market. One exciting finding by Huang is that
a substantial small replay memory size, around a few hundred
experiences, would perform better than a large one. That is
perhaps attributed to the non-stationary behavior of the market,
where training samples from older experiences may not be
representative of the current market regime. Carta et al. in
[142] further investigated the performance of DDQN where
they implemented the notion of duality proposed by Wang et
al. [146] to build an agent that trades within the US stock
market. The central concept behind duel DDQN is estimating
the action values based on separate estimates of the state value
function and the action advantage function. We note here that
the key advantage of the dueling architecture lies in avoiding
the unnecessary evaluation of some actions at particular states.
In trading within financial markets, it is always recommended
to be aware of the consequences of all actions at all states, and
that is for better risk management. Some of the works com-
pared the performance of different DQN algorithms. Gao [137]
made a comprehensive comparison related to the performance
of DQN with various function approximators, i.e., CNN, GRU,
LSTM at multiple architectures. The comparison, however, is
applied to artificial price signals. On the other hand, Chen and
Gao in [138] assessed the performance of DQN against RDQN
with LSTM in the US stock market. They found that RDQN
outperformed DQN in terms of total achieved profits; however,
it was under neglected trading commissions. Lucarelli and
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Borrotti in [139] compared DDQN with dueling DDQN on
bitcoin data. As expected, the experiment revealed that the
performance of DDQN outweighs the dueling algorithm in
terms of the total generated profits.

As for the exploration versus exploitation dilemma, Cum-
ming [132] in his work proposed an exponentially decaying 𝜀
with time

𝜀𝑡 = 𝑒−𝑡/𝜏 (𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛) + 𝜀𝑚𝑖𝑛 (21)

Where 𝜏 governs the decaying rate, and 𝜀𝑚𝑎𝑥 , 𝜀𝑚𝑖𝑛 determine
the exploration range one would use in training the agent.
Following that approach, one may ensure sufficient exploration
initially with proper annealing, i.e., less exploratory agent,
as time progresses. As that may help improve the training
process, we see that it could eventually lead to degraded
trading performance as time evolves due to the non-stationary
nature of financial markets. Wang et al. in [147], Huang
in [136], and Theate and Ernst in [143] also proposed an
exploration strategy that prevents taking random actions by
the agent when exploring the market. Their idea is to update
the action-value function for taken and non-taken actions. That
can be achieved in trading problems since knowing the asset
price change allows one to observe the reward for all possible
actions, then update all action-state pair values accordingly.
Due to the inherent nature of Q-learning, most of the works
use discrete action space that may eventually lead to risky
trading behavior. We, however, observed that Jeong and Kim
in [148] used a softmax function as the output of the DQN
to determine how many shares to trade. With that approach,
to some extent, one may regulate the size of the trades that
would ultimately lead to better risk management.

For the reward and action-value designs, Corazza and San-
galli in [134], and Bertoluzzo and Corazza [130] implemented
the Sharpe Ratio as the primary agent objective to maximize,
which in turn leads to a risk-sensitive agent. We need to
emphasize the novel reward design done by Tsantekidis et al.
[141]. They shaped the function with what they called “Price
Trailing” reward. That price trailing reward can be described
as

𝑟Trail
𝑡 = 1 −

|𝑝𝑡𝑎 − 𝑝𝑡 |
𝑚𝑝𝑡

(22)

Where 𝑝𝑡𝑎 is a controllable price that is assigned by the agent’s
actions, and 𝑚 is a margin parameter that determines the
distance from the closing price 𝑝𝑡 . The price-trail reward is
positive when the agent’s price is within the margin, while
negative when the agent’s price is outside the range. Note
that Tsantekidis’s proposed the final reward as a combination
between the profit/loss, price-trailing, and incurred transaction
costs. The overall reward function, generally after normalizing
each component for consistency, therefore, becomes

𝑟𝑡 = 𝜋𝑡−1Δ𝑝 + 𝑟Trail
𝑡 − 𝑐 |𝜋𝑡 − 𝜋𝑡−1 | (23)

Where Δ𝑝 = 𝑝𝑡 − 𝑝𝑡−1 is the asset’s return at time 𝑡. Albeit
the authors implemented that reward design on the forex
market and showed that it could lead to better performance
over convectional profit/loss reward, that novel design can be
generalized and applied with different RL paradigms. We see
that exploring it under different RL algorithms and financial
markets is worth further investigation.

We observed a few works that compare their RL trading
system to those simple strategies. Carta et al. [142], Huang
[136], and Chen [112], for example, compared their method
with Buy&Hold. The more comprehensive comparison we
found in the work of Theate and Ernst in [143] where they

compared their method with benchmark strategies, for exam-
ple, Buy&Hold and trend-following moving averages. Eilers
et al. [131] compared their NN-based RL with Buy&Hold
and what they called “Static” strategy where the trader buys
one day before a key event that may impact the asset’s
prices and sells two days later at the closing price. We also
noticed some RL systems being compared with other machine
learning-based systems. For example, Carta et al. compared
against supervised systems proposed by Sezer [149] and Calvi
[150]. Generally speaking, most of the recent advancement in
RL algorithms has been investigated under different markets.
Nonetheless, the focus is on testing those algorithms on forex
and stock financial markets with no empirical literature on
trading commodities. Most of the proposed trading systems
use the conventional 𝜀-greedy strategy where the agent is only
greedy with a probability 1− 𝜀; otherwise, it takes completely
random actions. To overcome the issue of random exploration,
we suggest to follow the method of Huang [136] we discussed
earlier. Further, the reward design and the value function, in
general, are found to be risk-neutral, where it is represented by
the expectation of the achieved trading returns. We note that
most of the trading systems performed subtly amid fair trading
frictions, which is a positive indication of the usefulness of
RL trading systems under realistic market conditions. That is
obviously reflected in the evaluation metrics used to assess the
system’s ability to generate profits.

