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Abstract

The concept of fairness has been studied in philosophy and economics for thousands of years, so human actors in social systems

have had plenty of time to “learn” what does, and does not, work. Yet, only recently. However, it is a relatively new question

how software agents in a multi-agent system can use Reinforcement Learning models to develop an architecture that promotes

equality or equity in the distribution of rewards to the agents within the system. Recent significant contributions have focused

on optimising for efficiency based on the assumption that efficiency and fairness are opposites to be traded off against each

other, but actually, the result of mixing fair and efficient policies is unknown in multi-agent reinforcement learning settings. In

this work, we experiment with fair and efficient behaviours jointly, based on an extension of the state-of-the-art model in fairness

SOTO that intertwines efficient and equitable recommendations. We analyse the fair versus efficient behavioural spectrum in

the Matthew Effect and Traffic Light Control problems, finding some solutions that outperform the baseline SOTO and others

that outperform a selfish baseline with comparable architectural design. We conclude it is possible to optimise for fairness and

efficiency and this is important when computation of the reward distribution has to be paid for from the rewards themselves.
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Abstract

The concept of fairness has been studied in phi-
losophy and economics for thousands of years, so
human actors in social systems have had plenty of
time to “learn” what does, and does not, work. Yet,
only recently. However, it is a relatively new ques-
tion how software agents in a multi-agent system
can use Reinforcement Learning models to develop
an architecture that promotes equality or equity in
the distribution of rewards to the agents within the
system. Recent significant contributions have fo-
cused on optimising for efficiency based on the
assumption that efficiency and fairness are oppo-
sites to be traded off against each other, but ac-
tually, the result of mixing fair and efficient poli-
cies is unknown in multi-agent reinforcement learn-
ing settings. In this work, we experiment with fair
and efficient behaviours jointly, based on an exten-
sion of the state-of-the-art model in fairness SOTO
that intertwines efficient and equitable recommen-
dations. We analyse the fair versus efficient be-
havioural spectrum in the Matthew Effect and Traf-
fic Light Control problems, finding some solutions
that outperform the baseline SOTO and others that
outperform a selfish baseline with comparable ar-
chitectural design. We conclude it is possible to
optimise for fairness and efficiency.

1 Introduction
Throughout history, RL techniques have aimed to optimise
the expected sum of rewards an agent gets for acting un-
der its policy. More recently, fairness concerns have been
brought into the Machine Learning literature, and fairness-
aware line of algorithms have been emerging. In the multi-
agent paradigm, some work attempts to optimise the equality
in the distribution of rewards of the agents in the most effi-
cient manner possible [Jiang and Lu, 2019; Zimmer et al.,
2021]. This literature approaches fairness as a goal for the
individual agents’ policies to optimise. However, there seems

∗Contact Author
†Contact Author

to be a gap in work considering fairness and efficiency holis-
tically. Indeed, in a real-world scenario, it may be that neither
the efficient nor the equality extreme goals are ideal, so it is
important to study in-between solutions. The designer should
be able to opt to sacrifice one of them, to a certain extent, for
the other, and there is lack of literature to support such a de-
cision. There is still no evidence of the outcome of mixing
fair and efficient behaviours or even training these together in
a MADRL system. While the relationship between fairness
and efficiency is popularly seen as a trade-off [Pióro et al.,
2002], there is still a lack in evidence that is really the case in
MADRL.

The main goal of this paper is to address the equality of
rewards fairness issue in MADRL in an exploratory manner.
By relaxing assumptions on which goal is intended for the
system - efficiency or fairness - we aim to observe what solu-
tions arise. We want to observe the impact of combining fair
and efficient goals both in test and train.

