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Abstract

A zero-knowledge (ZK) proof guarantees that the result of a computation is correct while keeping part of the computation

details private. Some ZK proofs are tiny and can be verified in short time, which makes them one of the most promising

technologies for solving two key aspects: the challenge of enabling privacy to public and transparent distributed ledgers and,

enhancing the scalability limitations of distributed ledgers. Most practical ZK systems require the computation to be expressed

as an arithmetic circuit that is encoded as a set of equations called rank-1 constraint system (R1CS).

In this paper, we present \circom, a programming language and a compiler for designing arithmetic circuits that are compiled

to R1CS. More precisely, with \circom, programmers can design arithmetic circuits, and the compiler outputs (i) a file with

the R1CS description, (ii) \wasm and \cpp programs to efficiently compute all values of the circuit. We also provide an open-

source library called \circomlib, with multiple circuit templates. Moreover, \circom can be complemented with \snarkjs, a

tool for generating and validating ZK proofs from R1CS. Altogether, our software tools abstract the complexity of the proving

mechanisms and provide a friendly interface to model low-level descriptions of arithmetic circuits.
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1 INTRODUCTION

A zero-knowledge (ZK) protocol allows a prover to prove
a statement to a verifier without revealing any knowl-

edge beyond the fact that the statement is true [1]–[3]. For
example, with a ZK proof one can prove the knowledge
of a private key associated to a certain public key or the
knowledge of the preimage of a particular hash value. The
important fact about these proofs is that they do not leak
any information about the statements being proved. In the
previous examples, that would be information about the
private key or the preimage of the hash. ZK proofs were
introduced 30 years ago as theoretical objects, but since then,
there has been a lot of research into developing secure and
efficient protocols that could be used in practice. In general,
efficiency is measured considering three parameters: the
computational cost of generating a proof, the size of the
proof, and the time required to verify it. In the context of
distributed ledgers, it is specially important to have small
proof sizes and short verification times.

The most popular, efficient and general purpose ZK pro-
tocols are ZK succinct arguments of knowledge (ZK-SNARKs)
[4]–[6]. A prominent application of ZK-SNARKs is Zcash [7],
a public blockchain based on bitcoin that uses these proofs
in its core protocol for verifying that private transactions
(named shielded transactions) have been computed correctly
while providing complete anonymity to the participants of
the network. In particular, a shielded transaction can be
verified without revealing the payment source, destination,
or amount, but still ensuring that there are enough funds to
do it, and that the transfer is sent by the owner of the funds.

Efficient ZK protocols are also very convenient for dis-
tributed ledgers with the capability of executing smart con-
tracts. Smart contracts are programs that allow developers
to define a logic for processing transactions. Adding the
capability of processing transactions that include the veri-
fication of a ZK proof opens up a wide range of possibilities
for smart contracts. For example, with ZK proofs, smart
contracts can check logic statements while keeping certain

details private, which is crucial for the adoption of public
distributed ledger technology by enterprises. An example
of such privacy-preserving scheme can be found in [8].
Recently, ZK protocols are also used in conjunction with
smart contracts for enhancing the scalability of distributed
ledgers, giving rise to what is known as layer-2 solutions. An
example of a layer-2 solution is a ZK-rollup, a mechanism in
which thousands of transactions are bundled into a single
batch transaction [9]. This way, a smart contract can check
the processing of large amounts of transactions by simply
verifying a ZK proof of few bytes. The key of ZK-rollups is
that ZK proofs are smaller and faster to verify than doing so
with each individual transaction [10].

ZK-SNARK protocols are used mainly to prove the
correctness of a computation. In this context, the way of
expressing a computation is by defining it as an arithmetic
circuit [4], [11], [12]. An arithmetic circuit is a circuit built
with addition and multiplication gates, and wires that carry
values from a prime finite field Fp, where p is typically a
very large prime number. A prover uses a circuit to prove
that he knows a valid assignment to all wires of the circuit,
and if the proof is correct, the verifier is convinced that
the computation expressed as a circuit is valid, but learns
nothing about the wires’ assignment. The common encoding
of this type of circuits consists of a set of equations called
rank-1 constraint system (R1CS), which is later used by the
ZK-SNARK protocol to generate the proof. A valid proof
shows, without revealing secret values, that the prover
knows an assignment to all wires of the circuit that fulfill
all the constraints of the R1CS. An issue that appears when
applying ZK protocols to complex computations, like a cir-
cuit describing the logic of a ZK-rollup, is that the amount of
constraints to be verified is extremely large (up to hundreds
of millions of constraints). In these cases, it is clear that it is
impossible to define the circuits manually.

In this article, we present CIRCOM, a novel programming
language for defining arithmetic circuits and its associated
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compiler written in Rust language [13], [14]. Programmers
can use the CIRCOM language to define arithmetic circuits
and the compiler will generate a file with the set of as-
sociated R1CS constraints and a program (written either
in C++ or WebAssembly) to efficiently compute a valid
assignment to all wires of the circuit. One of the main
particularities of CIRCOM is that it is a modular language
that allows the definition of parameterizable small circuits
called templates, which can be instantiated to form larger
circuits. The idea of building circuits from small individual
components makes it easier to test, review, audit, or formally
verify large and complex CIRCOM circuits.In this regard,
CIRCOM users can create their own custom templates, but
they can also use templates from CIRCOMLIB [15], a publicly
available library that counts with hundreds of circuits such
as comparators, hash functions, digital signatures, binary
and decimal converters, and many more.

The architecture behind CIRCOM not only provides a
simple interface to model arithmetic circuits and generate
their corresponding constraints, but it also abstracts the
complexity of the underlying ZK proving mechanism. In
particular, the output files of CIRCOM can be used directly
by SNARKJS [16], which is a ZK-SNARK tool we developed
to automatize the generation and verification of this type
of proofs. This way, our architecture decouples the circuit
definition (CIRCOM) from the proving system (SNARKJS).
We would like to stress that both CIRCOM and SNARKJS
have been successfully used for building several projects
currently in production within the Ethereum network in-
cluding payment mixers like Tornado cash [17], anonymous
multi-asset pools like Zeropool [18], ZK signaling gadgets
like Semaphore [19], and ZK-rollups, like Hermez [20], that
use circuits described by hundreds of millions of constraints.

The present work is structured in four main sections.
In Section 2, we give a general overview of ZK proofs,
with special focus on arithmetic-circuit based protocols. In
Section 3, we introduce the characteristics of CIRCOM and
give several examples of a correct use of the language. In
the following Section 4, we present some practical applica-
tions that illustrate the power of the CIRCOM language. In
Section 5, we evaluate the performance of CIRCOM in large
circuits described by millions of constraints. In Section 6,
we define the concepts of correct and safe CIRCOM programs
that can help programmers understand the philosophy of
the language and help them improve the writing of CIRCOM
circuits. Finally, we compare our work with state-of-the-art
tools in Section 7, and we conclude in Section 8.

2 BACKGROUND

2.1 Zero-Knowledge Proofs
Informally, zero-knowledge (ZK) proofs are cryptographic
protocols that allow one party to prove that he knows
some secret without leaking any information about it. More
specifically, ZK proofs enable one party, called prover, to
convince another one, called verifier, that a statement is
true without revealing any information beyond the veracity
of the statement [1], [3]. In this context, we understand
an statement as a relation between an instance, a public
input known to both prover and verifier, and a witness, a
private input known only by the prover, which belongs to

a language L in the nondeterministic polynomial time (NP)
complexity class [2].

The first generation of ZK protocols consisted in three
interactions between the prover and the verifier: first, the
prover would commit to some information, then the verifier
would send some challenges to the prover to check if she
really knows the secret information, and finally the prover
would answer to those challenges but his answers would
not allow the verifier to reconstruct any part of the secret.
More specifically, a ZK protocol satisfies that a verifier will
accept a proof if it is generated by an honest prover (com-
pleteness), and will not accept proofs from dishonest provers
(soundness). These two properties protect the verifier against
malicious provers. On the other hand, ZK proofs must
ensure that the proofs do not leak any information beyond
the veracity of the statement being proved (zero-knowledge),
guaranteeing this way the privacy of the prover’s secret
information against malicious verifiers [1]. In 1986, Fiat
and Shamir [21] presented a technique to convert three-
round interactive protocols into non-interactive. This way,
the prover can generate all the proof himself without the
need to interact with the verifier.

Non-interactive ZK proofs are very suitable for
blockchain applications because blockchain users can act
as provers and send proofs as part of a transaction to a
smart contract, who will act as a verifier. Note that with
non-interactive protocols, provers can generate the proof
in advance without receiving any challenge from the smart
contract. Finally, the smart contract can perform some action
depending on whether the proof is valid or not. Since the
proof is included as part of a transaction, it is crucial that
its size is small. Moreover, since the smart contract acts as a
verifier, it is important that the verification time is also short.
This type of non-interactive protocols that have succinct
proof size and constant verification time are called ZK
succinct non-interactive arguments of knowledge (ZK-SNARKs).