B. Actor-Based Methods

A summary of all reviewed papers that follow the actor-
based RL paradigm is tabulated in Table III. Moody et al. were
the first who introduced the notion of RL with actor-based
paradigm into QT in their seminal works presented in [64],
[167], [168]. Moody in his work represented the environment’s
states with the price signal past returns, which is a standard
financial metric in quantitative finance and its statistical be-
haviour has been widely investigated in the finance literature
[169]–[171]. In addition, Moody developed a Recurrent RL
(RRL) structure for the policy where in that case the agent’s
trading signal at time 𝑡 is influenced by the one generated
at 𝑡 − 1. In a sense, when the agent "remembers" its last
taken action, then its next decision would influence the trades
turnover rate and consequently minimizing transaction costs.
The function that is used to derive a policy is a Neural Network
(NN) with a single hidden neuron that has a hyperbolic tangent
as its activation function. The general policy defined in (10),
from Moody’s work perspective, thus becomes

𝜋𝑡 (𝑠𝑡 , 𝜋𝑡−1;Θ) = tanh(𝑤𝑠𝑡 + 𝑢𝜋𝑡−1 + 𝑏) (24)

Where 𝑤, 𝑢, 𝑏 ∈ Θ. We can see that the expression in (24)
implies that agent’s action at 𝑡 is bounded since 𝜋𝑡 ∈ [−1, 1].
Noteworthy, Moody implements the policy in (24) while the
agent is learning only to ensure smooth differentiable policy.
During generating trading signals the agent however can only
take discrete actions, i.e. 𝜋𝑡 ∈ {−1, 1}. With this, the agent’s
trading signal would be to long the asset when 𝜋𝑡 > 0, and
to short it if 𝜋𝑡 < 0. Moody also endeavored to design subtle
utility functions that enhance the agent’s risk awareness when
trading. To demonstrate this, let us first discuss his general
reward structure, and then proceed to confer two of his utility
designs that account for financial risk. Moody’s reward signal
design at time 𝑡, considering an immediate reward with 𝛾 = 0,
is described by

𝑅𝑡 = 𝜋𝑡−1Δ𝑝 − 𝑐 |𝜋𝑡 − 𝜋𝑡−1 | (25)
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TABLE III: Summary of Quantitative Trading with Reinforcement Learning - Actor-Based Methods

Reference RL Algorithm
Policy Performance Function

Assets
QT Frictions Evaluation Metrics

Deterministic Stochastic Risk-Neutral Risk-Averse Trans. Spread Slippage Total
Returns

Sharpe
Ratio

Sortino
Ratio

Max.
Drawdown

Moody et al. [64] RRL * * Forex [30m] * * * *

Gold [151] RRL * * Forex [30m] * * *

Dempster et al. [152] RRL * * Forex [1m] * *

Bertoluzzo et al.
[153] RRL * * VSM [1d] * * *

Maringer et al. [154] RRL * * USSM [1d] * * *

Gorse [155] RRL * * USI
[1d, 1w, 1mo] * *

Zhang et al. [156],
[157] RRL * * USSM [1d] * * *

Gabrielsson et al.
[158] RRL * * USIF [1m] * * *

Deng et al. [159] RRL * * CIF [1/2s] * * * * *

Deng et al. [160] Fuzzy deep
RRL * * * CIF, COMF

[1m] * * * * *

Lu [161] Deep LSTM * * Forex [30m] *

Lei et al. [162] Deep GRU * * USSM [1d] * * *

Weng et al. [163] Deep CNN * * Crypto [30m] * * *

Sattarov et al. [164] Deep NN * * Crypto [60m] * *

Fengqian et al. [165] Deep NN * * COMF, CFI
[1m] * * *

Alameer and Alshehri
[166] NN * * USETF [15m] * * *

Notes:
1) Various Stock Markets (VSM); US Stock Market (USSM); US Indexes (USI); US Indexes Futures (USIF); China Indexes Futures (CFI), Commodities Futures (COMF); US Exchage Traded Fund (USETF)
2) s = second; m = minute; d = day; w = week; mo = month

Moody’s first utility design is the Sharpe ratio. When
applying the definition of Sharpe ratio on the received rewards
by the agent, the utility in (11) can be defined as

U𝑇 =
𝜇

𝑅

𝜎
𝑅

(26)