We tackle this challenge by employing two main tech-
niques. The first is heterogeneous testing, where the agents
in the system act selfishly or fairly according to a probability,
without updating their policies weights. This enables a direct
mix in previously learned policies. The second is an exten-
sion to the SOTO model [Zimmer et al., 2021] which enables
a team-oriented policy to provide fair action insights to the
self-oriented one. Because each policy recommends the other
intertwined in this setting, we call this method Intertwined
SOTO (I-SOTO). We also experiment with different settings
for the training strategy that controls how SOTO’s self- and
team-oriented policies are trained. Doing so, we believe dif-
ferent solutions will be found in both extremes and hetero-
geneous intermediates from testing - specially in the I-SOTO
case, where both policies share action recommendations. We
develop our work under two main assumptions:

1. If selfish and fair policies are combined heterogeneously,
a linear range of fair-efficient behaviours is generated

2. If SOTO’s πIND also receives recommendations from
πSWF - I-SOTO - it is possible to find solutions that are
better in at least on of the goals (fairness or efficiency)
without compromising the other.

This paper contributes to the state of the art on equality
fairness in MADRL in a variety of manners. In a broad sense,
our contribution mainly relies on presenting results for the ex-



ploratory attempts made in combining fair and efficient poli-
cies and training them jointly. The primary contributions of
the paper: (1) we propose an extension that intertwines rec-
ommendations from the self- and team-oriented policies and
assess it under different β(er) training strategies; (2) we show
that with I-SOTO it is possible to find solutions more fair and
efficient than SOTO’s fair and efficient baseline; (3) we pro-
vide an experimental set of results which may serve as sup-
port for a system’s designer to choose which policy setup is
most appropriate for their goals in terms of efficiency and fair-
ness.

2 Related Work
As a social construct, fairness is inherently subjec-
tive [Lamertz, 2002]. Its notion has been extensively stud-
ied within various fields political science [Brams et al., 1996]
and economics [Moulin, 2003]. This led to the emergence
of a variety of fairness considerations including impartiality,
equity and equality, envy-freeness allocation, among others.
Some of these were brought to other fields making use of ap-
plied mathematics such as Operations Research (OR), Artifi-
cial Intelligence (AI) and Machine Learning (ML).

With the recent increased presence of Machine Learning
(ML) in real-life decision-making situations, fairness has also
been gaining importance in such field [Mehrabi et al., 2021].

More recently, the notion of fairness has been brought to
MARL systems. A line of work focuses on applying equitable
resource allocation [Luss, 2012] in the domain at study. Some
approaches solve the problem with domain-specific knowl-
edge towards solving a known issue in it[Elmalaki, 2021;
Chen et al., 2021]. Others consider resource allocation in
a more general manner [Zhang and Shah, 2014] use the max-
min egalitarian notion of social welfare, the lowest utility
within the system. On another note [Claure et al., 2019],
tackle the multi-armed bandit domain by introducing con-
straints relative to the allocation process.

A second line of work focuses on including fairness con-
cerns in the model functioning itself. [Siddique et al., 2020]
work on the multi-objective MDP problem. The approach
taken was to make use of a social welfare function [Busa-
Fekete et al., 2017] as a way of ensuring each of these goals
is being learned in a fair way, i.e., being given approximately
equal opportunities to be learned. On another note, [Wang et
al., 2020] approach the multi-agent credit assignment prob-
lem using the notion of Shapley value, which approximates
the impact of a single agent in a coalition of agents.

Finally, the line of work which we follow in this work, fo-
cuses on equality of the rewards between the set of agents
within the MARL system. In competitive domains, [Hughes
et al., 2018] encode aversion for inequality, advantageous and
disadvantageous, in the agents reward. While this work is
successful in promoting cooperation in competitive environ-
ments, they do not make fairness considerations. In this work
we focus on the cooperative MARL setting where the agents
share the same system equality goal. However, making agents
learn this is not trivial. Indeed, if the reward is set to be a
global system property, all agents will receive the same re-
ward signal which is not efficient. This problem is sometimes

referred to as the credit-assignment problem.
To the best of our knowledge, there are only two ap-

proaches that attempt to work on this problem. Both of these
seem to be approach this by developing architectures which
combine insights of more than one policy. One of them,
FEN [Jiang and Lu, 2019] is a hierarchical policy model con-
sisting of a controller that ensembles several sub-policies.
A key aspect is that only one of the sub-policies is trained
with the traditional reward signal rt while the remaining ones
exploit an information-theoretic objective to explore alterna-
tive behaviours. The controller is optimised according to a
fair-efficient reward r̂it = ūt/c

