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Abstract

Fake account detection is a topical issue when many Online Social Networks encounter several issues caused by the growing

number of unethical online activities. This study presents a new Quantum Beta-behaved Multi-Objective Particle Swarm

Optimization (QB-MOPSO) algorithm for machine learning based Twitter fake accounts detection. The proposed approach

aims to improve the learning process of deep neural networks, random forest, through minimizing simultaneously the feature

dimensionality and the classification error rate. The main contribution consists in proposing a quantum beta MOPSO to

handle the training phase of neural and deep architectures. The QB-MOPSO is used to perform a multi-objective training of

the random forest algorithm. The QB-MOPSO has two optimization profiles: the first one uses a quantum-behaved equation

for improving the exploratory behaviour of PSO, while the second one uses a beta function to enhance PSO’s exploitation. An

extensive experimental study is carried out using two open Twitter datasets with 1982 and 928 accounts. The new proposal is

a random forest QB-MOPSO. Results showed that random forest QB-MOPSO accuracy is about 99.19% and 97.52% accounts

on datasets 1 and 2. Comparative analysis of the prosed architecture toward the original architecture showed that the use of

QB-MOPSO for learning enhances the random forest algorithm which perform then the original ones.
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Abstract 

Fake account detection is a topical issue when many Online Social Networks encounter several issues caused by the 

growing number of unethical online activities. This study presents a new Quantum Beta-behaved Multi-Objective 

Particle Swarm Optimization (QB-MOPSO) algorithm for machine learning based Twitter fake accounts detection. 

The proposed approach aims to improve the learning process of deep neural networks, random forest, through 

minimizing simultaneously the feature dimensionality and the classification error rate. The main contribution consists 

in proposing a quantum beta MOPSO to handle the training phase of neural and deep architectures. The QB-MOPSO 

is used to perform a multi-objective training of the random forest algorithm. The QB-MOPSO has two optimization 

profiles: the first one uses a quantum-behaved equation for improving the exploratory behaviour of PSO, while the 

second one uses a beta function to enhance PSO’s exploitation. An extensive experimental study is carried out using 

two open Twitter datasets with 1982 and 928 accounts. The new proposal is a random forest QB-MOPSO. Results 

showed that random forest QB-MOPSO accuracy is about 99.19% and 97.52% accounts on datasets 1 and 2. 

Comparative analysis of the prosed architecture toward the original architecture showed that the use of QB-MOPSO 

for learning enhances the random forest algorithm which perform then the original ones. 

 

Keywords: Feature Selection, Fake Account Detection, Quantum Beta Multi-Objective Particle Swarm Optimization, 

Machine Learning, Distributed System, Quantum Computing.  

 

1. Introduction 

Online Social Networks (OSNs) have become a crucial part of daily life. Social media and mobile devices are 

driving the growth of the World Wide Web. According to the digital report1 published in January 2020, out of 7.75 

billion people worldwide, there are 5.19 billion phone users, 4.54 billion Internet users, 3.8 billion active social media 

users, and 3.75 billion mobile social media users. The world’s internet users spend an average of six hours online each 

day. In the last decade, many users have become addicted to the use of well-known online social networks like 

LinkedIn, Facebook, Twitter, YouTube, …etc. It is not only for good habits like communication and sharing 

information, but a substantial part of OSN users is not human was presenting fake or bot accounts controlled by 

computers to gain popularity and promote business activities for financial gain. Several techniques are developed to 

manage the user profiling problem for capturing information about users and their interests which are called the User 

Data Discovery (UDD) model refereed to the Knowledge Data Discovery (KDD) model. In this context, several 

approaches have developed and regrouped into three categories: explicit [1], implicit and hybrid user profiling 

techniques while the main issues covered the process of information retrieval and collection of the user’s information 

[2]. Implicit user profiling approaches are referred to as static or factual profiling that provides the static process to 

analyse and collect static and predictable characteristics about users by filing some online forms. However, explicit 

approaches are referred to behavioral, adaptive, and ontological profiling that leads to the dynamic process of collecting 

future behaviors and learning about users based on several filtering techniques [1] such as Rule based filtering, 

 
1 https://wearesocial.com/fr/blog/2020/01/digital-report-2020 
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Collaborative filtering, and content-based filtering. Furthermore, hybrid approaches have combined the advantage of 

both explicit and implicit methods taking into consideration static and dynamic characteristics of the user profile to 

maintain the accuracy of temporal information. 

During the last five years, a variety of approaches have been developed to manage user profiling problems not only 

with regards to data discovery but also for unhealthy activities detection like spam/ non-spam accounts [3], fake or bot 

accounts [4], fake followers [5], fake news [6], and fake engagement [7] using different Machine Learning Algorithms 

(MLAs) for classification purposes. The classification task involves five main steps namely, data collection, feature 

extraction, feature selection, classification, and prediction tasks. Therefore, the feature selection step has been 

considered a challenging problem for classification, clustering, time series prediction and regression tasks. This study 

focuses mainly on the Feature Selection (FS) problem [8] in the classification task to select a small subset of pertinent 

features to enhance the performance of machine learning models in terms of the best accuracy, and interpretability to 

minimise the computational time [9]. Thus, the Twitter online social network has attracted many researchers due to 

the severity of Twitter’s social spambots problem [10] and the availability of public datasets which were easier to find 

than those of other OSNs.  

The main motivation of this contribution is to propose a novel Quantum Beta-behaved Multi-Objective Particle 

Swarm Optimization algorithm (QB-MOPSO) to enhance the training process of machine learning algorithms based 

on a best subset of selected features for Twitter fake accounts detection. The proposed QB-MOPSO algorithm aims to 

examine the process of selecting relevant features that minimize the classification error rate. The optimization process 

of the QB-MOPSO algorithm has developed based on the Revised Quantum-behaved Particle Swarm Optimization 

(RQPSO) [11], and the Gaussian Quantum-behaved Particle Swarm Optimization algorithm (GAQPSO) [12] as well 

as the use of beta function provided by Alimi [13] in 2003. The QB-MOPSO algorithm presents two optimization 

profiles. In the first one, all particles are subject to quantum PSO approaches (RQPSO and GAQPSO) with random 

uniform and Gaussian distributions to better explore the search space. The second one is for exploitation enhancement 

using a beta function with three data distribution shapes namely; Gaussian, linear decrease, and exponential forms. 

The quantum and beta-behaved rules aim to assume a higher level of convergence toward the global best solutions. 

The proposed QB-MOPSO algorithm starts with random initialisation of N particles. Each particle P is a potential 

solution performed in the search space. The dynamic switching phases are assumed by the two optimization profiles 

which are symmetric about the mean personal best position (𝑚𝑏𝑒𝑠𝑡). A particle P is optimized for exploration phase, 

if the current best position (𝑝𝑏𝑒𝑠𝑡) is less than the mean best position (𝑚𝑏𝑒𝑠𝑡). Otherwise, it is considered for the 

exploitation phase. At each iteration, the update rules of particle position are as follows: 

- Exploration phase: the particle position has been updated using the quantum equation in (RQPSO and 

GAQPSO). 

- Exploitation phase: the particle position has been updated using the beta function. 

The proposed application of the proposed QB-MOPSO approach for identifying fake accounts is denoted by the Neuro-

QB-MOPSO method. To select pertinent features, a primordial step is added to the QB-MOPSO algorithm and named 

position binary encoding based on the sigmoid function. Only bits with the value of “1” are considered as selected 

features and used to train and test the classification model. For decision making process, the best subset of multiple 



 

pertinent features is determined based on the compromise solution that minimize the classification error rate and 

determined using the nearest non-dominated solution to the utopian point.  

The rest of this paper is resumed as follows: Section 2 presents the definition of feature selection problem and an 

overview of the existing approaches-based features selection techniques for fake accounts detection. Section 3, 

summarize the existing Quantum-behaved PSO Methods. The proposed Quantum Beta-behaved Multi-Objective 

Particle Swarm Optimization (QB-MOPSO) algorithm has detailed in Section 4. Section 5, presents the complexity 

analysis of the proposed QB-MOPSO approach. Section 6, details the Neuro-QB-MOPSO architecture for fake account 

detection. The preliminary of the experimental study and the comparative results are discussed in Section 7. Finally, 

Section 8 concludes the paper and suggests the future work. 

2. State-of-the-Art  

This section presents the definition of the Feature Selection (FS) problem and the existing approaches-based FS 

techniques for fake account detection.  

2.1 Feature Selection Problem Statement  

The Feature Selection (FS) has defined as a minimization Multi-Objective Optimization Problem (MOP) [9] to select 

a subset of relevant features to enhance the accuracy of MLAs for the classification task. The mathematical definition 

of FS problem [9] has presented in Equation (1). Let consider 𝑛 data points 𝑋 = {𝑥𝑖} 1
𝑛  that presents the input dataset. 

Each sample 𝑥𝑖 has d-dimensional features {𝑥1, 𝑥2, … , 𝑥𝑑}. Two minimization objective functions are considered for 

the features dimensionality reduction 𝐹1(𝑥) in Equation (2) and the classification error rate 𝐹2(𝑥) in Equation (3).  

                                             Minimize 𝐹(𝑥) = {
F1(X): features dimensionality

 
F2(X): classification error         

                                       (1) 

  

                                        𝐹1(𝑥) = 𝛼 ∗
#𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

#𝐴𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
+ (1 − 𝛼 ) ∗

𝐸𝑟𝑟𝑜𝑟_𝑅𝑎𝑡𝑒

𝐸𝑟𝑟𝑜𝑟𝐴𝑙𝑙
                                           (2) 

where 𝛼 is a constant value 𝛼 ∈ [0,1], #𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: are the dimensionality of selected features, #𝐴𝑙𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠: is the 

total number of original features. 𝐸𝑟𝑟𝑜𝑟_𝑅𝑎𝑡𝑒: is the classification error rate of selected features. 𝐸𝑟𝑟𝑜𝑟𝐴𝑙𝑙 : is the 

classification error rate using all features. 

                                                        𝐹2(𝑥) =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                              (3) 

where FP is the False Positive, FN is the False Negative, TP is the true positive, and TN is the true negative. 

 

 



 

2.2 Existing Approaches-based Feature Selection Techniques for Fake Account Detection 

On OSNs, several users aim to gain popularity not only by sharing healthy information about a specific domain of 

interest but also by introducing malicious activities, such as posting fake links and news. In 2016, the annual web 

traffic report2 stated that more than 16.7 billion web visits to 100,000 randomly-selected web sites had analysed and 

detected more than 51.8% of bot users. In 2018, the industry report3 announced 42.2% of all internet traffic was not 

human. Nevertheless, the increase of fake accounts generation has attributed to several extreme situations, including 

elections, Black Friday, COVID-19 pandemic and many other national or international events, activities, and diseases. 