2.2 ZK-SNARKs

ZK-SNARKs [4]–[6] belong to a group of ZK proofs known
as arguments of knowledge. The difference between a ZK proof
and a ZK argument of knowledge is that while a proof
allows to prove the existence of a witness in a language
L; arguments of knowledge prove that, with very high
probability, the prover does know a concrete valid witness in
L [12]. An argument of knowledge is considered a SNARK
if it is non-interactive and, regardless of the size of the
statement being proved, has succinct proof size (e.g. [6]-
proofs are ≈ 200 bytes). Most ZK-SNARKs also guarantee
short verification time [6], [22].

The main downside of these protocols is that they need
an initial phase called trusted setup. This step requires the
generation of some random values that need to be imme-
diately destroyed. In fact, if the random values are ever
exposed, the security of the whole scheme is compromised.
To enhance the security of this setup phase, most implemen-
tations make use of a multi-party computation (MPC), which
allows multiple independent parties to collaboratively con-
struct the trusted setup parameters. In this process, it is
enough that one single participant deletes its secret coun-
terpart of the contribution to keep the whole scheme secure
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[23]. Our software SNARKJS has a framework for generating
and verifying MPCs, providing a holistic architecture for
building privacy-enabled applications.

Like most ZK systems, ZK-SNARKs operate in the
model of arithmetic circuits, meaning that the language L is
that of satisfiable arithmetic circuits. An assignment to the
wires is valid if and only if for every gate, the value on the
output wires matches that gate’s operation and the values
on its input wires [24].

2.3 Arithmetic Circuits
The most widely studied language in the context of non-
interactive ZK proofs is the NP-complete language of circuit
satisfiability [4], [11], [12]. Essentially, a circuit consists of a
set of wires connected to gates that perform some operation.
Circuit satisfiability is a classical problem of computability
theory that consists of determining whether a given circuit
has an assignment of its inputs that makes the output true.
If that is the case, the circuit is called satisfiable. Otherwise,
the circuit is called unsatisfiable.

In cryptographic implementations of this problem, we
use a particular type of circuits called arithmetic circuits (from
now on, simply called “circuits”). The gates of an arithmetic
circuit consist on additions and multiplications modulo p,
where p is typically a large prime number of approximately
254 bits [25]. The wires of an arithmetic circuit are usually
called signals, and they can carry any value from the prime
finite field Fp. As with electronic circuits, we can distinguish
between input, intermediate, and output signals.

Usually, there is a set of public signals known both to
prover and verifier, and the prover proves that, with that
public information, he knows a valid assignment to the rest
of signals that makes the circuit satisfiable. From now on, we
extend the meaning of the word witness to an assignment to
all signals of the circuit, both public and private.
Example 1. Circuit C from Fig. 1 is an arithmetic circuit de-
fined over the prime finite field F11 that, given four private
inputs s1, s2, s3, s4, it outputs the result of the operation

s1 × s2 × s3 + s4.

To perform the calculation, the circuit uses two multi-

s1

''
s2

// ×
s5

  s3 // ×
s6

  s4 // +
s7 //

Figure 1: Representation of an arithmetic circuit C defined
over the finite field F11 that outputs the result of the opera-
tion s1 × s2 × s3 + s4 mod 11.

plication gates and one addition gate, which requires two
intermediate signals s5, s6, and an output signal s7. Hence,
C is a circuit defined by the set of signals

S = {s1, s2, s3, s4, s5, s6, s7}.

An example of a witness for C is w = {2, 3, 3, 9, 6, 7, 5}.
Recent years have seen a concentration of efforts towards

different encodings of arithmetic circuits [26]. In the fol-
lowing, we define a classical form for encoding circuits in
an algebraically useful way called rank-1 constraint system
(R1CS). An R1CS encodes a program as a set of conditions
over its variables, so that a correct execution of a circuit
is equivalent to find a satisfiable variable assignment. Due
to the transformability of arithmetic circuits into R1CS,
programs specified in R1CS are often referred to as circuits,
and their variables as signals.

Formally, a quadratic constraint over a set of signals
S = {s1, . . . , sn} is an equation of the form

(a1s1 + · · ·+ ansn)× (b1s1 + · · ·+ bnsn)

−(c1s1 + · · ·+ cnsn) = 0,

where ai, bi, ci ∈ Fp for all i ∈ {1, . . . , n}. In short, we write
a constraint as a × b − c = 0, where a, b and c are linear
combinations of s1, ..., sn. A rank-1 constraint system (R1CS)
over a set of signals S = {s1, . . . , sn} is defined as a finite
collection of quadratic constraints over S.
Example 2. We can represent the circuit C from Fig. 1 as the
following R1CS over S:

s1 × s2 − s5 = 0 mod 11

s5 × s3 − s6 = 0 mod 11

s6 + s4 − s7 = 0 mod 11

Note that all expressions of the system above are quadratic
or linear. In fact, we could compact last two constraints into
one, resulting in an equivalent R1CS defined over S\{s6}:{

s1 × s2 − s5 = 0 mod 11

s5 × s3 + s4 − s7 = 0 mod 11

Compressing all constraints into a single one would not
result in an R1CS, since we would end up with a non-
quadratic equation:

s1 × s2 × s3 + s4 − s7 = 0 mod 11.

Hence, in this example, any R1CS arithmetic representation
of C will always have at least two quadratic constraints.

Since arithmetic circuits are composed by additions and
multiplications, the representation of arithmetic circuits as
R1CS is a natural transformation. Moreover, a valid witness
for an arithmetic circuit translates naturally into a solution
of the R1CS representing the circuit. This way, we say that
an arithmetic circuit is satisfiable if there exists a solution
to the R1CS representing the circuit. Checking satisfiability
in R1CS encoded form requires to check all gates of a
circuit. Most ZK protocols use aggregation techniques, such
as quadratic arithmetic programs, to check all gates at once [4].

Although there have been tremendous efforts into un-
derstanding, developing and improving ZK protocols and
ZK-SNARKs, not much work has been done towards for-
malizing, standardising and optimising the construction of
arithmetic circuits. In fact, designing and implementing
specific circuits is still a very handcraft procedure that can
entail security flaws if done incorrectly, compromising any
ZK machinery applied later on a circuit. For this reason, we
developed the CIRCOM circuit programming language. With
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CIRCOM, programmers can implement arithmetic circuits,
and the compiler takes care of the R1CS encoding and the
rest of elements needed to compute ZK-SNARK proofs.

3 CIRCOM

CIRCOM [14] is a domain-specific language (DSL) and a com-
piler that allows programmers to design and create their
own arithmetic circuits for ZK purposes. The CIRCOM com-
piler is mainly written in Rust and it is open source1. It
is designed as a low-level circuit language, close to the
design of electronic circuits, in which developers can create
their arithmetic circuits and later on, apply ZK tools [13].
In particular, CIRCOM can be complemented with SNARKJS,
which allows the generation and validation of ZK-SNARK
proofs. SNARKJS is our JavaScript implementation of most
popular protocols, such as [4], [6], [22].

3.1 Introduction

CIRCOM allows programmers to define the constraints of an
arithmetic circuit in a friendly way. Recall that arithmetic
circuits consist of operations in a finite field Fp that can
be expressed as constraints of the form a × b − c = 0,
where a, b and c are linear combinations over a set of
signals {s1, ..., sn}. Given a circuit, the CIRCOM compiler
outputs the constraints defined by the programmer, but it
also generates a program that, given a set of input values,
computes an assignment to the rest of signals of the circuit.

Example 3. Before going into details, we first illustrate how
CIRCOM works with a circuit that will allow us to prove that
the product of two secret input signals are equal to a certain
public output.

1 pragma circom 2.0.0;
2
3 template Multiplier () {
4 // declaration of signals
5 signal input a;
6 signal input b;
7 signal output c;
8 // constraints
9 c <== a * b;

10 }

The first line of this code is a pragma instruction that
specifies the version of the CIRCOM compiler that is used
to ensure that the circuit is compatible with the compiler
version indicated after the pragma instruction. If it is incom-
patible, the compiler throws a warning. All files with the
.circom extension should start with such pragma instruc-
tion, otherwise, it is assumed that the code is compatible
with the latest compiler’s version.

In line 3, we use the reserved keyword template to
define the configuration of a circuit, in this case called
Multiplier. Inside the template definition, we start by
defining the signals that comprise it. Signals can be named
with an identifier, in our example, these are identifiers a, b
and c. In this case, we have two input signals a and b, and
an output signal c.

1. The CIRCOM compiler can be installed following the in-
structions from https://docs.circom.io/getting-started/
installation. The source code has more than 43K lines of Rust,
WebAssembly and C++ and is available at https://github.com/
iden3/circom.git.