ϵ+|ui
t/ūt−1| . The results showed

this model achieved fairer results than independent models
in a variety of domains. The second one, SOTO [Zimmer et
al., 2021], provides agents with a self-oriented and a team-
oriented policy. The first is trained for often in the beginning
to provide efficient insights to the team-oriented policy. Re-
sults showed that it SOTO over-performed FEN both in fair-
ness and efficiency.

There is indeed very little work approaching the reward
equality problem in MADRL. In the existent literature, fair-
ness is approached as an independent goal from efficiency.

3 Methodological Approach
Notation: we use calligraphic letters - X - to denote alphabet
sets, upper-case letters - X - to denote random variables and
constants, hats to denote approximations - X̂ - and lower-
case letters - x - to denote realizations. The methodology
employed is an extension to SOTO [Zimmer et al., 2021], so
we dedicate section 3.1 to describing its intricacies.

3.1 SOTO
The SOTO architecture [Zimmer et al., 2021], is, to the

best of our knowledge, state of the art in the reward equal-
ity problem. It comprises a Self-Oriented Policy πIND and
Team-Oriented one πSWF, trained for the selfish and the
fair goals respectively. It is designed for the Dec-POMDP
framework [Oliehoek and Amato, 2016], such that each of
these policies is independently trained for each agent and re-
ceives the observations of the world as input. Moreover, the
team-oriented policy additionally receives J = {Ji(θ) =
Eθ [

∑
t γ

tri,t]} - providing information on the wealth of
other agents - and πIND(a|o) - the forwarded output self-
oriented policy as an efficient recommendation. While the
first inform the wealth state of other agents, the latter pro-
vides a self-oriented recommendation for efficiency to the
team-oriented policy.

In the SOTO training procedure 1, at each batch of steps,
throughout episodes, a policy is chosen - either self- or team-
oriented - according to the value of a β variable. The agents
act according to such policy for the length of the batch in time
steps and, by the end of it, updates the corresponding policy’s
weights. As such, the training of each policy depends on the
evolution of β throughout episodes β(er), where er = e

E
is the episode ratio. The function chosen by the authors is

1For an in-depth explanation with pseudo-code we defer the
reader to the original paper [Zimmer et al., 2021]



β(er) = max (1− 2er, 0), where e is the episode number
and E is the number of the last episode.

Both policies are trained with Policy Gradients algorithms.
However, the team-oriented policy is trained with a different
advantage value than the self-oriented one - it is based on a
social welfare function (SWF) with regards to the distribution
of cumulative rewards J. To choose which SWF to utilise,
the authors respect three principles: Impartiality, Equity and
Pareto-efficiency [Weng, 2019].The present two families of
viable functions according to these criteria and end up utilis-
ing the Generalised Gini Function [Weymark, 1981] (GGF)
Gw(u) =

∑
k∈[D] wku

↑
k and the α-fairness [Mo and Wal-

rand, 2000] SWFSU (u) =
∑

k∈[D] U(uk), where Uα(x) =
x1−α

1−α if α ̸= 1 and Uα(x) = log(x). As such, the team-
oriented advantage is ÂSWF = ∇uϕ(Ĵ(θ))

⊤ · Â(o,a),
as opposed to the traditional self-oriented one ÂIND

i =

Âi(oi, ai). After derivation, note that for the GGF and α SWF
∇uGw(J(θ)) is wσ and J(θ)−α, for α ∈ [0, 1[, respectively.