A high numbers of user profiling techniques have developed and aimed to address different issues on OSNs like user 

interest detection, sentiment analysis, spam detection and fake account detection. Regarding to the availability of the 

online data of Twitter OSN, a high number of research studies have been publishing to addresses the problem of 

identifying Twitter fake accounts as a step toward fake news detection. 

Online user profiles have included personal information’s, shared content, links, and social interaction relationships. 

However, many online contents are shared to attract many users and a credible content is one of the most basic criteria 

for trusting web users. However, due to the widespread availability and usability of several features, many automatic 

programs (aka. bot accounts) are developed simulating human behavior. Such accounts are considered fake and impose 

malicious activities on social media platforms [4] and automatically controlled by a computer system to spread harmful 

activities [14]. The absence of a picture profile or online activities is not a very reliable method for detecting fake 

accounts. Therefore, it is very difficult to distinguish visually between bots and human accounts on OSNs. This has 

made fake account detection a challenging problem and has attracted several researchers.  

 

Figure 1. Classification of feature selection methods 

As resumed in Table 1, there are a wide range of techniques in the literature have been developing for feature 

selection to determine the most effective characteristic of a fake user. However, many features selection approaches 

 
2 https://www.imperva.com/blog/bot-traffic-report-2016/ 
3 https://www.globaldots.com/bad-bot-report-2018 
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have proposed to enhance the classification task and presented in Figure 1. According to data labels three categories 

have proposed including; supervised, unsupervised and semi-supervised techniques. The main difference between the 

three categories has investigated respectively by the presence, the absence, and the existence of a small portion of 

labelled data [8]. The input labelled data makes supervised methods more specific for the decision making. Compared 

with unsupervised methods, the supervised approaches have produced a high accuracy, but the human intervention for 

the supervised learning need a high computational cost, and cannot be useful for the real-time data. Furthermore, the 

input unlabelled data makes a low complexity for unsupervised methods and the labels are determined automatically 

by the machine which are very useful for real-time data.  

However, three categories of approaches are considered based on evaluation criteria including; filter, wrapper, and 

embedded methods. There have been both advantages and disadvantages to feature selection methods, depending on 

factors such as computational cost, speed, the dimension of the data, criteria for selecting features, and machine 

learning algorithms. Filter methods have been characterised by a high speed of treatment, a low computational cost, 

and well designed for a high dimensional data, however the use of statistical criteria does not guarantee the best subset 

of selected features [15]. The wrapper method has included a learning algorithm to determine the accuracy of the 

selected features [16], and to guarantee a better result compared with filter methods, but it has not performed with high 

dimensional data. Embedded techniques were the hybridization of both filter and wrapper methods. In filter methods, 

a statistical criterion has used for features dimensionality reduction and for wrapper methods the learning algorithm 

has considered to determine the best subset of features leading to the high classification accuracy [16]. 

In 2020, Rostami and Karbasi [17] used the Minimum Redundancy –Maximum Relevance algorithm (mRMR) [18] 

to identify the relevant subset of features with less redundancy. However, the previous feature selection techniques 

[4], [19] examined the best feature set based on the highest relation to the target class without taking into consideration 

the issue of independence and redundancy between selected features [20]. Ahmed and Abulaish [19], developed a 

generic statistical approach for spam detection-based Twitter and Facebook datasets. Azab et al. [4], have used the 

GAIN univariate algorithm for feature selection to determine the most effective subset of features that enhance the 

classification performance instead of using all features. In the most of cases, the use of statistical criterion does not 

guarantee the best subset of selected features [15].  

Davis et al.[21], developed the BotOrNot platform using the Random Forest classifier as a black box approach for 

feature dimensionality reduction, and aims to evaluate whether a Twitter account is controlled by a human or machine. 

1K features are extracted from the interaction patterns and the content. All collected features are regrouped into six 

classes of network features, user, friends, temporal, content, and sentiment features. Cresci et al. [22], proposed a 

Digital DNA model to predict online user behaviors such as new content, following or replying to other users. Yang 

et al. [23], have presented an empirical analysis of profile-based feature evasion tactics and content-based feature 

evasion tactics. Miller et al. [24], introduced a clustering model for anomaly detection. Moreover, different approaches 

have proposed to examine the stability of selected features by computing the similarity of the subset [25] or the use of 

machine learning algorithms to calculated the accuracy of the model using only the selected feature set [17]. 

Nevertheless, a variety of population-based approaches have designed for linear static and dynamic multi-objective 

optimization problems as well as for solving a set of complex problems involving at least three objective functions 

[26]–[32]. A set of evolutionary-based approaches like Genetic Algorithm (GA) [33], Particle Swarm Optimization 



 

(PSO) [34], Genetic Programming (GP) [35], and Ant Colony Optimization (ACO) [36] are used for feature selection 

problem. Figure 2, details the iterative steps of feature selection process which are; initialization, feature subset 

discovery, feature subset evaluation and results validation. For feature selection methods, the key factors are the search 

techniques and evaluation criteria. 

 

 

Figure 2. The iterative steps of the feature selection process 

 

In 2015, Xue et al. [37] have published a survey paper to review the existing contributions based on population-

based algorithms for solving single and multi-objective feature selection problem to minimise two objective functions 

(𝑖) number of features and (𝑖𝑖) classification error rate. Search techniques, evaluation criteria, and the number of 

fitness functions are the three main concepts of evolutionary approaches. First, greedy search algorithms such as 

sequential forward selection (SFS) [38], and sequential backward selection (SBS) [39] are the well-known heuristic 

search techniques for feature selection. The main disadvantage of these methods is the ‘nesting effects’, so removed 

or selected features cannot be used for later testing. In addition, evolutionary techniques-based GA [40], GP [41], PSO 

[42], [43], and ACO [44] have been considered to determine which non-dominated solution provides the best trade-

off between the number of features and the classification accuracy. Most of the existing feature selection methods 

suffer from the issues of high computational time/cost and stagnation in local optimum.  

In contrast, few works use PSO for fake account detection, where the PSO algorithm is only used to optimize the 

parameters of both the logistic regression model [45], and the Q-learning method [46]. To sum up, the most existing 

contributions for fake account detection are done for minimising the number of the selected features taken into 

consideration the stability issue of the subset. The main goal was to enhance the computational time and maximise the 

accuracy rate of machine learning algorithms. The proposal consists in strongly exploring by a swarm having a 

quantum behavior before switching to a more stable behavior. This contribution has devoted to detect fake accounts 

on Twitter based on a new PSO-based approach whose role is to improve the self-learning of the deep neural detection 

system. Besides, several existing quantum-behaved PSO methods are reported in the next section. 

 

 



 

Table 1. Existing methods for fake accounts detection on OSNs. 
References FS techniques Tested Classifiers Nb. Selected features Accuracy Datasets 

Rostami and Karbasi [17], 2020 

Minimum Redundancy 

Maximum Relevance 

algorithm  [18]. 

10-fold cross validation using: 

(Random Forest, Naïve Bayes, 

SVM) 

Test set 1: 8 

Test set 2: 7 

numerical 

Best classifier: SVM 

Test set 1: 98% 

Test set 2: 97.1% 

-Two Twitter datasets of 

Cresci et al. [10] 

Cresci et al. [22], 2016 

Digital DNA inspired by the 

biological DNA to model 

online user behaviors  

ten-fold cross validation using: 

Bayes Net classifier 

14 generic statistical 

features 

Test set 1: 97.6% 

Test set 2: 92.9% 

- Dataset 1: political 

-Dataset 2: Amazon 

Davis et al. [21], 2016 

Compute the bot-likelihood 

score using MLAs. 

Ten-fold cross-validation 

using: Random Forest 

1000 numerical feature 

values 

95% AUC (Area Under 

ROC Curve). 

-Dataset of 15k manually 

verified social bots and 

16k legitimate accounts. 

Azab et al. [4], 2016 

GAIN univariate algorithm 5-fold cross validation using: 

(Random Forest, Decision 

Tree, Naïve Bayes, Neural 

Network, SVM) 

7 numerical feature 

values 

F-Measure (%) using: 

-RF:82.7, DT: 85.03, NB: 

85.36, NN: 84.87, and 

SVM: 85.06 

-Dataset of Twitter 

accounts collected by “the 

Fake project” 

Miller et al. [24], 2014 

Anomaly detection approach 

based on clustering model is 

built on normal twitter users 

with all outliers being 

treated as spam 

Clustering algorithms 

(StreamKM++, DenStream, 

Combined) 

126 numerical feature 

values 

Accuracy using: 

- StreamKM++: 93.93% 

- DenStream: 97.11% 

- Combined: 98% 

Dataset with 3239 user 

accounts including sample 

tweet (training set: 1587, 

test set: 1652) 

Yang et al. [23], 2013 

empirical analysis profile-

based feature evasion tactics 

and content-based feature 

evasion tactics 

10-fold cross validation using: 

(Random Forest, Decision 

Tree, Bayes Net, and Decorate) 

25 numerical feature 

values 

Best F1 Measure using 

Dataset I: RF :90%, 

Dataset II: RF :94.7% 

-Dataset I: 20,000 accounts 

spam tweets, 

-Dataset II: 35,000 Twitter 

accounts 

Ahmed and Abulaish [19], 2013 

Generic statistical approach Naïve Bayes, Jrip, and J48 14 generic statistical 

features 

Combined datasets: 

detection rate (DR): 

95.7%, false positive 

(FPR): 4.8% 

Facebook dataset: 

DR:96.4 %, FPR: 8.9%, 

Twitter dataset 

DR: 97.6%, FPR: 7.5% 

Facebook and Twitter 

datasets 



 

2.3 Existing Quantum-behaved PSO Methods 

In 2004, Sun et al. [47] introduced quantum computing into the standard PSO algorithm. Quantum behaved PSO 

(QPSO) outperforms traditional PSO [34] with fewer control parameters and assumes a high level of convergence 

during the optimization process. So, instead of using a uniform stochastic distribution of particles’ positions and 

velocity as in the original PSO algorithm. The quantum state of each particle is depicted by the wave function 

Ψ(𝑥, 𝑡), ∀  lim
𝑥→±∞

Ψ(𝑥) = 0. In quantum 3-dimensional time-space, the particle position in a point (𝑥, 𝑦, 𝑧) is measured 

based on the probability density function |Ψ(𝑥)| 2 satisfying the normalization condition in Equation (4).  

