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Abstract

A comparison of three different electromagnetic scattering models for land surface delay-Doppler maps (DDMs) obtained from

global navigation satellite system reflectometry (GNSS-R) along a Cyclone Global Navigation Satellite System (CYGNSS) track

in the San Luis Valley, Colorado, USA, is presented. The three models are the analytical Kirchhoff solutions (AKS), the Soil And

VEgetation Reflection Simulator (SAVERS), and the improved geometrical optics with topography (IGOT). Common inputs

to the three models were defined by using field samples of soil moisture and texture, soil surface roughness measurements, and a

digital elevation model (DEM). The resulting peak reflectivity profiles of the models and the CYGNSS data all had a dynamic

range of 10 dB along the selected track, mainly due to the influence of topography. The reflectivities obtained from all three

models agreed with one another to within 2.4 dB along the full length of the track. The models also showed general agreement

with the corresponding CYGNSS data, although the modeled profiles were higher and smoother. Additional characterization

of fine-scale surface roughness is identified as an area for future work to improve model fidelity. An intercomparison of DDM

structure for three selected acquisitions is also provided.
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Abstract—A comparison of three different electromagnetic
scattering models for land surface delay-Doppler maps (DDMs)
obtained from global navigation satellite system reflectometry
(GNSS-R) along a Cyclone Global Navigation Satellite System
(CYGNSS) track in the San Luis Valley, Colorado, USA, is
presented. The three models are the analytical Kirchhoff solutions
(AKS), the Soil And VEgetation Reflection Simulator (SAVERS),
and the improved geometrical optics with topography (IGOT).
Common inputs to the three models were defined by using field
samples of soil moisture and texture, soil surface roughness
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measurements, and a digital elevation model (DEM). The resulting
peak reflectivity profiles of the models and the CYGNSS data all
had a dynamic range of 10 dB along the selected track, mainly due
to the influence of topography. The reflectivities obtained from all
three models agreed with one another to within 2.4 dB along the
full length of the track. The models also showed general agreement
with the corresponding CYGNSS data, although the modeled
profiles were higher and smoother. Additional characterization
of fine-scale surface roughness is identified as an area for future
work to improve model fidelity. An intercomparison of DDM
structure for three selected acquisitions is also provided.

Index Terms—global navigation satellite system reflectometry
(GNSS-R), land applications, scattering model, surface topography,
Cyclone Global Navigation Satellite System (CYGNSS).

I. INTRODUCTION

REFLECTIONS of satellite signals from land surfaces
are sensitive to a variety of biogeophysical parameters

of interest for environmental monitoring from space [1]–[3].
With the proliferation of spaceborne global navigation satellite
system reflectometry (GNSS-R) missions and experiments in
recent years, there is a growing need for the development and
validation of electromagnetic scattering models to describe the
delay-Doppler map (DDM) data generated by these sensors.

This work provides an intercomparison of GNSS-R DDM
models for a Cyclone Global Navigation Satellite System
(CYGNSS) [4] track over a validation site in the San Luis
Valley (SLV), Colorado, USA. As the validation site has little
vegetation, the intercomparison focuses on modeling the effects
of topography, microwave-scale surface roughness, and soil
dielectric constant. The intercomparison includes the following
three models:
• An implementation of the analytical Kirchhoff solutions

(AKS) [5]
• The Soil And VEgetation Reflection Simulator

(SAVERS) [6]
• An implementation of the improved geometrical optics

with topography (IGOT) method [7]
Each of these models is based on the Kirchhoff integral, and
each uses a different approach for its evaluation.
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In addition to the three models and simulators identified
above and studied in this work, another end-to-end simulator for
spaceborne GNSS-R land applications that includes the effects
of topography is SIM4Land, which grew out of the European
Space Agency (ESA)-funded GNSS-R Assessment of Require-
ments and Consolidation of Retrieval Algorithms (GARCA)
and GNSS REflectometry, Radio Occultation, and Scatterome-
try (GEROS) projects. Matchups between GARCA/GEROS-
SIM4land and TDS-1 GNSS-R data, including a track with
high topographic variation, have been reported in [8].