3.2 Heterogeneous Testing
We coin heterogeneous testing as the method utilised to ex-
plore fair vs.efficient relative frequencies within the policies
chosen by the agents. Remember that, from SOTO, choos-
ing either piIND and piSWF depended on the value of β(er).
Inspired by this, we employ the algorithm depicted in Algo-
rithm 1 to test heterogeneous behaviours from two different
previously learned policies. In this case, β a fixed parameter
is provided as an argument that determines the probability of
the agent being attributed the self-oriented policy.

It is important that under this testing method, no agent acts
only selfishly or fairly but more often as to one of these ac-
cording to β by the law of large numbers. The intent is to
expose the behaviour of interactions of each policy kind for
each agent, as all multi-agent architectures are independent
per agent. Moreover, the policies are never updated under
this method. As such, this is only a testing method, putting in
evidence the policy resultant from training without changes.

Algorithm 1 Heterogeneous Testing
1: Initialize π1

i , π
2
i , v

1
i , v

2
i , respectively the pre-trained team-

oriented/self-oriented policies, team-oriented/self-oriented crit-
ics.

2: for each episode e do
3: while episode e is not completed do

4: (πi, vi) ←
{ (

π1
i , v

1
i

)
with probability β(er), er = e

E(
π2
i , v

2
i

)
otherwise

5: Collect M a minibatch of transitions with πi

6: end while
7: end for

3.3 Intertwined Self-Oriented Team-Oriented
networks

In the SOTO architecture, the inclusion of a self-oriented pol-
icy is intended to provide a recommendation on how to act
efficiently to the team-oriented one. It is unknown, however,

Figure 1: I-SOTO Architecture

if the recommendations of a team-oriented policy could im-
prove the performance of the first as well.

We propose an extension to this architecture in which the
self-oriented policy also receives insights from the team-
oriented policy, generating an intertwined sharing of recom-
mendations. We coin this model Intertwined Self-Oriented
Team-Oriented networks - I-SOTO. The team-oriented policy
then receives as input the action distribution resultant from
forwarding πIND, as shown in Figure 1.

A problem that arises is the circular dependency between
policy recommendations or forwarded outputs. For instance,
if we want to forward policy πSWF, first we have to forward
policy πIND. However, to forward this policy, we also need
the forwarded output of the first, which is dependent on the
latter. In order to address this issue, whenever some policy
π is being used, it forwards the other π′ substituting the ex-
pected inputs from π with a null vector 0|A|. This null ac-
tion recommendation could be seen as ”no action”, since the
output of the policies is the probability distribution of each
available action.

Note that the distribution of wealth J is yet not passed to
the self-oriented policy to put in evidence the effect of inter-
twined selfish and fair policies.

3.4 Training Strategy functions
In the context of this work, training strategy refers to the func-
tion of β(er), which determines the probability of each agent
choosing to act under the self-oriented policy πIND on a given
episode for and on before mini-batch of M transitions. Higher
β makes the agents train more the self-oriented policy and
then vice-versa for the team-oriented policy. Notice that, spe-
cially in I-SOTO, because learning one of these policies has
a potential impact on the other, using different training strate-
gies may improve the performance of the model.

We test a variety of functions β(er), where er = e
E is the

episode rate, i.e. the number of the current episode e divided
by the total number of episodes E. In the original training
setting of SOTO, β(er) is a linearly decreasing function until
half of the episodes 1

eer and constant from such point on-
wards on 0. We use 4 different beta families: constant, linear,
baseline and v-shaped. A summary of their characteristics is
present in Table 1. Sample ratio refers to the ratio between



Family Variant
πIND/πSWF

sample
ratio

Equation

Constant 0.25 25/75 0.25

0.5 50/50 0.5

Linear lin 50/50 er

rlin 50/50 1− er

Baseline b 25/75 max(1− 2er, 0)

rb 75/25 1−max(1− 2er, 0)

V-shaped v 50/50 max(1− 2er, 2er − 1)

rv 50/50 1−max(1− 2er, 2er − 1)

Table 1: Strategy Functions by family: Constant, Linear (and its re-
verse version rl) , Baseline (and its reverse version rb) and V-shaped
(and its reverse version rv)

the areas below and under the curve, respectively. When β
is higher, πIND is trained more often and thus has access to a
higher number of samples. The number of samples tends to
the proportions of the areas below and under the curve, by the
law of large numbers.