 

                                               ∫ |Ψ(𝑥)| 2 𝑑𝑥𝑑𝑦𝑑𝑧 =
+∞

−∞
∫ 𝑄 𝑑𝑥𝑑𝑦𝑑𝑧 = 1
+∞

−∞
                                                             (4) 

Subject to: Ψ(x) =
1

√𝐿
𝑒𝑥𝑝(−‖𝑝 − 𝑥‖/𝐿) 

where 𝑖ℏ
𝜎

𝜎𝑡
Ψ(x⃗ , t) = Η̂Ψ(x⃗ , t) is the time-dependent Schrodinger equation, Η̂ is the Hamiltonian operator,  𝑝 is the 

center of potential and 𝐿 is the vital parameter for creativity or imagination of the particle and computed at each 

iteration using the following equation 𝐿(𝑡 + 1) = 2 × 𝛼 × |𝑝 − 𝑥(𝑡)| and lim
𝑡→∞

𝐿(𝑡) = 0. Sun et al. [47] considered the 

PSO algorithm as a quantum system where the quantum state is assumed using the wave function. The state of each 

particle at the time 𝑡 is determined using the time-dependent Schrodinger equation |Ψ(𝑥, 𝑡)| 2 = 1/𝐿 𝑒𝑥𝑝(−2‖𝑦‖/𝐿), 

where 𝑦 = ±
𝐿

2
ln (1 𝑢⁄ ), 𝑢 = 𝑟𝑎𝑛𝑑(0,1) and 𝐿 is developed in time 𝐿 = 𝐿(𝑡) = 1 𝑔⁄ |𝑥𝑖𝑑(𝑡) − 𝑝| and 𝑔 > 𝑙𝑛√2. 

a. Standard Quantum PSO (QPSO) 

The first quantum-behaved PSO (QPSO) [47] is obtained through stochastic simulation of Monte Carlo measurement, 

when the particle position 𝑋(𝑡) is given by: 𝑋(𝑡) = 𝑝 ±
𝐿

2
𝑙𝑛(1/𝑢), with 𝐿(𝑡+1) = 2 × 𝛽 × |𝑝 − 𝑋(𝑡)|   and the update 

equation 𝑥𝑖(𝑡 + 1) of the particle 𝑖 is presented in Equation (5). 

 

                                              𝑥𝑖(𝑡 + 1) = 𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 ∓ 𝛽 × |𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡| × 𝑙𝑛 (

1

𝑢
)                                                        (5) 

The 𝛽 parameter of QPSO is the contraction expansion factor of the algorithm (positive real number) is also called 

"Creativity" or “Imagination" of the particle. The update rules are dependant to the personal best position (𝑝𝑏𝑒𝑠𝑡) 

affected by a random uniform distribution of the parameter 𝑢 uniformly distributed between 0 and 1.  

To prevent the premature convergence, which a phenomenon that prevents an algorithm from finding an accurate 

estimation of the global optimum in meta-heuristics, a few QPSO improvements have been developed in the literature, 

including the Quantum Delta-Potential-Well-based Particle Swarm Optimization (QDPSO) algorithm [47], the 

Revised QPSO (RQPSO) [11], and the Gaussian Quantum-behaved PSO (GAQPSO) [12]. More details are presented 

in the next subsection.  

 

 



 

b. Quantum Delta-Potential-Well-based Particle Swarm Optimization (QDPSO) 

In [47], Sun et al. have assumed that a quantum particle moves through a Delta potential well with a probability 𝑍 >

0.5. The particle is moved in a limited search space with respect to 𝑍, otherwise it would appear out with a probability 

of 1 − 𝑍. The QDPSO algorithm benefits from the local attractor (𝐿𝑎) instead of the simple use of 𝑝𝑏𝑒𝑠𝑡 position to 

guarantee convergence. In addition, the 𝛽 coefficient is a positive real number set to: 𝛽 =
1

𝑔
, ∀ 𝑔 > 𝑙𝑛√2 , which 

balances local and global searching ability. The update of the particle position in QDPSO algorithm is done using the 

Monte Carlo method in Equation (6). 

                                                 𝑥𝑖(𝑡 + 1) = {

𝐼𝑓 𝑟𝑎𝑛𝑑(0,1) ≥ 0.5 𝑡ℎ𝑒𝑛:
𝐿𝑎𝑖 + 𝐿 ∗ (𝑙𝑛(1/𝑢))

𝐸𝑙𝑠𝑒:                                      
𝐿𝑎𝑖 − 𝐿 ∗ (𝑙𝑛(1/𝑢))

                                                                    (6) 

where,  

- 𝐿𝑎𝑖= (φ1* 𝑝𝑏𝑒𝑠𝑡𝑖(t) + φ2 * 𝑔𝑏𝑒𝑠𝑡(𝑡))/ (φ1 +φ2)   

- 𝐿 = 𝛽 ∗ 𝑎𝑏𝑠 (𝐿𝑎𝑖 − 𝑥𝑖(𝑡)) 

- 𝑢,φ1, 𝑎𝑛𝑑 φ2 =  𝑟𝑎𝑛𝑑 (0,1) 

- β = 1 𝑔⁄ ,∀ 𝑔 = 𝑙𝑛√2 

- 𝑇= shows the maximum number of iterations, and 

- 𝑔𝑏𝑒𝑠𝑡=is the global best position 

 

c. Revised Quantum PSO (RQPSO) 

The global search ability of the QPSO system is denoted by the Revised Quantum PSO (RQPSO) [11]. The main 

difference between QDPSO and RQPSO is in the use of Mean Best Position (𝑚𝑏𝑒𝑠𝑡), which is denoted by the 

Mainstream Thought Point presenting the center-of-gravity global best position as presented in Equation (7). 

 

𝑚𝑏𝑒𝑠𝑡 =
1

𝑁
∑ 𝑝𝑏𝑒𝑠𝑡𝑖 =

1

𝑁

𝑁
𝑖=1 ∑ 𝑝𝑏𝑒𝑠𝑡𝑖1,… ,

𝑁
𝑖=1

1

𝑁
∑ 𝑝𝑏𝑒𝑠𝑡𝑖𝑛
𝑁
𝑖=1                                                    (7)   

where, 

- 𝑁 : indicates the size of the swarm, and.  

- 𝑚𝑏𝑒𝑠𝑡 : represents mean global 𝑝𝑏𝑒𝑠𝑡 position among all particles. 

 

However, the equation to update particle position is modified by the parameter L which is equal to 𝛽 ∗

𝑎𝑏𝑠 (mbest − 𝑥𝑖(𝑡)), φ1 and φ2 are two random parameters uniformly distributed between 0 and 1. The modified 

equation is presented in Equation (8). 

 

 



 

                                                𝑥𝑖(𝑡 + 1) = {

𝐼𝑓 𝑟𝑎𝑛𝑑(0,1) ≥ 0.5 𝑡ℎ𝑒𝑛:
𝐿𝑎𝑖 + 𝐿 ∗ (𝑙𝑛(1/𝑢))

𝐸𝑙𝑠𝑒:                                      
𝐿𝑎𝑖 − 𝐿 ∗ (𝑙𝑛(1/𝑢))

                                                                     (8) 

where,  

- 𝐿𝑎𝑖 = (φ1 ∗ 𝑝𝑏𝑒𝑠𝑡𝑖(t) + (1 − φ2) ∗ 𝑔𝑏𝑒𝑠𝑡(𝑡))/ (φ1 +φ2) , 

- 𝐿 = 𝛽 ∗ 𝑎𝑏𝑠 (mbest − 𝑥𝑖(𝑡)), 

- 𝑢,φ1, 𝑎𝑛𝑑 φ2 =  𝑟𝑎𝑛𝑑 (0,1), and  

- β = 0.5 + 0.5 ∗ (𝑇 − 𝑡) 𝑇⁄   . 

 

d. The Gaussian QPSO algorithm (GAQPSO) 

The improved variant of QPSO system is denoted by the Gaussian QPSO algorithm (GAQPSO) [12], where the 

position is updated through a Gaussian distribution. The GAQPSO algorithm is developed to deal with the issue of 

trapping in the local optimum. In this case, the main modification between RQPSO and GAQPSO is in the random 

parameters 𝑢, φ1, and φ2 which are modified to follow a Gaussian probability distribution with zero mean and unit 

variance. The update of particle position in GAQPSO is done using Equation (9). 

                                                𝑥𝑖(𝑡 + 1) = {

𝐼𝑓 𝑟𝑎𝑛𝑑(0,1) ≥ 0.5 𝑡ℎ𝑒𝑛:
𝐿𝑎𝑖 + 𝐿 ∗ (𝑙𝑛(1/𝑢))

𝐸𝑙𝑠𝑒:                                      
𝐿𝑎𝑖 − 𝐿 ∗ (𝑙𝑛(1/𝑢))

                                                                     (9) 

where, 

- 𝐿𝑎𝑖 = (φ1 ∗ 𝑝𝑏𝑒𝑠𝑡𝑖(t) + (1 − φ2) ∗ 𝑔𝑏𝑒𝑠𝑡(𝑡))/ (φ1 +φ2), 

- 𝐿 = 𝛽 ∗ 𝑎𝑏𝑠 (mbest − 𝑥𝑖(𝑡)), 

- 𝑢,φ1, 𝑎𝑛𝑑 φ2 =  𝑎𝑏𝑠 (𝑁(0,1)), 

- β = 0.5 + 0.5 ∗ (𝑇 − 𝑡) 𝑇⁄ , 

- 𝑇= is the maximum number of iterations, and 

- 𝑔𝑏𝑒𝑠𝑡=indicates the global best position. 

 

3. The Proposed Neuro- QB-MOPSO Architecture 

 

This section presents two main parts: 

✓ First a new Quantum Beta-behaved Multi-Objective Particle Swarm Optimization Algorithm (QB-MOPSO) 

is proposed  

✓ Second, the new QB-MOPSO algorithm is applied to enhance the training process of neural architectures.  

 

3.1 The new QB-MOPSO Algorithm 

The proposed QB-MOPSO algorithm benefits from two optimization profiles for exploration and exploitation phases 

based on a hybridisation of dynamic switching behaviors of two variants of quantum-behaved PSO approaches 



 

(GAQPSO, and RQPSO) for the first exploration phase, and three types of parameters configuration of beta function 

using Gaussian, linear decrease, and exponential data distributions for the second exploitation phase.  

The main different between the proposed system and the previous variants of quantum PSO has presented in position 

update rule and detailed in the following points: 

- In the standard PSO algorithm [34] particles positions are updated according to the trajectory in Newtonian 

mechanics with a stochastic data distribution with respect to the current position and the new velocity computed 

using three components namely, the inertia weight, the personal best position, and the global best solutions in the 

population.  

- The quantum variant of PSO (QDPSO) [47] aims to modify the update rule of the particle position using the 

quantum mechanics based on a time-dependent Schrodinger equation (see Equation 4) when the trajectory of 

particles has followed the wave function and the Delta potential well function with a probability equal to 0.5 (see 

Equation 6). 

- In the revised quantum PSO algorithm (RQPSO) [11] the update rule of the particle position is like the QDPSO 

algorithm and the main difference has been investigated in the use of the center-of-gravity global best position 

denoted by the Mean Best Position (𝑚𝑏𝑒𝑠𝑡). 

