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Abstract

Many algorithms have been proposed to solve the clustering problem. However, most of them lack a proper strategy to maintain

a good balance between exploration and exploitation to prevent premature convergence. Multi-Trial Vector-based Differential

Evolution (MTDE) is an improved differential evolution (DE) algorithm that is done by combining three strategies and distribut-

ing the population between these strategies to avoid getting stuck at a local optimum. In addition, it records inferior solutions

to share information about visited regions with solutions of the next generations. In this paper, an Improved version of the

Multi-Trial Vector-based Differential Evolution (IMTDE) algorithm is proposed and adapted for clustering data. The purpose

here is to enhance the balance between the exploration and exploitation mechanisms in MTDE by employing Gaussian crossover

and modifying the sub-population distribution between the strategies. To evaluate the performance of the proposed clustering,

19 datasets with different dimensions, shapes, and sizes were employed. The obtained results of IMTDE demonstrate improve-

ment in MTDE performance by an average of 12%. Our comparative study with state-of-the-art algorithms demonstrates the

superiority of IMTDE in most of these datasets because of the effective search strategies and the sharing of previous experiences

in generating more promising solutions. Source code is available on Github: https://github.com/parhamhadikhani/IMTDE-

Clustering.
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ABSTRACT
Many algorithms have been proposed to solve the clustering prob-
lem. However, most of them lack a proper strategy to maintain
a good balance between exploration and exploitation to prevent
premature convergence. Multi-Trial Vector-based Differential Evo-
lution (MTDE) is an improved differential evolution (DE) algorithm
that is done by combining three strategies and distributing the pop-
ulation between these strategies to avoid getting stuck at a local
optimum. In addition, it records inferior solutions to share informa-
tion about visited regions with solutions of the next generations.
In this paper, an Improved version of the Multi-Trial Vector-based
Differential Evolution (IMTDE) algorithm is proposed and adapted
for clustering data. The purpose here is to enhance the balance
between the exploration and exploitation mechanisms in MTDE by
employing Gaussian crossover and modifying the sub-population
distribution between the strategies. To evaluate the performance
of the proposed clustering, 19 datasets with different dimensions,
shapes, and sizes were employed. The obtained results of IMTDE
demonstrate improvement in MTDE performance by an average
of 12 %. Our comparative study with state-of-the-art algorithms
demonstrates the superiority of IMTDE in most of these datasets be-
cause of the effective search strategies and the sharing of previous
experiences in generating more promising solutions. Source code is
available on Github: https://github.com/parhamhadikhani/IMTDE-
Clustering.
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1 INTRODUCTION
Clustering is a process that divides a set of data objects n with d
dimensions into k separate groups [27]. Each division is called a
cluster𝐶𝑖 . The members of each cluster are similar in terms of their
characteristics, while the degree of similarity between different
clusters is low. In such a case, the purpose of clustering is to detect
the distinct groups and assign objects based on their similarity to
the corresponding groups. The main difference between cluster-
ing and classification approaches is the lack of initial labels for
observations [4]. In clustering, objects are grouped without prior
knowledge, while classification methods use predefined classes in
which objects are assigned. The application of clustering can be