The constant family is the most simple of all. Under
this family, β is not dependant on er, and the agents train
selfishly/fairly according to the same probability throughout
episodes. In particular, we want to study two values of β:
0.25 and 0.5. Studying β = 0.5 is important as it gives the
same opportunity for each policy πIND and πSWF to converge
- equal sample ratio. On the other hand, studying β = 0.25
provides the same sample ratio as the baseline. Alternatively,
the linear family functions prolong the switch between choos-
ing one or the other policy to double the period compared to
the baseline setting. We aim to test whether the stabilising
period of baseline after T

2 is necessary or if most of its perfor-
mance gains come from slowly switching from self-oriented
to team-oriented. As for the baseline family, it comprises the
baseline setting of SOTO and its reverse, rb (see Table 1). No-
tice that the reverse variant ends up being very similar to the
independent baseline except that 25% of the samples are, in
the first half of episodes, directed to the team-oriented policy
during training. Finally, derived from the baseline alternative,
v-shaped functions are intended to provide the same function
as baseline until E

2 episodes and then return to the initial value
linearly in a V-shaped manner. The interest relies on testing
whether should the system progressively return to the initially
dominant policy during training, there is an improvement of
its behaviour afterwards.

As such, we extend the literature by exploring fair and ef-
ficient goals in a holistic manner by evaluating execution and
training methods which combine them, hoping to find com-
petitive solutions in both goals.

4 Experimental Results & Discussion
4.1 Evaluation
All of these methods are evaluated through simulation. We
choose two environments in which is the resource opportu-
nity is unequal - Matthew Effect and Traffic Light Control.
As baselines, we use the original SOTO model and the same
Independent baseline utilised in its paper, which has the same
architecture of SOTO self-oriented policy. In each environ-

ment, a domain-specific measure per time step and agent mi
t

is considered. Given u = {ui, i ∈ D}, ui =
∑T

t mi
t,

metrics recorded were the total as
∑T

t

∑|D|
i mi

t, CV 2

as std(u)/mean(u), the min min(u) and the max max(u).
Lower values of CV indicate fairer solutions. Higher/Lower
values of total provide information on the efficiency of the
model, depending whether mt is to be maximised/minimised
on the environment. All policies use PPO optimisation. The
importance sampling has a 0.03 exploration bonus and 0.1
clipping ratio. The learning rate is 10−3 for the critic and
2.5−3 for the actor. Generalised Advantage Estimation was
utilised with λ = 0.97. The neural networks have two hid-
den layers with 256 ReLU units each. We used 50 time step
batches of transitions. Two Social Welfare Functions (SWF)
were utilised: an instance of the Generalised Gini Function,
with wi =

1
2i and an instance of α-fairness with α = 0.9

Each model is trained three times with different seeds for
stochastic processes. The results presented are the average
of every seed instance tested in 50 episodes. The values
of β used for heterogeneous behaviour were {0.02i,∀i ∈
{0, 1, ...50}}, for models where this is applicable.

4.2 Matthew Effect Problem
In the Matthew Effect environment, a set of 10 agents is
placed in a map. Whenever an agent consumes a ghost, it
gets bigger and faster, and a new ghost is spawned. As such,
those who consume are more likely to consume again. In
other words, the rich get richer and the poor get poorer. This
is called the Matthew effect. The goal is to maximise the in-
come, in this case the number of consumed ghosts n. The
recorded measure for this environment coincides with n and
the reward signal r, such that mt = rt = nt.

