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Abstract

This paper presents a novel solution to the inverse Frobenius-Perron problem of reconstructing an unknown nonlinear and

ergodic map from causal sequences of probability density functions generated by the map. The original solution to this problem

successfully reconstructs members of the canonical map class (i.e., a subset of the piecewise linear semi-Markov maps), provided

all the map’s branches are monotonically increasing. The original solution constructs a matrix estimate of the map’s Frobenius-

Perron operator, which governs the evolution of density functions under iteration of the map, from the density sequences. The

one-dimensional map is reconstructed from this matrix. In contrast, the proposed solution constructs a higher-order matrix

estimate of the Frobenius-Perron operator. A member of the newly proposed class of generalized hat maps, a superset of the

canonical maps, is constructed from this matrix estimate. The proposed solution successfully distinguishes between increasing

and decreasing map branches and enlarges the class of maps that can be successfully reconstructed to canonical maps with

any subset of decreasing branches. When used to reconstruct any piecewise linear semi-Markov map, the proposed solution

generates a map with consistent invariant density and power spectrum mode characteristics, regardless of the unknown map’s

canonicity or branch monotonicity. Numerical examples that illustrate the proposed solution’s characteristics are presented.
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Reconstructing Semi-Markov Maps with Arbitrary
Branch Monotonicity from Density Sequences

André M. McDonald, Member, IEEE and Michaël A. van Wyk, Senior Member, IEEE

Abstract—This paper presents a novel solution to the inverse
Frobenius-Perron problem of reconstructing an unknown non-
linear and ergodic map from causal sequences of probability
density functions generated by the map. The original solution to
this problem successfully reconstructs members of the canonical
map class (i.e., a subset of the piecewise linear semi-Markov
maps), provided all the map’s branches are monotonically
increasing. The original solution constructs a matrix estimate
of the map’s Frobenius-Perron operator, which governs the
evolution of density functions under iteration of the map, from
the density sequences. The one-dimensional map is reconstructed
from this matrix. In contrast, the proposed solution constructs a
higher-order matrix estimate of the Frobenius-Perron operator.
A member of the newly proposed class of generalized hat maps, a
superset of the canonical maps, is constructed from this matrix es-
timate. The proposed solution successfully distinguishes between
increasing and decreasing map branches and enlarges the class
of maps that can be successfully reconstructed to canonical maps
with any subset of decreasing branches. When used to reconstruct
any piecewise linear semi-Markov map, the proposed solution
generates a map with consistent invariant density and power
spectrum mode characteristics, regardless of the unknown map’s
canonicity or branch monotonicity. Numerical examples that
illustrate the proposed solution’s characteristics are presented.

Index Terms—Inverse Frobenius-Perron problem, system iden-
tification, nonlinear system, piecewise defined maps, Markov
map, Frobenius-Perron operator, power spectral density.

I. INTRODUCTION

THE probabilistic approach to characterizing nonlinear
and deterministic dynamical systems with complex and

ostensibly random behavior gained popularity in the latter
half of the 20th century [1], [2]. Advances in this domain
spurred the development of practical and accurate methods
for estimating the invariant state density and power spectral
density of ergodic systems [3], [4]. However, the probabilistic
modeling problem has attracted little attention compared to the
probabilistic analysis problem. This related problem requires
the construction of an ergodic dynamical system model with
prescribed statistical properties, and is referred to collectively
as the inverse Frobenius-Perron problem (IFPP) [5].

A. M. McDonald is with the Defence and Security Cluster, Council for
Scientific and Industrial Research, Pretoria, South Africa and the School
of Electrical and Information Engineering, University of the Witwatersrand,
Johannesburg, South Africa.

M. A. van Wyk is with the School of Electrical and Information Engi-
neering, University of the Witwatersrand, Johannesburg, South Africa and the
Department of Electrical Engineering, City University of Hong Kong, Hong
Kong SAR, China.

The IFPP first appeared in the literature in the 1970s
[6]. Initial work towards solving the IFPP focused on a
particular problem formulation that requires the construction
of an ergodic one-dimensional map with a prescribed invariant
state density function [7], [8]. Over time, it was discovered
that solutions to this original problem often provide insight
into bifurcation routes, the transition from the non-chaotic
to the chaotic regime, and how structural features of a map
may give rise to certain statistical characteristics [9], [10].
Mature solutions to the original problem have been used not
only to model the motion of fluids [11] and neural processes
pertaining to the olfactory system [12], but also to design
more robust cogged bits for rock drills [13] and more efficient
pseudorandom signal generators [14].

A new formulation of the IFPP recently appeared in the
literature [15], [16]; we refer to this problem as IFPP-III for
consistency with [5]. IFPP-III requires the reconstruction of
an unknown map that coincides with the evolution rule of an
ergodic one-dimensional dynamical system. The map is to be
reconstructed using measurements of the system state, which
are collected during several experiments wherein the system is
probed. In each of these probing experiments, an ensemble of
states with values drawn from a selected probability density
(the probing density) is permitted to evolve over time, and
all states that constitute the ensemble are measured at several
evenly spaced instants in time. However, the problem assumes
that it is either impractical or physically impossible to isolate
and follow individual state trajectories from one time instant
to the next. IFPP-III thus mandates the estimation of the
probability density function corresponding to each collection
of measurements, thereby producing a causal sequence of state
densities for each probing experiment. The unknown map is
to be reconstructed from these density sequences. Solutions
to IFPP-III are relevant in applications where state trajectories
cannot be distinguished from one another, such as the model-
ing of emulsion polymerization processes [17], papermaking
systems [18], and certain communication systems [19].

Nie and Coca [15], [16] proposed the first solution to IFPP-
III. This solution is used to reconstruct ergodic piecewise
linear (PWL) maps that are semi-Markov [8] over a partition of
the map domain (the Markov partition); this is referred to as
the class of ergodic PWL semi-Markov maps. The operator
that governs the evolution of state density functions under
iteration of a given map, known as the Frobenius-Perron
operator [1], may be represented as a matrix if attention is
restricted to PWL semi-Markov maps and density functions
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that are piecewise constant (PWC) over the Markov partition.
This matrix, referred to as the Frobenius-Perron matrix (FPM)
of the map, is central to the solution of IFPP-III.

In the solution of [15], [16], the Markov partition of the
unknown map is first estimated. Probing experiments are then
carried out with probing density functions that are PWC over
the estimated Markov partition. Using the density sequences
obtained from measurements collected in these experiments,
an estimate of the unknown map’s FPM is constructed. IFPP-
III is then solved by carrying out the final step of constructing
a PWL map that is semi-Markov over the estimated Markov
partition, under the condition that the FPM of this map
matches the estimate of the unknown map’s FPM.

The motivation for the work presented in this paper fol-
lows from the observation that multiple distinct PWL semi-
Markov maps can generally be constructed to possess the
same prescribed FPM [8]. For example, if any branch of a
map in this class is redefined such that its slope changes
from positive to negative (or vice versa), while simultaneously
preserving its domain and codomain, the map retains its FPM.
Thus, the problem of constructing a map with a prescribed
FPM inherently provides freedom to choose certain structural
characteristics of the map. When using any particular method
for constructing such a map to solve IFPP-III, the underlying
choices that were made regarding these characteristics become
assumptions regarding the unknown map’s structure and re-
strict the class of maps that can be successfully reconstructed,
regardless of the accuracy of the Markov partition and density
estimates. The method used in [15], [16] constructs a map with
a specific branch count and order (we refer to these maps as
canonical, and define this class formally in section III-A3),
and selects a positive slope for each branch function. Hence,
if we disregard estimation error and assume that the estimate
of the unknown map’s FPM is perfect, the class of maps
reconstructible using this solution is the set of PWL semi-
Markov maps that are canonical and possess only increasing
branches. However, canonicity and possessing only increasing
branches are not necessary conditions for the consistency of
the constructed and unknown maps’ invariant densities.

This paper presents a novel solution to IFPP-III. The solu-
tion we propose is based on the observation that the original
solution’s inability to discern the monotonicity of each map
branch (i.e., increasing or decreasing) is due to the elements
of the FPM being dependent only on the absolute values
of the branch slopes. We show that a higher-order matrix
representation of the map’s Frobenius-Perron operator, which
characterizes the evolution of densities that are PWL over the
Markov partition, contains elements that are dependent on the
monotonicity of the branches. The proposed solution estimates
a predetermined subset of the elements in the higher-order
FPM from density sequences obtained using PWC and PWL
probing densities. A map from the newly proposed class of
generalized hat maps, which is a superset of the canonical
maps, is then constructed such that the same elements in its
higher-order FPM match those that were estimated.

Using a series of propositions and two numerical examples,
we show that the proposed solution is able to successfully
reconstruct maps from the larger class of canonical PWL semi-

Markov maps (i.e., independent of branch monotonicity). In
contrast to the original solution, it is shown that the invariant
density and the power spectrum mode1 characteristics (i.e.,
mode center frequencies and bandwidths) of maps constructed
using the proposed solution are also consistent with those
of any unknown PWL semi-Markov map, even if it is not
canonical or possesses decreasing branch functions.

The remainder of this paper is set out as follows. In section
II we present the necessary mathematical background. In
section III the original solution of [15], [16] is detailed and
several observations are made regarding its characteristics. The
proposed solution is presented and characterized in section
IV. The numerical examples are presented in section V and
conclusions are drawn in section VI.

II. MATHEMATICAL BACKGROUND

Consider a one-dimensional dynamical system with non-
linear evolution rule S : Ω → Ω, where Ω , [0, 1] is
the state space. Let P (Q) = {q1, q2, . . . , qM+1} denote the
partition points of the partition Q = {Q1, Q2, . . . , QM} of
Ω, where Qm = (qm, qm+1) denotes the partition intervals
and 0 = q1 < q2 < . . . < qM+1 = 1 with integer M > 1. We
restrict our attention to maps S that belong to the class of
piecewise monotonic maps Γ(Q).