The present work originated with discussions among several
of the coauthors at the CYGNSS Science Team Meeting
held in Pasadena, CA, USA, in January 2020. The coauthors
began to hold regular teleconferences to coordinate the model
intercomparison effort later the same year. A preliminary
version of this work was presented in July 2021 [9].

The methodology of the model intercomparison and the
corresponding validation site are described in Section II. Results
are presented in Section III and further discussed in Section IV.

II. METHODOLOGY

A. Summary of Models

Given the near-specular observations of GNSS-R systems,
the physical optics approximation (or Kirchhoff approach)
is expected to provide reasonable accuracy for predicting
the scattering of a rough land surface under low vegetation
conditions. The three models considered in this work all are
fundamentally based on the Kirchhoff approximation for surface
scattering. The models differ in their description of land surface
roughness properties. Land surface roughness can occur over
a variety of length scales, ranging from the millimeter- to
centimeter-scale heights, known as microwave-scale roughness,
that occur over the meter-scale baselines typically measured
in situ, to the topographic roughness of meter-scale changes
in heights among the ∼30 m or coarser spaced grid points
of digital elevation models (DEMs), as well as intermediate-
scale roughness occurring on horizontal length scales between
∼1 m and ∼30 m. Roughness on all of these scales can impact
specular scattering and should therefore be characterized in any
model to be applied. Note that information on intermediate-
scale roughness is frequently unavailable, so that its effects
can often be considered as a tuning parameter in the modeling
process. The wide range of length scales involved motivates
approaches that decouple prediction of the surface specular
scattering with respect to the roughness length scale. The three
models compared in this paper approach this decomposition
in distinct ways. It is also noted that specular reflections from
Earth’s land surface can include coherent contributions, where
reflections from many surface points add constructively at the
receiver, and also incoherent contributions, where reflections
have random phase, with coherent contributions being more
likely in cases with extremely low surface roughness. The
three models considered also have distinct means for treating
coherent contributions.

1) AKS: In the AKS approach [5], the land surface terrain
is represented by a three-scale surface model

f(x, y) = f1(x, y) + f2(x, y) + f3(x, y) (1)

where f1(x, y) and f3(x, y) represent the microwave and
topographic scales, respectively, with the former described
statistically using parameters from in-situ profile measurements,
and the latter obtained from a 30 m DEM. The DEM elevations
are used to construct 30 m tilted planar patches whose slopes
are determined from the derivatives of f3(x, y). The f2(x, y)
profile represents an intermediate scale of roughness, which
is alternatively called fine-scale topography. Recently, light
detection and ranging (lidar) measurements have been taken
from which f2(x, y) can be reconstructed deterministically in
the future. In this work, f3(x, y) is represented by deterministic
planar patches, whereas both f1(x, y) and f2(x, y) are treated
statistically. Let f12(x, y) = f1(x, y) + f2(x, y), which is the
combination of microwave roughness and fine-scale topography.
Stochastic descriptions for f1(x, y), f2(x, y), and f12(x, y) are
given in [5]. Salient features of the AKS approach include:

• Analytical expressions are derived based on the Kirchhoff
integral for both coherent and incoherent waves.

• Monte Carlo simulations are not required, making it
computationally efficient.

• Analytical solutions are given in terms of the spectrum
of f12(x, y).

In this approach, there is no need to divide microwave
roughness and fine-scale topography, and the surface spectrum
derived from lidar measurements can be incorporated directly.
For both coherent and incoherent waves, the AKS approach
gives results that are indistinguishable from the numerical
Kirchhoff approach (NKA), which is a brute force accurate
method that carries out the Kirchhoff integral directly using
2 cm discretization. Results show that f2(x, y) has significant
effects [5].

To calculate the coherent waves for a certain area, the
coherent field is first obtained from each 30 m DEM patch
while accounting for the impact of the f12 roughness on the
patch. Then, the total coherent field is obtained by the complex
summation of the coherent field over patches and the absolute
value squared is finally taken to find the coherent intensity of
the area. For the incoherent waves, the incoherent intensity from
each 30 m DEM patch is computed. Then, the total intensity is
obtained by summation of all the contributions from patches.
With calculated coherent and incoherent intensity, the total
scattering from the area can be obtained [5].