Behavior generation through Heterogeneous Testing
We present the behaviour outcomes of heterogeneous testing
between different pairs of policies, trained with the SOTO
model, in the following paragraphs.
πIND versus πSWF: SOTO trains two policies with differ-

ent aims: a self- and a team-oriented goal. The results of
the heterogeneous behaviour produced by these policies in
the Matthew Effect environment is depicted in Figure 2. It
seems that the two SWFs utilised can generate ranges of be-
haviour, according to β, in two different directions. Regard-
ing fairness, as expected, the lower values of β seem to be
associated with lower CV values. This means the higher the
probability of each agent to act under πSWF, the fairer the
system is, globally. On the other hand, with regards to effi-
ciency, a more complex scenario occurs. Unexpectedly, for
SOTO(α), there seems to be an inverse relationship between
β and the value of total income. Indeed, the most efficient
policy is also the fairest. As for SOTO(Gw), such a rela-
tionship is no longer linear. The most efficient policy is an
intermediate behaviour between the two extremes πIND and
πSWF. It is possible to observe that these two SWFs have quite
distinct behaviours under this environment. However, a simi-
larity between them is the proximity in performance between
self-oriented extremes in each SWF. We believe this may be

2Coefficient of Variation



Figure 2: Heterogeneous behaviour between SOTO’s πIND and πSWF

in Matthew Effect

Figure 3: Heterogeneous behaviour between SOTO and Independent
in Matthew Effect

because such policy only trains for 25% of the training sam-
ples. This would also justify why the efficiency of such policy
is comparatively mediocre, despite its training goal being di-
rectly oriented towards efficiency.

SOTO versus Independent: We test mixing SOTO with
the Independent baseline. The results of this attempt are de-
picted in Figure 3. As we can see, no Pareto solutions are
found.Both ranges of behaviours produced non-linear shapes.

I-SOTO and Training Strategies
We present the results for I-SOTO under different training
strategies in Table 2. As can be seen, some solutions are able
to outperform SOTO. For the α SWF, the rlin and b func-
tions are both fairer and more efficient than this baseline.
These functions are the only ones where β decreases (weakly)
thoughout episodes, so perhaps this could be an intuition on
the ideal function to be used in this SWF and environment.
Morever, for Gw, it seems that no solution is better in both
goals. We found that the baseline training strategy is able to
improve in fairness, which is remarkable since it was already
very close to 0 in SOTO.

Comparing to the Independent baseline, there are solutions
in both SWF that outperform it both in fairness and efficiency.
For α, the b function is the one which does this with greater
difference. Another interesting result for this SWF is the rb
function, achieving an even higher value of efficiency. For
Gw, the rb alternative is able to have slightly higher efficiency
and fairness (lower CV).

Total CV Min Max
model β π

I-SOTO(α)

0.25 IND 1440 0.75 11.80 356
SWF 1529 0.48 35.22 271

0.5 IND 1626 0.66 24.18 385
SWF 1378 0.53 15.67 240

lin IND 1771 0.64 31.42 417
SWF 888 0.69 4.77 167

rlin IND 1617 0.64 23.68 372
SWF 1680 0.48 38.34 306

b IND 1138 0.94 3.69 338
SWF 1756 0.44 58.02 316

rb IND 1859 0.65 23.31 423
SWF 99 1.28 0.16 37

v IND 1641 0.64 22.59 372
SWF 1473 0.56 29.96 293

rv IND 1573 0.68 17.12 374
SWF 1550 0.52 21.75 282

SOTO(α) b IND 1178 0.90 5.88 342
SWF 1663 0.49 43.29 297

I-SOTO(Gw)