Definition II.1 (Class Γ(Q)). A surjective map S : Ω → Ω
is piecewise monotonic [2] (i.e., S ∈ Γ(Q)) if there exists
a partition Q of the unit interval such that (i) each branch
function Sm , S|(qm,qm+1) is a Cr function, for some r ≥ 1,
that can be extended to a Cr function over [qm, qm+1], and
(ii) |S′m| > 0 for m = 1, 2, . . . ,M , where S′m , dSm/dx.

We characterize S ∈ Γ(Q) from a probabilistic perspective.
Let X1 denote a real random variable on the probability space
(Ω,B, P1), which represents the initial state of the dynamical
system. Here, B denotes the Borel σ-algebra on Ω and P1 is a
probability measure. Since S is surjective and measurable on
B [5], the random variables X2, X3, . . ., defined by Xt+1 =
S(Xt) for t ≥ 1, have corresponding probability measures
Pt+1(B) = Pt(S

−1(B)), B ∈ B.
Let P1 be absolutely continuous with respect to the Borel

measure µ. The Radon-Nikodym theorem then implies the
existence of a function f1 ∈ D associated with X1, where
D , {f ∈ L1(Ω) : f ≥ 0 and ||f || = 1} denotes the set of all
probability density functions (we also use the term densities)
on Ω. The density f1 satisfies P1(B) =

∫
B
f1(x)dµ(x) for all

B ∈ B. Since S ∈ Γ(Ω) is nonsingular with respect to µ [5],
each measure Pt, where t > 1, is also absolutely continuous
with respect to µ, and may be associated with a corresponding
density ft ∈ D. The linear operator PS : L1(Ω) → L1(Ω),
referred to as the Frobenius-Perron operator (FPO) of S,
characterizes the evolution of densities under iteration of S
according to the expression ft+1 = PSft for t ≥ 1. The FPO
is uniquely defined by the expression∫

B

(PSf)(x)dµ(x) =

∫
S−1(B)

f(x)dµ(x), B ∈ B. (1)

1The power spectral density of an ergodic PWL semi-Markov map is, in
general, a superposition of spectral modes.
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The FPO of a map S ∈ Γ(Ω) has the explicit representation

(PSft)(x) =
∑

m∈N(x)

ft ◦ S−1
m (x)

|S′m ◦ S−1
m (x)|

, (2)

where N(x) , {m : x ∈ S(Qm)} [2].
We next introduce a subset of the piecewise monotonic

maps, referred to as the class of semi-Markov maps [8].
The structure of these maps accommodates matrix solutions
to the IFPP. Semi-Markov maps are defined over a two-
level hierarchy of partitions. Let Q denote a partition of
the unit interval as before, and let the non-empty set of
open intervals R(m) , {R(m)

1 , R
(m)
2 , . . . , R

(m)
c(m)} constitute

a partition of the closure of Qm for each m = 1, 2, . . . ,M .
We refer to the unit-interval partition R = {R(m)

j },
m = 1, 2, . . . ,M and j = 1, 2, . . . , c(m), as a sub-partition of
Q. The R(Q)-semi-Markov maps are then defined as follows
(an example is plotted in Fig. 1).

Definition II.2 (R(Q)-semi-Markov map). Let Q denote a
partition of Ω, and let R denote a sub-partition of Q. The
map S ∈ Γ(R) is R(Q)-semi-Markov if the image of each
interval R ∈ R under S is an interval of the partition Q; i.e.,

S(R) ∈ Q, R ∈ R. (3)

Consider an R(Q)-semi-Markov map S with linear branch
functions Sj,m , S|

R
(m)
j

. Let D(`)
Q ⊂ D denote the set of

density functions that are defined piecewise over Q, such that
ft ∈ D(`)

Q implies ft|Qm
is a polynomial function with degree

not exceeding ` ∈ N0 for each m = 1, 2, . . . ,M . Substitution
of ft ∈ D(`)

Q into (2) reveals that the density ft+1 = PS(ft) is
also a member of D(`)

Q . Hence, the evolution of these densities
can be characterized using matrix equations. Specifically, with
a PWL R(Q)-semi-Markov map S and ft ∈ D(`)

Q we have

ft+1 = P
(`)
S ft, (4)

where ft is the order-` vector representation of the density
function ft and P

(`)
S is the order-` matrix representation of

the FPO PS . We refer to P
(`)
S as the order-` FPM of S. The

vectors in (4) are defined as ft , [ft,`, ft,`−1, . . . , ft,0]T , where
ft,` , [ft,`,1, ft,`,2, . . . , ft,`,M ] and

ft,`,m =
1

`!

d`

dx`
ft|Qm(x)

∣∣∣∣
x=0

. (5)

We provide expressions for the order-zero and order-one
FPMs, which characterize the evolution of PWC and PWL
density functions, respectively. Let S be given by

S(x) =

M∑
m=1

c(m)∑
j=1

Sj,m(x)χ
R

(m)
j

(x), (6)

where

χA(x) ,

{
1 if x ∈ A,
0 if x /∈ A. (7)

Furthermore, let each branch function Sj,m be given by

Sj,m(x) = vj,mx+ wj,m. (8)

Fig. 1. An example of an R(Q)-semi-Markov map.

Using (2), the order-one FPM P
(1)
S is then derived as

P
(1)
S =

(
QS 0M×M

RS P
(0)
S

)
, (9)

where QS , [qk,m]Mk,m=1, RS , [rk,m]Mk,m=1, and 0M×M
denotes the M ×M matrix containing zeros. The elements of
the submatrices QS and RS are given by

qk,m =


∑

j∈T (k,m)

sj,m
1

v2
j,m

, if |T (k,m)| > 0,

0, if |T (k,m)| = 0,

(10)

and

rk,m =


−

∑
j∈T (k,m)

sj,m
wj,m
v2
j,m

, if |T (k,m)| > 0,

0, if |T (k,m)| = 0,

(11)

where
T (k,m) , {j : S(R

(m)
j ) = Qk}. (12)

In these expressions, sj,m , sgn(vj,m), where

sgn(x) ,

{
−1 if x < 0,

1 if x ≥ 0.
(13)

The order-zero FPM P
(0)
S , [pk,m]Mk,m=1 has elements

pk,m =


∑

j∈T (k,m)

|vj,m|−1, if |T (k,m)| > 0,

0, if |T (k,m)| = 0.

(14)

The Folklore theorem establishes conditions for both the
existence and uniqueness of absolutely continuous invariant
(ACI) measures for Markov maps that are piecewise C2 [2].
Let S ∈ Γ(R) denote a PWL R(Q)-semi-Markov map that is
aperiodic and piecewise expanding. By the Folklore theorem,
S possesses a unique ACI measure P ∗, and is therefore
ergodic. Since P ∗ is absolutely continuous, there exists a
corresponding invariant density function f∗S . This function is
a fixed point of the FPO associated with S, and can be chosen
as a PWC function with discontinuities only at the partition
points P (Q), such that K−1 ≤ f∗S ≤ K for some K > 0.
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Let S denote an R(Q)-semi-Markov map that satisfies the
conditions of the Folklore theorem. The order-zero FPM of S
is similar to a stochastic matrix (i.e., a matrix with nonnegative
entries and columns that sum to unity) and has a unity maximal
eigenvalue λ1, referred to as the Perron eigenvalue [5]. This
eigenvalue is a simple root of the characteristic polynomial of
the matrix. It is associated with a left eigenvector qT (the left
Perron eigenvector) that possesses elements coinciding with
the lengths of the intervals in Q, and a right eigenvector f∗S
(the right Perron eigenvector) that coincides with the unique
PWC invariant density function f∗S . The remaining eigenvalues
of the order-zero FPM are strictly smaller than λ1 in absolute
value, which implies the matrix has a spectral radius of unity.

The time correlation function φS of S is defined as [20]

φS(τ) = lim
T→∞

1

T

T−1∑
t=0

St(x)St+|τ |(x), τ = 0,±1,±2, . . . ,

(15)
for almost all x ∈ Ω, where St denotes the t-fold composition
of S with itself and S0(x) , x. The corresponding power
spectral density (PSD) ΦS is given by

ΦS(ω) =

∞∑
τ=−∞

φS(τ)e−iωτ , ω ∈ [−π, π). (16)

Equality of time and ensemble averages is a consequence of
Birkhoff’s ergodicity theorem [21]. An expression for φS may
be derived by using this relationship and the theory developed
in [4]. It follows that

φS(τ) = gT
(
P

(1)
S

)|τ |
h, (17)

where h , [(f∗)T ,01×M ]T and (P
(1)
S )0 , I. In

this expression g , [g3,g2]T , where the elements of
g2 , [g2,1, g2,2, . . . , g2,M ] and g3 , [g3,1, g3,2, . . . , g3,M ] are
given by gn,m , (qnm+1 − qnm)/n.

The block structure of P(1)
S in (9) implies that the eigenval-

ues of this matrix comprise the eigenvalues of P
(0)
S (denoted

by λ1, λ2, . . . , λM ) and the eigenvalues of QS (denoted by
λM+1, λM+2, . . . , λ2M ). Now, assume that P

(1)
S is diago-

nalizable (the general case is considered in [4]), and let
uTm and vm denote the left and right eigenvectors of P

(1)
S

that are associated with eigenvalue λm (we assume that the
eigenvectors are scaled such that uTmvm = 1 for all m).
Equation (17) may be simplified to obtain

φS(τ) =

2M∑
m=1

cmλ
|τ |
m , (18)

where cm = gTvmuTmh. This expression implies that the PSD
is a superposition of 2M spectral modes with center frequen-
cies equal to arg(λm) and bandwidths inversely proportional
to |λm|. Modes with |λm| = 1 appear as lines in the PSD,
whereas the remaining modes are continuous. In particular,

ΦS(ω) = 2π
∑

m:|λm|=1

cmδ(ω − arg(λm))

+
∑

m:0≤|λm|<1

cm(1− λ2
m)

(e−jω − λm)(ejω − λm)
,(19)

where δ(·) denotes the Dirac delta function.