2) SAVERS: SAVERS is based on the original formulation
in [10], which was designed to simulate low altitude receivers.
It was updated as described in [6] to include the topography
of the illuminated area, which cannot be neglected at satellite
altitude. To account for topography, the DEM derived from the
Shuttle Radar Topography Mission (SRTM) is considered. Each
DEM element is a facet with its individual orientation, above
which the roughness at wavelength scale is superimposed.

SAVERS implements the integral bistatic radar equation [11],
independently evaluating the incoherent diffuse and coherent
near-specular scattering components. The former is computed
through the advanced integral equation method (AIEM) [12],
whereas the latter is simulated using the approach described
in [13], which relies on the definition of a coherent normalized
radar cross section (NRCS), associating a prescribed scattering



HEADER 3

pattern with the DEM facets. The beamwidth of the pattern
of the coherent component is a parameter, denoted by β, that
depends on the system geometry and configuration, such as
frequency and distance. Since it drives the directivity of the
quasi-specular scattering component [13], it can be connected
to the effect of the intermediate-scale roughness on the patch
NRCS angular pattern. In the SAVERS simulations performed
in this study, the parameter β has been set to 0.03°, which is
the same order of magnitude of the one retrieved in [13] for a
satellite geometry.

SAVERS also includes a module for simulating vegetated
areas, evaluating the scattering from forest and agricultural
vegetation and setting the relevant geometric features of the
vegetation elements through growth models. The modeling
implements the radiative transfer equation, considering media
constituted of randomly distributed scatterers representing
different vegetation elements (namely, leaves, branches and
trunks) [6]. The contributions of each DEM facet are combined
through the radar equation considering the CYGNSS antenna
pattern and the transformation between the local incidence
and observation angles and polarization state going from the
global reference frame linked to the instrument to the local
facet reference frame and vice versa. In the work reported in
this paper, the effects of vegetation are not included since the
surfaces near the validation site were nearly bare at the time
of data acquisition.

3) IGOT: The IGOT method, first described in [7], follows
closely the approach of [11] with the assumption that the
Rayleigh roughness parameter is large on the horizontal scale
of the footprint of each delay-Doppler bin [14] so that coherent
contributions vanish. Unlike [11], however, the IGOT surface
height is considered to be not a purely random field but rather
decomposed into a deterministic part obtained from a DEM
and a random part representing the residual height between the
DEM and the surface. The random part of surface height is
further decomposed into a longwave process and a shortwave
process, following the improved geometric optics model [15].
A derivation from first principles that includes the shortwave
diffraction process is provided in the video presentation of [16].
Thus, the IGOT model is parameterized by
• DEM heights and gradients representing large-scale to-

pography
• A root mean square (RMS) slope characterizing the

roughness scale between the DEM resolution and the
geometric optics cutoff

• An RMS height accounting for attenuation of the geomet-
rical optics scattering due to shortwave diffraction

4) Discussion: The three models described have similar
approaches for describing the microwave- and topographic-
scale roughness, but all represent the intermediate-scale land
roughness and treat coherent scattering contributions in distinct
ways. The AKS model represents this roughness statistically
in terms of an associated surface covariance function and
computes the Kirchhoff expression for the surface NRCS
without resorting to the geometrical optics approximation. The
SAVERS model similarly requires knowledge of the surface
covariance function for the diffuse incoherent component, and

further invokes the beamwidth parameter in the evaluation
of near-specular contributions. The IGOT model in contrast
assumes that geometrical optics holds for all surface DEM
patches, which implies an assumption regarding the amplitude
of the intermediate-scale roughness RMS heights, so that
description only of the RMS slopes of the patch roughness
is required. The intercomparisons to be shown will provide
insight into the applicability of these assumptions.

B. Calibration/Validation Site

The SLV of South Central Colorado, USA, was selected as
the location of the first calibration and validation (cal/val) site
for land applications of the CYGNSS mission, in part due to
the elevation being sufficiently high to experience freeze-thaw
cycles but not so high as to exceed the operating envelope of
the instrument. Located at the headwaters of the Rio Grande
near the northern limit of the CYGNSS coverage zone and
surrounded by mountainous terrain, the SLV is generally flat
and sandy with croplands as the dominant land cover.