After declaring the signals, we write the constraints that
define the circuit. In this example, we used the operator
<==. The functionality of this operator is twofold: on the
one hand, it sets a constraint that expresses that the value of
c must be the result of multiplying a by b; and on the other
hand, the operator instructs the compiler in how to generate
the program that computes the assignment of circuit signals.
The compiler also accepts the operator ==> with the same
semantics, but for simplicity, from now on, we will always
use the right-to-left operator <==.

3.2 Creating a Circuit
Templates are parametrizable general descriptions of a cir-
cuit that have some input and output signals and describe,
sometimes using other subcircuits, the relation between the
inputs and the outputs. In the previous snippet of CIRCOM
code, we created the template called Multiplier, but to ac-
tually build a circuit, we have to instantiate it. The template
Multiplier does not depend on any parameter, but as
we show in future examples, it is possible to create generic
parametrizable templates that are later instantiated using
specific parameters to construct the circuit. In CIRCOM, the
instantiation of a template is called component, and it is
created as follows (line 10):

1 pragma circom 2.0.0;
2
3 template Multiplier () {
4 signal input a;
5 signal input b;
6 signal output c;
7 c <== a * b;
8 }
9

10 component main = Multiplier();

By means of the declaration of components and tem-
plates, CIRCOM allows programmers to work in a modular
fashion: defining small pieces and combining them to create
large circuits that can entail millions of operations.

3.3 Compiling a Circuit
As we said in Section 3.1, the use of the operator <== in
the template Multiplier had a double functionality: it
captures the arithmetic relation between the signals, but
it also provides a way of computing c from a and b.
In general, the description of a CIRCOM circuit also keeps
this double functionality. This way, the compiler can easily
generate the R1CS describing a circuit but also the instruc-
tions to compute the intermediate and output values of a
circuit. More specifically, given a circuit with the .circom
extension the compiler can return four files. For example, we
can compile multiplier.circom with the next options:

1 circom multiplier.circom --r1cs --c --wasm --sym

With the previous options, we are telling the compiler to
generate a file with the R1CS constraints (symbolic task) and
the programs for computing the values of the circuit wires in
C++ and WebAssembly (computational task). The last option
tells the compiler to generate a file of symbols for debugging
and printing the constraint system in an annotated way.

After compiling a circuit, we can calculate all the signals
that match the set of constraints of the circuit using the C++
or WebAssembly programs generated by the compiler. To
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do so, we simply need to provide a file with a set of valid
input values, and the program will calculate a set of values
for the rest of signals of the circuit. Recall that a valid set of
input, intermediate and output values is called witness.

3.4 Generating a ZK Proof

Imagine we want to show that we know two numbers a
and b such that a × b = 33, while keeping a and b private.
For that, we can use the previous template Multiplier by
setting the inputs a and b as private signals of the circuit,
and the output c as a public signal. Nonetheless, by default,
the inputs of a CIRCOM circuit are all considered private
signals, whereas outputs are always public signals. Hence,
we can use the template Multiplier already as it is.

In Figure 2 we show the complete process of generating
and validating a ZK proof with our architecture. As we can
see, we should first create a file containing the inputs written
in the standard JSON format: {"a": 3, "b": 11}. Next,
we pass the file with the inputs to the C++ or WebAssembly
program generated by the compiler, which will generate a
file containing the witness in binary format. After compiling
the circuit and running the witness calculator with an appro-
priate input, we will have a file with extension .wtns that
contains all the computed signals and, a file with extension
.r1cs that contains the constraints describing the circuit.

With the witness and the R1CS files, we can compute
and verify ZK proofs using SNARKJS. All ZK protocols
implemented in SNARKJS require a trusted setup. In some
cases, it is possible to reuse a trusted setup, like in [22],
whereas in others, it is necessary to generate a new trusted
setup per circuit, as in [4] and [6]. For this reason, SNARKJS
already provides the necessary commands to create MPC
ceremonies for generating the trusted setup and also verify
that an existing trusted setup has been computed correctly.
From the R1CS and the MPC, SNARKJS produces a genera-
tion and a verification key for the circuit. Finally, with the
generation key and the witness, the prover can generate a
ZK-SNARK proof and send it to a verifier, who uses the
verification key and a file with the public signals of the
circuit to check if the prover’s proof is valid2.

Note that we could have started the process choosing
different input values. For example, we could have used
{"a": 1, "b": 33} as input and generated a valid proof
for our circuit. Hence, a proof for the circuit Multiplier
would not really show that we know how to factor 33. In
Section 3.10, we will use a template that checks if a signal
is zero to modify the template Multiplier to only accept
inputs that are not 1.

3.5 The Main Component

The CIRCOM compiler needs a specific component as entry
point. This initial component is called main and, as we did
in Example 3, it needs to be instantiated with some template.

Unlike other intermediate components that we will in-
troduce later, the main component defines the global input
and output signals of a circuit. As mentioned in Section 3.4,

2. For further information about the creation of a trusted setup and
the generation and verification of ZK-SNARK proofs with SNARKJS, we
refer the reader to https://github.com/iden3/snarkjs.

Computational problem

Arithmetic circuit in CIRCOM

CIRCOM compiler

R1CS fileWitness calculator
program

Inputs
file

Witness file

ZK-SNARK proof with SNARKJS

Figure 2: Our architecture for generating and verifying ZK-
SNARK proofs using CIRCOM and SNARKJS software tools.

by default, the global inputs are considered private signals
while the global outputs are considered public. However,
the main component has a special attribute to set a list of
global inputs as public signals. The general syntax to specify
the main component is the following:

1 component main {public [s1,..,sn]} = templateID(v1,..,vn);

The {public [s1,..,sn]} part is an optional argument
that specifies the list of public signals of the circuit. Any
other input signal not included in this list is considered a
private signal.

Example 4. Let us illustrate the use of public signals follow-
ing the previous example. For simplicity, we will no longer
start out code with the pragma instruction.

1 template Multiplier() {
2 signal input a;
3 signal input b;
4 signal output c;
5 c <== a * b;
6 }
7
8 component main {public [a]} = Multiplier();

In this code snippet, we declare the main component
with the global input a as a public input signal, whereas b
remains as a global private input signal of Multiplier.

Recall that the prover needs all signals (private and
public) to generate a ZK proof, while the verifier only needs
the public signals to verify a proof, which in this case are
signals a and c.

3.6 Connecting Templates

CIRCOM is a modular language that allows the definition
of small circuits called templates. Then, these templates are
instantiated to form larger circuits. The idea of building
large and complex circuits from smaller parts makes it easier
to test, review and audit large CIRCOM circuits.
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Example 5. Let us illustrate how to connect templates by
continuing our previous example. In Example 3, we created
a template for a multiplier of two signals. In this case, we
will extend this idea by connecting two of these 2-input
multipliers to get a multiplier for three signals.

1 include "multiplier.circom";
2
3 template Multiplier3() {
4 signal input in1;
5 signal input in2;
6 signal input in3;
7 signal output out;
8
9 component multiplierA = Multiplier();

10 component multiplierB = Multiplier();
11
12 multiplierA.a <== in1;
13 multiplierA.b <== in2;
14 multiplierB.a <== multiplierA.c; // in1 * in2
15 multiplierB.b <== in3;
16 out <== multiplierB.c; // (in1 * in2) * in3
17 }
18
19 component main {public [in1, in2]} = Multiplier3();

In line 3, we create a template called Multiplier3
that has three inputs called in1, in2 and in3, and one
output called out. Notice that in the instantiation of the
template (line 19), we specify that in1 and in2 are public,
and in3 is private. To build the multiplication of the three
input signals, we create two subcomponents that are 2-input
multipliers (lines 9 and 10). To do so, we have to import the
definition of the 2-input multiplier template from a separate
file using the keyword include (line 1). Then, we connect
the inputs in1 and in2 to the input wires of the first
subcomponent multiplierA using the dot (.) operator.
Next, we use the second subcomponent to do the other
multiplication by connecting the output of the previous
2-input multiplier (line 14) and in3 (line 15). Finally, to
provide the multiplication of the three inputs, we assign
the output of the second 2-input multiplier to the output of
Multiplier3 (line 16).
Remark. From a template, we can only access the inputs and
outputs of its direct subcomponents.

3.7 Debugging
The CIRCOM language provides a small logging function
that is called with log(arg). This function can greatly help
users debug their circuits. The log(arg) function can be
called with a fixed value as argument (from the field Fp),
with values of signals, or expressions. This way, when the
witness computation program is executed, the console will
print the logged values.
Example 6. Following our previous example we use the
logging function to show a fixed value 44444444444 and
the value of the signal multiplierA.c. The fixed values
are typically used to have visual references for reading the
values of the signals, which will be mostly what the user is
going to be interested in.