III. EXISTING WORK

In this section we first outline the original solution2 for re-
constructing unknown ergodic maps that are PWL and R(Q)-
semi-Markov, as proposed in [16]. Thereafter, we consider the
characteristics of maps constructed using this solution.

A. Original solution

The original solution constructs an estimate Ŝ of the un-
known map S in three steps, as outlined below. It is assumed
that partitions Q and R are both unknown.

1) Estimation of the Markov partition: Let {x∗k}
K0

k=1 denote
a set of independent state observations drawn from the invari-
ant state density f∗S of S (in practice, this set is constructed by
allowing an initial ensemble of states drawn from the uniform
distribution over Ω to evolve over a sufficient number of time
instants under iteration of S). Since f∗S is PWC over Q, the
problem of estimating the Markov partition Q is formulated as
a search for a partition Q̂ = {Q̂1, Q̂2, . . . , Q̂M̂} that satisfies

f∗S(x) ≈
M̂∑
m=1

hmχQ̂m
(x), (20)

where hm is given by

hm =
1

K0µ(Q̂m)

K0∑
k=1

χQ̂m
(x∗k). (21)

The search for Q̂ proceeds as follows (refer to [16] for
specifics). A partition U that is uniform over Ω is constructed,
where the number of partition intervals is selected to minimize
a penalized log-likelihood function. Next, a histogram of the
observations {x∗k}

K0

k=1 is derived, such that the histogram bins
coincide with the intervals of U . Different candidates for Q̂
are constructed by merging neighboring bins of the histogram
with absolute height differences that fall below a threshold,
and by varying the threshold value. The candidate partition
associated with the minimum integrated squared error between
the densities coinciding with its histogram and the histogram
over the uniform partition is then selected.

2) Estimation of the order-zero FPM: An estimate P̂
(0)
S

of the order-zero FPM P
(0)
S belonging to S is obtained

from state density function estimates constructed after con-
ducting N probing experiments. In each probing experiment
n = 1, 2, . . . , N , an ensemble {xn1,k}Kk=1 of K states drawn in-
dependently from a probing density fn1 evolves under iteration
of S. The ensemble is measured at time instants t = 2, . . . , T .
Let these measurements be denoted by {xnt,k}Kk=1.

Each probing density function is selected to be unique and
PWC over the estimated Markov partition Q̂. If it was assumed
that Q̂ = Q, the evolved density functions fnt , t = 2, 3, . . . , T ,
would also be PWC over Q̂. This observation motivates the

2Whereas the original solution was extended in [16] to allow for the
reconstruction of a subset of those continuous maps that possess a unique
invariant density, in this paper we consider maps that need not be continuous.
Solutions to more general formulations of IFPP-III (i.e., for stochastically
perturbed systems and systems driven by external inputs) were also presented
in [22]–[24]. A summary of these solutions may be found in [5].
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construction of density function estimates f̂nt ≈ fnt that are
PWC over Q̂. Specifically, the estimates

f̂nt (x) =


fn1 (x) if t = 1,
M̂∑
m=1

f̂t,0,mχQ̂m
(x) if t = 2, 3, . . . , T,

(22)

where

f̂t,0,m =
1

Kµ(Q̂m)

K∑
k=1

χQ̂m
(xnt,k), (23)

are constructed.
Let f̂nt , [f̂t,0,1, f̂t,0,2, . . . , f̂t,0,M̂ ]T denote the order-zero

vector representation of the density f̂nt . Furthermore, let

Â , [F̂1, F̂2, . . . , F̂T−1] (24)

and
B̂ , [F̂2, F̂3, . . . , F̂T ], (25)

where F̂t , [f̂1
t , f̂

2
t , . . . , f̂

N
t ]. If it were assumed that Q̂ = Q

and each density estimate satisfies f̂nt = fnt , (4) implies that

B̂ = P
(0)
S Â. (26)

Based on this observation, the estimate P̂
(0)
S is ideally selected

as a solution to the constrained optimization problem

P∗S = arg min
P

: ||B̂−PÂ||F , (27)

subject to q̂TP = q̂T and to the elements of P , [pk,m]M̂k,m=1

being nonnegative, where q̂ , [µ(Q̂1), µ(Q̂2), . . . , µ(Q̂M̂ )]T

and || · ||F denotes the Frobenius norm.
3) Construction of a map with matching order-zero FPM:

The final solution step is the construction of a PWL R̂(Q̂)-
semi-Markov map Ŝ with order-zero FPM P

(0)

Ŝ
that is equal

to the estimate P̂
(0)
S of the unknown map’s order-zero FPM. In

general, multiple PWL semi-Markov maps may be constructed
to possess the same order-zero FPM. The original solution
constructs maps with a particular branch structure. We describe
these maps as being canonical or having a canonical structure.

Definition III.1 (Canonical semi-Markov map). Suppose that
S : Ω→ Ω is a PWL R(Q)-semi-Markov map and let

R
(m)
j

S7−→ QU(j,m), (28)

where U ∈ {1, 2, . . . ,M}. Map S is canonical iff

j1 < j2 =⇒ U(j1,m) < U(j2,m) (29)

for all m = 1, 2, . . . ,M .

Figure 2(a) illustrates the structure of a canonical map by
representing the region spanned by each branch function’s
domain and codomain with a shaded rectangle. The condition
of (29) imposes a strictly ascending order, over the unit
interval, on the codomains of the intervals in each of the
partitions R(m) = {R(m)

1 , R
(m)
2 , . . . , R

(m)
c(m)}. Non-canonical

maps do not possess this property; examples of such maps
are provided in Fig. 2(b) and Fig. 2(c).

Certain characteristics of a canonical map’s branch func-
tions may be discerned from the map’s order-zero FPM. Let

S : Ω→ Ω denote a PWL and canonical R(Q)-semi-Markov
map that satisfies (28). Equation (29) implies that S maps at
most one interval of each partition R(m) to each interval Qk.
Equation (14) then implies that S maps one interval of R(m)

to Qk if the kth element in column m of the map’s order-zero
FPM is nonzero; otherwise, S maps no interval of R(m) to
Qk. Furthermore, S maps the intervals of each R(m) to the
intervals of Q such that their codomains are strictly ascending.
Let z1,m < z2,m < . . . < zw(m),m denote the indices of the
w(m) nonzero entries in column m of the map’s order-zero
FPM. It follows that U(j,m) = zj,m.

The original solution uses the observations above to con-
struct a canonical map Ŝ from the estimate P̂

(0)
S . A sub-

partition R̂ of the estimated Markov partition Q̂ is con-
structed. This sub-partition consists of the intervals of par-
titions R̂(m) = {R̂(m)

1 , R̂
(m)
2 , . . . , R̂

(m)
ĉ(m)}, m = 1, 2, . . . , M̂ .

Each R̂(m) is a partition of the closure of Q̂m, and is defined
with an interval count ĉ(m) equal to the number of nonzero
entries in column m of P̂(0)

S . The intervals of R̂ are mapped
by Ŝ according to

R̂
(m)
j

Ŝ7−→ Q̂Û(j,m), (30)

where Û(j,m) = ẑj,m and ẑj,m denotes the index of the jth

nonzero element in column m of P̂(0)
S . The length of interval

R̂
(m)
j is determined from the corresponding element of P̂

(0)
S

and the length of the interval’s codomain. Since the order-zero
FPM of Ŝ is to match P̂

(0)
S = [p̂k,m]M̂k,m=1, we have

p̂Û(j,m),m = |Ŝ′j,m|−1 (31)

and
µ(R̂

(m)
j ) = µ(Q̂Û(j,m))p̂Û(j,m),m. (32)

The original solution defines each of the branch functions
Ŝj,m = Ŝ|

R̂
(m)
j

to be increasing. The branch functions are
selected as

Ŝj,m(x) = p̂−1

Û(j,m),m
(x− r̂j,m) + q̂Û(j,m), (33)

where Q̂m = (q̂m, q̂m+1), R̂(m)
j = (r̂j,m, r̂j+1,m) and

r̂
(m)
j =

q̂m +

Û(j,m)−1∑
k=1

µ(Q̂k)p̂k,m, if j = 1, 2 . . . , ĉ(m),

q̂m+1, if j = ĉ(m) + 1.
(34)

B. Map characteristics

Characteristics of maps constructed with the original solu-
tion are presented in the following propositions. We assume
here that the unknown map S is PWL andR(Q)-semi-Markov.

Equation (14) reveals that each nonzero element of the
order-zero FPM belonging to an arbitrary map S is a function
of the absolute value(s) of one or more branch slopes. When
attempting to reconstruct S from an estimate of this matrix
alone, neither its branch count nor the order in which it maps
the intervals of each R(m) to the intervals of Q (i.e., the inter-
val mapping order) can be discerned. Also, it is not possible to
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(a) (b) (c)

Fig. 2. Branch structure of R(Q)-semi-Markov maps that are (a) canonical and (b, c) not canonical, where the region spanned by each branch domain and
codomain is represented by a shaded rectangle.

discern each branch’s monotonicity. This holds regardless of
estimation accuracy. Thus, additional assumptions regarding
S are required to construct a unique map from the order-zero
FPM estimate. The original solution assumes S is canonical.

Proposition III.1. Assume S is canonical and has only
increasing branches. If the Markov partition and the order-
zero FPM of S are estimated with perfect accuracy (i.e.,
Q̂ = Q and P̂

(0)
S = P

(0)
S ), the original solution reconstructs

S perfectly (i.e., Ŝ = S). Conversely, if S is not canonical or
possesses any decreasing branches, S cannot be reconstructed
successfully (i.e., Ŝ 6= S), regardless of estimation accuracy.