- The Gaussian quantum PSO algorithm (GAQPSO) [12] has modified the update rules using the gaussian 

distribution form to update the personnel best solutions which is modified according to the normal distribution 

with zero mean and one standard deviation value.  

- The proposed QB-MOPSO algorithm aims to hybridize both Newtonian mechanics and quantum mechanics to 

modify the rule to update the particle positions using two optimization profiles as presented in Equation (10). 

Inspired from the study of Sun et al. [47] which have proved that the quantum PSO algorithm has performed the 

traditional PSO algorithm with a high level of convergence leading to the best exploration of the search space. 

Moreover, the standard trajectory of particle position has been modified from a stochastic uniform distribution to 

a new data distribution with respect to the Beta function (Gaussian, linear decrease, and exponential). So, a 

particle 𝑃𝑖 is performed in a quantum exploration profile, if their personnel best position (pbest ) is dominate or 

equal to the mean personal best position (𝑚𝑏𝑒𝑠𝑡) (pbest ≽ 𝑚𝑏𝑒𝑠𝑡) otherwise it was considered for the second 

beta exploitation profile. The quantum and beta behaved rules aim to assume a higher level of convergence toward 

the global best solutions. 

                             𝑋𝑖(𝑡 + 1) =

{
 
 
 
 

 
 
 
 

→ 𝐄𝐱𝐩𝐥𝐨𝐫𝐚𝐭𝐢𝐨𝐧 𝐏𝐫𝐨𝐟𝐢𝐥𝐞                                     

IF          pbesti(t) ≽ mbest (t) then:                                
   

 Xt+1 = update position using quantum
                 equation in RQPSO or GAQPSO 

Else                                                                                 
→ 𝐄𝐱𝐩𝐥𝐨𝐢𝐭𝐚𝐭𝐢𝐨𝐧 𝐏𝐫𝐨𝐟𝐢𝐥𝐞                                    
Xt+1 = update position using beta function

 

                                         (10) 

The two dynamic switching behaviors are detailed as follows:  

• Behavior 1: exploration phase using quantum-behaved PSO 



 

For the exploration phase, all particles’ positions are updated using the same equation in RQPSO and GAQPSO as 

explained in Equations (8) and (9) respectively. 

• Behavior 2: exploitation phase using beta-behaved PSO 

For the exploitation phase, the particle positions are updated using Equation (11) including the use of the beta function.  

                                                                               𝑋𝑖(𝑡 + 1) = 𝑋𝑡 +𝑉𝑡+1                                                                                 (11) 

where, 𝑉𝑡+1  is the velocity of the particle has followed different distribution shapes according to the beta function, as 

presented in Equation (12). 

                                                          𝑉𝑡+1 = 𝑉𝑡 + 𝛽 (𝑥)(𝑃𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑡) + 𝛽 (𝑥)(𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑡)                            (12) 

where; 𝑔𝑏𝑒𝑠𝑡 is the global best solution for all neighbours in swarm and 𝑝𝑏𝑒𝑠𝑡 is the best local experience of each 

particle. Both 𝑔𝑏𝑒𝑠𝑡 and 𝑝𝑏𝑒𝑠𝑡 are used to affect the updated position of each particle at each iteration (𝑡). 𝛽 (𝑥) is 

the Beta function proposed by Alimi [13], and presented in Equation (13) and 𝑚𝑏𝑒𝑠𝑡, is computed using the Equation 

(7).  

The beta function first introduced as a neural activation function [13] and demonstrated its ability to generate rich and 

flexible shapes (asymmetry, linearity, etc.). Also, the beta function has been adapted for different data distributions for 

feed-forward Neural Network (NN) [13] and investigated for Dynamic MOP and Many-Objective Optimization 

Problem [29]. According to the different configuration of both properties of 𝑝 and 𝑞, three different shapes are 

considered in this study: the beta function with Gaussian, linear decrease, and exponential distributions as presented 

in the following Figure 3. 

                                                 𝛽(𝑥) = 𝛽(𝑥0, 𝑥1, 𝑝, 𝑞)(𝑥) =

{
 
 

 
 
if  𝑥 ∈  [𝑥0, 𝑥1] then:

 

(
𝑥−𝑥0

𝑥𝑐−𝑥0
)
𝑝

(
𝑥1−𝑥

𝑥1−𝑥𝑐
)
𝑞

  
0              otherwise 

                                                (13) 

where, p, q, 𝑥0, 𝑥1 are real numbers and 𝑥𝑐 is the beta center defined in Equation (14). 

                                                                        𝑥𝑐 = 
𝑝𝑥1+𝑞𝑥0

𝑝+𝑞
                                                                      (14) 

where, 

- 𝑥𝑐: is the beta center point, 

- 𝑥0, and 𝑥1 : are real numbers of the beta function in Equation (13), and 

- 𝑝 and q: are the control properties of the beta function in Equation (13). 

The multi-dimensional Beta function defined in Equation (15) presenting the product of m one-dimensional Beta 

function.  

                                                                𝛽(𝑥) = ∏ 𝛽(𝑥𝑘 , 𝑝𝑘 , 𝑞𝑘 , 𝑥0,𝑘 , 𝑥1,𝑘
𝑚
𝑘=1 )                                                          (15) 

where,  

- ∏ 𝛽(𝑥𝑘 , 𝑝𝑘 , 𝑞𝑘 , 𝑥0,𝑘, 𝑥1,𝑘
𝑚
𝑘=1 ) is the product of m one-dimensional Beta function in Equation (13),  

- 𝑚: is the dimension of the search space. 



 

Based on different configurations of the parameters 𝑝 and 𝑞, Figure 3 illustrates three examples of shapes that can 

be generated from the beta-function in Equation (13). According to Figure 3 (a), the beta-function has been assumed 

to have a Gaussian distribution by setting 𝑝 and 𝑞 to 2 and 10 respectively.  In Figure 3 (b), the linear decrease shape 

of the beta-function is obtained by assigning a value of 0.01 to the parameter 𝑝 and 1 to the parameter 𝑞. Figure 3 (c) 

also shows an exponential data distribution curve with 𝑝 equal to 0.01 and 𝑞 fixed to 1. 

                       

 (a)                                                        (b)                                                         (c) 

Figure 3. The Data Distribution Curve of Beta function with (a) Gaussian, (b) linear decrease, and (c) exponential 

distribution according to different configurations of 𝑝 and 𝑞. 

 

Taken into consideration the previous example that presents the diversification of the shapes that can be obtained by 

the beta function, six variants of QB-MOPSO approach are proposed based on GAQPSO and RQPSO for the 

exploration phase, and the three different distribution shapes of beta function for the exploitation enhancement. The 

six variants are developed to study the diversification of the data distribution of the new proposed QB-MOPSO 

algorithm, and all variants are illustrated in Figure 4 and detailed as follows: 

• In Revised Quantum Beta-behaved Multi-Objective Particle Swarm Optimization (RQB-MOPSO) system the 

exploration profile is done using the update position of RQPSO algorithm as presented in Equation (8). However, 

three variants of beta exploitation profiles are done according to the parameter’s configurations of the beta function 

in Equation (13). The three variants of RQB-MOPSO approach are as follows: 

- RQB-MOPSO-V1: exploration profile is done using RQPSO, and the exploitation profile is with a gaussian 

beta-behaved PSO. 

- RQB-MOPSO-V2: exploration profile is with RQPSO, and the exploitation phase is with linear decreased 

beta-behaved PSO. 

- RQB-MOPSO-V3: exploration phase is with RQPSO, and exploitation with exponential beta-behaved 

PSO. 

• In the Gaussian Quantum Beta-behaved Multi-Objective Particle Swarm Optimization (GAQB-MOPSO) 

system, the particles positions are updated using Equation (9) of GAQPSO for the exploration step. According to the 

three-beta configurations in Equation (13) for the exploitation profile, the three variants of the GAQB-MOPSO 

system are as follows:   

- GAQB-MOPSO-V1: exploration is with GAQPSO, and exploitation is with Gaussian beta-behaved PSO. 



 

- GAQB-MOPSO-V2: exploration is with GAQPSO, and exploitation is with a linear decreased beta 

function. 

- GAQB-MOPSO-V3: exploration with GAQPSO, and exploitation with exponential beta-behaved PSO. 

 

Figure 4. Six Variants of the Proposed QB-MOPSO Algorithm with (V1) Gaussian, (V2) linear decreased, and (V3) 

exponential beta function 

 

 

Figure 5. The Flowchart of the Proposed Quantum Beta-behaved Multi-Objective Particle Swarm Optimization 

(QB-MOPSO) System. 
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Figure 5 illustrates the flowchart of the proposed QB-MOPSO approach. The details of the steps are as follows: 

✓ Step 1: initialization  

The first step aims to create a swarm of 𝑁 particles with random positions X𝑖(t) and zero velocity V𝑖(t) vectors. Each 

particle 𝑝𝑖  , ∀ 𝑖 = 1…𝑁 has defined in m-dimensional search space. The iterative optimization process is considered 

to evaluate the fitness function and to update the particle positions. At each iteration, all non-dominated solutions are 

stored in the leader’s archive. 

✓ Step 2: fitness function evaluation  

At each iteration 𝑡, a predefined fitness function 𝐹(𝑥, 𝑡) was evaluated. 

✓ Step 3: select pbest, gbest and mbest 

The global best solution (𝑔𝑏𝑒𝑠𝑡) is selected randomly from the leader’s archive. The personal best solution (𝑝𝑏𝑒𝑠𝑡), 

is the best historical experience. The mean personal best solution (𝑚𝑏𝑒𝑠𝑡) is determined using Equation (7).  

✓ Step 4: update the particles positions 

Compared to the existing PSO approaches, the proposed QB-MOPSO algorithm benefits from a new equation to update 

the particles positions. As presented in Equation (10), a new optimization equation is used with two optimization 

profiles, where the position 𝑋 of each particle 𝑝𝑖  is distributed symmetrically about the mean personal best position 

(𝑚𝑏𝑒𝑠𝑡). The first optimization profile is for exploration phase using the Quantum-behaved equation of RQPSO and 

GAQPSO. However, the second optimization profile is based on Beta-behaved function for exploitation enhancement. 

✓ Step 5: Update the leader’s archive 

At each iteration, all non-dominated solutions in the leader’s archive (𝐴) are re-evaluated, and the dominated solutions 

are removed from the archive [48].  

✓ Step 6: Stopping criterion 

The QB-MOPSO system is stopped when the maximum number of iterations is met. 

✓ Step 7: Output of QB-MOPSO: determine the non-dominated solutions 

At the maximum number of iterations, a set of compromise solutions which are stored in the leader’s archive (𝐴) are 

considered as the output of the proposal and denoted by Pareto Optimal Front (POF). 

✓ Step 8: Decision Making: determine the best compromise solution 

 For decision making, the most known standard criterion in the optimization field is the use of the Utopian point 

mechanism [49], which is defined as an ideal infeasible solution that minimises the objective functions. After 

determining the utopian point, the Euclidian distance between this point and all non-dominated solutions in POF is 

computed. Then, the optimal particle with the smallest distance to the utopian point is selected as a compromise 

solution.  