Two Soil moisture Sensing Controller and oPtimal Estimator
(SoilSCAPE) in-situ wireless sensor networks (WSNs) named
Z1 and Z4, whose locations are shown in Fig. 1, were installed
in the SLV in late October of 2019 [17]. The SoilSCAPE
project, initially funded by the NASA Earth Science Technology
Office (ESTO) Advanced Information Systems Technology
(AIST) program, aims to provide surface-to-depth estimates of
soil moisture on a local scale with optimal sampling [18], [19].
The locations of the two WSNs were selected such that both
represent similar weather and climate conditions. The site Z1
is a flat open pasture, whereas Z4 samples more hilly terrain.
Each SoilSCAPE WSN includes multiple battery-powered end
devices (EDs), each located within a radius of 500 m of the
local coordinator (LC). A total of four EDs were installed
at Z1, and five at Z4. Each ED has four Teros-12 probes to
measure soil moisture and soil temperature at depths of 5, 10,
20, and 30 cm every twenty minutes. Soil moisture information
from the wireless EDs is transmitted and collected at the LC,
then uploaded in near real-time to the project’s data server
at https://soilscape.usc.edu. Additionally, each site includes a
weather station which reports air temperature, precipitation,
and solar radiation measurements every twenty minutes.

C. Track Selection

Criteria for selection of a CYGNSS track for the model
intercomparison included:

1) Time of acquisition around October 25-27, 2019, when
field samples were collected

2) Readings from all SLV SoilSCAPE temperature sensors
above freezing

3) At least one acquisition located within 5 km of Z1 or Z4

Item 1 was included so that soil moisture from oven-drying of
the field samples could be used rather than soil moisture from
the SoilSCAPE sensors, whose calibration was delayed due
to restrictions related to COVID-19. Additionally, the water
content of the vegetation at the time of the field samples was

https://soilscape.usc.edu
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Figure 1. (a) Location of the SLV and the in-situ sensor sites Z1 and Z4.
(b)-(c) Close-up view of Z1 (37.190°, −105.992°) and Z4 (37.060°, −105.820°)
along with the location of individual wireless soil moisture end-nodes.

Figure 2. Reported CYGNSS specular points of selected track (blue circles),
location of in-situ sensors at SLV site Z1 (red dot), and acquisitions selected
for DDM shape comparison (black crosses) plotted over a map of topography.

observed to be low, which is aligned with this study’s focus
on sensitivity to topography rather than to land cover.

After analysis of CYGNSS data near these field samples, the
track around 2019-10-28 14:04:58.5 UTC from channel 3 of
spacecraft 2 was selected for this study as this track satisfied
the three selection criteria above. The track, whose reported
specular points are plotted over an elevation map in Fig. 2,
passes over Z1, which has coordinates of (37.190°, −105.992°).
The start and end of the track were determined by requiring
CYGNSS signal-to-noise ratio (SNR) to be greater than 2 dB.

D. Soil Dielectric Constant

The soil moisture content measured from oven-drying of
the Z1 field samples was 0.0259 m3 m−3. The clay fraction
measured from the corresponding analysis of soil texture was
18 %. With these values of soil moisture and clay fraction, a
soil dielectric constant of 2.987 + 0.173 i was calculated by
the Mironov model [20], [21]. The same value was used by

Figure 3. Special test equipment for measuring microwave-scale surface
roughness: laser range finder that slides along a spirit level mounted on a pair
of tripods. Photo by Amer Melabari.

all three GNSS-R DDM models over the entire footprint of
the selected track.

E. Soil Surface Roughness

A laser range finder mounted on a spirit level supported by
a tripod at each end, as shown in Fig. 3, was used to measure
microwave-scale soil surface roughness along the baseline
of the level at a total of thirteen locations and orientations
around Z1, excluding a fourteenth measurement over a trench.
Of the thirteen characterizations, seven used a baseline of
approximately 0.5 m, and the other six had a baseline of
approximately 1 m. Since the laser signal could reflect from
vegetation, care was taken to avoid vegetated areas. The RMS
of each characterization was computed relative to the mean for
flat areas and relative to a linear regression for hilly locations.
As shown in Fig. 4, a wide range of RMS values was observed.
In particular, the values of RMS microwave scale surface
roughness ranged from 0.23 to 2.65 cm with a median of
0.42 cm and a mean of 0.71 cm.