Proof. If S is canonical, the number of branches of S over
eachR(m) is equal to the number of nonzero entries in column
m of its order-zero FPM. The order of the branches over each
R(m) is also uniquely determined (i.e., equal to the order of
the nonzero entries of the column). Now, suppose that S is
indeed canonical, and that the Markov partition and order-
zero FPM estimates are perfect. It follows that the original
solution correctly discerns the number of branches of S over
eachR(m), their domains and codomains. By further assuming
that all branches are increasing, it is able to construct the
map uniquely from the order-zero FPM estimate. However,
by assuming canonicity and increasing branches, the original
solution cannot successfully reconstruct S if any of these
assumptions are invalid, regardless of estimation accuracy.

Proposition III.2. If the original solution estimates the
Markov partition and the order-zero FPM of S with perfect
accuracy (i.e., Q̂ = Q and P̂

(0)
S = P

(0)
S ), the invariant density

f∗
Ŝ

of Ŝ equals the invariant density f∗S of S, regardless of
whether S is canonical or the monotonicity of its branches.

Proof. The invariant density of S coincides with the right
Perron eigenvector of the map’s order-zero FPM, and is
PWC over the Markov partition. Thus, if the assumptions
of Proposition III.2 hold, the invariant density functions are
also equal. In section V, we present numerical examples that
demonstrate the original solution’s close approximation of
invariant densities of several non-canonical maps and maps
with decreasing branches, despite the estimates of the Markov

partition and order-zero FPM not being equal to those of the
unknown map (i.e., imperfect estimation accuracy).

Proposition III.3. If S possesses any decreasing branches,
a subset of the PSD mode characteristics of map Ŝ (i.e., the
center frequencies and bandwidths of the 2M spectral modes
that constitute the map’s PSD) are generally unequal to that
of S, regardless of estimation accuracy.

Proof. Equations (18) and (19) imply that, in the PSD of S,
each spectral mode’s center frequency and bandwidth coincide
with the argument and modulus, respectively, of a particular
eigenvalue of the map’s order-one FPM. The eigenvalues of
this matrix are comprised of the eigenvalues of its top-left
submatrix QS and the eigenvalues of the order-zero FPM, and
each nonzero element of QS is a function of the monotonicity
of one or more branches of S (see (10)). Due to the original
solution’s assumption of S possessing no decreasing branches,
submatrix QŜ of the order-one FPM of Ŝ generally does
not match its counterpart in the order-one FPM of S if the
latter map does possess any decreasing branches. Thus, the
eigenvalues of these matrices are generally not equal.

Proposition III.3 implies that the PSDs of Ŝ and S are
generally not equal if S possesses any decreasing branches.

IV. PROPOSED SOLUTION

We first describe the proposed approach towards solving
IFPP-III. Thereafter, we outline the steps of the proposed
solution and characterize the maps it constructs.

A. Solution approach

The proposed solution assumes that the unknown map S is
PWL and R(Q)-semi-Markov, but no assumptions are made
regarding the monotonicity of the unknown map’s branches.
Similar to the original solution [16], it constructs a map Ŝ
according to a matrix estimate of the unknown map’s FPO.
However, Ŝ is constructed such that both its order-zero FPM
P

(0)

Ŝ
and submatrix QŜ of its order-one FPM are (if perfect

estimation accuracy is assumed) equal to their counterparts
of the unknown map. By selecting Ŝ from a new class of



PREPRINT 7

Construct estimate  . of unknown Markov partition   .

Construct a generalized hat map   with order-one FPM submatrices       

…...and      equal to    . and       , respectively.

Conduct                probing experiments with ensembles…………
drawn from PWC probing densities                 to obtain……...

Construct matrix estimates          and  .      using density estimates

Construct PWC density estimates                       from …….   

Conduct                probing experiments with ensembles…………
drawn from PWL probing densities                       to obtain……...

Construct PWL density estimates                             from …….   

S
te

p
 1

:
Se

c.
 I

II
-A

-1
S

te
p 

2:
E

st
im

at
io

n 
of

 r
el

ev
an

t m
at

ri
ce

s
Se

c.
 I

V
-B

-1
S

te
p

 3
:

Se
c.

 I
V

-B
-2

Fig. 3. Flowchart of the proposed solution.

generalized hat maps (a subset of this class was introduced in
[25]), this is achieved whether S is canonical or not.

B. Solution steps

The three steps of the proposed solution are similar to those
of the original solution, and are outlined in the flowchart of
Fig. 3. Two rounds of probing experiments are performed in
the second step. These rounds of probing experiments use
probing densities that are PWC and PWL over the estimated
Markov partition, respectively. Using the density estimates,
the order-zero FPM and submatrix QS of the order-one
FPM belonging to the unknown map are estimated, thereby
producing P̂

(0)
S and Q̂S . In the final step, a generalized hat

map Ŝ is constructed with both P
(0)

Ŝ
= P̂

(0)
S and QŜ = Q̂S .

1) Estimation of the relevant matrices: A first round of
probing experiments n = 1, 2, . . . , M̂ is conducted, where
M̂ denotes the number of intervals in the estimated Markov
partition Q̂. Probing densities f1

1 , f
2
1 , . . . , f

M̂
1 are selected to

be PWC over Q̂ according to the expression

fn1 (x) =

M̂∑
m=1

fn1,0,mχQ̂m
(x), (35)

where
fn1,0,m = [1/µ(Q̂m)]δn,m (36)

and δn,m is the Kronecker delta function. These probing
densities are plotted in Fig. 4(a).

The density function estimates f̂1
t , f̂

2
t , . . . , f̂

M̂
t , where

t = 1, 2, . . . , T , are constructed to be PWC over Q̂ and as
specified in (22) and (23). The matrices Â and B̂, which
possess as columns the order-zero vector representations of the
density function estimates, are then constructed as specified in
(24) and (25), respectively.

A second round of probing experiments n = M̂ + 1,
M̂ + 2, . . . , 2M̂ is performed next. The probing densities of

ˆ 1
1
Mf 

2ˆ
1
Mf 

ˆ
1
2Mf

(a) (b)

Fig. 4. Probing densities used in the (a) first round and (b) second round of
probing experiments.

these experiments, denoted by fM̂+1
1 , fM̂+2

1 , . . . , f2M̂
1 , are

selected to be PWL over Q̂ according to the expression

fn1 (x) =

M̂∑
m=1

(fn1,1,mx+ fn1,0,m)χQ̂m
(x), (37)

where
fn1,0,m = −[2q̂m/µ(Q̂m)2]δn,m (38)

and
fn1,1,m = [2/µ(Q̂m)2]δn,m. (39)

These probing densities are plotted in Fig. 4(b).
Densities that are PWL over Q remain PWL over the same

partition under iteration of an R(Q)-semi-Markov map (refer
to section II). Thus, after conducting the probing experiments,
the density function estimates f̂M̂+1

t , f̂M̂+2
t , . . . , f̂2M̂

t , where
t = 1, 2, . . . , T , are constructed to be PWL over the estimated
partition Q̂ according to the expression

f̂nt (x) =


fn1 (x) if t = 1,
M̂∑
m=1

(f̂nt,1,mx+ f̂nt,0,m)χQ̂m
(x) if t = 2, . . . , T.

(40)
The coefficients f̂nt,0,m and f̂nt,1,m are estimated by applying
the method of moments to fnt |Q̂m

. Let cnt,p,m denote the pth

moment of fnt |Q̂m
centered around the midpoint of Q̂m; i.e.,

cnt,p,m ,
∫ q̂m+1

q̂m

(
x− q̂m + q̂m+1

2

)p
fnt (x)dx. (41)

The corresponding empirical moments are defined as

ĉnt,p,m ,
1

K

K∑
k=1

(
xnt,k −

q̂m + q̂m+1

2

)p
χQ̂m

(xnt,k). (42)

Replacing fnt in (41) with f̂nt , equating the resulting expres-
sion to ĉnt,p,m with p = 0 and p = 1, and simultaneously
solving these equations for the unknown coefficients yield

f̂nt,0,m =
1

µ(Q̂m)

[
ĉnt,0,m −

6(q̂m+1 + q̂m)

µ(Q̂m)2
ĉnt,1,m

]
(43)
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and
f̂nt,1,m = 12ĉnt,1,m/µ(Q̂m)3. (44)

We define the matrix F̂t,1 , [f̂M̂t,1, f̂
M̂+1
t,1 , . . . , f̂2M̂

t,1 ], where
f̂nt,1 , [f̂nt,1,1, f̂

n
t,1,2, . . . , f̂

n
t,1,M̂

]T , and let

Ĉ , [F̂1,1, F̂2,1, . . . , F̂T−1,1] (45)

and
D̂ , [F̂2,1, F̂3,1, . . . , F̂T,1]. (46)

Having estimated the densities, we proceed by estimating P
(0)
S

and QS from Â, B̂, Ĉ and D̂. We observe that every PWL and
R(Q)-semi-Markov map S has branch functions Sj,m with
slopes vj,m that satisfy∑
j∈T (k,m)

sj,m
v2
j,m

≤
∑

j∈T (k,m)

1

v2
j,m

≤
[ ∑
j∈T (k,m)

1

|vj,m|

]2

. (47)

Together with (10) and (14), this inequality implies
that the elements of matrices QS = [qk,m]Mk,m=1 and
P

(0)
S = [pk,m]Mk,m=1 must satisfy |qk,m| ≤ p2

k,m.