 

3.2 The Complexity Analysis of the Proposed QB-MOPSO Algorithm 

Let us determine the complexity of the QB-MOPSO algorithm. The proposed QB-MOPSO algorithm aims to optimize 

a swarm of 𝑁  particles, each particle is a candidate solution performed until a maximum number of iterations 𝑇𝑚𝑎𝑥 is 

reached. First, at the iteration 𝑡 = 1 the initialization procedure is started including the following steps: 



 

- Initialize random positions 𝑋𝑖 , ∀ 𝑖 = 1…𝑁 with d-dimensional search space and velocities and takes 𝑂(𝑁 ∗ 𝑑) 

times. 

- The complexity time to evaluate the fitness function for 𝑁 particles is equal to 𝑂(𝑁 ∗𝑚), where 𝑚 is the number 

of objective functions. 

- Apply the dominance operator to determine non-dominated solutions and stored in the leader’s archive (𝐴) and 

takes 𝑂(𝑁). 

Second, the main loop is executed until the maximum number of iterations 𝑇𝑚𝑎𝑥 is reached. The running time of 

the QB-MOPSO algorithm consists of 𝐾 iterative loops performing logarithmic statements and takes 𝑂(𝑁 ∗𝑚 𝑙𝑜𝑔(𝑇)) 

times. At each iteration, the above steps 2 to 6 are executed. The update of particle positions for the exploration or the 

exploitation profile is being preceded by determining the global best solution (𝑔𝑏𝑒𝑠𝑡) from the leader’s archive (𝐴), 

the personal best position for each particle (𝑝𝑏𝑒𝑠𝑡), and the mean best particle (𝑚𝑏𝑒𝑠𝑡). Furthermore, the fitness 

function is evaluated during 𝑂(𝑁 ∗𝑚). At each time 𝑇, the leaders archive (𝐴) is updated and all dominated solutions 

are removed and takes 𝑂(𝑁) times. Finally, the best compromise solution is determined using the Utopian point 

mechanism and the determination takes 𝑂(𝑁) times. To sum up, the overall complexity of the proposed QB-MOPSO 

algorithm is equal to 𝑂(𝑁 ∗ 𝑚 𝐿𝑜𝑔(𝑇)). 

Based on previous work, Sun et al. [47] have concluded the high performance of Quantum behaved PSO (QPSO) 

compared to the traditional PSO algorithm [34], characterised with fewer control parameters and assumes a high level 

of convergence during the optimization process. However, the main advantage of the proposed QB-MOPSO algorithm 

is proved over their simplicity in terms of complexity which is equal to 𝑂(𝑁 ∗𝑚 log(𝑇)). The QB-MOPSO algorithm 

in this work benefits from two optimization profiles for exploration and exploitation phases. When, the dynamic 

switching profiles are the main properties of the proposed algorithm investigating a high flexibility to produce several 

types of data distributions. The quantum and beta behaved rules provide a higher level of convergence toward the 

global best solutions 

3.3 The Neuro-QB-MOPSO Architecture for Fake Account Detection 

In this section presents the application of the proposed QB-MOPSO algorithm for Twitter fake accounts detection 

and denoted by the Neuro-QB-MOPSO Architecture. 

a. General Description: Neuro-QB-MOPSO Architecture  

The QB-MOPSO algorithm is proposed for pertinent features selection to detect fake accounts on Twitter. Figure 6 

shows the Neuro-QB-MOPSO architecture. The Neuro-QB-MOPSO system takes a labelled Twitter dataset as input 

and performs the iterative process of the QB-MOPSO algorithm to determine the features to be selected. Each particle 

has a subset of selected features that are used in training and validating the machine learning model. At the maximum 

number of iterations, the model is tested with the best feature set that has the lowest error rate. Finally, the list of fake 

accounts is determined as the output of the proposed system. Four steps are involved in achieving the feature selection 

step, namely; dataset collection, data pre-processing, feature extraction, and feature analysis. Figure 7 illustrates the 

overall steps. 



 

 

Figure 6. The Neuro-QB-MOPSO Architecture  

 

 

Figure 7. The Overall Process of QB-MOPSO Algorithm for Deep Neural Architectures  
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Figure 7 shows the overall process for detecting fake accounts using the QB-MOPSO algorithm. The steps are as 

follows: 

b. Dataset Collection 

This step provides a starting point before diving into data exploration, and aims to select the main important 

columns from the original datasets. As shown in Table 2, two Twitter datasets proposed by Cresci et al. [31] are 

considered. A total number of 2910 Twitter accounts stored in both datasets. Dataset 1 contains 1982 Twitter accounts, 

while dataset 2 contains 928 accounts equally divided between human and social spam bot accounts. 

Table 2. Cresci Datasets Properties 

Properties Dataset 1 Dataset 2 Total 

Nb. accounts 1982 928 2910 

Nb. tweets 4 061 598 2 628 181 6 689 779 

Description 

Genuine accounts + Social Spam Bot 1 

(retweets of an Italian political 

candidate) 

Genuine accounts + Social Spam Bot 3 

(spammers of products on sale at 

Amazon.com) 

 

- 

c. Data Pre-processing 

Several tasks are considered for text cleaning and presented as follows: 

- Convert the corpus of tweets to lowercase. 

- Removing the numbers from tweets using regular expressions to reduce the irrelevant features. 

- Remove the set of symbols or punctuations. 

- Remove white spaces from the tweet. 

- Stop word removal: remove the common words in the language that do not carry a relevant meaning using 

natural language processing mechanisms. 

- Stemming step to reduce the word to its stem forms using the Porter stemming algorithm that aims to remove 

the common morphological and inflexional endings from words (examples: users ➔ user, profiling ➔ profile). 

- Lemmatization aims to reduce the word to the correct base forms using the lemmatization tool denoted by 

WordNet Lemmatize presented in Python Natural Language Toolkit (NLTK) library [50]. 

d. Features Extraction 

In this study, the user profile properties and the content of tweets are the main information sources for feature 

extraction. As mentioned by Rostami and Karbasi [17], 46 original features are collected from Cresci datasets [10] 

using a set of standard statistical criteria such as entropy, and standard deviation. Table 3, has detailed 22 features 

extracted from the user profile information’s. Table 4 presents 24 extracted features based on the tweets content.  

 



 

Table 3. Extracted Features based on User profile properties 

ID Features based on User profile properties 

F1 Follower count 

F2 Follower count/Account Age 

F3 Following count 

F4 Following count/Account Age 

F5 Follower count/ Following count 

F6 Follower count/ Following count 

F7 (2* Follower count) -Following count 

F8 Follower count/ Follower + Following 

F9 Favorite’s count 

F10 Favorite’s count/ Account Age 

F11 Tweet count 

F12 Tweet count/Account Age 

F13 List count 

F14 List count/ Account Age 

F15 Favorites count/Tweet count 

F16 List count/ Follower count 

F17 GEO Tag 

F18 Retweet count 

F19 Retweet count/Tweet count 

F20 The consecutive Retweets interval mean 

F21 The consecutive Retweets interval Standard deviation 

F22 Number of times the tweets sent by the user are retweeted by other users 

 

Table 4. Extracted Features based on Tweets Content 

ID Features based on tweets content 

F23 Hashtag count 

F24 Hashtag count/ Tweet count 

F25 Hashtag-per-tweet Standard deviation 

F26 Hashtag-per-tweet Entropy 

F27 Tweets-with-Hashtags proportion 

F28 The consecutive tweets interval means 

F29 The consecutive tweets interval Standard deviation 

F30 Link count 

F31 Link count/ Tweet count 

F32 Link-per-tweet standard deviation 

F33 Link-per-tweet Entropy 

F34 Tweets-with-Links proportion 

F35 Mention count 

F36 Mention count/Tweet count 

F37 Mention-per-tweet Standard deviation 

F38 Mention-per-tweet Entropy 

F39 Tweets-with-Mentions proportion 

F40 Reply count 

F41 The consecutive Replies interval mean 

F42 The consecutive Replies interval standard deviation 

F43 Reply count/ Mention count 

F44 The total number of the received likes 

F45 Received likes count/ Tweet count 

F46 Received like-per-tweet Standard deviation 



 

e. Behavior Analysis of Fake and Human Web Users 

The behavior analysis is considered to understand the attitude and the ethics of fake and human users on Twitter. 

Many features can be extracted from the tweets and denoted by content-based features extraction aiming to extract 

several features by parsing the content of each tweet such as the number of hashtags per tweet, the number of mentions 

per tweet, the length of the tweet and many others. In this sub-section, the sentiment analysis [51] process was first 

done. Sentiment analysis is an important topic in the field of Natural Language Processing (NLP) and presents a very 

high subject over many studies to detect negative, positive, and neutral sentiment presenting a subjective opinion based 

on text analysis. In this contribution, the corpus of tweets is used to produce the following labels (1: positive, 0: neutral 

and -1: negative). 

  Before starting the sentiment analysis task, the text pre-processing step is considered to clean the corpus of tweets 

and detailed in Step 2. Furthermore, the Text-Blob python library is used for tweet processing and sentiment analysis 

by computing two properties; polarity and subjectivity for each tweet. The two properties are presented as a float value 

in the range of [−1; 1] for the polarity property and [0; 1] for the subjectivity property. The two Cresci datasets [10] 

have 2910 online user accounts regrouped equally; 1455 for fake and 1455 for human accounts. Based on Figures 8 

and 9, it is remarkable that the most important number of tweets are with a neutral sentiment. However, we can 

conclude that the human accounts can express their opinion and feelings in the corpus of the tweet compared with fake 

users which have a large number of neutral opinions.  

 

Figure 8: Sentiment analysis using polarity and subjectivity for fake and human accounts. 

 

Figure 9. Classification of sentiment analysis for human and fake profiles. 



 

Table 5 presents the number (Nb.) and the proportion in percentage of the users accounts according to the results of 

the sentiment analysis process. For fake accounts, there are 2.41%, 85.84% and 11.75% for negative, neutral, and 

positive opinions respectively compared to the human users which have 5.49%, 58.08% and 36.43%. 

Table 5. Comparative results of sentiment analysis for bot and human accounts on Twitter. 

Sentiment Fake Human 

Nb.  % Nb. % 

Negative 35 2.41 80 5.49 

Neutral 1249 85.84 845 58.08 

Positive 171 11.75 530 36.43 

Total 1455 100 1455 100 

 

                              (a)                                                           (b)                                                             (c) 
Figure 10. (a) Words Count, (b) Characters Count, and (c) Stop Words Count of Fake and Human Tweets Content. 