1 include "multiplier.circom";
2
3 template Multiplier3() {
4 signal input in1;
5 signal input in2;
6 signal input in3;
7 signal output out;
8
9 component multiplierA = Multiplier();

10 component multiplierB = Multiplier();
11

12 multiplierA.a <== in1;
13 multiplierA.b <== in2;
14 multiplierB.a <== multiplierA.c; // in1 * in2
15 multiplierB.b <== in3;
16 log(44444444444); // log a fixed value
17 log(multiplierA.c); // log the value of a signal
18 out <== multiplierB.c; // (in1 * in2) * in3
19 }

3.8 Building More Complex Circuits
In our previous example, we created a template composed
of different subcomponents. The capability of building large
circuits from smaller pieces is far more powerful in CIRCOM.
For instance, we can create parametrized templates using
flow control structures like for loops and if statements,
include variables for using them, and even define arrays of
signals and arrays of subcomponents.
Example 7. Let us illustrate how to build these more complex
circuits by generalizing Example 5 to an n-multiplier. That
is, we will create a parametrized template that allows the
instantiation of circuits that can verify the multiplication of
n input values.

1 include "multiplier.circom";
2
3 template MultiplierN(n) {
4 signal input in[n];
5 signal output out;
6
7 component multiplier[n-1];
8
9 multiplier[0] = Multiplier();

10 multiplier[0].a <== in[0];
11 multiplier[0].b <== in[1];
12
13 for(var i=1; i<(n-1); i++){
14 multiplier[i] = Multiplier();
15 multiplier[i].a <== in[i+1];
16 multiplier[i].b <== multiplier[i-1].c;
17 }
18
19 out <== multiplier[n-2].c;
20 }
21
22 component main = MultiplierN(4);

In the previous code snippet, we create a template
called MultiplierN which depends on a parameter n.
The template uses an array called in of n elements to
describe the template inputs (line 4). Then, we create n-1
Multiplier subcomponents (line 7), which are referenced
with an n-1-dimensional array called multiplier. Then,
we appropriately initialize the first subcomponent (lines 9,
10 and 11). Next, we use a for loop with a control variable
called i, which is created using the keyword var. Notice how
inside the for loop we create subcomponents and wire the
connections between them.
Remark. It is important to highlight that building a circuit
with CIRCOM is like building an electronic circuit. We mean
that, to build a circuit, the compiler must know all the
required parameters of the circuit. As a result, in loops that
involve constraints (symbolic part), CIRCOM only allows to
define the loop condition based on the template parameters.
In our previous example, the loop condition used n which
is perfectly valid. For further information, see Section 3.13.

3.9 Splitting Between Computation and Constraints
In this section, we explain what happens when the calcula-
tion of a signal does not come from a quadratic formula. To
give some intuition, we start with an example of a template
that performs a division.



7

Example 8. A division c = a/b is an operation that cannot be
computed using a quadratic formula but it can be checked
using the quadratic expression a = b · c.

1 template Divider() {
2 signal input a;
3 signal input b;
4 signal output c;
5 c <-- a/b;
6 a === b * c;
7 }

In this case, we have to split the computational task, which
instructs the compiler in how to compute signals, from
the symbolic task, which instructs the compiler in how to
create constraints that verify a computation. As we can see
in the code, the computational task is expressed using the
individual operator <-- (line 5). The language also accepts
the left-to-right operator --> with the same semantics. On
the other side, the symbolic task is expressed separately
using the individual operator ===, which adds a constraint
that captures the quadratic relation between signals (line 6).

As an implementation detail, just mention that the ===
operator also adds an assert to the program that computes
the witness. As expected, if after computing a witness there
is an assert instruction that is not satisfied, the program stops
and returns an error. Therefore, the === operator also plays
a small role in the computational task.

At this point, it should be clear that the following tem-
plates A and B are equivalent:

1 template A() {
2 signal input in;
3 signal output out;
4 out <-- in;
5 out === in;
6 }

1 template B() {
2 signal input in;
3 signal output out;
4
5 out <== in;
6 }

Templates A and B are equivalent, since their compi-
lations will produce the same R1CS and the code of the
witness computation program will be the same except for
the fact that the code from template A will have an extra
assert instruction with respect to the code generated from
template B. Anyway, in this particular case the assert will
always be fulfilled, so the witness computation programs
are effectively equivalent.

In general, the dual operator <== is preferred whenever
possible, because it always guarantees the equivalence be-
tween the computed witness and the constraints that check
the computation. Notice that, if not handled with care, the
use of the individual operators <-- and === might produce a
situation in which the witness does not fulfil the constraints
or in which the constraints are unconnected to the witness.
Example 9. Let us look at the following template, which
given two inputs a and b, it outputs c = a+b.

1 template Incorrect() {
2 signal input a;
3 signal input b;
4 signal output c;
5 c <-- a+b;
6 c === a * b;
7 }

In this template, the computational program will output
c = a+b, but the R1CS describing the template will consist
of the constraint c = a*b. Therefore, given two inputs, the
witness computed by the witness computation program will
not be correct in general. In this case, only inputs such that

a+b = a*b will be valid inputs for the circuit. Circuits
in which a computation is not reflected as an equivalent
constraint, are considered incorrect circuits.

To avoid these cases, individual operators must only be
used in cases in which the dual operator cannot express a
computation like it happened in Example 8. In Section 6, we
analyse these situations in greater detail.

Remark. Neither the operator === nor <== can be used with
signal expressions that are not quadratic.

3.10 Checking If Zero

Now that we know the basic syntax of the CIRCOM lan-
guage, we present the template IsZero, which has some
subtleties. IsZero checks if a certain signal in a circuit is
zero or not. In this case, the output signal out is 1 if the
input signal in is zero, and out is 0, otherwise.

1 template IsZero() {
2 signal input in;
3 signal output out;
4 signal inv;
5 inv <-- in!=0 ? 1/in : 0;
6 out <== -in * inv +1;
7 in * out === 0;
8 }
9

10 component main = IsZero();

First, we use an intermediate signal inv to compute
the inverse of the input signal in. Since signals of CIRCOM
circuits are elements of a prime field Fp, the only element
that has no inverse is 0. Hence, if in is not 0, we can assign to
inv the inverse of in. In the other case, where such inverse
does not exist because in is zero, we assign 0 to inv. Note
that the value of the signal inv depends on a conditional
expression and hence, we cannot use the operator <== and
we use the individual computational operator <-- instead.

After that, we assign the value -in*inv + 1 to the sig-
nal out (line 6), which will be 1 if in = 0 and 0, otherwise.
Since we do the assignment using the dual operator <==, the
constraint out = -in*inv + 1 is also added.

Observe that the previous constraint ensures that out is
1 if in is zero, but if in is not zero, the value of inv is
not captured in any constraint, since its assignment is done
only with the individual computational operator. Hence,
inv could be manipulated to take any value. For this reason,
if we want to enforce that out is really 0 when in is not zero,
we add a new constraint in*out === 0 in line 7.

Note that when in is 0, we decided to assign 0 to inv,
but in fact, we could have chosen any other value. Indeed,
when in is zero, both constraints (lines 6 and 7) are satisfied.
In this case, we say that the circuit is safe, but not strongly
safe, since there is more than one valid solution for inv. We
analyse this type of situations in greater detail in Section 6.
Example 10. The template IsZero is used very frequently.
An illustrative example, is to use it to modify our first
template Multiplier from Example 3 to enforce that none
of its inputs is 1. For that, we use the fact that a is not 1 if
and only if a-1 is not zero, and the same stands for b.

1 include "iszero.circom"
2
3 template Factorization() {
4 signal private input a;
5 signal private input b;
6 signal output c;
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7
8 component isz1 = IsZero();
9 component isz2 = IsZero();

10
11 isz1.in <== a-1;
12 isz2.in <== b-1;
13 isz1.out === 0; // enforce that a-1 != 0
14 isz2.out === 0; // enforce that b-1 != 0
15
16 c <== a * b;
17 }
18
19 component main = Factorization();

3.11 Functions and Constants
The CIRCOM language also allows the usage of functions to
encapsulate computation logic. Functions in CIRCOM have a
syntax similar to functions in the C programming language.
In the body of a function, we can use control flow statements
and variables. However, functions should only be used for
computational purposes, so contrary to circuit templates,
functions cannot create new constraints or use signals.
Example 11. An example of a basic function is the following
one, which adds one to a given value:

1 function my_function(x){
2 return x+1;
3 }

The use of functions is not strictly necessary to define
circuit templates and their main usage in CIRCOM is to
define global constants. The reason for this, is that CIRCOM
does not admit the definition of global constants. Thus,
whenever we want to have a global constant we can just
define a function that always returns the same value, and
call it every time we need it in our circuit.
Example 12. The following function will be later used in
Section 4.2 and it returns a parameter of an elliptic curve.

1 function baby_const_a(){
2 return 168700;
3 }

3.12 Symbolic Variables
In Section 3.8, we explained several uses of the variables
when building circuits. However, variables have another
important use, which is to store symbolic expressions when
building the constraints. We call symbolic variables to those
variables that contain symbolic expressions on signals.
Example 13. Let us analyse an example of a template that
uses symbolic variables. The following template implements
a multiAND circuit that depends on a parameter n. That
is, MultiAND is a template that takes an array of n binary
inputs and outputs one if and only if all inputs are one.