Now, if it were assumed that Q̂ = Q and all density
estimates are perfect (i.e., f̂nt = fnt ), we have B̂ = P

(0)
S Â

and D̂ = QSĈ. This leads to the approach of estimating P
(0)
S

and QS by solving the joint constrained optimization problem

P∗S ,Q
∗
S = arg min

P,Q
: ||Ŵ −DP,QV̂||F , (48)

subject to (i) q̂TP = q̂T , (ii) P , [pk,m]M̂k,m=1 being nonneg-
ative, and (iii) Q , [qk,m]M̂k,m=1 satisfying |qk,m| ≤ p2

k,m. The
matrices in (48) are defined as V̂ , [Ĉ; Â] and Ŵ , [D̂; B̂],
where ‘;’ denotes vertical matrix concatenation, and

DP,Q ,

(
Q 0M̂×M̂

0M̂×M̂ P

)
. (49)

We prove in Proposition A.1 of Appendix A that the joint
problem is not convex. This motivates the formulation and
solution of two separate optimization problems. The first prob-
lem is identical to that defined in section III-A2. Specifically,
the problem

P∗S = arg min
P

: ||B̂−PÂ||F , (50)

subject to
q̂TP = q̂T (51)

and P being nonnegative, is solved to obtain an estimate
P̂

(0)
S = [p̂k,m]M̂k,m=1. The second problem

Q∗S = arg min
Q

: ||D̂−QĈ||F , (52)

subject to Q , [qk,m]M̂k,m=1 satisfying

|qk,m| ≤ p̂2
k,m, (53)

is then solved to obtain the estimate Q̂S . We prove in
Propositions A.2 and A.3 of Appendix A that the separate
problems are convex. Hence, standard methods for solving
convex problems may be used to approximate their optimal
solutions. However, by considering separate problems, the

resulting estimates are generally a suboptimal solution to the
joint problem, regardless of the method used.

Consider the estimates

P̂
(0)
S = B̂Â† (54)

and
Q̂S = D̂Ĉ†, (55)

where Z† denotes the Moore-Penrose pseudoinverse of Z; i.e.,
Z† , ZT (ZZT )−1. These estimates minimize the Frobenius
norms of (50) and (52) [26]. Now, suppose that all density
functions are estimated with perfect accuracy. Since Â and Ĉ
have rank equal to M̂ (this is a consequence of and the primary
motivation for selecting the probing densities of Fig. 4), it
follows that P̂(0)

S = P
(0)
S and Q̂S = QS . Thus, with perfect

density estimates, (54) and (55) are the optimal solutions to
both the separate and joint constrained optimization problems.

Motivated by these observations, we solve the constrained
optimization problem of (50) by first computing PS = B̂Â†,
and then manipulating this matrix to satisfy the constraints. All
negative elements of PS are first replaced with zeros. Let the
columns of the resulting matrix be denoted by p1,p2, . . . ,pM̂ .
The approximate solution P̂

(0)
S , [p̂1, p̂2, . . . , p̂M̂ ] is obtained

by normalizing the columns of the resulting matrix as

p̂m =
µ(Q̂m)

q̂Tpm
pm, m = 1, 2, . . . , M̂ . (56)

he constrained optimization problem of (52) is solved by
computing QS = D̂Ĉ†. The estimate Q̂S , [q̂k,m]M̂k,m=1 is
then selected as

q̂k,m =


qk,m if − p̂2

k,m ≤ qk,m ≤ p̂2
k,m,

−p̂2
k,m if qk,m < −p̂2

k,m,

p̂2
k,m if qk,m > p̂2

k,m,

(57)

to satisfy the constraints, where QS = [qk,m]M̂k,m=1.
The proposed solutions to the separate optimization prob-

lems are suboptimal. Together with imperfect density esti-
mates, this leads to imperfect matrix estimates. An imperfect
estimate of P(0)

S introduces errors into the reconstructed map
(the domains and slopes of the reconstructed branches deviate
from those of the unknown map). In addition, an imperfect
estimate of QS introduces unnecessary branches into the re-
constructed map. Both of these errors are observed in example
1 of section V-A. However, given the preceding observations,
we expect the overall accuracy of the reconstructed map to
improve with greater density estimation accuracy (i.e., by as-
signing more states per ensemble in the probing experiments).
The numerical results of example 1 support this conjecture.

2) Construction of a generalized hat map: A map from the
class of generalized hat maps is constructed in the final step.
Conceptually, any map Ŝ from this class may be derived from
a corresponding PWL and canonical semi-Markov map S̃. We
define the generalized hat maps using this approach.

Let S̃ denote a PWL and canonical R̃(Q̃)-semi-Markov
map, and let R̃(m) , {R̃(m)

1 , R̃
(m)
2 , . . . , R̃

(m)
c̃(m)} denote the

partition of Q̃m in the sub-partition R̃. Suppose that intervals

Ã
(m)
j ,

(
inf(R̃

(m)
j ), inf(R̃

(m)
j ) + β̃j,mµ(R̃

(m)
j )

)
, (58)
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Fig. 5. Bifurcation of the interval R̃(m)
j and definition of new branch

functions during the construction of a generalized hat map.

B̃
(m)
j ,

(
inf(R̃

(m)
j ) + β̃j,mµ(R̃

(m)
j ), sup(R̃

(m)
j )

)
(59)

are defined from some predetermined parameter β̃j,m ∈ [0, 1].
These intervals form a partition of R̃(m)

j , as shown in Fig. 5;
in the case where β̃j,m = 0 or β̃j,m = 1, interval Ã(m)

j or
B̃

(m)
j is defined to be the empty interval, respectively.
We derive the generalized hat map Ŝ from its counter-

part S̃ and a collection of specified parameters β̃j,m, where
m = 1, 2, . . . , M̃ and j = 1, 2, . . . , c̃(m). Let Ŝ be R̂(Q̂)-
semi-Markov and PWL over R̂, and inherit its Markov parti-
tion Q̂ from S̃. We define the partition R̂(m) of Q̂m as

R̂(m) , {Ã(m)
j }c̃(m)

j=1 ∪ {B̃
(m)
j }c̃(m)

j=1 , (60)

and specify that Ŝ maps all nonempty intervals Ã(m)
j and B̃(m)

j

to the same interval that R̃(m)
j is mapped to by S̃; i.e.,

Ã
(m)
j

Ŝ7−→ S̃(R̃
(m)
j ), if β̃j,m > 0, (61)

B̃
(m)
j

Ŝ7−→ S̃(R̃
(m)
j ), if β̃j,m < 1. (62)

We specify that branches of Ŝ defined over Ã(m)
j and B̃

(m)
j

are increasing and decreasing, respectively (refer to Fig. 5).
This implies that the single branch of Ŝ defined over R̃(m)

j is
decreasing or increasing if β̃j,m = 0 or β̃j,m = 1, respectively.

Any map Ŝ derived from a PWL and canonical R̃(Q̃)-semi-
Markov map S̃ and a collection of parameters β̃j,m in the
manner outlined above is referred to as a generalized hat map.
The name of this map class originates from the shape of con-
secutive pairs of map branches, which resembles a hat (in the
case where βj,m 6= 1/2, the hat is not symmetric; thus, we use
the term generalized). Also, by selecting appropriate values
for parameters β̃j,m ∈ {0, 1} according to the monotonicity
of the branches of any canonical map S̃, it is always possible
to construct a generalized hat map that satisfies Ŝ = S̃. Thus,
the canonical maps are a subset of the generalized hat maps.

The following propositions describe two properties of gen-
eralized hat maps that are relevant to the final step of the
proposed solution. These propositions are proved in Appendix
B and Appendix C, respectively.

Proposition IV.1. The generalized hat map Ŝ inherits the
order-zero FPM P

(0)

S̃
, [p

(S̃)
k,m]M̃k,m=1 of its counterpart S̃.

Proposition IV.2. Let QŜ , [q
(Ŝ)
k,m]M̃k,m=1 denote the top-left

submatrix of the order-one FPM belonging to map Ŝ. The
zero-valued elements of this matrix and P

(0)

S̃
coincide, whereas

their nonzero elements satisfy

q
(Ŝ)
k,m = (2β̃T̃ (k,m),m − 1)(p

(S̃)
k,m)2, (63)

where T̃ (k,m) denotes the index j satisfying S̃(R̃
(m)
j ) = Q̃k.

These properties are used to construct Ŝ such that its
order-zero FPM and the top-left submatrix QŜ of its order-
one FPM are equal to the estimates P̂

(0)
S , [p̂k,m]M̂k,m=1

and Q̂S , [q̂k,m]M̂k,m=1 obtained in the previous step. We
first construct a PWL and canonical semi-Markov map S̃
using the original solution, as outlined in section III-A3. This
ensures that the order-zero FPM of S̃ matches the estimate
P̂

(0)
S . A generalized hat map Ŝ is then constructed from S̃,

thereby ensuring that the order-zero FPM of Ŝ also equals
P̂

(0)
S (Proposition IV.1). The parameters β̃j,m used during the

construction of Ŝ are selected to ensure that QŜ matches the
estimate Q̂S . Proposition IV.2 and (63) imply that this may
be achieved by selecting

β̃j,m =
1

2

(
q̂Ũ(j,m),m

p̂2
Ũ(j,m),m

+ 1

)
(64)

for each m = 1, 2, . . . , M̃ and j = 1, 2, . . . , c̃(m), where
Ũ(j,m) is the index k satisfying S̃(R̃

(m)
j ) = Q̃k.

C. Map characteristics

In the following propositions, we describe several charac-
teristics of maps Ŝ constructed using the proposed solution.

Proposition IV.3. The order-zero FPM of Ŝ can be selected
to equal any order-zero FPM estimate P̂

(0)
S that satisfies (51)

and has nonnegative elements. Simultaneously, the top-left
submatrix QŜ of the order-one FPM belonging to Ŝ can be
selected to equal any estimate Q̂S that satisfies (53).

Proof. The statement regarding the order-zero FPM follows
from Ŝ inheriting the order-zero FPM of S̃ (Proposition IV.1),
and from the order-zero FPM of map S̃ (constructed using
the original solution) being equal to any estimate satisfying
the constraints [16]. The statement regarding submatrix QŜ

follows from Proposition IV.2. Specifically, (63) implies that
any estimate satisfying the constraint of (53) can be realized by
selecting an appropriate value for each parameter β̃T̃ (k,m),m

from [0, 1] using (64), and then constructing the generalized
hat map Ŝ, using these parameters, from S̃.