Where 𝜇𝑅, 𝜎𝑅 are the mean and standard deviation of the
reward, respectively. In that sense, Sharpe ratio is a symmetric
risk measure since it counts for both upside and downside
risks. Moody, therefore, strove to develop an asymmetric risk
utility that only captures the downside risk, which ultimately
penalizes only negative returns. In his work, he used the well-
known downside risk measure called downside deviation (DD),
which was primarily introduced by Sortino et al. in [41] for
portfolio management applications. The downside deviation is
mathematically represented by taking the root mean square of
all negative returns. In the context of QT with RL, it can be
calculated as

𝐷𝐷𝑇 =

√√√
1
𝑇

𝑇∑︁
𝑡=1

min{𝑅𝑡 , 0}2 (27)

Moody used (27) with the mean of rewards 𝜇
𝑅

to have a
utility that eventually discourages the agent from executing
trades result in high variation in the downside returns. Hence,
he defined the following utility

U𝑇 =
𝜇

𝑅

𝐷𝐷𝑇

(28)

When we demand the agent to learn a policy that maximizes
the utility in (26) or (28) in an online manner, then we need
to know the impact of the most recent observed reward 𝑅𝑡 on
the marginal utility U𝑡 defined in (13). This can be attained
by computing the gradient 𝑑U𝑡/𝑑𝑅𝑡 . Yet, the computation of
this gradient is intractable and this consequently motivated
Moody to introduce the notion of differential Sharpe ratio and
differential downside deviation. With that concept, he proposed
to compute the term 𝑑U𝑡/𝑑𝑅𝑡 recursively by approximating
it through the use of exponential moving averages for the
statistical quantities in (26) or (28), and then expanding them

to a first order adaptation rate of 𝜂; where 𝜂 controls the
influence of 𝑅𝑡 on the marginal utility U𝑡 . We observed that
there has been significant advancement in the research of QT
following the notion of Moody from different verticals.

We earlier discussed the intricacies associated with the
dynamics of financial assets’ environments. That as a result
motivated researchers to explore various approaches to en-
hance the sensory part of the trading system, i.e., scouting
better environment’s representation. Deng et al. [159] intro-
duced the notion of Sparse-Coding [172], [173] into the DRL
framework leading to their novel algorithm sparse coding-
inspired optimal trading (SCOT). In that sense, the infusion
of sparse coding leads to an enhanced representation for the
market’s environment since it shows robustness in dealing with
noisy signals [174], [175]. Moreover, Deng et al. were the
first who introduced the notion of deep learning [176] and
fuzzy learning [177], [178] in their seminal work [160] to
enhance the sensory part of their RL-based trading system.
The deep learning part plays the role of detecting patterns
in the complex assets’ price signals, while the fuzzy part is
implemented to mitigate the inherent uncertainties underling
the data. In their context, the first layer of the deep network is
the fuzzy layer followed by the deep structure. Let us denote
the set of parameters related to the deep learning part with
𝜃, and we define the parameters of the fuzzy membership
functions as 𝜗. Denoting the input of the network as f𝑡 , then
the final states used to represent the environment at time 𝑡 can
be given by:

𝑠𝑡 = 𝑔[𝑣(f𝑡 ; 𝜗); 𝜃] (29)

Where 𝑔(·) and 𝑣(·) are the deep structure activation and
fuzzy membership functions, respectively. With representing
the market as in (29), then the used policy for generating
trading signals is similar to that of Moody’s in (24). The
learning process is, however, different under the framework
of Deng where now an optimal representation for the market
as well as lucrative trading decisions should be carried out.
Therefore, during the learning process, all parameters Θ, 𝜃 and
𝜗 should be learned simultaneously. The optimization problem
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defined in (11) hence becomes

max
(Θ, 𝜃 ,𝜗)

U𝑇 (𝑅) (30)

Since the work of Deng, the infusion of deep learning
with RL in the field of QT has noticeably progressed. Lu
[161] for example implemented LSTM network architecture
to detect short- and long-temporal dependencies within the
price signals. Weng et al. [163] used deep CNN to enhance
the sensory part of the trading system with the use of XGBoost
[179] to optimize the selection process of the network’s input.
Lei et al. [162] also enhanced the environment representation
by extracting features from the price signals using deep
structure of Gated Recurrent Unit (GRU) [180]. They used
technical indicators and cointegration of price signals [181] to
reduce the environment noise. Apart from deep learning, we
observed several works that consider simpler, but effective,
approaches for the environment’s representation. Gold [151]
for example extended the policy of Moody to have two hidden
units NN and applied it on the Forex market. Furthermore,
Dempster et al. [152] used technical indicators in additions to
price returns as the environment’s states. Zhang et al. [156],
[157] further enhanced the process by using genetic algorithm
[182] to optimally represent the environment’s states by select-
ing the most representative technical, fundamental [183] and
volatility [184] indicators. To extract high level information
from the price signals, Gabrielsson et al. [158] utilized the
Japanese candlesticks information for the sensory part of the
environment in their trading system. Fengqian et al. [165] also
used candlesticks to reduce data noise and then implemented
clustering techniques, such as K-mean [185], fuzzy c-means
[186], and data density online clustering [187] with deep
neural network structure to represent the environment.