In the following code snippet, we implement an AND
gate for four binary inputs (line 15). To do so, we add the
values of the inputs and check if the result is equal to the
number of inputs by subtracting and checking if the result
is zero. If the result is zero, the output should be one and
zero, otherwise.

1 include "iszero.circom"
2
3 template MultiAND(n) {
4 signal input in[n];
5 signal output out;
6 var sum = 0;

7
8 for(var i=0; i<n; i++) {
9 sum = sum + in[i];

10 }
11
12 component isz = IsZero();
13
14 sum - n ==> isz.in;
15 isz.out ==> out;
16 }
17
18 component main = MultiAND(4);

Notice that we used two variables: i and sum. The
variable i is a regular index variable used in the for loop,
while sum is a symbolic variable that is used to create a
constraint in which we add up the values of the n input
signals. Inside the loop, the symbolic variable sum is used
to create the sum of signals in[0]+...+in[n-1]. In line
9, sum is finally used to generate the constraint:

in[0] + ... + in[n-1] - n = isz.in.

Example 14. In the following example, we analyse a tem-
plate that given an input signal in, it outputs the binary
representation of in as an n-array of signals called out[n].
For a given number n, we could use the following list of
quadratic constraints:

1 out[0] * (out[0]-1) === 0
2 .
3 .
4 .
5 out[n-1] * (out[n-1]-1) === 0
6
7 out[0] * 2^0 +...+ out[n-1] * 2^(n-1) - in === 0

The first lines guarantee that all elements of the array out
are binary, and the last line, that out is indeed the binary
representation of the input in. We can rewrite the previous
code using a loop:

1 signal input in;
2 signal output out[n];
3 var bsum = 0;
4 var exp2 = 1;
5
6 for (var i = 0; i<n; i+=1){
7 out[i] * (out[i]-1) === 0;
8 bsum += out[i] * exp2;
9 exp2 * = 2;

10 }
11
12 bsum === in;

Note that, in the previous code, we used the individual
symbolic operator ===. We cannot use the dual operator
because the constraints to check the binary representation
of in cannot be computed using quadratic expressions.
For this reason, we need to build the constraints without
providing a way to compute their values. This has to be
done separately with the following simple algorithm that
extracts one by one the bits of in:

1 for (var i = 0; i<n; i+=1) {
2 out[i] <-- (in >> i) & 1;
3 }

Notice how we used the individual operator for compu-
tation <-- to assign computed values to signals without
generating new constraints.
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Now, putting the two pieces together, we can implement
a circuit template called Num2Bits(n) that outputs the bit
representation of up to n bits of an input signal.

1 template Num2Bits(n) {
2 signal input in;
3 signal output out[n];
4 var bsum = 0;
5 var exp2 = 1;
6 for (var i = 0; i<n; i+=1){
7 out[i] <-- (in >> i) & 1;
8 out[i] * (out[i]-1) === 0;
9 bsum += out[i] * exp2;

10 exp2 * = 2;
11 }
12 bsum === in;
13 }

Note that in the body of control flow statements we can
have both symbolic and computational expressions (lines 7-
10). In general, CIRCOM programmers can write constraints
and signal computations together, even when the symbolic
and computational descriptions differ.

3.13 Dealing with the unknown
When writing CIRCOM programs, it is useful to think of
them as physical circuits of wires and gates. As with phys-
ical circuits, CIRCOM circuit descriptions cannot depend on
the value of its wires. That is, the R1CS of any CIRCOM
program must be the same for any set of inputs. In fact, the
compiler builds the R1CS without knowing the values of
the inputs, and hence, it considers the values of the signals
unknown at compilation time.

As a result, since Boolean expressions on conditional
expressions and loops can only depend on values known
at compilation time (i.e. template parameters but no signal
values), if we try to add a constraint inside a conditional or
a loop that depends on unknown expressions, CIRCOM will
output a compilation error to inform the programmer about
this situation.

Formally, a block of code is unknown if it depends on a
Boolean expression which is unknown at the program point
where it was evaluated. For instance, the body of a loop
is unknown, if its condition depends on the value of an
input. An expression is unknown at a program point pp,
if there is a variable involved in the expression which is
unknown at pp. Finally, a variable x is unknown at pp, if
(for the given instantiation of the template) there exists a
path in the control-flow graph ending at pp, in which for
the last assignment modifying x, the new value depends on
an unknown expression or such an assignment belongs to
an unknown block.

Notice this definition is recursive and thus, the CIRCOM
compiler performs a fixed-point analysis to detect the un-
known variables present in the program. A hint for the pro-
grammer when getting a compilation error for an unknown
variable is to pay attention to two common situations:

1) The addition of a constraint that depends on a
Boolean condition involving an unknown variable.

2) The addition of a constraint with an array access
using as index an unknown variable or a signal.

Example 15. Let us see an example of a CIRCOM program
that does not compile because of the unknown.

1 template ErroneousTemplate1(n) {
2 signal input in;
3 signal output out1;
4 signal output out2;
5 for(var i=0; i<n; i++) {
6 out1 <== in * in;
7 if(in >= 0){
8 out2 <== in + 2;
9 }

10 }
11 }
12
13 component main = ErroneousTemplate1(4);

When compiling this program, we obtain an error derived
from the instruction in line 8, where we are trying to add a
new constraint to the R1CS only if the value of signal in is
greater or equal to 0. In this case, the compiler detects that
the execution of line 8 depends on the condition in line 7,
but signal in has an unknown value at compilation time,
and hence, the compiler throws an error. Notice that line
6 is correct, since it is inside the loop from line 5, whose
Boolean condition depends on the value of n, which is a
template parameter known at compilation time.

Example 16. In this other example, we illustrate the situ-
ation in which, to create a constraint, a symbolic variable
(unknown) is used to access an array.

1 template ErroneousTemplate2(n) {
2 signal input in[5];
3 signal output out;
4 var aux;
5
6 if(n > 0)
7 aux = in[0] + 3;
8 else
9 aux = 2;

10 out <== in[aux];
11 }
12
13 component main = ErroneousTemplate2(4);

Notice that at line 10, the variable aux is unknown, since
for the given instantiation of the template (n = 4), aux is
modified (line 7) and its new value depends on the value of
the signal in[0]. Therefore, we will get a compilation error,
since the constraint out = in[aux] cannot be added to
the R1CS without knowing the value of aux used to index
the array in.

3.14 CIRCOMLIB

As we have explained in the previous sections, the use of
templates allows CIRCOM developers to build large circuits
from smaller individual subcircuits. In this regard, CIRCOM
users can create their own custom templates, but in addition
to the language and the compiler, we also provide an open-
source library of CIRCOM templates called CIRCOMLIB [15],
which contains hundreds of circuits.

On the one side, CIRCOMLIB has the implementation
of basic operations, such as binary logic gates, compara-
tors, conversions between field elements and their binary
representations, and multiplexers. On the other side, the
library contains more complex circuit structures that are
used in the context of distributed ledgers and cryptocurren-
cies, such as digital signatures, elliptic curve-based crypto-
graphic schemes, hash functions, and Merkle tree structures.

In the following Section 4, we will present some practical
applications of CIRCOM, where we will make use of some
templates from CIRCOMLIB.
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4 APPLICATIONS

In this section, we present some practical examples that
illustrate the potential of the CIRCOM language. In Section
4.1, we give an example on how to prove that you know
the preimage of a hash value using templates from the
CIRCOM library. In Section 4.2, we introduce templates that
implement the arithmetic operations on an elliptic curve
called Baby Jubjub [27]. In Section 4.3, we explain how to
use the previous curve operations to verify that a private
key corresponds to a public key without revealing such
private key. Finally, in Section 4.4 we explain how to verify
a signature with templates from CIRCOMLIB, and give an
example of a circuit that verifies that a given message has
been signed by a public key from a pair of authorized public
keys, but without revealing which of the two.

4.1 Hashing

A cryptographic hash function is a deterministic one-way
function that maps data of an arbitrary size to a bit array of a
fixed size. Hash functions are widely used in authentication
systems to avoid storing plaintext passwords in databases,
but are also used to identify and validate the integrity of
files, documents and other types of data. One of the main
uses of hash functions is in digital signatures, in which the
hash is used to create a cryptographic digest of the data
being signed (see Section 4.4) .

CIRCOMLIB provides circuits of several hash functions.
For example, the template Sha256(nBits) is an imple-
mentation of SHA-256, which is defined as a hash function

H : {0, 1}nBits → {0, 1}256.

The next example shows a circuit that you can use to
prove that you know the preimage of a given hash without
revealing it. The following piece of code creates a circuit that
takes a binary array in of 448 bits and returns out = H(in).