found in social network analyse [17], robotics [18], biology [35],
and networks [16, 40, 41]. The types of clustering methods can be
categorized as hierarchical clustering [20], mixed clustering [23],
learning network clustering [36], and partition clustering [30]. The
main goal of these clustering algorithms is to enhance the homo-
geneity and heterogeneity of clusters [19].
Clustering is considered a NP-hard problem [19]. Since there is a
widespread view that evolutionary algorithms have good ability to
find near-optimal solution to such problem [12], many evolution-
ary algorithms have been proposed for clustering such as classic
meta-heuristic algorithms (simulated annealing [32],genetic algo-
rithms [22], particle swarm optimization (PSO) [37], and differential
evolution [6]). More recent methods include graph-based genetic
programming [21], memetic elitist evolutionary algorithm based
on decomposition [15], hybrid PSO with adopting Gaussian esti-
mation and levy flight strategy [3] and density-based PSO [13].
DE [33] is a powerful algorithm for solving optimization problems
in continuous space, proposed to overcome the main problem of
genetic algorithm, namely the lack of local search. In recent years,
various methods [1, 7, 14, 24] have been proposed to improve the
performance of DE. Two important improvements are JADE [43]
and CoDE [38], which modify the production of solutions in DE.
Moreover, in [8] and [42], methods are provided to control the se-
lection mechanism and find the optimal value of the parameters in
DE. The selection of search strategies and the associated control
parameter values are essential to improve the performance of DE.
However, the use of only one strategy with uniform settings for
different parameters to search for good solutions is not useful for
improving DE. This motivated a combination of multiple DE search
strategies to be applied, which can greatly improve DE performance.
Multi-trial vector-based differential evolution (MTDE) is enriched
by an efficient combination of search strategies, in which the search
strategies and associated control parameter values are gradually
trained from their previous experiences to generate more promis-
ing solutions. Instead of using one strategy as in DE, MTDE uses
multiple search strategies to improve the search.
For these reasons, we adapt MTDE [25] to cluster data in this pa-
per. Unlike MTDE, we employed Gaussian crossover in strategies
R-TVP and G-TVP and modified the distributing policy to improve
the exploitation and exploration abilities in our work. To better
distribute the sub-population between the strategies and improve
the balance between exploration and exploitation, the distributing



policy in MTDE is modified to allocate more populations for explo-
ration in the early stages and to increase the number of population
to exploit in the final stages over time. The aim of this research is
to investigate the ability of the proposed Improved MTDE (IMTDE)
to cluster data with different dimensions, shapes and sizes, and
compare it with other algorithms.
The rest of paper is structured as follow. In section 2, IMTDE is
reviewed. IMTDE clustering is explained in section 3. Experimental
results and some concluding remark are provided in section 4 and
5, respectively.

2 MULTI-TRIAL VECTOR-BASED
DIFFERENTIAL EVOLUTION ALGORITHM

MTDE, an improvement of DE algorithm, is one of themeta-heuristic
and population-based algorithms for solving optimization problems.
In DE, the population consists of a number of vectors, where each
vector represents a potential solution to the optimization problem.
The goal of DE is to generate a new solution for each target vec-
tor (current generation) that moves towards the optimal solution
using a trial vector. A trial vector is an offspring obtained based
on the crossover and mutation operations of two random vectors
and a target vector. Since DE is highly dependent on the produc-
tion of a trial vector, MTDE presents three strategies, consisting
of representative based trial vector producer (R-TVP) to enhance
the diversity of solutions, local random based trial vector producer
(L-TVP) for proper balance of exploration and exploitation as well
as rapid convergence, and global best history based trial vector
producer (G-TVP) to escape from local optimum. In MTDE, inferior
solutions that have information about visited areas are kept in a
repository called lifetime archive. The lifetime archive is used to
maintain population diversity and prevent premature convergence.
The size of this repository is equal to the population of vectors. If
the repository is full, the old vectors are replaced with new vec-
tors. The MTDE algorithm begins with defining a sub-population
distribution policy called "winner-based distributing" to distribute
the population between the three trial vector production strategies.
In each generation, the strategy that performs the best distributes
the population according to its policy. In the first iteration, one of
the strategies is selected as the best strategy by default. For later
iterations, the strategy with the highest improvement rate in the
previous generation compared to other strategies is selected as the
best strategy. The improved rate of a strategy 𝑥 is calculated from
the Eq.(1).

𝐼𝑅𝑥 =
𝐼𝑉𝑥

𝑁𝑥
(1)

𝐼𝑉𝑥 is the number of improved vectors by strategy 𝑥 and 𝑁𝑥 is the
number of populations allocated to strategy 𝑥 . In MTDE, the time
factor is ignored. In the early stages, the search space is explored
to find the optimal region. To better distribute the sub-population
between the strategies and improve the balance between explo-
ration and exploitation, the distributing policy in MTDE (Eq.(1)) is
modified to Eq.(2) in IMTDE to allocate more populations for explo-
ration in the early stages and to increase the number of population
to exploit in the final stages over time. Such treatments over time

is not done originally.