The other vertical that has been explored by researchers
is the policy’s design. An interesting design of the policy is
observed in the work of Maringer et al. [154], [188] where
they introduced the concept of regime-switching DRL. In their
proposed design, two trading strategies are learned by two
different policies. In a sense, Maringer proposed to follow
different trading strategies based on the current market regime.
The regime switching is detected by an external-temporal
signal 𝑞𝑡 that is continuously compared with a threshold 𝑏.
In the mathematical context, Moody’s deterministic policy in
(24) is modified as:

𝜋𝑡 = 𝜋1
𝑡 𝐼{𝑞𝑡>𝑏} + 𝜋2

𝑡 (1 − 𝐼{𝑞𝑡>𝑏}) (31)

Where 𝐼 is the indicator function. They also proposed a smooth
policy transition, based on the regime-switching signal, by
replacing the the indicator function in (31) with a bounded
function 𝑔 ∈ [0, 1]. The regime-switching signal used is
the volatility since a surge in it could indicate a negative
autocorrelation in the price returns, see [189], [190]. We see
that Maringer’s methods indeed adds an additional adaptive di-
mension to the problem. To enhance the exploratory behaviour
of the agent, Gorse [155] extended the work of Moody by
considering a stochastic policy rather than the deterministic
approach.

The last main dimension that grabs the attention of re-
searchers is the design of the financial utility. For instance,
Bertoluzzo et al. [153] investigated a utility that maximizes
the upside returns while minimizing the downside risk:

U𝑇 =

∑𝑇
𝑡=1 max{𝑅𝑡 , 0}∑𝑇
𝑡=1 |min{𝑅𝑡 , 0}|

(32)

In that sense, the learned policy will be eager to take actions
that maximize the positive returns, rather than the average re-

turns as in (26) and (28), while simultaneously avoid decisions
that may result in losses. As we discussed earlier, one can
develop a further risk-averse agent by using CVaR, see the
work of Alameer and Alshehri in [166] where they modeled
for the function U𝑇 as

U𝑇 = −CVaR𝜁 [−𝑅] (33)

Where 𝜁 is the risk-aversion parameter, with the special case
of CVaR𝜁 [−𝑅] = E[−𝑅] when 𝜁 = 0. In that sense, the agent
becomes aware of trading decisions at particular states where
those actions may lead to catastrophic losses. An additional
advantage for the use of CVaR is that one can conveniently
control the risk-aversion level of the agent by tuning 𝜁 .

We generally observe that the literature related to the design
of the trading system’s sensory part is quite ample. That
includes examining different well-recognized financial data
as states while also feeding them to learning systems that
can detect complex patterns within these data, such as deep
RNN, LSTM, CNN, and GA. Although we see proposals for
enhancing the policy’s design, we here underscore the impor-
tance of further investigating the implementation of strategic
stochastic policies to improve the exploratory behavior of the
trading agent. The advantage of the actor-based approach in
extending a risk-neutral performance function to a risk-averse
one through the financial utility function is well-exploited.
Despite that the DRL approach has been reconnoitered with
several financial instruments, we noticed a limited number of
trading systems tested under different financial markets. As
for modeling trading frictions, we see that they are adequately
addressed, proving the practicality of the proposed models to
an acceptable extent. Nevertheless, we encourage to extend the
research related to frictional trading to specifically investigate
the impacts these frictions could have on the optimization
problem. Trading frictions affect the mathematical charac-
teristics of the financial utility and this consequently may
alter the optimal solution. Noteworthy, the impact of trading
frictions on the optimal portfolio problem is well-investigated
in the finance literature see, for example, [3], [191]–[193]. For
the performance metrics, we see that most of the proposed
systems are evaluated by at least one risk measure. Notably,
we see that the most comprehensive comparison is found in the
work of Deng et al. [160] where they compare their system’s
performance with baseline strategies, Moody’s original work,
and supervised-learning based trading systems, which their
trading system outperformed all of those.

C. Actor-Critic Based Methods
We underscore that the QT systems developed using the

actor-critic method are noticeably limited. We may attribute
that to their inherent complexity where function approximators
represent both the actor and critic parts. Again, we need
to stress out that most of the algorithms of actor-critic are
established under considering the expectation of the returns as
the performance index, as we discussed in Section II. In that
sense, most of the works we found are developing trading
agents with a risk-neutral attitude. We next review the works
that considered QT with actor-critic, then articulate our general
observations. Table IV summarizes the our survey related to
QT under actor-critic approach. We note that various deep
actor-critic architectures were assessed in the literature. Li and
Shi [196] used on-policy Recurrent DPG (RDPG) [200] with
LSTM on the Chinese stock market. Although financial mar-
kets are considered as a noisy environment, hence on-policy
learning may trigger exploration; we see that noise impacts
the agent’s performance if not dealt with properly since it
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TABLE IV: Summary of Quantitative Trading with Reinforcement Learning - Actor-Critic-Based Methods

Reference RL Algorithm
Policy Value Function

Assets
QT Frictions Evaluation Metrics

Deterministic Stochastic Risk-Neutral Risk-Averse Trans. Spread Slippage Total
Returns

Sharpe
Ratio

Sortino
Ratio

Max.
Drawdown

Mabu et al. [194] GNP * * JSM [5d] *

Bekiros [195] Adaptive
Fuzzy * * VSM [1d] * * *

Li and Shi [196]
On-policy

RDPG with
LSTM

* * CSM * * *

Ponomarev et al.
[197]