0.25 IND 1178 0.86 6.91 327
SWF 733 0.21 43.32 87

0.5 IND 1552 0.64 25.88 358
SWF 130 0.89 0.90 34

lin IND 1724 0.67 22.82 407
SWF 37 1.09 0.07 10

rlin IND 1210 0.84 7.47 332
SWF 649 0.33 24.33 87

b IND 1156 0.88 5.63 326
SWF 1035 0.01 101.06 106

rb IND 1799 0.71 15.05 433
SWF 11 1.58 0.01 5

v IND 1479 0.77 13.61 372
SWF 355 0.88 2.68 100

rv IND 1241 0.81 8.97 325
SWF 581 0.37 18.50 81

SOTO(Gw) b IND 1139 0.86 9.00 324
SWF 1052 0.03 99.68 109

Independent N.A. N.A. 1793 0.73 8.11 421

Table 2: I-SOTO performance under the self- (IND) and team-
oriented (SWF) policies with regards to Income in Matthew Effect

4.3 Traffic Light Control Problem
This environment consists of a 3x3 grid of lanes where the
traffic light state of each intersection is controlled by an agent.
The goal is to minimise the total weighting time in all inter-
sections w. As such, the reward provided to agents at each
time step is rt = wt−1 − wt. However, as measure, we sim-
ply record the weighting time such that mt = wt. Notice that,
contrary to the previous environment, the reward attributed to
each agent dependents on external factors: the vehicles wait-
ing in such intersection. Again, this will naturally provide
agents unequal opportunities to receiving rewards, as waiting
times of intersections dependent highly on the trajectories of
the vehicles, waiting times of other intersections, etc.

Behavior generation through Heterogeneous Testing
The results of the heterogeneous behaviour produced by the
self- and team-oriented policies of SOTO are depicted in Fig-
ure 4. It is possible to observe that the range of SOTO be-
haviours generated is approximately linear in the efficiency-
fairness space. The team-oriented end is both the more effi-
cient and fair than the self-oriented one. When compared to
the previous environment, this phenomenon also occurred for
the α-fairness metric. In the Gw, the performance range was
not linear in the efficiency dimension, so we can conclude
that the behaviour of the same SWF can be different under
different environments.

Regarding the range of behaviours generated by πIND and
πSWF, it seems to be sparser than in the Matthew Effect.
Nonetheless, the Independent baseline over-performs SOTO
in any option of the range. For this reason, we did not proceed



Figure 4: Heterogeneous behaviour between SOTO’s πIND and πSWF

in Traffic Light Control

with experiments testing heterogeneous behaviour between
these two options, as one already Pareto-fronts the other.
An intuition for this phenomenon would be the dependence
between agents rewards causing a correlation between effi-
ciency and fairness. Under that assumption, a model which
focuses 100% entirely on one of them, compare to a model
which divides samples between two policies, is more likely
to succeed in both goals should they be correlated.

I-SOTO and Training Strategies
As in the previous environment, we present the results of
I-SOTO in this environment in Table 3. As can be seen,
many I-SOTO solutions are both more efficient and fair than
the SOTO baseline. In particular, at least one extreme in
each training strategy utilised outperforms SOTO. The most
prominent of them would be the rbIND training strategy func-
tion. This is the option with most samples dedicated to the
selfish goal, being in agreement with the intuition that fair-
ness and efficiency - in this environment - are somewhat cor-
related. This is also corroborated with the fact that the most
competitive options are on the self-oriented side of I-SOTO,
and not the team-oriented one as occurred in Matthew. As
for the Independent baseline, a similar phenomenon occurs.
Only the constant functions are not able to compete with these
baseline, interestingly. While it is hard to provide an expla-
nation for why this happened, one hypothesis could be that
these are the only ones where samples are never entirely ded-
icated to one of the policies - or, more importantly in this case
- the self-oriented one.

To conclude, there is a broader analysis than can be made
relative to the whole experimental set. With regards to the
self- and team-oriented policies in any of the models, there
seems to be a pattern where either (1) πSWF is the most fair
and πSWF is the most efficient policy or that (2) πSWF is
both the most efficient and fair. The latter case occurs for
SOTO(α) in Matthew Effect and SOTO(Gw) in Traffic Light
Signal. While we are not able to provide an exact explanation
of why this happens, there are two potential intuitions for this
reason.