𝐼𝑅𝑥 =



𝐼𝑉𝑥
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

𝑁𝑥
, if 𝑥 is equal to L-

TVP

𝐼𝑉𝑥
𝑀𝑎𝑥𝐼𝑡𝑒𝑟−𝑖𝑡𝑒𝑟

𝑁𝑥
, if 𝑥 is equal to R-

TVP or G-TVP

(2)

Where 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is the number of iterations, and 𝑖𝑡𝑒𝑟 is the
counter of iterations. After finding the improved rate and selecting
the best strategy, vectors are distributed randomly between the
sub-population of strategies according to the rules of encourage-
ment and punishment defined in Eq.(3). In each generation, the
population size of the best strategy (with the highest improved
rate) is calculated based on 𝑁𝑤𝑖𝑛 and the population size of the
other two strategies is calculated based on 𝑁𝑙𝑜𝑠𝑒 .

𝑁𝑥 =



𝑁𝑤𝑖𝑛 = 0.6 × 𝑁, 𝑁𝑙𝑜𝑠𝑒 = 0.2 × 𝑁, if R-TVP or L-
TVP have the
highest 𝐼𝑅𝑥

𝑁𝑤𝑖𝑛 = 0.2 × 𝑁, 𝑁𝑙𝑜𝑠𝑒 = 0.4 × 𝑁, if G-TVP
have the high-
est 𝐼𝑅𝑥

(3)

Where 𝑁 is the number of vectors in the population.
In the R-TVP, the target vector 𝑥𝑖 is moved based on a random vec-
tor in lifetime archive 𝑥𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒 and two vectors 𝑥𝑖𝑏𝑒𝑠𝑡 and 𝑥𝑖𝑤𝑜𝑟𝑠𝑡

that have the best and worst fitness values respectively (Eq.(4))
among the 𝑁𝑅−𝑇𝑉𝑃 (Eq.(4)). The procedure of G-TVP (Eq.(7)) are
similar to R-TVP except that in G-TVP, the global best vector 𝑥𝑔𝑏
is mutated based on two random vectors from population of G-
TVP (𝑁𝐺−𝑇𝑉𝑃 ). To improve the ability of MTDE to exploit and deal
with non-linear clusters, the Gaussian distribution is employed as
a crossover operation in IMTDE for both strategies R-TVP and G-
TVP. Trial vector (𝑢𝑖 ) is obtained by using Gaussian-based crossover
of two transformation matrices M and its binary inverse 𝑀 with
the 𝑥𝑖 and the mutant vector in Eq.(5). M with 𝑁 × 𝐷 dimensions
can be constructed from𝑀𝐷×𝐷 , which is a lower triangular matrix
with the values of one, by replicating the square matrix 𝑁

𝐷
times

in𝑀𝑁×𝐷 . The remaining rows of𝑀𝑁×𝐷 are filled with the initial
rows of the square matrix.

Afterward, the rows of 𝑀𝑁×𝐷 are permuted randomly. 𝑀 is
obtained by replacing the inverse boolean value of each element in
M.

𝑣𝑖𝑅−𝑇𝑉𝑃
= 𝑥𝑖 + 𝑓𝑖 × (𝑥𝑖𝑏𝑒𝑠𝑡 − 𝑥𝑖 ) + 𝑓𝑖 × (𝑥𝑖𝑤𝑜𝑟𝑠𝑡

− 𝑥𝑖 )
+𝛼1 × (𝑥𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒 − 𝑥𝑖 )

(4)

𝑢𝑖𝑅−𝑇𝑉𝑃
= (𝑥𝑖 ×𝑀 + 𝑣𝑖 ×𝑀) ×𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, ℎ) (5)

𝑣𝑖𝐺−𝑇𝑉𝑃
= 𝑥𝑔𝑏 + 𝛼2 × (𝑥𝑟1 − 𝑥𝑟2) (6)

𝑢𝑖𝐺−𝑇𝑉𝑃
= (𝑥𝑖 ×𝑀 + 𝑣𝑖 ×𝑀) ×𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, ℎ) (7)

𝛼1 = 2 − 𝑖𝑡𝑒𝑟 × ( 2
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

) (8)

ℎ𝑖+1 = ℎ𝑖 − ( 1
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

) (9)



where𝑓 is a scale factor calculated by Cauchy distribution [34], h is
the standard deviation of Gaussian distribution and according to
Eq.(9) is linearly reduced on each iteration, 𝛼1 is a coefficent com-
puted by Eq.(8). In the strategy L-TVP, unlike two other strategies,
the trial vector is obtained based on individual learning rather than
evolution, hence it does not need a crossover and is calculated as
follows:

𝑣𝑖𝐿−𝑇𝑉𝑃
= 𝑥𝑖 + 𝑓𝑖 × (𝑥𝑟1 − 𝑥𝑟2) + 𝛼2 × (𝑥𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒 − 𝑥𝑖 ) (10)

𝛼2 = (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑓 𝑖𝑛𝑎𝑙) × (𝑀𝑎𝑥𝐼𝑡𝑒𝑟 − 𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)` (11)

where 𝑥𝑟1 and 𝑥𝑟2 are two random vectors in the population of L-
TVP (𝑁𝐿−𝑇𝑉𝑃 ), 𝑥𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒 is a random vector from lifetime archive,
𝛼2 is a coefficient calculated by Eq.(11). In addition, initial and final
are the initial and final values of the control parameter 𝛼2 set by
the user and, ` is the dimension of vectors. In the selection phase,
trial vectors produced by each strategy are compared with their
corresponding target vectors to update the population. If the trial
vector has a better fitness value, it replaces the target vector and the
target vector is stored in the lifetime archive. Otherwise, the target
vector remains unchanged. Finally, after reaching the termination
condition of iteration, the global vector 𝑥𝑔𝑏 is selected as the final
optimal solution.

3 MTDE CLUSTERING
With respect to clustering, each vector inMTDE represents k cluster
centroids and the structure of each vector 𝑥𝑖 is shown below:

𝑥𝑖 = (𝐶𝑖1, . . . ,𝐶𝑖 𝑗 , · · · ,𝐶𝑖𝑘 ) (12)

Where 𝐶𝑖 𝑗 represents the 𝑗𝑡ℎ cluster centroid in the 𝑖𝑡ℎ vector of
cluster. Thus, the population size of vectors represents the number
of possible clustering solutions for the desired data. Moreover, to
evaluate the clustering quality of each vector, a fitness function
called Sum of Square Error (SSE) is used. SSE is the sum of the
squared differences between each data point and its cluster centroid.
This function is used as a measure of variation within a cluster. SSE
is calculated from the following equation.

𝑆𝑆𝐸 =

𝑘∑︁
𝑗=1

∑︁
∀𝑦∈𝐶 𝑗

∥𝑦𝑖 −𝐶 𝑗 ∥2 (13)

𝑦𝑖 is a data point belonging to the cluster 𝐶 𝑗 . Each vector is eval-
uated based on SSE at each iteration of clustering, where smaller
values are favored. The cluster centroids in each vector are up-
dated by one of the three strategies in the MTDE algorithm to
improve clustering. The proposed clustering algorithm is shown in
Algorithm 1. The MTDE clustering is illustrated in Fig. 1.

4 EXPERIMENTAL RESULTS
In this section, the performance of the proposed IMTDE cluster-
ing algorithm has been compared with twelve well-known algo-
rithms that have been reported in existing literature, including
K-Means [39], Affinity propagation [11], Mean-shift [5], Agglomer-
ative clustering [20], DBSCAN [10], OPTICS [2], Gaussian mixtures
model [31], BIRCH [44], Particle swarm optimisation (PSO) and
Hybrid PSO and K-Means (HPSOkmeans) [10] and MTDE. IMTDE,
MTDE, PSO and HPSOkmeans have been implemented in Python.

Algorithm 1: IMTDE Cluster Algorithm
Input: D={𝑦1,𝑦2,. . .,𝑦𝑛 } //Set of data points
𝑘 //Number of desired clusters
Output: Set of 𝑘 clusters from global best vector

1 Initialize a population of vectors with random centroids in
the search space

2 for iter=1 to the Maxiter do
3 if iter==1 then
4 Consider R-TVP as best strategy
5 else
6 Determine the best strategy in previous generation

using Eq.(2)
7 Distribute vectors using Eq.(3)
8 for each strategy 𝑥 (𝑥 can be R-TVP, L-TVP or G-TVP) do
9 for 𝑥𝑖 in 𝑁𝑥 do
10 Based on chosen strategy 𝑥 , use Eq.(5),(6) or (7)

accordingly for producing a trial vector
11 Evaluate fitness value of 𝑥𝑖 using Eq.(13)
12 Update 𝑥𝑖
13 Update lifetime archive
14 Assign each data point 𝑦𝑖 to the cluster with the