1 include "sha256.circom";
2
3 template Main() {
4 signal input in[448];
5 signal output out[256];
6
7 component sha256 = Sha256(448);
8
9 for (i=0; i<488; i++){

10 sha256.in[i] <== in[i];
11 }
12
13 for (i=0; i<256; i++){
14 out[i] <== sha256.out[i];
15 }
16 }
17
18 component main = Main();

In line 8, we instantiate the template Sha256 with nBits =
448. In this case, we have to assign the values of the signal
array bit by bit (line 11). Finally, we set each bit of out to
each bit of the output of component sha256 (line 15).

Classical hash functions, such as the family of SHA
functions [28], are heavy on bit operations, which makes
them very inefficient to implement inside arithmetic circuits.
For example, the previous template sha256 from CIRCOM-
LIB is described by more than 59,000 constraints. Recently,
there have been efforts to develop new hash functions that
optimize their representation inside arithmetic circuits. In
this regard, CIRCOMLIB also contains the implementation

the Pedersen hash [29] (pedersen), two hash functions
from the MiMC family [30] (mimc, mimc_sponge), and
Poseidon [31] (poseidon).

4.2 Elliptic-Curve Arithmetic
A classical use of ZK protocols is to prove ownership of
a public key without revealing the secret key. For that,
we need to be able to write the logic of verifying that a
given secret key corresponds to a given public key inside
an Fp-arithmetic circuit. This logic is usually implemented
by means of arithmetic operations of an elliptic curve. In
this section, we show how to implement the arithmetic
operations of an elliptic curve called Baby Jubjub [27], used in
the Ethereum blockchain to implement elliptic-curve cryp-
tography inside circuits [25].

Definition of parameters of the curve
Baby Jubjub is an elliptic curve defined over the prime field
Fp with

p =218882428718392752222464057452572750885

48364400416034343698204186575808495617,

and described by equation

ax2 + y2 = 1 + dx2y2, (1)

with a = 168700 and d = 168696. More precisely, Baby
Jubjub is defined as the set of points (x, y) ∈ F2

p that satisfy
Eq. (1) together with a special point, called point at infinity,
which does not satisfy the equation but still belongs to the
curve, and which is typically represented by the point (1, 0).

To avoid replicating the values of a and d from Eq. (1)
in every template related to the curve, it is useful to define
them only once. As we explained in Section 3, CIRCOM does
not admit the definition of global constants and, instead, we
have to define two functions that always return these values.

1 function baby_const_a(){
2 return 168700;
3 }
4
5 function baby_const_d(){
6 return 168696;
7 }

This way, we can always call these functions every time we
need the coefficients of the elliptic curve.

Checking if a point belongs to the curve
We start by checking if a pair of coordinates (x, y) corre-
spond to a point on the curve that safisfies Eq. (1). For that,
we create a template called BabyCheck(), that verifies if a
pair of x and y are a solution to the equation.

1 template BabyCheck() {
2 signal input x;
3 signal input y;
4 var a = baby_const_a();
5 var d = baby_const_d();
6 signal x2;
7 signal y2;
8 x2 <== x * x;
9 y2 <== y * y;

10 a * x2 + y2 === 1 + d * x2 * y2;
11 }

In the previous template, first, we declare two input
signals x and y, one per each coordinate. Then, we get
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the values of the coefficients a and d from the functions
we previously defined, and assign them to two variables a
and d, respectively. In this case, we cannot write directly the
constraint

a*x*x + y*y === 1 + d*x*x*y*y,

as in Eq. (1), since it is not a quadratic expression. Instead,
we use two new intermediate signals, x2 and y2, to repre-
sent x2 and y2. Once these signals are defined, we can check
if the point (x,y) belongs to the curve using the quadratic
constraint

a*x2 + y2 === 1 + d*x2*y2.

Alternatively, we can define a signal u, enforce u <== x*y,
and then use u to rewrite the curve equation using an
equivalent constraint of the form

a*x2 + y2 === 1 + d*u*u.

Addition of points in the curve
Now, we define how to operate in the elliptic curve group.
For that, we use that the addition of two points P1 = (x1, y1)
and P2 = (x2, y2) on Baby Jubjub [27] is defined as a third
point P3 = (x3, y3) with coordinates

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
and y3 =

y1y2 − ax1x2

1− dx1x2y1y2
. (2)

The following piece of code consists of a template, called
BabyAdd, that takes two points and outputs their addition
using the formula from Eq. (2).

1 template BabyAdd() {
2 signal input p1[2];
3 signal input p2[2];
4 signal output pout[2];
5
6 signal beta;
7 signal gamma;
8 signal delta;
9 signal tau;

10 var a = baby_const_a();
11 var d = baby_const_d();
12
13 beta <== p1[0] * p2[1];
14 gamma <== p1[1] * p2[0];
15 delta <== (-a * p1[0]+p1[1]) * (p2[0] + p2[1]);
16 tau <== beta * gamma;
17
18 pout[0] <-- (beta + gamma) / (1+ d * tau);
19 (1+ d * tau) * pout[0] === (beta + gamma);
20
21 pout[1] <-- (delta + a * beta - gamma) / (1-d * tau);
22 (1-d * tau) * pout[1] === (delta + a * beta - gamma);
23 }

In this template, we define points using 2-dimensional
arrays of signals. In particular, we have two points as
input signals (p1 and p2), and a third point as output
signal (pout). We also have four intermediate signals (beta,
gamma, delta, and tau), and two variables (a and d)
with the coefficients from Eq. (1). Since both expressions
from Eq. (2) involve a division by signals, we cannot use
the dual operator <== and write the formulas directly as
defined in the equation. Instead, we first use the individual
computational operator <-- to compute the denominators,
and then, we use the individual symbolic operator === to
enforce a multiplicative relation between numerator and
denominator.

To illustrate the definition of public input signals, let us
suppose that we want to use circuit BabyAdd to prove that
given an initial point P1 and a final point Pout, we know

the point P2 such that P1 + P2 = Pout, where all the points
belong to the curve.

1 component main {public [p1]} = BabyAdd();

We indicate that the first point p1 is public thanks to the
tag public that precedes the list of public input signals in
the declaration of the main component. An array of signals
must have all elements public or all elements private. Notice
that, in this case, both signals of p1 (p1[0] and p1[1]) are
public. The two coordinates of the output point pout are
also public, since they are the output signals. Finally, the
two coordinates of the second point p2 remain private, since
they do not appear in the previous list.

4.3 Public-Key Cryptography

To build public-key cryptography using elliptic curves, the
participants must agree on a publicly known point called
generator. In this setting, a private key is a randomly chosen
scalar and its corresponding public key is computed by mul-
tiplying the generator point by the private key. This scheme
achieves the properties of public-key cryptography because
point multiplication by a scalar can be efficiently computed
with algorithms like double-and-add [32, Algorithm 7.6],
while computing the private key from the generator and the
public key point is computationally unfeasible. This compu-
tational problem is widely known as the discrete logarithm
problem [32, Problem 7.1]. In the following code snippet,
we use the ScalarMulFix template from CIRCOMLIB to
compute a public key from a private key provided as input.

1 template BabyPbk() {
2 signal input in;
3 var GEN[2] = [
4 52996192406415512816348655835182970302
5 82874472190772894086521144482721001553,
6 16950150798460657717958625567821834550
7 301663161624707787222815936182638968203
8 ];
9 signal output Ax;

10 signal output Ay;
11 component pvkBits = Num2Bits(253);
12 pvkBits.in <== in;
13 component mulFix = ScalarMulFix(253, BASE8);
14 var i;
15 for (i=0; i<253; i++) {
16 mulFix.e[i] <== pvkBits.out[i];
17 }
18 Ax <== mulFix.out[0];
19 Ay <== mulFix.out[1];
20 }
21 component main = BabyPbk();

Let us see the main parts of this template. We have an
input signal in, which is the scalar (private key) used to
generate the new point (public key); the generator point
GEN[2]; and two output signals, Ax and Ay, which are
the coordinates of the public key point generated from
multiplying GEN[2] by in.

After these definitions, we declare a component to trans-
form the scalar in its 253-bit representation (Num2Bits)
and we assign the scalar to its input signal. Right after, we
declare a new component to perform the multiplication of
the generator by the scalar (ScalarMulFix). Details about
how this multiplication is performed can be found in [15]. In
line 16, each of the bits from the representation of the scalar
are set to its corresponding input of the component. Finally,
we assign the output signals of this component to the final
output signals Ax and Ay.
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If we compile the program without declaring any input
signal as public, then they all remain as private signals. In
particular, in is a private signal whose value should not be
known because it is a private key. Finally, note that BabyPbk
only has two public output signals, Ax and Ay, which are not
explicitly declared as public, since the output signals of the
main component are always considered as public signals.