The plots in Figure 10 illustrates the words count, the number of characters, and the number of stop words per class 

using the Tweet content. It can be remarkable that most fake users have the habit of writing a Tweet corps of 5 to 10 

words composed of 10 to 50 characters. However, the tweet corpus of most human users is composed of 15 to 25 

words and 80 to 110 characters. A spam-bot or fake user does not have the habit of using a lot of stop words compared 

with human user.  

                                                                                            

(a)                                                                          (b) 
Figure 11. Words Cloud of (a) Fake and (b) Human Tweets Content. 

Figure 11 presents the words cloud to visualize the representation of the word frequency of fake and human tweets 

content, and highlight the words which are frequently used. 

 



 

f. Feature selection based QB-MOPSO algorithm 

In this sub-section, the Neuro-QB-MOPSO system is applied to the feature selection problem to minimize 

simultaneously the features dimensionality using Equation (14) and the classification error rate using Equation (15). 

The main steps of the Neuro-QB-MOPSO system are detailed as follows: 

In the QB-MOPSO algorithm, the position of each particle is n-dimensional equal to the number of features in the 

dataset. In addition, the position Binary Encoding (𝑋𝐵𝐸 (𝑡)) is added and initialized to present the bits of selected 

features that monitor the evaluation of the classifier.  

✓ Feature subset discovery 

At each iteration (𝑡), the feature subset discovery step generates the candidate feature subset. It is a search procedure 

started with all available features in the dataset. The search step aims to find the best subset of features investigated to 

evaluate the fitness function of each particle.  

✓ Feature subset selection 

The binary position (𝑋𝐵𝐸𝑖(𝑡)) of each particle 𝑝𝑖  is computed using the Sigmoid Transfer Function (STF) in Equation 

(16).  

                                                                              𝑆𝑇𝐹𝑖(𝑡) =
1

1+𝑒−𝑋𝑖(𝑡)
                                                                        (16) 

where: 𝑋𝑖(𝑡) is the position of the particle 𝑖. 

The binary bits (𝑋𝐵𝐸𝑖  (𝑡)) is determined according to Equation (17): 

                                                                  𝑋𝐵𝐸𝑖(𝑡) = {
 1        𝑖𝑓  𝑆𝑇𝐹𝑖 (𝑡) ≥ 𝑟𝑎𝑛𝑑

 0                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                 (17) 

In the vector of binary position (𝑋𝐵𝐸𝑖(𝑡)), “1” represents the feature is selected and “0” otherwise. 

✓ Subset evaluation 

For each particle, the subset of selected features is evaluated using the two objective functions provided in Equations 

(14) and (15) to train the classification model. This step is optimized until a maximum number of iterations. At each 

iteration, all the non-dominated solutions are stored in the leader’s archive (𝐴). 

✓ Decision making for best features subset selection 

At the maximum number of iterations, the Pareto Optimal Front (POF) is used to determine the Utopian Point and the 

compromise solution presenting the best set of multiple features. Finally, the best subset of selected features is 

considered to test and determine the performance of MLAs.  

✓ Stopping criterion 

The optimization process of QB-MOPSO system is stopped when the maximum number of iterations is met. 

✓ The output of QB-MOPSO for fake account detection 

Determine the compromise solution, the subset of the selected features and best classifier with best accuracy.  

As shown above, the application of QB-MOPSO to detect fake accounts involves nine steps, which are illustrated in 

Figure 7: Data collection, data pre-processing, feature extraction, data normalisation and splitting the dataset into 

training, validation, and testing sets. Then, the QB-MOPSO algorithm is used to determine the best feature set when 

all particles are considered for training and validating the machine learning model. However, the best feature set 



 

selected by the compromise solution is considered for testing the model and has the highest accuracy rate. Finally, the 

classifier with the best accuracy is selected for decision making and the list of fake accounts is generated. 

4. Experimental Study 

This section presents the experimental study. Subsection 6.1 outline the state-of-the-art methods and explains the 

performance metrics used. Subsection 6.2 describes the parameter settings. The quantitative results and discussion 

are presented in subsection 6.3. 

6.1  Preliminary and Performance Metrics  

In this experimental study, all variants of the QB-MOPSO approach are implemented on a personal computer with 8 

GB of RAM, 1 To and i7 Intel processors using MATLAB programming platform. The proposed QB-MOPSO 

algorithm is compared with the state-of-the-art methods proposed by the following authors: Rostami and Karbasi [17] 

, Ahmed and Abulaish  [19], Davis et al. [21], Cresci et al. [22], Yang et al. [23], Miller et al. [24] using the two 

Twitter datasets provided by Cresci et al. [10] detailed in Table 2. The experimental results of this study are compared 

to the methods discussed by Rostami et al. [17] using three machine learning algorithms (MLAs) namely: Random 

Forest (RF), Naïve Bayes (NB), and Support Vector Machine (SVM). 10-fold cross-validation technique is used to 

compute the performance criteria of RF, NB, and SVM algorithms. However, hidden layers are considered for the 

feedforward Neural Network (NN) algorithm, and the split of the datasets is as follows; 70% for training, 15% for 

validation and 15% for testing. For each MLA, we aim to compute the confusion matrix for performance measurement.  

 In this case of study, three performance criteria are considered: 

✓ Accuracy (Acc.) or classification rate presents the percent of the correct classified samples computed using 

Equation (18). 

                                               𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝐹𝑁+𝑇𝑃+𝐹𝑃
                                                                         (18) 

 

where, TP, TN, FN, and FP have been easily determined from the confusion matrix in Table 6. 

Table 6. the confusion matrix 

 Predicted class 

True class 

 True  False  

True  True Positive (TP) False Positive (FN) 

False  True Negative (TN) False Negative (FP) 

  

✓ F-Measure is computed using Equation (19) based on the precision and recall criteria. 

 

                                                    F − measure =  
2×Recall×Precision

Recall+Precision
                                                       (19) 

 

where; precision and recall are respectively equal to TP / (TP + FP) and TP / (TP + FN). 



 

✓ Matthew’s correlation coefficient (MCC) is the most important criteria for classification performance, and 

calculated using Equation (20). 

 

                                                      MCC =
TP×TN−FP×FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
                                                    (20) 

 

6.2 Orthogonal Experimental Design for the QB-MOPSO Algorithm 

The parameter design of six variants of the proposed QB-MOPSO algorithm is done based on the Taguchi method 

[52]. The QB-MOPSO algorithm has four parameters (control factors) which are tested for sensitivity analysis, each 

parameter has two-level factors and listed as follows: 

✓ The population size is fixed to 50 and 100. 

✓ The maximum number of iterations is fixed to 50 and 100. 

✓ The parameter 𝑝 of the Beta function is fixed to 0.01 and 2. 

✓ The parameter 𝑞 of the Beta function is fixed to 1 and 10. 

✓ Parameters of both Revised Quantum PSO (RQPSO) and Gaussian QPSO (GAQPSO) algorithms are 

considered as the original publications in  [11] and  [12] and detailed in Equations (8) and (9). 

As mentioned in Table 7, the application of the Taguchi orthogonal arrays has identified an array of 𝐿8(2^4
 ) with 

only 8 best runs for different combination of parameters design with two-level design of 4 control factors. 

Table 7. Taguchi Array Design L8(2^4) of QB-MOPSO Variants 

ID Run  Population size Max-iterations Parameters of Beta function 

p q 

1 50 50 0,01 1 

2 50 50 2 10 

3 50 100 0.01 10 

4 50 100 2 1 

5 100 50 0.01 10 

6 100 50 2 1 

7 100 50 0.01 1 

8 100 100 2 10 

 

Based on the Taguchi array design, the six QB-MOPSO variants are tested for 8 independent runs and the best obtained 

results of the GAQB-MOPSO algorithm are reported in Table 8 and for the RQB-MOPSO algorithm are reported in 

Table 9 presenting the accuracy of four machine learning algorithms namely; RF, SVM, NN and NB using the datasets 

1 and 2. 

 

 

 

 

 

 



 

Table 8. The Accuracy Rate of MLAs using GAQB-MOPSO algorithm using Taguchi Method for Datasets 1 and 2. 

MLAs  ID Run Population size Max-iterations 
Parameters of Beta function Accuracy % 

p q Dataset 1 Dataset 2 

NB 

1 50 50 0,01 1 94.00 85.80 

2  50 50 2 10 95.20 85.90 

3 50 100 0,01 10 94.90 85.10 

4 50 100 2 1 94.10 86.00 

5 100 50 0,01 10 93.60 85.10 

6 100 50 2 1 94.00 62.00 

7 100 50 0,01 1 95.10 85.10 

8 100 100 2 10 93.60 62.00 

NN 

1   50 50 0,01 1 99.10 93.50 

2 50 50 2 10 98.90 85.20 

3 50 100 0,01 10 98.90 89.70 

4 50 100 2 1 98.90 84.10 

5 100 50 0,01 10 98.60 89.30 

6 100 50 2 1 98.20 90.60 

7  100 50 0,01 1 99.19 91.10 

8 100 100 2 10 98.50 96.44 

RF 

1 50 50 0,01 1 97.40 96.33 

2  50 50 2 10 97.43 96.98 

3 50 100 0,01 10 97.41 97.62 

4 50 100 2 1 97.19 96.98 

5 100 50 0,01 10 96.76 97.52 

6 100 50 2 1 97.19 97.09 

7 100 50 0,01 1 96.98 96.65 

8 100 100 2 10 96.33 93.30 

SVM 

1 50 50 0,01 1 94.50 93.30 

2 50 50 2 10 92.90 94.80 

3 50 100 0,01 10 92.90 92.80 

4 50 100 2 1 95.40 93.00 

5  100 50 0,01 10 95.50 92.90 

6 100 50 2 1 93.10 94.80 

7 100 50 0,01 1 92.90 92.90 

8 100 100 2 10 92.90 93.20 

 
Table 9. The Accuracy Rate of MLAs using RQB-MOPSO algorithm using Taguchi Method for Datasets 1 and 2. 