nearest centroid based on euclidean distance

15 Choose the vector with the best fitness value of all the
vectors as the global best vector (𝑥𝑔𝑏 )

16 Return 𝑥𝑔𝑏

The Scikit-learn machine learning library has been used to im-
plement other methods [29]. The comparison of results for each
dataset is based on the best solution found in 30 different runs for
each algorithm. The performance of the algorithms is compared
based on criteria accuracy (AC), normalized mutual information
(NMI) and adjusted rand index (ARI). The main parameters and
their values in the IMTDE clustering algorithm are: Maxiter=200,
initial=0.001, final=2, h=1 and number of vectors=200.

4.1 Dataset
For a comprehensive evaluation of the proposed clustering algo-
rithm, 19 datasets were used. From the datasets used, six of them are
artificial and the rest of datasets are real-world. The characteristics
of these datasets are summarized in Table 1 [9].

4.2 Results and discussion
Fig. 2 and 3 showed the t-SNE biplots of IMTDE clustering perfor-
mance on different datasets, with biplots of datasets IMTDE per-
formed the best in Fig. 2 and those otherwise in Fig. 3. From Fig. 2,
IMTDE has been able to identify clusters and distinguish overlap-
ping between them very well in datasets with convex-shaped clus-
ters. This is demonstrated in Aggregation (Fig. 2b), Digits (Fig. 2l),
Iris (Fig. 2t), and Seeds (Fig. 2v) that the difference between the
clusters has been well defined. From (Fig. 2h) and (Fig. 2r), despite
the high dispersion of data points in dataset Glass and the high
density of data points in Wine, IMTDE has been able to cluster



Figure 1: Illustration of proposed IMTDE clustering. First, vectors are initialized randomly. Fitness value of all vectors are
then evaluated and global best vector is determined. Using winner-based distributing, vectors are distributed between three
sub-populations randomly. Based on three strategy, trial vectors are produced in each sub-populations. The trial vectors
produced by each strategy are evaluated to updated the population. To maintain the diversity of population and share the
information about the visited areas, inferior solutions are kept in the lifetime archive at each generation. Finally, after reaching
the stop criteria, the global best vector is selected as final clustering result.



(a) Ground Truth of Aggregation (b) IMTDE Results on Aggregation (c) Ground Truth of Banana (d) IMTDE Results on Banana

(e) Ground Truth of Breast cancer (f) IMTDEResults onBreast cancer (g) Ground Truth of Wine (h) IMTDE Results on Wine

(i) Ground Truth of WDBC (j) IMTDE Results on WDBC (k) Ground Truth of Digits (l) IMTDE Results on Digits

(m) Ground Truth of Ecoli (n) IMTDE Results on Ecoli (o) Ground Truth of Flame (p) IMTDE Results on Flame

(q) Ground Truth of Glass (r) IMTDE Results on Glass (s) Ground Truth of Iris (t) IMTDE Results on Iris

(u) Ground Truth of Seeds (v) IMTDE Results on Seeds

Figure 2: T-SNE Biplots of IMTDE clustering on datasets that performed successfully.



(a) Ground Truth of Spiral (b) IMTDE Results on Spiral (c) Ground Truth of Vehicle (d) IMTDE Results on Vehicle

(e) Ground Truth of Sonar (f) IMTDE Results on Sonar (g) Ground Truth of CMC (h) IMTDE Results on CMC

(i) Ground Truth of WOBC (j) IMTDE Results on WOBC (k) Ground Truth of Segment (l) IMTDE Results on Segment

(m) Ground Truth of Dermatology
(n) IMTDE Results on Dermatol-
ogy (o) Ground Truth of Jain (p) IMTDE Results on Jain