To further assess microwave-scale surface roughness, the
field bare_soil_roughness_retrieved was extracted
from the Soil Moisture Active Passive (SMAP) Level-3 product
Radar Global Daily 3 km Equal Area Scalable Earth (EASE)-
Grid Soil Moisture, Version 3 [22] for the week beginning
July 1, 2015. This field is plotted against distance from Z1 in
Fig. 5, which shows that points farther away from Z1 have a
roughness value around 2 cm and sometimes higher, whereas
the closest points have a roughness value around 0.5 cm. Using
a radius of 3 km, the average roughness is 0.45 cm. A 5 km
radius gives an average roughness of 1.03 cm, and an 8 km
radius yields an average roughness of 1.48 cm. The increase
in roughness with distance from Z1 is expected since Z1 is
located in a relatively flat area that is surrounded by mountains.
Note that the SMAP-derived roughness parameter is associated
with a backscatter radar measurement at 40 degrees incidence
angle, and therefore may not be completely applicable to
describing near-specular surface scattering. The range of values
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Figure 4. RMS surface roughness measured during fieldwork at Z1 in ascending
order of magnitude.
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Figure 5. RMS surface roughness as estimated by SMAP within a radius of
9 km of Z1.

nevertheless provides some level of insight into roughness
properties in this region.

In addition to RMS surface roughness retrieved by SMAP
itself, RMS surface roughness from SMAP ancillary data [23]
was examined, and the values over SLV were found to be about
1 cm.

In light of the data presented above on the microwave-scale
soil surface roughness at Z1, the RMS height parameter was set
to 1 cm for all three models. Since the AKS method represents
f1 not only by an RMS height parameter but also with a
correlation function, an exponential correlation function with a
correlation length of 10 cm was applied. The same correlation
length was used in SAVERS for the incoherent component.
These parameters were held constant over the entire footprint of
the track selected for the reflectometry model intercomparison
study of Section III-A and Section III-B.

Additionally, to help quantify the uncertainty introduced by
variations in microwave-scale soil surface roughness, such as
those observed in Fig. 4 and Fig. 5, a study of the sensitivity

of one of the reflectometry models to soil surface RMS height
is provided in Section III-C.

F. Surface Topography

All three models used the 1′′ SRTM DEM having approx-
imately 30 m horizontal sampling for elevation. The models
also used a common set of gradients estimated from the 1′′

SRTM DEM using linear least squares with a Hann window of
size 15 by 15 samples. At the latitude of the SLV, this window
corresponds to a region on the ground of approximately 370 by
460 m. The window size needed to be large enough to reduce
the effects of noise from the SRTM product on the estimate
of the gradients but not so large as to degrade their resolution.
A comparison of results using two different window sizes for
gradient estimation is provided in Section III-C.

The AKS and IGOT models both ran at the 1′′ resolution
of the SRTM DEM, while SAVERS resampled to a spacing
of 9′′, or approximately 300 m.

As described in Section II-A, all three models include param-
eters for characterizing surface roughness in the intermediate
scale between the resolution of the DEM and the microwave
scale. For this study, the AKS model represented f2 by a
Gaussian correlation function with RMS height of 5 cm and
correlation length of 125 times the RMS height. The SAVERS
simulation set β to 0.03°. The IGOT model was run with a
relative RMS slope of 0.4°. These parameters were held fixed
over the entire footprint of the selected track.

G. Antenna Pattern

In the interest of reproducibility from publicly available
data, all three models used an isotropic antenna pattern. The
convention for antenna gain is described in Section II-I. A
comparison of results with isotropic and anisotropic (i.e.,
directional) antenna patterns is provided in Section III-C.

H. CYGNSS Data

Version 3.1 of the CYGNSS level 1 science data record was
selected for comparison with the model results [24], [25]. This
was the most recent version at the time of writing.

I. Conversion to Reflectivity

To facilitate meaningful comparisons among the model
results and the CYGNSS data, a common convention for
antenna gains and DDM units needed to be defined. Typically,
DDMs are expressed in one of the following ways:

• Power in units of watts. Whereas this convention is valid
for both coherent and incoherent reflections, it has no
interpretation as a physical property of the reflecting
surface.