MLAs  ID Run Population size Max-iterations 
Parameters of Beta function Accuracy % 

p q Dataset 1 Dataset 2 

NB 

1 50 50 0.01 1 94.00 85.00 

2  50 50 2 10 94.00 84.10 

3 50 100 0.01 10 93.60 84.10 

4 50 100 2 1 94.10 85.80 

5 100 50 0.01 10 94.00 83.20 

6 100 50 2 1 94.00 86.00 

7 100 50 0.01 1 95.00 85.80 

8 100 100 2 10 93.70 83.20 

NN 

1   50 50 0.01 1 98.10 90.5 

2  50 50 2 10 98.90 90.00 

3 50 100 0.01 10 98.50 91.60 

4 50 100 2 1 98.30 83.30 

5 100 50 0.01 10 98.50 94.90 

6 100 50 2 1 98.80 91.60 

7 100 50 0.01 1 98.90 90.50 

8 100 100 2 10 98.50 92.20 

RF 

1 50 50 0.01 1 97.09 97.30 

2  50 50 2 10 96.76 96.01 

3 50 100 0.01 10 96.87 96.98 

4 50 100 2 1 95.90 96.98 

5  100 50 0.01 10 97.62 97.30 

6 100 50 2 1 97.30 96.33 

7 100 50 0.01 1 96.98 96.98 

8 100 100 2 10 97.09 96.22 

SVM 

1 50 50 0.01 1 92.90 92.90 

2 50 50 2 10 92.60 93.30 

3 50 100 0.01 10 92.80 93.20 

4 50 100 2 1 93.20 93.00 

5 100 50 0.01 10 92.80 92.70 

6 100 50 2 1 93.00 93.20 

7 100 50 0.01 1 93.10 92.80 

8 100 100 2 10 93.20 92.90 

 



 

6.3 Parameters Settings 

Based on the orthogonal experimental design using the Taguchi method, the best parameters setting of all variants 

of the QB-MOPSO approach are resumed in Table 10 presenting the best configuration to obtain the best accuracy rate 

for all MLAs using datasets 1 and 2. 

Table 10. Parameters Setting for RQB-MOPSO and RQB-MOPSO variants with (V1) Gaussian, (V2) linear decreased, 

and (V3) exponential beta function. 

Profiles of QB-MOPSO  Parameters 
RQB-MOPSO GAQB-MOPSO 

V1 V2 V3 V1 V2 V3 

Quantum-behaved PSO 
φ1 

φ2 
u 

𝑟𝑎𝑛𝑑 (0,1) 𝑁 (0,1) 

Beta-behaved PSO 
p 2 0.01 0.01 2 0.01 0.01 

q 10 1 10 10 1 10 

Swarm size  100 

Max-number of iterations 50 

6.4 Results and Discussion 

This section presents experimental results with all the available features, as well as comparative results using a subset 

of selected features based on QB-MOPSO variants.  

✓ Quantitative results using all features 

Four MLAs are first tested using all the available features in both datasets. The purpose of this study is to illustrate the 

importance of using a small subset of features and their impact on the classification accuracy. In Table 11, the 

quantitative results are shown using 46 original features. I can be evidently seen that NN is the best classifier, with an 

accuracy rate of 98.89% using the first dataset. Nevertheless, the random forest is the best classifier for the second 

dataset with an accuracy rate of 96.12%. 

Table 11. Performance criterions (%) of MLAs using all features. 

 MLAs 
Performance criterions (%) with all features 

Acc. F-Measure MCC 

D
at

as
et

 1
 Random Forest 97.78 97.78 95.56 

Naïve Bayes 84.66 83.37 70.18 

SVM 97.83 97.87 95.74 

Neural Network 98.89 98.89 97.78 

D
at

as
et

 2
 Random Forest 96.12 96.12 92.24 

Naïve Bayes 84.91 84.81 69.83 

SVM 93.32 93.11 86.79 

Neural Network 94.82 94.71 89.73 

 

✓ Quantitative results of QB-MOPSO variants using a subset of selected features on datasets 1 and 2 

The six variants of the QB-MOPSO system are tested using both datasets 1 and 2. Based on data distribution types 

for exploration and exploitation profiles, there are three RQB-MOPSO variants (V1, V2 and V3) and three GAQB-

MOPSO variants (V1, V2 and V3). In all variants, particles “fly” symmetrically to the center-of-gravity, which is the 



 

mean 𝑝𝑏𝑒𝑠𝑡 presenting the global attractor particle. Particles whose positions are greater or equal to the mean solution 

position are considered in the exploration profile, otherwise they are considered in the exploitation profile. Within an 

exploration profile, a RQB-MOPSO algorithm updates particle positions according to a uniform random distribution 

between 0 and 1, but a GAQB-MOPSO algorithm updates them according to a gaussian distribution with zero mean 

and unit variance. In addition, the particles positions in the exploitation profile are updated by using beta functions for 

gaussian (V1), linear decrease (V2), and exponential (V3) distributions. The classification performance of NB, RF, 

SVM, and NN classifiers is detailed in Table 12, along with the dimensionality subset of selected features determined 

by the different variants of the QB-MOPSO system. It is remarkable that QB-MOPSO variants are more competitive 

than the state-of-the-art methods using dataset 1. 

The reported performance criteria of the NN classifier have demonstrated that GAQB-MOPSO (V2) is the best 

approach for fake account detection using dataset 1 with the highest accuracy rate of 99.19% using 32 selected features. 

Moreover, the comparative results in Table 13 have shown the superiority of GAQB-MOPSO (V2) using dataset 2 

with an accuracy rate of 97.52 % with 25 selected features. The first 32 features are divided equally as follows; 16 

features are selected based on the user profile properties which are presented in Table 3 (ID: F2, F4, F5, F6, F7, F9, 

F12, F14, F15, F16, F17, F18, F19, F20, F21, F22) presenting 73% of all user profile properties, and 16 features are 

selected based on tweet content as presented in Table 4 (ID: F27, F28, F29, F30, F31, F32, F35, F36, F38, F40, F41, 

F42, F43, F44, F45, F46) presenting 67% of all features based on the tweet content. For the second 25 selected features, 

10 features based on the profile’s properties (45%) are selected and their ID in Table 3 are as follows (ID: F1, F2, F4, 

F5, F7, F9, F15, F16, F18, F21), and 15 features are based on the tweet content from Table 4 (ID: F23, F24, F26, F27, 

F29, F31, F32, F34, F35, F36, F37, F38, F43, F44, F46) presenting 63% of the features-based content. 

 

✓ Comparative Results of the best variant “GAQB-MOPSO (V2)” versus State-of-the-art Methods 

 

Tables 12 and 13 provide the classification performance of the state-of-the-art methods compared with all variants 

of the proposed QB-MOPSO algorithm. For both datasets, QB-MOPSO can assume a high accuracy rate compared 

with the supervised methods proposed by Rostami and Karbasi [17], Davis et al. [21] and Yang et al. [23] as well as 

the unsupervised approaches proposed by Ahmed and Abulaish [19], Cresci et al. [22], and Miller et al. [24]. The 

proposed QB-MOPSO presents high accuracy when using a supervised NN classifier, and it can identify 32 pertinent 

features from 46 original features when using dataset 1. Furthermore, only 25 features are selected with the GAQB-

MOPSO (V2) system in RF classifier based on the dataset 2. In [17] Rostami and Karbasi, used the Minimum 

Redundancy –Maximum Relevance algorithm (mRMR) as feature selection technique, and had the ability to select 8 

and 7 pertinent features using dataset 1 and dataset 2 respectively. 

The selected features are based on tweets content, and SVM classifier is the top performer with an MCC equal to 

96.06% for dataset 1, and 94.19% for dataset 2. Despite the minimum number of selected features (8 and 7) in [17], 

QB-MOPSO can achieve a high MCC (98.39% and 95.06%) with 32 and 25 optimal features using both datasets for 

the NN and RF respectively. In [22], Cresci et al. proposed a DNA fingerprinting method and achieve an MCC 95.20% 

and 86.70% regarding 14 features [19]. Davis et al. [21], proposed the BotOrNot system and achieved a classification 

rate of 17.4% on dataset 1 and 37.8% on dataset 2, using a random forest classifier with 1000 Twitter feature account.  



 

In [24], Miller et al. have considered 126 features to test their model, and does not assume a good result compared to 

all methods. Also, Ahmed and Abulaish [19] have proposed Graph clustering and Community Detection methods and 

14 generic statistical features are selected to test the unsupervised model. Finally, Yang et al. [23], have proposed an 

empirical analysis of profile-based feature evasion tactics and content-based feature evasion tactics using 25 features. 

However, it fails to obtain a good classification accuracy (MCC=4.3% with dataset 1and MCC=28.7% with dataset 2). 

Compared with all methods, QB-MOPSO can achieve a good performance using a dynamic feature selection according 

to quantum weights and the diversification of beta profiles, which are encoded using the sigmoid function. 

Table 12. Comparative Results of QB-MOPSO variants with (V1) Gaussian, (V2) linear decreased, and (V3) exponential beta 

function compared with state-of-the-art methods using dataset 1. 

 Compared Approaches 
Selected 

features 

Performance criterions (%) using the best features subset 

TP TN FP FN Precision Recall Specificity Acc. 
F-

Measure 
MCC 

NB 

RQB-MOPSO 

V1 14 812 929 179 62 81.94 92.91 83.84 87.41 87.08 76.21 

V2 30 949 936 42 55 95.76 94.52 95.71 95.11 95.14 90.22 

V3 7 790 884 201 107 79.71 88.07 81.47 84.46 83.69 69.23 

GAQB-

MOPSO 

V1 31 950 936 41 55 95.86 94.52 95.80 95.15 95.19 90.32 

V2 21 931 934 60 57 93.94 94.23 93.96 94.09 94.08 88.19 

V3 19 922 935 69 56 93.03 94.27 93.12 93.69 93.65 87.39 

SVM 

RQB-MOPSO 

V1 32 967 990 24 1 97.57 99.89 97.63 98.73 98.72 97.50 

V2 26 969 991 22 0 97.78 100 97.82 98.89 98.87 97.80 

V3 35 966 990 25 1 97.47 99.89 97.53 98.68 98.67 97.40 

GAQB-

MOPSO 

V1 26 970 990 21 1 97.88 99.89 97.92 98.89 98.87 97.79 

V2 25 967 991 24 0 97.57 100 97.63 98.78 98.77 97.60 

V3 30 968 990 23 1 99.89 99.89 95.83 98.78 99.89 97.60 

RF 

RQB-MOPSO 

V1 14 975 985 16 6 98.38 99.38 98.40 98.89 98.88 97.78 

V2 12 970 991 21 0 97.88 100 97.92 98.94 98.92 97.90 

V3 13 975 986 16 5 98.38 99.48 98.40 98.94 98.93 97.88 

GAQB-

MOPSO 

V1 23 980 978 11 13 98.89 98.69 98.88 98.78 98.79 97.57 

V2 18 975 990 16 1 98.38 99.89 98.40 99.14 99.13 98.29 

V3 17 974 991 17 0 98.28 100 98.31 99.14 99.13 98.29 

NN 

RQB-MOPSO 

V1 25 972 991 19 0 98.08 100 98.11 99.04 99.03 98.10 

V2 24 964 991 27 0 97.27 100 97.34 98.63 98.61 97.31 

V3 18 955 990 36 1 96.36 99.89 96.49 98.13 98.09 96.32 

GAQB-

MOPSO 

V1 27 959 990 32 1 96.77 99.89 96.86 98.33 98.30 96.71 

V2 32 976 990 15 1 98.48 99.89 98.50 99.19 99.18 98.39 

V3 17 974 991 17 0 98.28 100 98.31 99.14 99.13 98.29 

State-of-

the art 

methods 

Rostami and Karbasi 

[17], 2020 
- - - - - 98.00 98.10 98.00 98.00 98.00 96.06 

Cresci et al. [22],  

2016 
- - - - - 98.20 97.20 98.10 97.60 97.70 95.20 

Davis et al. [21], 2016 >1000 - - - - 47.10 20.80 91.80 73.40 28.80 17.40 

Miller et al. [24], 2014 126 - - - - 55.50 35.80 69.80 52.60 43.50 5.90 

Ahmed and Abulaish 

[19], 2013 
- - - - - 94.50 94.40 94.50 94.30 94.40 88.60 

Yang et al. [23], 2013 25 - - - - 56.30 17.00 86.00 50.60 26.10 4.30 

 



 

 

Figure 12. The Accuracy Rate of the GAQB-MOPSO (V2) Compared with state-of-the-art Methods using Dataset 1 

 

Table 13. Comparative Results of QB-MOPSO variants with (V1) Gaussian, (V2) linear decreased, and (V3) exponential beta 
function compared with state-of-the-art methods using dataset 2. 