A3C with
LSTM * * RSM [1m] * * *

Liu et al. [198]
Off-policy

RDPG with
GRU

* * CSM [1m] * * * * *

Briola et al. [199] PPO with
NN * * USSM [tick] * *

Notes:
1) Japan Stock Market (JSM); Various Stock Markets (VSM); China Stock Market (CSM); Russia Stock Market (RSM); US Stock Market (USSM)
2) m = minute; d = day

would ultimately lead to random exploration. Ponomarev [197]
assessed the performance of A3C architecture with LSTM on
the Russia stock market. Although the reported performance
was acceptable, a comparison with other actor-critic methods
was not evident, for example, with DDPG and memory replay.
Most remarkably, Liu et al. [198] implemented an RDPG with
GRU while carrying trades under off-policy learning. Their
reported performance outweighs the DDPG with a feedforward
neural network in terms of both total returns and Sharpe ratio.

As for the environment’s states, Mabu et al. [194] im-
plemented GNP to optimize the environment representation
through the evolution of selecting a subset of technical in-
dicators. Bekiros [195] implemented a fuzzy learning system
where the inference rules represent the environment based on
the expected return and conditional volatility of the financial
assets price signal. In [198], the environment is represented
by two parts: one to represent the market through technical
indicators, and the other to represent the agent’s internal state,
that is, for example, the accumulative account profit.

Most of the works, if not all, implement a discrete action
space, particularly buying or selling the assets. Li and Shi in
[196] used a bagging trading execution method where both the
actor and critic collaboratively contribute to the final trading
decision. If we denote the actor’s decision at time 𝑡 by 𝑎𝑎𝑡 and
the critic’s by 𝑎𝑐𝑡 , then the final decision is executed as

𝑎𝑡 =


−1 𝑎𝑎𝑡 + 𝑎𝑐𝑡 < 0
0 𝑎𝑎𝑡 + 𝑎𝑐𝑡 = 0
1 𝑎𝑎𝑡 + 𝑎𝑐𝑡 ≥ 0

(34)

It is noteworthy that Li followed a similar exploration
technique as Wang et al. [146] where they can explore the
value of all possible actions other than the actual executed with
storing them in the memory buffer to be used while training.
Liu et al. in [198] exposed a creative exploration strategy that
prevents the agent from random actions when exploring the
environment, that is, by applying imitation learning. Their
concept is developed based on Demonstration Buffer [201] and
Behavior Cloning [202]. With Demonstration Buffer, the agent
is pre-trained to learn a baseline trading strategy that is called
Dual Thrust [203] through an initial replay buffer that stores
experiences based on that baseline technique. In that sense, the
agent first learns a fundamental trading strategy and enhances
it based on new observations through actual interaction. With
Behavior Cloning, the performance of the agent is compared
with a prophetic expert trader that always takes a long position
at low prices and short at high prices. In that sense, an auxiliary
loss is introduced based on Q-Filter concept [204]

𝐽 ′ = −E
[
| |𝑎𝑡 − 𝑎̄𝑡 | |21𝑄 (𝑠𝑡 ,𝑎̄𝑡 )>𝑄 (𝑠𝑡 ,𝑎𝑡 )

]
(35)

Where 𝑎̄𝑡 denotes the expert action and 𝑄(𝑠𝑡 , 𝑎̄𝑡 ) represents
its value. With that, the gradient of the overall function that
is used to update the policy is given by

∇Θ𝐽 = 𝜆1∇Θ𝐽 + 𝜆2∇Θ𝐽 ′ (36)

Where ∇Θ𝐽 is the policy gradient for the central objective, for
example the one in (19), and 𝜆1, 𝜆2 are the weights to tune
the importance of each loss.

For the reward design, Mabu et al. [194] and Bekiros
[195] used the reward as the prediction accuracy of the price
action, whether it will move up or down. Yet, Liu et al.
[198] implemented the concept of differential Sharpe ratio
introduced by Moody [64] in which the agent can learn a
risk-sensitive trading strategy.

Liu et al. [198] compared their method with Buy&Hold
and DDPG, where they showed that they have a better trading
system than those two. Bekiros [195], on the other hand,
performed a more comprehensive comparison with other meth-
ods, e.g., Buy&Hold, Markov-Switching model [205], and
supervised Recurrent NN, which shows superior performance
over other models in terms of profit generation. Since most
of the works apply their trading systems on stock markets, it
would be interesting to investigate the performance of actor-
critic based methods on other financial markets, for example,
commodities or forex trading.