On the one hand, it may have to do with the nature of the
environment. As previously seen, in Traffic Light Control, the
success of an agent (intersection) is highly dependent on the
success of other agents. This leads to the intuition that find-
ing a fair solution, in this environment, is also finding a fair
one. A result that is in agreement with this is the fact that the

Total CV Min Max
model β π

I-SOTO(Gw)

0.25 IND 3.70e+05 0.08 8.5e+02 3.6e+04
SWF 3.70e+05 0.09 1.2e+03 2.9e+04

0.5 IND 3.33e+05 0.14 8.4e+02 3.2e+04
SWF 4.54e+05 0.12 2.2e+03 3.7e+04

b IND 3.60e+05 0.09 9.8e+02 3.1e+04
SWF 3.50e+05 0.08 9.8e+02 2.9e+04

lin IND 3.36e+05 0.09 8.8e+02 3.3e+04
SWF 4.72e+05 0.10 1.5e+03 4.2e+04

rb IND 3.34e+05 0.06 7.7e+02 4.0e+04
SWF 7.39e+05 0.16 2.8e+03 6.4e+04

rlin IND 3.57e+05 0.13 9.7e+02 3.6e+04
SWF 4.20e+05 0.11 1.4e+03 3.6e+04

rv IND 3.44e+05 0.08 9.7e+02 3.3e+04
SWF 4.38e+05 0.10 1.5e+03 3.5e+04

v IND 3.37e+05 0.08 7.9e+02 3.2e+04
SWF 4.24e+05 0.09 1.2e+03 3.4e+04

SOTO(Gw) b IND 4.03e+05 0.19 9.4e+02 4.1e+04
SWF 3.83e+05 0.16 1.2e+03 3.2e+04

Independent N.A. N.A. 3.65e+05 0.13 9.8e+02 4.2e+04

Table 3: I-SOTO performance under the self- (IND) and team-
oriented (SWF) policies with regards to waiting time in Traffic Light
Control

best performing model in this environment is I-SOTO(Gw)
with the constant 0.5 strategy function, in which self- and
team-oriented insights are shared between policies and in a
balanced (50/50) way between goals.

On the other hand, this may also have to do with the nature
of the social welfare function utilised. As seen in section 3.1,
the self- and team-oriented advantages utilised in the training
process are a product of the derivative of the SWF with re-
spect to the agents utilities, ∇uϕ(Ĵ(θ))

⊤, with the original
advantage. In the α-fairness scenario, this derivative is u0.9,
while on the Gw setting it is w = {2−i,∀i∈D}. This means
that the team-oriented advantage for the first case is a sum of
an exponential function to the agents utilities as opposed to a
weighted sum based on their ranking. The fact that this func-
tion interprets social welfare as an independent concept from
the ranking of individual utilities within the system perhaps
deposits more confidence in individual success - efficiency
- as a means towards fairness. Considering the utility order
overall produces much fairer results as it ensures no agent is
being left behind. This, however, comes at the cost of a great
deal in efficiency.

5 Conclusion
We approach fairness and efficiency in a holistic manner: ei-
ther by mixing pre-trained efficient and fair policies or by
changing the learning method of SOTO such that fair-efficient
recommendations are intertwined - I-SOTO. In the latter, we
were able to find some solutions which outperformed not only
the fair baseline but also the efficient baseline utilised. De-
spite being initial attempts in the problem, these are important
results towards better understanding the fairness-efficiency
relationship. With regards to our hypothesis we find that the
heterogeneous behaviours found between efficient and fair
policies are not always linear, unexpectedly. For I-SOTO,
we confirmed that some results were indeed better perform-
ing than SOTO but for the Gw SWF no solution was found to
be better in both of the goals at study.

This new approach to address fairness and efficiency could
be particularly important in systems with endogenous re-
sources: i.e. computation of the reward distribution has to



be paid for from the rewards themselves so that learning a
fair and efficient combination with respect to available re-
sources is particularly important. For that we intend to ex-
pand the testing space along different dimensions: environ-
ments, SWFs and training strategies.
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