Proposition IV.4. Suppose that Q̂ = Q, and that the matrix
estimates satisfy P̂

(0)
S = P

(0)
S and Q̂S = QS . If S is canon-

ical, it can be successfully reconstructed using the proposed
solution (i.e., Ŝ = S) regardless of branch monotonicity.

Proof. Suppose that the conditions stated in the proposition
hold. Using the original solution, an R̃(Q̃)-semi-Markov map
S̃ is constructed with P

(0)

S̃
= P

(0)
S . The equality of the order-

zero FPMs and the canonicity of S imply that R̃ = R and that
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each R(m)
j has the same codomain under S̃ and S. Since S is

canonical, (10) and (14) imply that the elements of P
(0)
S and

QS satisfy qk,m = sT (k,m),mp
2
k,m. A generalized hat map Ŝ

is then constructed from S̃ using the proposed solution, where
the parameters β̃j,m = χ[0,∞)(sj,m) are selected using (64).
The map Ŝ is therefore R(Q)-semi-Markov, and it is designed
such that its branch over R(m)

j is decreasing if β̃j,m = 0 and
increasing if β̃j,m = 1. Thus, corresponding branches from
S and Ŝ have the same monotonicity. As these branches also
have the same domains and codomains, we have Ŝ = S.

Proposition IV.5. Suppose that Q̂ = Q, and that the matrix
estimates satisfy P̂

(0)
S = P

(0)
S and Q̂S = QS . Let Ŝ be

constructed using the proposed solution. The invariant density
and PSD mode characteristics of Ŝ are then equal to those of
the unknown PWL and semi-Markov map S, regardless of the
canonicity of S or the monotonicity of its branches.

Proof. Suppose that the conditions stated in the proposition
hold. Proposition IV.3 then implies that the order-zero FPM
and the top-left submatrix QŜ of the order-one FPM belonging
to Ŝ are equal to their counterparts of map S. Since the
order-zero FPMs share the same (normalized) right Perron
eigenvector, the order-zero vector representations of their
invariant densities are identical. The equality of the maps’
Markov partitions then imply that their invariant densities are
equal. Furthermore, recall that the PSD mode characteristics of
Ŝ coincide with the eigenvalues of its order-zero FPM and the
eigenvalues of submatrix QŜ of its order-one FPM. As both
these matrices equal their counterparts of S, their eigenvalues
and thus the maps’ PSD mode characteristics match.

V. NUMERICAL EXAMPLES

We present two examples in which the original and proposed
solutions were applied with the objective of reconstructing
an unknown PWL and semi-Markov map S. These examples
illustrate certain characteristics of the maps constructed us-
ing both solutions and serve to quantify the reconstruction
accuracy. The first example involves a canonical map S with
several decreasing branches, and the second example a map S
that is neither canonical nor a generalized hat map.

All simulations were carried on a laptop with an Intel
i7-9850H processor using the MATLAB numeric computing
environment. In each example, the original and proposed
solutions were carried out as described in sections III-A
and IV-B, with the exception of the step for estimating the
Markov partition. This step is identical in both solutions
and its accuracy was evaluated in [16]. Hence, we set the
estimated Markov partition equal to that of the unknown map
in each example. The original solution involved M̂ probing
experiments and the probing densities of Fig. 4(a), whereas
the proposed solution involved 2M̂ probing experiments and
the probing densities of Fig. 4(a) and 4(b). Each probing
experiment produced a sequence of T = 2 densities.

Each solution was applied in multiple rounds for each
example. A different value was selected for the number of
states per ensemble K in each round, with K ranging between
K = 1.25 × 103 and K = 80 × 103. To estimate the mean

TABLE I
BRANCH FUNCTIONS OF THE MAP CONSIDERED IN EXAMPLE 1.

Branch Domain Codomain vj,m wj,m

S1,1 R
(1)
1 = (0, 0.04) Q1 = (0, 0.40) 10.00 0

S2,1 R
(1)
2 = (0.04, 0.12) Q2 = (0.40, 0.50) 1.25 0.35

S3,1 R
(1)
3 = (0.12, 0.24) Q3 = (0.50, 0.80) -2.50 1.10

S4,1 R
(1)
4 = (0.24, 0.40) Q4 = (0.80, 1.00) 1.25 0.50

S1,2 R
(2)
1 = (0.40, 0.42) Q1 = (0, 0.40) 20.00 -8.00

S2,2 R
(2)
2 = (0.42, 0.45) Q2 = (0.40, 0.50) -3.33 1.90

S3,2 R
(2)
3 = (0.45, 0.47) Q3 = (0.50, 0.80) 15.00 -6.25

S4,2 R
(2)
4 = (0.47, 0.50) Q4 = (0.80, 1.00) 6.67 -2.33

S1,3 R
(3)
1 = (0.50, 0.68) Q1 = (0, 0.40) -2.22 1.51

S2,3 R
(3)
2 = (0.68, 0.74) Q2 = (0.40, 0.50) 1.67 -0.73

S3,3 R
(3)
3 = (0.74, 0.77) Q3 = (0.50, 0.80) 10.00 -6.90

S4,3 R
(3)
4 = (0.77, 0.80) Q4 = (0.80, 1.00) 6.67 -4.33

S1,4 R
(4)
1 = (0.80, 0.84) Q1 = (0, 0.40) 10.00 -8.00

S2,4 R
(4)
2 = (0.84, 0.88) Q2 = (0.40, 0.50) 2.50 -1.70

S3,4 R
(4)
3 = (0.88, 0.96) Q3 = (0.50, 0.80) 3.75 -2.80

S4,4 R
(4)
4 = (0.96, 1.00) Q4 = (0.80, 1.00) -5.00 5.80

reconstruction error, each solution was repeated 103 times per
round, with the initial ensemble of each probing experiment
drawn randomly from the probing density at the start of each
repetition. We consider the L1 error εS , ||S − Ŝ||1 between
the constructed and the unknown map, as well as the L1

errors between their invariant densities and PSDs (denoted by
εf∗

S
, ||f∗S − f∗Ŝ ||1 and εΦS

, ||ΦS − ΦŜ ||1). The mean of
these errors was computed over the repetitions in each round.

A. Example 1

The canonical R(Q)-semi-Markov map plotted in Fig. 6(a)
was selected as the unknown map S (a closely related map
was considered in [16]). The map and its branch functions
are defined by (6) and (8), respectively. Table I lists the
domain, codomain and parameters of each branch function.
The Markov partition of S consists of intervals Q1 = (0, 0.40),
Q2 = (0.40, 0.50), Q3 = (0.50, 0.80) and Q4 = (0.80, 1.00).

Figures 6(b) and 6(c) are plots of the maps constructed
using the proposed and original solutions with K = 104 states
per ensemble. Since S is canonical, Proposition IV.4 does
not exclude it from being successfully reconstructed using
the proposed solution. A comparison of Figs. 6(a) and 6(b)
reveals that the constructed map closely approximates the
unknown map, despite the matrix estimates not being equal
to the submatrices of the unknown map’s order-one FPM.
In particular, the four decreasing branches of the unknown
map were successfully reconstructed as decreasing branches
by the proposed solution (these branches are colored magenta
in Fig. 6), whereas the remaining branches were correctly re-
constructed with increasing monotonicity. This implies that the
decreasing branches’ monotonicity was successfully identified
and distinguished from that of the increasing branches by the
proposed solution (recall that this is made possible by esti-
mating submatrix QS of the unknown map’s order-one FPM,
in addition to the order-zero FPM). Figure 6(c) reveals that
the original solution incorrectly reconstructs the decreasing
branches as increasing branches, as it cannot discern branch
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Fig. 6. The maps associated with example 1. The unknown map is plotted in (a), whereas the maps constructed using the proposed and original solutions
are plotted in (b) and (c), respectively.

Fig. 7. Plots of the (a) invariant densities and (b) PSDs of the unknown map and the maps constructed using the proposed and original solutions in example 1.
The mean L1 errors of the maps, invariant densities and PSDs are plotted as a function of the number of states per ensemble in (c).

monotonicity from the order-zero FPM estimate only. This
confirms the prediction of Proposition III.1.

Imperfectly estimating the order-zero FPM leads to an
imperfect match between the branch domains and slopes of
both solutions’ reconstructed maps and their counterparts of
the unknown map; whereas this imperfect match is not clearly
visible in Fig. 6(b), it contributes towards the nonzero L1

error εS , plotted as a function of the number of states per
ensemble K in Fig. 7(c). The map constructed using the
proposed solution also has unnecessary branches (a subset
of these branches is indicated using dashed ellipses in Fig.
6(b)), and certain branch pairs possess the characteristic hat-
like shape; this is due to the estimate Q̂S not being equal to
QS , which causes unnecessary bifurcation of some intervals
of the sub-partition in the final solution step. However, the
support of these unnecessary branches has negligible length.
The original solution does not produce unnecessary branches,
as it does not use an estimate of QS . However, by incorrectly
estimating the monotonicity of some branches, its error εS is
larger than that of the original solution (see Fig. 7(c)).

The invariant density function of S is plotted in Fig. 7(a).
This density function is PWC over Q and is given by f∗S(x) =
0.68χQ1

+ 2.22χQ2
+ 0.84χQ3

+ 1.26χQ4
, where χQm

,
χQm

(x). The invariant densities of the maps constructed using

TABLE II
POWER SPECTRAL DENSITY PARAMETERS FOR EXAMPLE 1.