We believe that the actor-critic approach is the most method
yet to be sufficiently assessed for QT applications. Specifi-
cally, we see the algorithms TD3 that overcomes optimistic
estimation of value functions and SAC that uses maximum
entropy in the reward function are worth research under
the scope or RL-based QT. These recent advancements in
RL may be thoroughly investigated under different financial
markets, including stock markets, commodities, and forex.
Moreover, most trading agents are trained under a risk-neutral
performance index, similar to critic-based methods. Although
that may be justifiable since actor-critic methods are funda-
mentally based on maximizing expectation, that would lead
to incompetent agents in terms of risk management during
trading. We see that the key advantage of actor-critic methods
in dealing with large action space may be considered and
assessed, which indeed aid in training agents to size their
trading positions properly. We emphasize on the off-policy
learning implemented by Liu [198] while executing strategic
exploration with imitation learning. That exploration vs. ex-
ploitation strategy is worth testing on QT applications under
the various actor-critic methods. As the literature in critic-
methods, modeling market friction was adequately considered
when testing the proposed trading systems.
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TABLE V: Comparison of the different RL approaches in QT
Reference RL Algorithm Financial Market Evaluation Metrics Remarks

Moody and Saffell [64]
Actor with RRL vs.

Critic Q-learning with
NN

US Futures/US
Treasury-bill

Total return,
Sharpe ratio

Actor approach outperformed the critic method in terms of total profit
and Sharpe ratio over a testing period of 25 years while considering

market frictions

Tsantekidis et al. [141]
Critic DDQN with

LSTM vs. Actor-critic
PPO with LSTM

Forex
Total return
Sharpe ratio
Max. drawdown

The actor-critic PPO significantly outperformed its critic DDQN
counterpart over one-year testing period, that is in terms of total profit

and Sharpe ratio. At the same they both almost have the same max.
drawdown over the same period.

Li et al. [206]
Critic DQN with LSTM

vs. Actor-critic A3C
with LSTM

US Stocks and Futures
China Futures

Annual return
Sharpe ratio

Over about one-year testin period, the actor-critic defeated the critic in
terms of annual returns and Sharpe ratio, that is under all tested classes

of financial assets

Zhang et al. [207]

Critic DQN vs.
On-policy actor-critic

stochastic policy
gradient vs.

advantage actor-critic
(All with LSTM)

Futures of commodity,
equity index, fixed
income, and forex

Average return, Sharpe
ratio, Sortino ratio,

max. drawdown

DQN was found to outperform other methods over a testing period of
nine years under transaction costs. It outperformed over all tested

financial assets

Wu et al. [208]

Actor deep RNN vs.
Critic DQN with GRU
vs. Actor-critic DDPG

with GRU

US, UK, and Chines
Stocks

Total return
Sharpe ratio

Over a testing period of 3 years on the fifteen stocks, the actor-critic
performed best in nine stocks, while the critic outperformed the others

in 6 stocks. That is all under neglecting market frictions.

D. Comparison among Different RL Approaches

We dedicate one subsection to gain insights on how the
different RL methods perform under QT applications. The
main reason for that is the difficulty in obtaining fair insights
about the suitable approach while usually each proposed
trading system is compared with counterpart methods using
a different dataset of the original work. With that, one cannot
emanate a clear conclusion since different data could lead
to dissimilar results. That is especially the case under QT
since the testing data could have various resolutions, markets,
volatility, and price trend depending on the market regime.
Nevertheless, it is imperative to gain insights related to the
most suitable RL method for QT applications. To this end, in
this subsection, we review papers that dedicate part of their
work to compare the performance of trading systems with
different RL methods over the same dataset. We refer the
reader to Table V for a summary of that comparison.

Moody and Safell [64] found that the learning process
of their recurrent actor method is more stable than that of
the Q-learning, which they found susceptible to the financial
market noise. That led to higher turnover rate of the Q-
learning algorithm and hence higher drained profits due to
market frictions. They also implemented sensitivity analysis to
quantify the importance of each input to the actions. Unlike the
actor method, they found it difficult to establish a sensitivity
framework for Q-learning. Also, the authors argued that the
actor method is more computationally efficient since the critic
method requires training two networks, the online and the
target. Yet, we argue that their experiment was conducted
long before the notions of experience replay and double DQN,
improving the learning process of Q-learning agents.

Most comprehensive comparison was made by Zhang et al.
[207] where they compared all RL methods with several base-
line strategies, including returns momentum [66] and MACD
signal [209], under various financial assets. Interestingly, they
found out that DQN has a low turnover rate which caused it
to outperform in most of the assets. Their use of experience
replay and LSTM architecture could probably improve the
performance observed by Moody and Saffell when their Q-
learning trader experienced a high turnover rate. Yet, needless
to say, we emphasize that Moody’s dataset is different from
Zhang’s work. Moreover, Zhang et al. noted that the second-
best performance, overall, was observed in the trading strategy
of the A2C algorithm (synchronous version of the A3C).

The comparison of Tsantekidis et al. [141] is more focused
on agent’s performance under their proposed trailing reward in
(23) or without, rather than comparing the two RL methods,
PPO and DDQN. Nevertheless, from their results, one could
observe that the learning process of the PPO is remarkably
more stable, and that is reflected in the higher Sharpe ratio that

indicates lower returns variance during the trading horizon.
In general, we can observe that whenever an actor-critic

trading agent is compared with other methods, it either outper-
forms or performs very well and is close to the best strategy.
That is perhaps because these methods have a more stable
policy over the learning process than both actor, which usually
experiences high variance in their gradient, and the critic that
has a policy that is highly sensitive to the value function
updates [90]. In addition, they also can perform continuous
actions in which the agent can adequately adjust its trading
volume. However, that superior performance of actor-critic
methods comes at the expense of higher computation costs,
especially with deep learning for the actor and critic parts,
where four networks are involved in the learning process.