4.4 Digital Signatures

A popular elliptic curve-based signature scheme is the
Edwards-curve digital signature algorithm (EdDSA) [33], which
is a digital signature scheme based on twisted Edwards
curves, such as Baby Jubjub. Given a public key as defined
in Section 4.3, and a message, the EdDSA protocol uses a
public cryptographic hash function to bind the signature to
a given message and public key.

CIRCOMLIB contains different implementations of Ed-
DSA based on Baby Jubjub which differ in the hash
functions used. The template eddsa uses the Peder-
sen hash, eddsamimc is implemented using MiMC, and
eddsaposeidon is a variation with Poseidon. All these
templates output 1 if the signature is valid and 0 otherwise.

Users can use these templates to validate that a signature
in a message is valid, but also to prove more complicated
statements, such that a message has been signed with a
public key from a list of authorized public keys but without
revealing which specific one. In the following example,
we define a template that validates if a message has been
correctly signed by one of two public keys pk1, pk2.

1 include "eddsa-simplified.circom";
2
3 template VerifyAuthorizedSignature() {
4 signal input pk1[2]; // public key 1
5 signal input pk2[2]; // public key 2
6 signal input msg; // message
7 signal input sig; // signature
8
9 signal out1;

10 signal out2;
11
12 component verify1 = EdDSAVerifier();
13 component verify2 = EdDSAVerifier();
14
15 // verify signature with pk1
16 verify1.pk <== pk1;
17 verify1.msg <== msg;
18 verify1.sig <== sig;
19 out1 <== verify1.out;
20
21 // verify signature with pk2
22 verify2.pk <== pk2;
23 verify2.msg <== msg;
24 verify2.sig <== sig;
25 out2 <== verify2.out;
26
27 out1 + out2 === 1;
28 }
29
30 component main {public [pk1[0],pk1[1],pk2[0],pk2[1],msg]}
31 = VerifyAuthorizedSignature();

Notice that we used the EdDSAVerifier template as a
black box that returns a signal that determines if a signature
is valid for a given message and public key. Since we
need to verify the signature twice, one per each key, the
template EdDSAVerifier is instantiated in two different
components (verify1, verify2). The constraint out1 +
out2 === 1 imposes that either verify1 or verify2 is 1.
That is, the message has been signed with one of either pk1
or pk2 keys, which are public input signals of the circuit
(line 30).

5 CIRCOM PERFORMANCE ON LARGE CIRCUITS

It is clear that one of the main advantages of CIRCOM lies
in its modularity. With CIRCOM, users can define parame-
terized independent templates that can later be instantiated
and combined to produce large circuits describing complex
operations. However, combining components significantly
increases the number of constraints describing the circuit.
Specially, when connecting the output of a component as
an input of another component, the developer needs to in-
troduce constraints that capture this binding. This problem
is aggravated when working with large circuits, which can
entail hundreds of millions extra constraints.

To reduce the amount of constraints describing a cir-
cuit, the CIRCOM compiler uses classical simplification tech-
niques, such as the substitution method for solving linear
systems. Essentially, the compiler divides the set of con-
straints in clusters of related constraints, and then applies
the substitution method over each of these clusters in par-
allel to detect and get rid of most redundant constraints.
This way, the compiler optimizes the representation of the
constraints describing the circuit.

5.1 ZK-Rollup Circuits

To evaluate the performance of CIRCOM with large cir-
cuits, the language and the compiler have been tested with
the ZK-rollup circuits of the Hermez [20] project. A ZK-
rollup [9] is a construction intended to increase the scalabil-
ity of Ethereum by performing calculations off-chain, rolling
many transactions up into a single batch, and sending it
to the main Ethereum chain for processing in one action.
In more detail, a ZK proof is generated off-chain for every
batch of transactions and the proof proves the validity of
every transaction in the batch. This means that it is not
necessary to rely on the Ethereum main-chain to verify each
signed transaction.

The key of ZK-rollups is that they allow verification to
be carried out in constant time regardless of the number of
transactions in the batch. This ability to verify proofs both
efficiently and in constant time is at the heart of all ZK-
rollups. In addition to this, all the data of the transactions
can be published cheaply on-chain, so that anyone can
reconstruct the current state and history from this on-chain
data. In the following section, we present some results for
Hermez ZK-rollup circuits of different sizes (transactions
per batch).

5.2 Performance Results

In Table 1, we show the number of generated constraints, the
size of the R1CS file and, the compilation time for different
instances of ZK-rollup circuits. We also show their corre-
sponding gains and losses before and after applying the
simplification of constraints. The results have been obtained
from an AMD Ryzen Threadripper 3990X 64-Core Processor
with 270GB of RAM (Linux Kernel 5.4.0-80-generic).

As the experimental evaluation shows, in circuits this
large, the compiler’s optimizations are crucial to handle the
huge amount of constraints. For instance, for ZK-Rollup-
256, CIRCOM without simplification generates 134,267,317
constraints whose file size is 15.7GB and the time needed
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Circuit
Number of constraints Size of .r1cs file Compilation time

no-simpl. simpl. gain no-simpl. simpl. gain no-simpl. simpl. overhead
ZK-Rollup-256 134,267,317 24,301,347 81.9% 15.7GB 8.5GB 45.9% 12.1min 38.9min ×3.22
ZK-Rollup-512 197,926,325 37,792,099 80.9% 23.4GB 13.7GB 41.5% 17.5min 58.3min ×3.33
ZK-Rollup-1024 325,244,341 64,773,603 80.1% 38.8GB 24.1GB 37.9% 28.4min 111.2min ×3.92
ZK-Rollup-2048 579,880,373 118,736,611 79.5% 69.5GB 44.6GB 35.8% 50.6min 512.5min ×10.14
ZK-Rollup-2341 652,925,030 134,203,765 79.4% 78.4GB 51.1GB 34.8% 56.5min 618.9min ×10.95

Table 1: Comparison of different Hermez ZK rollup circuits before and after the CIRCOM compiler
applies optimization techniques to reduce the number of constraints describing the circuits.

for the compilation is 12.05min. On the other hand, the
simplification allows us to reduce the number of constraints
up to 24,301,347, whose file size is 8.5GB and the compi-
lation time is increased up to 38.92min. Note that in this
case, the reduction on the number of constraints is close to
82%, whereas the size of the .r1cs file is not reduced in
the same proportion. This is due to the fact that constraint
simplification often implies the addition of new variables in
the remaining constraints.

The cost of simplification is that compilation time in-
creases slightly more than three times. In the other circuits,
the gain is similar, a reduction of around 80% in the number
of constraints and 40% in the file size, but compilation
time increases considerably more when dealing with more
than 500 millions of constraints. The reason for this, is that
the amount of RAM memory needed in the simplification
process reaches a peak of around 750GB, which is far larger
than the memory of the used machine, which has 270GB
of RAM, and hence, a lot of swap memory needs to be
used. This fact notably affects the performance. In this sense,
the job of the compiler is to keep a right balance between
constraints reduction and the time needed for it.

Note that with circuits from Table 1, CIRCOM produces
around 100 million constraints (500 million without simplifi-
cation). With these numbers, ZK-rollups can handle around
2,000 transactions. Take into account that the software used
afterwards to generate and validate ZK-SNARK proofs may
also have bounds. In fact, thanks to simplification, we can
handle up to 2,341 transactions without exceeding the limit
of 227 constraints that SNARKJS can handle. Processing a
batch of this size needs less than 2.1 million gas, so with this
amount of transactions per batch and the current Ethereum
gas limit per block of 30 millions, we have that we can
process 32, 774 transfer transactions per block, which is
around 23 times more transfers than if they were executed
directly in the Ethereum blockchain.

The performance evaluation shows how current simpli-
fications applied by the compiler are crucial for the use of
CIRCOM in industrial circuits describing real-world prob-
lems. However, the simplification previously described only
tackles the redundancies among linear constraints, even
though there can be non-linear constraints which can be also
reduced. This is a far more complex problem and remains as
future work to be studied and integrated within CIRCOM.

6 ANALYSIS

To start our analysis, we have to introduce the concept of
correct CIRCOM program. Before giving the formal definition,

we set some notation. Let Cn×t×m be the set of all circuits
that can be programmed in CIRCOM with n input signals, t
intermediate signals, and m output signals. Given a circuit
C ∈ Cn×t×m, we denote by C(C) to the set of constraints
generated by CIRCOM. Let W : Cn×t×m × Fn

p → Ft
p × Fm

p

be a partial function that takes a circuit C ∈ Cn×t×m and n
values for the input signals, such that it returns the t values
of the intermediate signals and the m values of the output
signals. This function describes the computation made by
the executable code obtained from compiling C after the
input values are given. Note that W is a partial function,
since not every input of a circuit produces a valid output.

Definition 17 (Correct CIRCOM program). A CIRCOM pro-
gram C ∈ Cn×t×m is said to be correct if for every given
values ~i ∈ Fn

p for the n input signals of C , we have that:
if C(C) replacing the inputs signals by ~i is satisfiable, then
W (C,~i) = (~t, ~o) ∈ Ft

p × Fm
p and (~i,~t, ~o) is a solution to the

system C(C). Otherwise, we say that C is incorrect.