• Bistatic radar cross section (BRCS) σ in units of square
meters. This convention has physical significance for
incoherent reflections, such as those from ocean surfaces,
and it is used for the calibrated CYGNSS Level 1b (L1b)
product [26].
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• Normalized bistatic radar cross section (NBRCS) σ0 in
units of square meters per square meter. Having physical
significance for incoherent reflections, this convention is
used to average multiple BRCS bins together over their
corresponding effective areas, as in [26].

• Surface reflectivity Γ [27, Section 2-8]. This convention
has physical meaning for coherent reflections, and it has
traditionally been used for land applications since the
reflections in early tower-based and airborne GNSS-R
experiments were primarily coherent. It is also being
included in the CYGNSS land product [28].

For this study, the last alternative, surface reflectivity, was
adopted for consistency with previous work. A convention for
surface reflectivity is developed in the following to permit
convenient comparison among the three models and CYGNSS
data products.

Each of the three forward models considered in this study
can be written in the form of the bistatic radar equation given
by [26, eq. (1)]

P g,FM

τ̂ ,f̂
=
PT,FMλ2

(4π)3

×
∫∫

A

GT,FM
x,y σ0

x,yG
R,FM
x,y

(RR
x,y)2(RT

x,y)2
Λ2
τ̂ ;x,yS

2
f̂ ;x,y

dxdy (2)

where superscript FM has been added to emphasize certain
factors that are specific to the forward models, as distinguished
from corresponding factors in the L1b calibration. Here, P g

τ̂ ,f̂
is modelled power received after coherent processing at delay
τ̂ and Doppler f̂ by way of scattering of the global navigation
satellite system (GNSS) source from the rough surface, PT is
transmit power, λ is wavelength, (x, y) ∈ A are the variables
of surface integration, A is the region of diffuse scattering,
GT
x,y and GR

x,y are transmit and receive antenna gain patterns,
respectively, as a function of (x, y), RT

x,y is the distance from
the transmitter to the surface at (x, y), and RR

x,y is the distance
from the surface at (x, y) to the receiver, σ0

x,y is NBRCS at the
bistatic scattering geometry defined by the transmitter position,
the surface at (x, y), and the receiver position, and Λτ̂ ;x,y and
Sf̂ ;x,y are the Woodward ambiguity functions (WAFs) in delay
and Doppler, respectively.

For the AKS, (2) represents the incoherent component only.
Since the coherent component of the AKS was found to be
negligible for the track selected in this study, the coherent
component is not included here. (Nevertheless, we note that
the convention developed in the following can be extended in
a straightforward manner to include a coherent component if
necessary by replacing (2) with the corresponding equation
for coherent power in terms of reflectivity.) In SAVERS, (2)
is always applicable since it includes both the diffuse and
near-specular component. Likewise, under the assumptions of
IGOT, (2) obtains from first principles [7, eq. (42)].

Calibrated CYGNSS DDMs are provided in the NetCDF
variable brcs with units of square meters. From [26, eq. (4)],
these L1b BRCSs are computed by

σL1b
τ̂ ,f̂

=
(4π)3(RR

SP)2(RT
SP)2

λ2PT,L1bGT,L1b
SP GR,L1b

SP

P g,L1a

τ̂ ,f̂
(3)

where superscripts L1a and L1b have been added to emphasize
certain factors that are specific to the calibration, as distin-
guished from the corresponding factors in the forward models,
and where subscript SP denotes evaluation at the specular
point reported by the L1b calibration. Here, P g,L1a

τ̂ ,f̂
is the

measured power DDM in units of watts from the Level 1a
(L1a) calibration.

Since (3) represents a CYGNSS version-specific convention
for conversion from units of watts to units of square meters, the
same convention can also be used to convert a forward model
result from units of watts (whether coherent or incoherent) to
units of square meters for comparison with a particular version
of L1b CYGNSS data

σFM
τ̂ ,f̂

=
(4π)3(RR

SP)2(RT
SP)2

λ2PT,L1bGT,L1b
SP GR,L1b

SP

P g,FM

τ̂ ,f̂
(4)