VI. DIRECTIONS FOR FUTURE RESEARCH

This section proposes directions for future research predom-
inantly driven by the still open challenges in implementing RL
on QT applications. As we saw in our discussion of the current
literature in sections IV and V, other than the actor approach,
most of the critic and actor-critic trading systems rely on
maximizing the expectation of the agent’s cumulative reward;
hence they are risk-insensitive. We see that justifiable since
those RL algorithms are originally developed to be insensitive
to risk. Nonetheless, most of the time, market practitioners
prefer trading strategies that are risk-aware and robust against
market uncertainties. Moreover, the non-stationarity associated
with the financial market’s data may necessitate unique learn-
ing paradigms to extend the trading algorithms’ practicality
when implemented in real-time trading. To this end, we believe
that safe RL, distributional RL, adaptive learning, risk-directed
exploration, which we will discuss next, are active research
areas in the machine learning literature worth probing by
researchers developing RL-based trading systems.

A. Safe Reinforcement Learning
Safe RL is an active research area concerned with bringing

risk dimensions into the learning process of RL-based agents.
The central motive of this research is the nature of many
real-life problems that necessitate proper risk management
while making decisions, and we see QT as one of those
applications. Following the notion of Safe RL discussed amply
by Garcia and Fernandez in [210], a risk-aware agent can
be developed with several approaches, including risk-sensitive
and risk-constrained learning, among others. With the former,
one can incorporate risk in the value function, while the latter
can introduce risk awareness by adding a constraint to the
objective to be optimized. In the following subsections, we
discuss several models that consider both approaches with the
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different RL paradigms, which we see worth researching in the
future when it comes to the development of RL-based trading
systems.

1) Risk-Sensitive Agent: The most common risk-sensitive
model, generally speaking, is the mean-variance, i.e., the
Markowitz approach. In that sense, one endeavor to maximize
the difference between the mean and variance of the trading
returns. One could solve the following optimization problem
when approaching that using actor RL

max
Θ

E[𝑅] − 𝜅V[𝑅] (37)

Where E[·] and V[·] represent the expectation and variance
operators, respectively, and 𝜅 < 0 counts for the risk tolerance.
For efficient computation and online learning, one can consider
Moody and Saffell [64] technique in finding the marginal
change in (37) through recursive computation of the first
and second moments using Taylor expansion. Finally, one
can update the policy in the ascent direction of the objective
gradient using SG methods.

The mean-variance problem can also be approached through
critic methods. Consider the following objective

max
𝜋

E[𝑅] − 𝜅V[𝑅] (38)

As proposed by Ritter [211], if we consider the reward 𝑟𝑡 as
the single time step agent’s return from trading a financial
asset, then we can reformulate the reward function as

𝑟𝑚𝑣
𝑡 = 𝑟𝑡 − 𝜅(𝑟𝑡 − 𝜇̂)2 (39)

Where 𝜇̂ is an estimate for the sample mean. With that,
maximizing the expectation of the cumulative reward defined
in (3), which a standard critic RL does, is equivalent to
maximizing (38) when considering the single-step reward in
(39) and a unity discount factor 𝛾. One then can follow tabular
or any function approximation algorithms we discussed in
Section II to derive the optimal risk-sensitive policy under
critic methods.

2) Risk-Constrained Agent: A risk-constrained agent aims
to maximize the expectation of the returns while meeting
a constraint imposed on a risk measure. We saw that a
risk-sensitive agent would be aware of the symmetrical risk,
whereas one can develop an agent that cares about asymmetri-
cal risk during the learning process. Under that approach, one
can consider the following general problem

max E[𝑅]
s.t. 𝛽(𝑅) ≤ Γ

(40)

Where 𝛽(·) is a risk measure, and Γ is a strictly positive
constant. If one is only concerned about rare events that may
incur significant losses, then 𝛽 can be represented by the
Conditional Value-at-Risk [42], [212]; otherwise, one can use
the variance of the negative returns as 𝛽.

Problem (40) can be solved through actor RL with maximiz-
ing the objective with respect to the policy’s parameter Θ. With
that approach, one can compute the optimal policy through un-
folding the constrained objective to an unconstrained version
through either Lagrange multipliers [213], [214] or the log-
barrier method [215]. Finally, we can recursively estimate the
policy parameters with gradient-based learning.

For solving (40) through Q-learning, Borkar [216] intro-
duced an online algorithm along with its convergence proof to
an optimal risk-constrained policy under the tabular approach.
Furthermore, the risk-constrained problem considering CVaR
is also approachable using an actor-critic algorithm. With that,
we refer to the seminal work of Chow et al. [217] who
proposed an algorithm based on the Lagrange multiplier and
proved its convergence to a locally optimal policy.