Mode m Coefficient cm Eigenvalue λm
1 2.97× 10−1 1.00
2 (1.41− 1.38j)× 10−1 (−2.00+ 1.73j)× 10−1

3 (1.41 + 1.38j)× 10−1 (−2.00− 1.73j)× 10−1

4 8.22× 10−3 1.00× 10−1

5 9.18× 10−3 −2.75× 10−1

6 2.61× 10−4 −1.23× 10−1

7 (1.86 + 1.35j)× 10−2 (1.44 + 1.18j)× 10−1

8 (1.86− 1.35j)× 10−2 (1.44− 1.18j)× 10−1

both solutions are also plotted in Fig. 7(a). The figure reveals
that these densities closely approximate the invariant density
of S, despite imperfect estimation of the order-zero FPM (as
required by Propositions III.2 and IV.5). The L1 error εf∗

S
,

plotted as a function of the number of states per ensemble K
in Fig. 7(c), suggests the accuracy of the two solutions are
identical in this regard. The invariant densities coincide with
the right Perron eigenvector of the order-zero FPM estimate;
as both solutions estimate this matrix in the same manner, the
densities are expected to be equally accurate.

The PSD of S is given by (19), and its parameters are
listed in Table II. The continuous component of the map’s PSD
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Fig. 8. The maps associated with example 2. The unknown map is plotted in (a), whereas the maps constructed using the proposed and original solutions
are plotted in (b) and (c), respectively.

Fig. 9. Plots of the (a) invariant densities and (b) PSDs of the unknown map and the maps constructed using the proposed and original solutions in example 2.
The mean L1 errors of the maps, invariant densities and PSDs are plotted as a function of the number of states per ensemble in (c).

is plotted in Fig. 7(b). The figure also contains plots of the
continuous PSD components belonging to maps constructed
using the proposed and original solutions. Whereas Proposi-
tion IV.4 implies that the PSD associated with the proposed
solution equals that of S if perfect matrix estimates are used,
the figure reveals that the PSDs remain approximately equal
despite these estimates being imperfect. In general, canonicity
of S is required for these PSDs to be approximately equal. If S
is not canonical, submatrix RS of the maps’ order-one FPMs
will generally not be equal, and the PSDs will deviate. In
contrast, the PSD associated with the original solution deviates
from that of S (Proposition III.3 is not satisfied).

The mean L1 errors associated with the constructed maps,
their invariant densities and PSDs are plotted as a function
of the number of states per ensemble K in Fig. 7(c). The
figure reveals that all observed errors associated with the
proposed solution are decreasing, whereas the error of the
invariant density εf∗

S
alone decreases in the case of the

original solution. Hence, despite the imperfections of the map
constructed using the proposed solution, its measured L1 error
εS decreases as the accuracy of the density estimates improve.
Thus, the proposed solution successfully reconstructs the map
by not having to assume all its branches are increasing.
In contrast, the original solution makes this assumption and

fails to reconstruct the map regardless of the accuracy of
the density estimates. However, as no assumption has to be
made regarding canonicity or branch monotonicity to estimate
the order-zero FPM (and hence the invariant density), both
solutions’ L1 error εf∗

S
also decreases as a function of K.

B. Example 2

The R(Q)-semi-Markov map plotted in Fig. 8(a) was se-
lected as the unknown map S. This map is neither canonical
nor a member of the generalized hat maps. The map and its
branch functions are defined by (6) and (8), respectively. Table
III lists the domain, codomain and parameters of each branch
function. The map’s Markov partition Q has two intervals
Q1 = (0, 0.50) and Q2 = (0.50, 1.00).

Figures 8(b) and 8(c) are plots of the maps constructed using
the proposed and original solutions with K = 104 states per
ensemble. The figures reveal that neither map approximates
S. This is consistent with Proposition III.1, which disqualifies
the original solution from successfully reconstructing non-
canonical maps. As S is not a generalized hat map, the
proposed solution also cannot successfully reconstruct it (the
conditions of Proposition IV.4 are not met).

The invariant density function of S is plotted in Fig. 9(a).
This density function is PWC over Q and is given by f∗S(x) =
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TABLE III
BRANCH FUNCTIONS OF THE MAP CONSIDERED IN EXAMPLE 2.

Branch Domain Codomain vj,m wj,m

S1,1 R
(1)
1 = (0, 0.35) Q2 = (0.50, 1.00) -1.43 1.00

S1,2 R
(1)
2 = (0.35, 0.5) Q1 = (0, 0.50) -3.33 1.67

S1,2 R
(2)
1 = (0.50, 0.60) Q1 = (0, 0.50) 5.00 -2.5

S2,2 R
(2)
2 = (0.60, 0.70) Q1 = (0, 0.50) 5.00 -3.00

S3,2 R
(2)
3 = (0.70, 1.00) Q2 = (0.50, 1.00) -1.67 2.17

0.73χQ1(x) + 1.27χQ2(x). The invariant density functions of
the maps constructed using both solutions are also plotted in
Fig. 9(a). These densities closely approximate the invariant
density of S, despite the use of imperfect matrix estimates.

The PSD of S is given by (19), and its parameters are
listed in Table IV. The continuous component of the map’s
PSD is plotted in Fig. 9(b). The figure also contains plots
of the continuous component of the PSDs belonging to maps
constructed using both solutions. Neither solution constructs a
map with PSD approximating that of S. In general, canonicity
of S is necessary for any of the PSDs to be approximately
equal. However, canonicity is not required for the PSD mode
characteristics to be consistent, as demonstrated next.

The mean L1 errors associated with the constructed maps,
their invariant densities and PSDs are plotted as a function
of the number of states per ensemble K in Fig. 9(c). The
figure reveals that the error of the invariant densities εf∗

S
alone

decreases for both solutions. In particular, Fig. 9(c) confirms
a nondecreasing L1 error εS for both solutions. This implies
that the inability to reconstruct the map does not stem from
estimation inaccuracy, but from the canonicity assumption.

Proposition IV.5 implies that the PSD mode characteristics
of maps constructed using the proposed solution coincide with
those of S if the matrix estimates equal the submatrices of
the unknown map’s order-one FPM. However, this does not
hold for the original solution. The PSD mode characteristics
of maps constructed using both solutions are investigated with
scatter plots of the order-one FPM eigenvalues.

Figures 10(a) and 10(b) are scatter plots of the eigenval-
ues belonging to the order-one FPMs of 100 distinct maps
Ŝ constructed using the proposed solution, for choices of
K = 2.5 × 103 and K = 8 × 104 states per ensemble,
respectively. The figures reveal that the eigenvalues associated
with the constructed maps are clustered around the eigen-
values associated with S (indicated using crosses), and that
an increase in the number of states per ensemble causes the
boundaries of these clusters to constrict. This implies that the
PSD mode characteristics of maps constructed using the pro-
posed solution approximate those of the unknown map more
accurately as density estimation accuracy improves. Figures
11(a) and 11(b) are scatter plots of the eigenvalues belonging
to the order-one FPMs of 100 distinct maps constructed using
the original solution. These figures reveal that only a subset of
the eigenvalues associated with the constructed maps cluster
around the eigenvalues of S, regardless of estimation accuracy.

TABLE IV
POWER SPECTRAL DENSITY PARAMETERS FOR EXAMPLE 2.

Mode m Coefficient cm Eigenvalue λm
1 3.23× 10−1 1.00
2 −1.98× 10−1 −1.00× 10−1

3 (1.38− 1.31j)× 10−1 (−2.25+ 1.45j)× 10−1

4 (1.38 + 1.31j)× 10−1 (−2.25− 1.45j)× 10−1

C. Mean reconstruction time

The mean time tm required to reconstruct a map using each
of the solutions is plotted in Fig. 12 as a function of the number
of states per ensemble K for both examples. The figure reveals
that the proposed solution requires more time to reconstruct
the map than the original solution in both examples, with a
maximum of tm = 33.5 seconds required to reconstruct the
most sophisticated map (i.e., example 1 with 80 × 103 states
per ensemble). Further investigation revealed that the probing
experiments, which include the generation of the initial state
ensemble, require 95.3% to 99.8% of the overall reconstruction
time. The longer execution time of the proposed solution can
thus be ascribed to it carrying out twice the number of probing
experiments as compared to the original solution.

The power law curve was fitted to the measured reconstruc-
tion times of each solution and example, such that

tm(K) ≈ aKb. (65)

The fitted curves are plotted as solid lines in Fig. 12. The figure
suggests a close fit between the measurements and the curves.
The parameters a and b of each curve are listed in Table V.
The table reveals that the exponent b is approximately equal to
unity in each case, which implies a (near) linear relationship
between the measured reconstruction time and the number of
states per ensemble.

VI. CONCLUSIONS

This paper proposed a novel solution to the inverse
Frobenius-Perron problem of reconstructing an unknown PWL
semi-Markov map from causal sequences of state density func-
tions generated by the map. The proposed solution enlarges
the class of maps reconstructible by the original solution
of [16] from the canonical maps with increasing branch
functions only to canonical maps with branch functions of
arbitrary monotonicity. Also, in contrast to the original so-
lution, the PSD mode characteristics of maps constructed
using the proposed solution are consistent with those of
any unknown PWL semi-Markov map; this holds regardless
of the canonicity of the unknown map or the monotonicity
of its branch functions. Whereas the propositions associated
with these statements require that the Markov partition and
relevant matrix estimates are equal to their counterparts of the
unknown map, we demonstrated close approximation of the
maps and their statistical characteristics using numerical exam-
ples that involved imperfect estimation accuracy. Specifically,
we demonstrated that maps constructed using the proposed
solution closely approximate a canonical map with a nonempty
subset of decreasing branches. Two examples were presented
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Fig. 10. Scatter plots of eigenvalues belonging to the order-one FPMs of maps
constructed using the proposed solution in example 2, for (a) K = 2.5×103

and (b) K = 8× 104 states per ensemble. The eigenvalues of the unknown
map are indicated using crosses.

that demonstrate the close approximation of the invariant
density and PSD mode characteristics of PWL semi-Markov
maps. Thus, the proposed solution is a practical means for
modelling a larger class of semi-Markov maps.