 
Compared 

Approaches 

Selected 

features 

Performance criterions (%) using the best features subset 

TP TN FP FN Precision Recall Specificity Acc. 
F-

Measure 
MCC 

NB 

RQB-

MOPSO 

V1 19 443 347 21 117 95.47 79.11 94.29 85.13 86.52 71.81 

V2 9 436 353 28 111 93.97 79.71 92.65 85.02 86.25 71.19 

V3 17 444 354 20 110 95.69 80.14 94.65 85.99 87.22 73.37 

GAQB-

MOPSO 

V1 15 446 351 18 113 96.12 79.78 95.12 85.88 87.19 73.32 

V2 29 453 149 11 315 97.62 58.98 93.12 64.87 73.53 39.36 

V3 21 444 336 20 128 95.68 77.62 94.38 84.05 85.71 70.02 

SVM 

RQB-

MOPSO 

V1 8 437 404 27 60 94.18 87.92 93.73 90.62 90.94 81.45 

V2 26 445 421 19 43 95.90 91.18 95.68 93.31 93.48 86.75 

V3 24 447 418 17 46 96.33 90.66 96.09 93.21 93.41 86.59 

GAQB-

MOPSO 

V1 21 445 417 19 47 95.90 90.44 95.64 92.88 93.09 85.93 

V2 20 444 419 20 45 95.68 90.79 95.44 92.99 93.17 86.11 

V3 24 445 421 19 43 95.90 91.18 95.68 93.31 93.48 86.75 

RF 

RQB-

MOPSO 

V1 20 443 460 21 4 95.47 99.10 95.63 97.30 97.25 94.67 

V2 22 449 451 15 13 96.76 97.18 96.78 96.98 96.97 93.96 

V3 14 455 448 9 16 98.06 96.60 98.03 97.30 97.32 94.62 

GAQB-

MOPSO 

V1 19 430 462 34 2 92.67 99.53 93.14 96.12 95.98 92.46 

V2 25 445 460 19 4 95.90 99.10 96.03 97.52 97.48 95.09 

V3 33 441 460 23 4 95.04 99.10 95.23 97.09 97.02 94.26 

NN 

RQB-

MOPSO 

V1 16 440 384 24 80 94.82 84.61 94.11 88.79 89.43 78.15 

V2 16 443 409 21 55 95.47 88.95 95.11 91.81 92.09 83.84 

V3 21 453 383 11 81 97.62 84.83 97.20 90.08 90.78 81.10 

GAQB-

MOPSO 

V1 27 445 420 19 44 95.90 91.00 95.67 93.21 93.38 86.54 

V2 22 443 402 21 62 95.47 87.72 95.03 91.05 91.43 82.43 

V3 31 454 438 26 10 94.58 97.84 94.39 96.12 96.18 92.29 

State-of-the 

art methods 

Rostami and 

Karbasi [17], 2020 
- - - - - 96.50 97.90 96.40 97.10 97.10 94.19 

Cresci et al. [22],  

2016 
- - - - - 100 85.80 100 92.90 92.30 86.70 

Davis et al. [21], 

2016 
>1000 - - - - 63.50 95.00 98.10 92.20 76.10 73.80 

Miller et al. [24], 

2014 
126 - - - - 46.70 30.60 65.40 48.10 37.00 -4.30 

Ahmed and 

Abulaish [19], 2013 
- - - - - 91.30 93.50 91.20 92.30 92.30 84.70 

Yang et al. [23], 

2013 
25 - - - - 72.70 40.90 84.80 62.90 52.40 28.70 
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Figure 13. The Accuracy Rate of GAQB-MOPSO (V2) Compared with state-of-the-art Methods using Dataset 2. 

 

 

Table 14 shown a comparative result of the proposed GAQB-MOPSO (V2) versus the three standard approaches 

to quantum-behaved PSO namely; QPSO, RQPSO and GAQPSO. To study the performance of the novel proposal 

compared with other original systems (QPSO, RQPSO and GAQPSO). All algorithms are executed in the same 

condition with the NN for dataset 1 and the RF for dataset 2. Of course, it is remarkable that GAQB-MOPSO (V2) is 

the winner and has achieved the highest accuracy rates with NN classifier using dataset 1 and RF using dataset 2. 

Figures 13 and 14 have shown that GAQB-MOPSO (V2) has the highest accuracy rate for detecting fake accounts 

compared to the existing methods. 

 

Table 14. Performance criterions (%) of the best classifiers (Random Forest and Neural Network) for the proposed GAQB-
MOPSO (V2) versus the standard QPSO, RQPSO, and GAQPSO. 

Datasets Compared Approaches 
Selected 

features 

Performance criterions (%) using the best features subset 

TP TN FP FN Precision Recall Specificity Acc. 
F-

Measure 
MCC 

Dataset 1 

GAQB-MOPSO-V2 (NN) 32 976 990 15 1 98.48 99.89 98.50 99.19 99.18 98.39 

QPSO (NN) 33 974 989 17 2 98.28 99.79 98.31 99.04 99.03 98.09 

RQPSO (NN) 22 967 991 24 0 97.57 100 97.63 98.78 98.77 97.60 

GAQPSO (NN) 20 966 989 25 2 97.47 99.79 97.53 98.63 98.62 97.30 

Dataset 2 

GAQB-MOPSO-V2 (RF) 25 445 460 19 4 95.90 99.10 96.03 97.52 97.48 95.09 

QPSO (RF) 25 443 460 21 4 95.47 99.10 95.63 97.30 97.25 94.67 

RQPSO (RF) 19 448 450 16 14 96.55 96.96 95.56 96.76 96.76 93.53 

GAQPSO (RF) 29 437 460 27 4 94.18 99.09 94.45 96.65 96.57 93.43 

 

The state-of-the-art methods compared with the proposed QB-MOPSO algorithm have been divided into supervised 

and unsupervised methods for classifying spambots. In supervised methods, Yang et al. [23] proposed a spambot 

detection system based on machine learning algorithms to predict human and spambot accounts. In addition, Davis et 

al. [21] proposed the BotOrNot Blackbox platform. The analysis of the results in Figure 15 shows that both the methods 

in [21] and [23] failed in classification and most bot accounts were classified as human with a recall rate less than 50. 

For dataset 2, Figure 16 shows that the precision and recall values of the system proposed by Davis et al. [21] are 

unbalanced, resulting in lower accuracy of the classification model, and that the system of Yang et al. [23] fails with 

a recall rate below 50. In unsupervised methods, Miller et al. [24] proposed a stream clustering model based on 

DenStream [53]  and StreamKM++ [54] clustering algorithms for spambot detection to determine the cluster of the 
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feature vector for a set of unlabelled samples in the dataset. Figures 15 and 16 show that the clustering algorithm 

proposed in [24]  doesn't achieve good recall in datasets 1 and 2. So it's very difficult to detect spambots from data 

streams. Ahmed and Abulaish [19], proposed a graph clustering algorithm based on Markov Clustering Algorithm 

(MCL) [55].  However, Cresci et al. [10]  have replaced the MCL algorithm with the Fastgreedy community detection 

algorithm [56], thus avoiding the problem of identifying two distinct clusters.  

Inspired by the biological DNA sequence, Cresci et al. [22] proposed a bio-inspired model called digital DNA 

system aimed at recognising the behaviour of online users. The digital DNA was expressed by a string encoding each 

user's behaviour. Then, the Longest Common Substring (LCS) measurement was used to determine the anomalous 

similarities between the sequences, and the longest DNA sequences were labelled as spambot accounts. From Figures 

15 and 16, the recall rate for datasets 1 and 2 is unbalanced, leading to a reduction in the performance criteria. 

Furthermore, Rostami and Karbasi [17] proposed a multi-objective feature selection approach to select a stable subset 

of features based on the highest relation to the target class and the least redundancy among the features using the 

Minimum Redundancy – Maximum Relevance algorithm (mRMR) [18].  In this study, the QB-MOPSO algorithm for 

detecting fake accounts on Twitter is presented and denoted the Neuro- QB-MOPSO system. Figures 15 and 16 

illustrate the superiority of the algorithm GAQB-MOPSO -V2 compared to other methods based on the precision and 

recall criteria. Neuro-QB-MOPSO is a supervised method that is inspired by the standard quantum PSO algorithm. It 

can detect human and fake accounts on Twitter much more accurately than other methods.  

 

 
 

Figure 14. The Precision and Recall Rate of GAQB-MOPSO (V2) Compared with state-of-the-art Methods using Dataset 1. 
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Figure 15. The Precision and Recall Rate of GAQB-MOPSO (V2) Compared with state-of-the-art Methods using Dataset 2. 

 

 

5. Conclusion  

This paper proposed a new Quantum Beta-behaved Multi-Objective Particle Swarm Optimization (QB-MOPSO) 

algorithm, comprising six quantum variants with different beta-profiles. The QB-MOPSO system was used for 

pertinent feature selection to detect fake accounts on Twitter. The main goal was to minimize both the features' 

dimensionality and the classification error rate. The six variants of the QB-MOPSO approach were proposed with two 

optimization profiles, the first was for exploration using a quantum-behaved MOPSO, and the second was for 

exploitation phase using a Beta-behaved MOPSO. Both profiles were assumed over new mathematical rules to 

optimize and update the velocities and the positions of particles in the search space. At each iteration, binary encoding 

is fixed using the sigmoid function. Therefore, the bit ‘1’ indicates a selected feature and ‘0’ otherwise. The proposed 

system was tested on the two benchmark Twitter datasets and achieved excellent results compared with state-of-the-

art methods. The GAQB-MOPSO (V2) system was found to achieve an accuracy rate of 99.19% on dataset 1 and 

97.52% for dataset 2. For future work, we will address the challenge of online feature selection to predict online fake 

accounts on OSNs, considering the stability of the feature subset. Also, a new investigation will be proposed for fake 

news detection on Twitter.  
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