However, correct circuit programs are not enough to
ensure that a CIRCOM program is adequate to be used in
the context of security protocols. In many cases, we need
the R1CS constraint system to have a unique solution once
the values of the input signals are set. A CIRCOM program
is called strongly safe when the values computed by the exe-
cutable code are the unique solution to the R1CS constraint
system. In a correct and strongly safe CIRCOM program,
both the R1CS constraint system and the executable code
describe the same set of solutions: since the computation
of the executable code is deterministic, by correctness and
uniqueness the constraint system can only be satisfied by
the intermediate and output values produced by the code
and a set of inputs. Since both the code and the constraints
of a correct and strongly safe CIRCOM program provide the
same relation among inputs and intermediate and output
signals, we can safely use them in a ZK tool.

Sometimes this notion of safety involving all signals
including the intermediate ones could be too strong for
some components as it happens with the IsZero circuit
from Section 3.10. Notice that when the value of signal
in is 0, the computation sets the intermediate signal inv
also to be 0, but inv can take any value according to the
constraints in the template. For these reasons, there is an
alternative weaker notion of safety, which only requires the
constraints and the code to meet on inputs and outputs,
but not necessarily on the intermediates. When safety is
proved in a modular way, that is to say, using the fact that
subcomponents are already been proved to be safe, then
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both notions are very similar and the intermediate signals
locally used in the subcomponents are the only ones that
are not considered. Let us provide a precise definition for
these concepts.

Definition 18 (Safe CIRCOM program). A CIRCOM program
C ∈ Cn×t×m is said to be strongly safe if for every given
values ~i ∈ Fn

p for the n input signals of c, we have that: if
W (C,~i) = (~t, ~o) ∈ Ft

p×Fm
p , then (~i,~t, ~o) is the only solution

of C(C), and it is said to be safe if all solutions of C(C) are of
the form (~i, ~t′, ~o). Otherwise, the program is called unsafe.

Notice that every strongly safe CIRCOM program is also a
safe program. A safe program can always be converted into
a strongly safe program by adding new constraints which
enforce that, given the input values, the intermediate and
output signals are a unique solution for the program. For
instance, template IsZero can be converted into a strongly
safe template by adding the constraint inv * out === 0
to the R1CS constraint system.

Lemma 19. A strongly safe CIRCOM program is deterministic.

Proof. From definition 18, we deduce that, given a safe
CIRCOM program C and an input~i for this program, if there
exists an output ~o and an intermediate ~t for C , then it must
be unique.

The following results show that many times both kinds
of safety are guaranteed by construction.

Lemma 20. A CIRCOM program is strongly safe if it is written
without using <-- and --> and all its intermediate and output
signals are the target of an assignment operation.

Proof. Without loss of generality, let us assume the program
only uses right-to-left operators. If a program does not use
operator <--, the value of a signal can only be assigned
using operator <==. At the computational level, this instruc-
tion is translated as an assignment where the signal on the
left obtains the same value as the value of the expression on
the right. At the constraint level, this instruction introduces
a new constraint where both sides must have the same
value. Consequently, this constraint is guaranteed once the
assignment is executed and, since signals are immutable,
and they can only have one single value assigned, this
constraint remains true. Furthermore, the executable code
generated by CIRCOM is deterministic, then, given the same
inputs, each signal always obtains the same value. Then,
there must be only one solution.

Apart from <==, the operator === also adds new con-
straints to the constraint system, and an assert in the compu-
tational level. As a result, either the program has no result
for the input or the constraints are guaranteed to be satisfied
by the result.

Circuits programmed using <-- or --> are considered
unsafe if not proved otherwise. Currently, there are no
automatic tools that can prove safety of CIRCOM programs.
In general, using unsafe circuits inside our own circuits
should be avoided, since it could contain errors that could
compromise the cryptographic security.

A template is said to be safe if all its possible instan-
tiations are safe circuits. All templates defined in the CIR-
COM libraries have been manually proved to be safe. Note
that this is not a trivial task.

The previous safety result can be easily extended to
the case where the circuit is programmed using only safe
templates and new code not containing <-- or -->. Hence,
many circuits are guaranteed to be safe by construction.
Moreover, these modularity results ease the task of man-
ually checking the safety property of a circuit as it can be
locally proved template by template, assuming inductively
that its subcomponents are safe. That is, if a circuit C is
composed only by strongly safe subcomponents C1, . . . , Cn,
then C is also strongly safe.

7 RELATED WORK

The appealing properties of ZK-SNARKs set off the devel-
opment of different software that allow the generation and
verification of these proofs. The first practical implementa-
tion was LIBSNARK [34], a library from 2017 with several
ZK-SNARK proving schemes. LIBSNARK was developed by
the Succinct Computational Integrity and Privacy Research
Laboratory (SCIPR Lab) and it is written in C++. The same
year, Zcash released BELLMAN [35], a Rust crate for building
ZK-SNARK circuits that provides circuit traits, primitive
structures, and basic gadget implementations. Both LIB-
SNARK and BELLMAN work very well in desktop/server
applications and can be used in the Ethereum blockchain,
but they do not have Solidity support.

For the last few years, there has been efforts towards
new programming languages that not only facilitate the
generation and verification of ZK-SNARK proofs, but focus
on arithmetic circuit constructions and constraint encodings.
In this regard, in 2018, the Technical University (TU) of
Berlin developed ZOKRATES [36], a programming language
and a toolbox for ZK-SNARKs on Ethereum written in
Python. The software was intended to help programmers
use verifiable computation in their decentralized application
(DApp) from the specification of a program in a high-level
language in order to generate proofs of computation and
verify those proofs in Solidity. ZOKRATES is a good DSL for
web applications with Solidity support. The downside of
ZOKRATES is that it is only meant to be used with Ethereum.

ZINC [37] is a DSL from MatterLabs which borrows the
Rust syntax and semantics with minor differences due to
the particularities of R1CS representations. It is a Turing-
incomplete language, as it does not allow recursion and
variable loop indexes. ZINC code is always compiled to
the most efficient circuit representation possible. A common
aspect between ZOKRATES and ZINC is that both languages
are high-level with respect to circuit constructions, which al-
lows the programmer to abstract the technicalities of build-
ing R1CS circuits. In comparison, CIRCOM is conceived as
a low-level programming language, which gives developers
the advantage of being more flexible in the level of precision
for describing a circuit.

Another programming language that deals with arith-
metic circuits in a low level is SNARKY [38, Sec. 8.1], an
OCaml-based language with a back end based on LIB-
SNARK. It was developed by O(1)-Labs together with the
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New York University (NYU) and it is used in CODA, a
project building a succinct blockchain via recursive com-
position of ZK proofs. SNARKY is a library for writing
verifiable programs in both OCaml and ReasonML func-
tional languages. The main difference between CIRCOM and
SNARKY is the programming paradigm they use. While
CIRCOM is an imperative DSL based on the syntax of C,
SNARKY has a functional nature that can be challenging for
many developers.

To sum up, CIRCOM was conceived to keep a fair balance
between the flexibility and full control of the circuit de-
signs written in a low-level language like SNARKY, and the
easiness and developer-friendliness of high-level languages
like ZOKRATES and ZINC. This way, CIRCOM is reliable and
simple at the same time, and can be quickly learned by most
software developers.

8 CONCLUSION

In this article we present CIRCOM, a new language for
describing circuits for generating ZK proofs and its asso-
ciated compiler. CIRCOM allows programmers to describe
arithmetic circuits using a C-like language. The compiler
is responsible for generating all the necessary material to,
later, produce ZK-SNARK proofs about instances of that
circuit using another automatic tool. In particular, CIRCOM
can be complemented with SNARKJS, a tool that implements
different ZK-SNARK protocols such as [4], [6], [22].

Over the last few years, many ZK protocols have
emerged to improve different efficiency and security as-
pects. However, certain tools that were initially developed
had fixed structures that were incompatible with some of
the techniques and circuit encoding used by the new wave
of improved protocols. The novelty of CIRCOM is that it was
conceived from the beginning as a compiler adaptable to
other arithmetic-circuit encodings, and also, that it decou-
ples the description of the computational problem from the
specific ZK protocol. As a result, the logic of CIRCOM still
holds with other encoding and future ZK protocols.

The philosophy of CIRCOM is that programmers have
full control over the exact construction of arithmetic cir-
cuits. Sometimes, CIRCOM developers may introduce more
constraints than needed, deteriorating the efficiency of the
compiler. Another source of inefficiency is due to modu-
larity, which may introduce redundant linear constraints
capturing the relationship between inputs and outputs of
different subcomponents of a circuit. Our performance eval-
uation shows that the simplification process alleviates these
problems and helps the compiler optimize the representa-
tion of the constraints describing large circuits.
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