B. Distributional RL

Distributional RL is about learning the distribution of the
value function rather than the single-point estimate of its
expectation [218]. Following Bellemare et al. [219], let 𝑍 𝜋

denote a random variable that maps state-action pairs over the
distribution of the returns when following policy 𝜋. If one
considers a discrete distribution with 𝑁 atoms, then we have

𝑍 𝜋 (𝑠, 𝑎) = 𝑧𝑖 w.p. 𝑝𝑖 (𝑠, 𝑎) ∀𝑖 ∈ [0, 𝑁) (41)

Bellemare proposed estimating the distribution using a pa-
rameter vector Θ ∈ R𝑁 in a DQN architecture, he called it
categorical DQN, where the output of the network is softmax
function that represents the probability of each atom, i.e.,
𝑝𝑖 (𝑠, 𝑎). Those probabilities are then updated using Bellman
projection with gradient descent while considering the cross-
entropy of the Kullback–Leibler divergence as the loss. For
risk-insensitive learning, one then can take greedy actions with
respect to the empirical expectation of 𝑍 𝜋

𝑎 = arg max
( 𝑁−1∑︁

𝑖=0
𝑧𝑖 𝑝𝑖 (𝑠𝑡+1, 𝑎)

)
(42)

Even though the learning process does not involve a risk
dimension, Bellemare found that distributional learning is
more stable than the standard approach. Further, the categorial
algorithm remarkably outperformed the standard DQN when
applied to games from the Arcade Learning Environment
[220]. Nevertheless, we note here that with knowing the proba-
bility distribution of 𝑍 𝜋 , one can easily extend to distributional
risk-sensitive learning where the actions, for example, are
taken based on minimizing CVaR, as proposed by Morimura
et al. [221] or maximizing the mean-variance.

C. Learning Methods

1) Adaptive Incremental Learning: RL is an online learning
system by its nature. Yet, in QT with RL, if one gives up
updating the model after training, validation, and testing,
the real-time trading system’s performance would probably
deteriorate over time due to the non-stationary behavior of
the markets. Another terminology for non-stationarity in the
machine learning literature is the concept drift where it refers
to the evolvement of the data underlying distribution over time
[222]–[224]. There are established learning algorithms in the
literature to handle the concept drift within the data. One of
those is adaptive incremental learning, where the model can
be updated in real-time based on the most recent observation
or mini-batch past instances, and that all depend on the
computational resources and the nature of the application
[225]. We note here that Moody and Saffell [64] and Deng
et al. [160] implemented rolling training/validation window to
handle the concept drift within financial markets, while Al-
Ameer and Alshehri [166] and Huang [136] implemented the
incremental learning approach for a continuous model update.
We nonetheless encourage researchers to further explore those
learning approaches in QT under different RL algorithms since
we insight their potency in extending the practicality of trading
systems performance in real-time.

2) Risk-Directed Exploration: We discussed earlier that
random exploration in QT might cause undesirable losses,
so strategizing the agent’s exploration process would improve
its performance. Gehring and Precup [226] proposed a risk-
directed exploration where it depends on the expected absolute
deviation of the temporal difference, and they define it as
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the controllability of a state-action pair. With Q-learning, that
controllability measure is define as

𝐶 𝜋 (𝑠, 𝑎) = −E[|𝛿𝑡 | |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (43)

In that sense, the controllability of the state-action pair is
inversely related to the variability of the temporal difference.
One then can update the controllability, under tabular method,
every time a state-action pair is visited as follows

𝐶 (𝑠𝑡 , 𝑎𝑡 ) ← 𝐶 (𝑠𝑡 , 𝑎𝑡 ) − 𝛼′
[
|𝛿𝑡 | + 𝐶 (𝑠𝑡 , 𝑎𝑡 )

]
(44)

Wehre 𝛼′ ∈ (0, 1) is the learning rate. For the updates fol-
lowing function approximations, one may refer to the original
work of Gehring and Precup in [226]. Finally, the risk-oriented
Q-learning algorithm can take actions that are greedy to

𝑄(𝑠𝑡 , 𝑎𝑡 ) + 𝜔𝐶 (𝑠𝑡 , 𝑎𝑡 ) (45)

Where 𝜔 is a weighing parameter to emphasize on the
variability of the temporal difference when taking actions.

VII. CONCLUSION

The learning process for an optimal agent’s policy, or
trading strategy under QT context, can undergo different
approaches, i.e., critic-, actor-, and actor-critic-based methods.
In this survey, we abundantly reviewed the literature of QT
following all those methods, that is, under tabular and function
approximation RL with different learning architectures. Under
all, generally speaking, we saw that RL is an attractive tool for
developing auto-trading systems since with it, one can have a
trading system that learns online under its interaction within
financial markets. The review outcome shows that actor-critic
trading agents can outperform other methods because they
have a more stable learning process than both actors and
critics, although we see that the more advanced algorithm
such as the TD3 and SAC are yet to be assessed under
QT applications. However, the superior performance of actor-
critic methods comes at higher computation costs, especially
under the implementation of deep learning. From our literature
review, we observe that most of the critic and actor-critic
trading systems rely on the expectation of the agent’s cumula-
tive reward; thus, they are risk-neutral. Therefore, we propose
to research the application of Safe and distributional RL on
QT to introduce risk dimension into the learning process,
besides investigating risk-directed exploration techniques such
as measuring the controllability of state-action pairs. Finally,
we encourage researchers to consider adaptive incremental
learning due to its potency in enhancing real-time trading
systems’ performance.
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