Figure 3: T-SNE Biplots of IMTDE clustering on datasets that performed poorly

most data points correctly. This indicates that IMTDE is robust in
the face of high data scatter and density. Moreover, IMTDE has
been shown to work well in dealing with clusters that have a cir-
cular shape in challenging datasets Banana (Fig. 2d), Breast cancer
(Fig. 2f), and WDBC (Fig. 2j). Most of the curved parts of these
datasets are correctly identified by IMTDE. However, IMTDE has
not been able to completely differentiate all the clusters in datasets
such as WOBC (Fig. 3j) and Spiral (Fig. 3b) due to the use of the
euclidean distance metric for clustering.
Fig. 4 shows a comparison of the worst, best, and average accuracy
values between MTDE and IMTDE. The figure indicates IMTDE
produced higher accuracy than MTDE In most datasets, which gave
better outcomes than MTDE. On the one hand, this improvement is
due to control employed on the population distribution over time
that prevents early convergence and creates a balance between
global and local search. On the other hand, in the datasets with

high overlap and complexity, such as Spiral, Flame, Banana, Jain,
and Digits, IMTDE has significantly improved performance MTDE.
It is due to the Gaussian distribution in MTDE to map the origi-
nal non-linear data into a higher-dimensional space in which they
become separable and reduce overlap between data points. Thus,
IMTDE not only performed better than MTDE but also increased
the efficiency of MTDE in detecting non-linear clusters.

Fig. 5 shows the impact of the strategies used on convergence
on dataset Dermatology. Using all three strategies together has
resulted in a good convergence, avoiding local optimum trap, com-
pared to the other combinations, with lowest SSE value at around
iteration 200. The three strategies created appropriate population
distributions for exploration and exploitation, maintaining a good
balance between them.



Table 1: Characteristics of datasets

Datasets Sample Dimensions Clusters Type

Dermatology 366 34 6 Real-World
CMC 1473 9 3 Real-World
Sonar 208 60 2 Artificial

Vehicle 846 18 4 Real-World
Aggregation 788 2 7 Artificial

WDBC 568 30 2 Real-World
Glass 214 9 6 Real-World
Ecoli 335 7 8 Real-World

WOBC 698 10 2 Real-World
Seeds 210 7 3 Real-World

Segment 2310 18 7 Real-World
Wine 178 13 3 Real-World

Breast cancer 569 30 2 Real-World
Spiral 1000 2 2 Artificial

Banana 4811 2 2 Artificial
Flame 240 2 2 Artificial
Jain 373 2 2 Artificial

Digits 1797 64 10 Real-World
Iris 150 4 3 Real-World

Figure 4: Comparison of the performance of IMTDE and
MTDE based on the worst, best, and average accuracy for all
datasets

Fig. 6 to 8 show the best performance based on AC, NMI, and
ARI in all datasets. Table 3 shows the results of methods on datasets
in which they outperformed others. Compared to other algorithms,
IMTDE clustering was superior on ten datasets (CMC, Vehicle, Ag-
gregation, Glass, Ecoli, Seeds, Segment, Iris, Banana, and Flame) in
terms of AC. Based on NMI, IMTDE outperformed the rest on six
datasets; CMC, Glass, Segment, Seeds, and Aggregation and based
on ARI, performed best on eight datasets; CMC, Sonar, Vehicle,
Glass, banana, Aggregation, Seeds, and Segment. IMTDE also out-
performed DE due to the use of multiple strategies for producing
trial vector. IMTDE maintains diverse solutions by using lifetime
archive to keep inferior solutions, allowing the next generations
to use past experiences and information from visited places to find
the optimal solution.
The second best performing algorithm is the Gaussian mixture
model (GMM) (see the purple dot in Fig. 6 to 8 and Table 3). This
algorithm had the best performance in clustering based on all eval-
uation metrics on datasets Dermatology, WDBC, WOBC, Wine and
Breast cancer. Because GMM uses the normal distribution function,

Figure 5: The impact of distribution policy and strategies on
convergence on dataset Dermatology

it had a good performance in identifying and clustering elliptical
shape data [28]. However, GMM uses expectation maximization
(EM) algorithm to find clusters, which is subjected to EM problems
of slow convergence and the local optimum trap when facing data
with overlapping clusters [26]. Thus, it had a poorer performance
than IMTDE. Algorithms Birch, Agglomerate, Optics and DE have
also been able to surpass IMTDE in only one dataset. Other algo-
rithms k-means, Affinity propagation, and Mean-shift had poor
performances compared to others and did not outperform others
in any datasets. Table 2 shows the results of methods on datasets
in which they outperformed others.

Table 2: The algorithms on their best-performing dataset
based on average values of AC, NMI, and ARI. IMTDE out-
performed others on a majority of datasets.