APPENDIX A
CONVEXITY OF THE CONSTRAINED OPTIMIZATION

PROBLEMS

We first prove that the joint constrained optimization prob-
lem introduced in section IV-B1 is not convex. Thereafter,
we prove that the separate constrained optimization problems
introduced in the same section are both convex.

Proposition A.1. Consider the joint optimization problem

P∗S ,Q
∗
S = arg min

P,Q
: ||Ŵ −DP,QV̂||F , (66)

subject to
q̂TP = q̂T , (67)

P , [pk,m]M̂k,m=1 being nonnegative, and Q , [qk,m]M̂k,m=1

satisfying
|qk,m| ≤ p2

k,m. (68)

Fig. 11. Scatter plots of eigenvalues belonging to the order-one FPMs of maps
constructed using the original solution in example 2, for (a) K = 2.5× 103

and (b) K = 8× 104 states per ensemble. The eigenvalues of the unknown
map are indicated using crosses.

The matrices in (66) are defined in section IV-B1. This problem
is not convex.

Proof. We prove that the feasible set associated with (68) is
not convex. Assume that (P1,Q1) and (P2,Q2) are both
elements of the feasible set. If the problem were convex, then

(αP1 + (1− α)P2, αQ1 + (1− α)Q2) (69)

must be an element of the feasible set for all α ∈ [0, 1] and
hence satisfy (68); i.e.,

|αq(1)
k,m + (1− α)q

(2)
k,m| ≤ [αp

(1)
k,m + (1− α)p

(2)
k,m]2 (70)

for all k,m = 1, 2, . . . , M̂ , where Pj , [p
(j)
k,m]M̂k,m=1 and

Qj , [q
(j)
k,m]M̂k,m=1.

As (P1,Q1) and (P2,Q2) are elements of the feasible set,
they satisfy (68) and hence

−(p
(1)
k,m)2 ≤ q(1)

k,m ≤ (p
(1)
k,m)2 (71)

and
−(p

(2)
k,m)2 ≤ q(2)

k,m ≤ (p
(2)
k,m)2. (72)



PREPRINT 15

Fig. 12. Mean time required to reconstruct the maps of examples 1 and 2
using each solution.

Multiplying (71) with α and (72) with 1−α and adding these
expressions yield

|αq(1)
k,m + (1− α)q

(2)
k,m| ≤ α(p

(1)
k,m)2 + (1− α)(p

(2)
k,m)2. (73)

Thus, if there exists any α ∈ [0, 1] such that

α(p
(1)
k,m)2 + (1−α)(p

(2)
k,m)2 > [αp

(1)
k,m + (1−α)p

(2)
k,m]2, (74)

the feasible set associated with (68) is not convex. As
h(·) = (·)2 is a convex function, (74) holds for all α ∈ (0, 1).
Hence, the joint optimization problem is not convex.

Proposition A.2. Consider the optimization problem

P∗S = arg min
P

: ||B̂−PÂ||F , (75)

subject to
q̂TP = q̂T , (76)

where q̂ = [µ(Q̂1), µ(Q̂2), . . . , µ(Q̂M̂ )]T , and subject to the
elements of P , [pk,m]M̂k,m=1 satisfying

pk,m ≥ 0, k,m = 1, 2, . . . ,M. (77)

This problem is convex.

Proof. As norms are convex functions, the objective function
is convex. We proceed by proving that the feasible set is a
convex set. Suppose that P1 and P2 are both elements of the
feasible set. We prove that αP1+(1−α)P2, for any α ∈ [0, 1],
is also an element of the feasible set; i.e.,

q̂T (αP1 + (1− α)P2) = q̂T (78)

and

αp
(1)
k,m + (1− α)p

(2)
k,m ≥ 0, k,m = 1, 2, . . . , M̂ , (79)

where P1 = [p
(1)
k,m]M̂k,m=1 and P2 = [p

(2)
k,m]M̂k,m=1.

The left-hand side of (78) is manipulated as

q̂T (αP1 + (1− α)P2) = αq̂TP1 + (1− α)q̂TP2

= αq̂T + (1− α)q̂T

= q̂T , (80)

TABLE V
PARAMETERS OF THE POWER LAW CURVE FITTED TO THE MEASURED

RECONSTRUCTION TIMES.

Curve Parameter a Parameter b
Original solution, experiment 1 1.395× 10−4 9.724× 10−1

Proposed solution, experiment 1 2.721× 10−4 1.033
Original solution, experiment 2 3.321× 10−5 9.592× 10−1

Proposed solution, experiment 2 7.295× 10−5 1.055

where we used the fact that, as elements of the feasible set,
both P1 and P2 satisfy (76). Thus, the feasible set associated
with (76) is convex.

The elements of both P1 and P2 are nonnegative due to
the matrices’ membership of the feasible set (see (77)). As
α ∈ [0, 1], the left-hand side of (79) is nonnegative. Thus, the
feasible set associated with (77) is convex.

As the intersection of convex sets is convex, the problem’s
feasible set is also convex. Hence, the problem is convex.

Proposition A.3. Consider the optimization problem

Q∗S = arg min
Q

: ||D̂−QĈ||F , (81)

subject to
−p̂2

k,m ≤ qk,m ≤ p̂2
k,m, (82)

where Q , [qk,m]M̂k,m=1. This problem is convex.

Proof. As norms are convex functions, the objective function
is convex. We proceed by proving that the feasible set is
a convex set. Suppose that Q1 = [q

(1)
k,m]M̂k,m=1 and Q2 =

[q
(2)
k,m]M̂k,m=1 are both elements of the feasible set. We prove

that αQ1 + (1− α)Q2, for any α ∈ [0, 1], is also an element
of the feasible set; i.e.,

−p̂2
k,m ≤ αq

(1)
k,m+(1−α)q

(2)
k,m ≤ p̂

2
k,m, k,m = 1, 2, . . . , M̂ .

(83)
As Q1 and Q2 are both members of the feasible set, (82)
implies that their elements satisfy

−p̂2
k,m ≤ q

(1)
k,m ≤ p̂

2
k,m, k,m = 1, 2, . . . , M̂ , (84)

and

−p̂2
k,m ≤ q

(2)
k,m ≤ p̂

2
k,m, k,m = 1, 2, . . . , M̂ . (85)

Multiplying (84) by α and (85) by 1−α and adding these ex-
pressions yields (83). This implies that the problem’s feasible
set is convex, and that the problem itself is convex.

APPENDIX B
PROOF OF PROPOSITION IV.1

Let P
(0)

S̃
, [p

(S̃)
k,m]M̃k,m=1 and P

(0)

Ŝ
, [p

(Ŝ)
k,m]M̃k,m=1. When

constructing Ŝ, each branch S̃j,m is (i) left unchanged if
β̃j,m = 1, or (ii) modified to have a negative slope with the
same codomain as S̃j,m if β̃j,m = 0, or (iii) divided into
two branches, each having the same codomain as S̃j,m, if
0 < β̃j,m < 1. Therefore, if no branch of S̃ over partition
R̃(m) has codomain Q̃k, Ŝ will have no branch over R̂(m)

with codomain Q̃k. Thus, p(S̃)
k,m = 0 =⇒ p

(Ŝ)
k,m = 0.
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Now, suppose p
(S̃)
k,m 6= 0. The canonicity of S̃ implies it

has one branch S̃T̃ (k,m),m over R̃(m) with codomain equal to
Q̃k. If β̃T̃ (k,m),m ∈ {0, 1}, map Ŝ will have a single branch
over R̂(m) with codomain Q̃k. This branch has a slope equal
to ±S̃′

T̃ (k,m),m
. Thus, p(Ŝ)

k,m = | ± S̃′
T̃ (k,m),m

|−1 = p
(S̃)
k,m. If

0 < β̃T̃ (k,m),m < 1, map Ŝ will have two branches over R̂(m)

with codomain Q̃k. These branches have slopes equal to

Ŝ′|
Ã

(m)

T̃ (k,m)

= µ(Q̃k)/
[
β̃T̃ (k,m),mµ(R̃

(m)

T̃ (k,m)
)
]

(86)

and

Ŝ′|
B̃

(m)

T̃ (k,m)

= −µ(Q̃k)/
[
(1− β̃T̃ (k,m),m)µ(R̃

(m)

T̃ (k,m)
)
]
. (87)

Thus, p(Ŝ)
k,m = |Ŝ′|

Ã
(m)

T̃ (k,m)

|−1 + |Ŝ′|
B̃

(m)

T̃ (k,m)

|−1 = p
(S̃)
k,m.

APPENDIX C
PROOF OF PROPOSITION IV.2

Let QS̃ , [q
(S̃)
k,m]M̃k,m=1 and QŜ , [q

(Ŝ)
k,m]M̃k,m=1. Using the

argument of Appendix B, it follows that q(S̃)
k,m = 0 implies

q
(Ŝ)
k,m = 0. Now, suppose q

(S̃)
k,m 6= 0. If β̃T̃ (k,m),m ∈ {0, 1},

Ŝ will have a single branch over R̂(m) with codomain
Q̃k. This branch has a slope equal ±S̃′

T̃ (k,m),m
. Thus,

q
(Ŝ)
k,m = ±|S̃′

T̃ (k,m),m
|−2 = (2β̃T̃ (k,m),m − 1)(p

(S̃)
k,m)2. If

0 < β̃T̃ (k,m),m < 1, map Ŝ will have two branches over R̂(m)

with codomains Q̃k. These branches have slopes given by (86)
and (87). Thus, q(Ŝ)

k,m = |Ŝ′|
Ã

(m)

T̃ (k,m)

|−2 − |Ŝ′|
B̃

(m)

T̃ (k,m)

|−2 =

(2β̃T̃ (k,m),m − 1)(p
(S̃)
k,m)2. Equation (63) then follows.
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