Substituting (2) into (4), we obtain

σFM
τ̂ ,f̂

=
(RR

SP)2(RT
SP)2PT,FM

PT,L1bGT,L1b
SP GR,L1b

SP

×
∫∫

A

GT,FM
x,y σ0

x,yG
R,FM
x,y

(RR
x,y)2(RT

x,y)2
Λ2
τ̂ ;x,yS

2
f̂ ;x,y

dxdy (5)

Approximating the range losses and the antenna gains inside
the integral by their values at the specular point, we find

σFM
τ̂ ,f̂

=
PT,FMGT,FM

SP GR,FM
SP

PT,L1bGT,L1b
SP GR,L1b

SP

×
∫∫

A

σ0
x,yΛ2

τ̂ ;x,yS
2
f̂ ;x,y

dxdy (6)

In the following, we adopt the conventions

PT,FM = PT,L1b

GT,FM
SP = GT,L1b

SP

GR,FM
SP = GR,L1b

SP (7)

so that (6) becomes

σFM
τ̂ ,f̂

=

∫∫
A

σ0
x,yΛ2

τ̂ ;x,yS
2
f̂ ;x,y

dx dy (8)

Since (8) is independent of calibration-specific factors, this
convention allows a single run of a forward model to be
compared with multiple versions of CYGNSS L1b data. The
convention also eliminates the need to favor any particular
version of effective isotropic radiated power (EIRP) and receive
antenna gain in the forward model run when comparing with
multiple versions of CYGNSS L1b data.

Finally, to convert BRCS to reflectivity, we use the relation-
ship

Γτ̂ ,f̂ =
1

4π

(RR
SP +RT

SP)2

(RR
SP)2(RT

SP)2
στ̂ ,f̂ (9)

both for forward model results and for CYGNSS data. This
relationship follows directly from (4) and the Friis formula
for reflections [27, Section 5-10.5]. Here, the relationship is
effectively independent of CYGNSS version since the relative
difference in the reported ranges of the specular point between
two versions is small.
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Figure 6. Comparison of peak re�ectivity from the three models and the
corresponding CYGNSS level 1 science data along the selected track.

Table I
ACQUISITIONSSELECTED FORDDM SHAPE COMPARISON

Identi�er Acquisition
Time (UTC)

Specular Point
Latitude (°)

Specular Point
Longitude (°)

West 14:04:55.5 37.179 �106.207
Middle 14:04:58.5 37.197 �106.003
East 14:05:06.0 37.242 �105.493

III. R ESULTS

A. Along-Track Analysis

A comparison of peak re�ectivity along the selected track is
shown in Fig. 6. The horizontal axis is expressed in units of
longitude so that each value of re�ectivity can be associated
with its corresponding reported specular point in Fig. 2. The
plot also includes surface elevation at the specular points.

The re�ectivity pro�le of all three models and of the
CYGNSS data is highest over the valley �oor and decreases in
the mountainous terrain on either side, and to a lesser degree
over some hilly terrain in the middle, with a dynamic range
of 10 dB.

All three models agree with one another to within2.4 dB
over the entire track. However, all three models overestimate
version 3.1 of the CYGNSS data. In particular, the average
of the three models is5.0 dB higher than version 3.1 when
averaged along the track. Furthermore, all three models appear
to be generally smoother than the CYGNSS data.

B. Selected DDM Matchups

A comparison of DDMs for the three acquisitions identi�ed
in Table I from the selected track is shown in Fig. 7. The west
acquisition has a positive Doppler tail. The middle acquisition
is relatively compact in delay with a weak positive Doppler
tail. The east acquisition has a negative Doppler tail. These
structures are represented in both the CYGNSS data and
the three models. Interpretation of the observed structures
is provided in Section IV.

(a) West acquisition: AKS (b) West acquisition: SAVERS

(c) West acquisition: IGOT (d) West acquisition: CYGNSS

(e) Middle acquisition: AKS (f) Middle acquisition: SAVERS

(g) Middle acquisition: IGOT (h) Middle acquisition: CYGNSS

(i) East acquisition: AKS (j) East acquisition: SAVERS

(k) East acquisition: IGOT (l) East acquisition: CYGNSS

Figure 7. Comparison of DDMs from the three models and from the
corresponding CYGNSS level 1 science data for the selected acquisition.
Each DDM is normalized to its peak value to facilitate intercomparison of
delay-Doppler structure. The units of the color map are decibels relative to
the peak.
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