Algorithms AC NMI ARI
Birch Banana 52.37 %

Agglomerate Jain 86.05 % Jain 50.52 % Jain 51.46 %
Optics Spiral 100 % Spiral 100 % Spiral 100 %

PSO Sonar 12.17 %
Banana 46.54 %

DE Sonar 61.53 % Ecoli 74.84 %

HPSOK Digits 79.18 % Digits 74.45 % Flame 60.74 %
Ecoli 69.70 % Digits 65.94 %

GMM

Dermatology 52.18 % Dermatology 39.26 % Dermatology 21.68 %
WDBC 95.07 % Vehicle 24.70 % WDBC 81.12 %
WOBC 92.12 % WDBC 70.55 % WOBC 70.86 %
Wine 84.83 % WOBC 66.49 % Iris 90.38 %

Breast cancer 95.07 % Iris 89.96 % Wine 60.74 %
Wine 58.23 % Breast cancer 81.16 %

Breast cancer 70.61 %

IMTDE

CMC 50.33,% CMC 76.04 % CMC 7.34 %
Vehicle 49.96 % Glass 48.67 % Sonar 5.43 %

Aggregation 97.50 % Aggregation 93.48 % Vehicle 16.76 %
Glass 68.58 % Seeds 76.47 % Glass 32.53 %
Ecoli 85.89 % Segment 56.17 % Banana 50.42 %
Seeds 94.10 % Flame 54.14 % Seeds 76.32 %

Segment 60.89 % Segment 39.53 %
Iris 96.76 % Aggregation 92.10 %

Banana 88.13 %
Flame 90.76 %



Figure 6: Best accuracy results of algorithms on 19 datasets

Figure 7: Best NMI results of algorithms on 19 datasets

Table 3 indicates a significant difference between the proposed
andGMM,MTDE, andDE clusteringmethods using the Kruskal–Wallis
test (p-value). Since the p-value of almost all of the datasets is less
than 0.05 (significance level) with the 95 % confidence intervals for
each median, we reject the null hypothesis, and conclude there is
a significant difference between the proposed method with GMM,
MTDE, and DE. In cases where the p-value is higher than the sig-
nificant level (these cases are specified with★ in Table 3), there is
not enough evidence to reject the null hypothesis.

Figure 8: Best ARI results of algorithms on 19 datasets

Table 3: Comparison of Kruskal-Wallis test (p-value) between
IMTDE and GMM, IMTDE and MTDE, and IMTDE and DE
through 30 independent runs

Datasets IMTDE vs GMM IMTDE vs MTDE IMTDE vs DE

Dermatology 0 0.01596 0.02559
CMC 0 0 0.00011
Sonar 0.63541★ 0.2311★ 0.29386★

Vehicle 0.343★ 0.0057 0.00005
Aggregation 0.00444 0.92932★ 0.00221

WDBC 0 0 0
Glass 0 0.01196 0.00071
Ecoli 0.15491★ 0.00296 0.18824★

WOBC 0 0 0
Seeds 0 0.10707★ 0.00015

Segment 0 0.05277★ 0.01054
Wine 0 0.02658 0.92932 ★

Breast cancer 0 0.01776 0
Spiral 0 0 0

Banana 0 0 0.03711
Flame 0 0 0.59456★
Jain 0 0 0.2675★

Digits 0 0 0.00927
Iris 0 0 0.00004

★ p-value > 0.05: The differences between the medians are not statistically
significant.

5 CONCLUSION AND FUTUREWORK
In this paper, an improved MTDE (IMTDE) is proposed and adapted
to cluster data. IMTDE performance in clustering using time factor
and Gaussian distribution improved by an average of 12 %. Compar-
ing with other algorithms based on AC, NMI, and ARI evaluation,
IMTDE has better clustering and a stronger ability to find the opti-
mal global. Also, it was able to establish a good balance between
exploration and exploitation. The results also showed that IMTDE
has been able to enhance the results of DE due to the benefit of
different search strategies for exploration and exploitation. One
very important task that can improve the performance of IMTDE



clustering is to combine it with the algorithm GMM. This helps to
properly cluster all the data with different shapes. Other possible
tasks are to examine the performance of multi-objective clustering
IMTDE. Automatically finding the optimal number of clusters using
IMTDE clustering is another direction to pursue this work.
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