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Abstract

Learning graphs represented by M-matrices via an l1-regularized Gaussian maximum-likelihood method is a popular approach,

but also one that poses computational challenges for large scale datasets. Recently proposed methods cast this problem as a

constrained optimization variant of precision matrix estimation. In this paper, we build on a state-of-the-art sparse precision

matrix estimation method and introduce two algorithms that learn M-matrices, that can be subsequently used for the estimation

of graph Laplacian matrices. In the first one, we propose an unconstrained method that follows a post processing approach

in order to learn an M-matrix, and in the second one, we implement a constrained approach based on sequential quadratic

programming. We also demonstrate the effectiveness, accuracy, and performance of both algorithms. Our numerical examples

and comparative results with modern open-source packages reveal that the proposed methods can accelerate the learning of

graphs by up to 3 orders of magnitude, while accurately retrieving the latent graphical structure of the data. Furthermore, we

conduct large scale case studies for the clustering of COVID-19 daily cases and the classification of image datasets to highlight

the applicability in real-world scenarios.
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F

1 INTRODUCTION AND RELATED WORK

The representation of data in the form of graphs is a ubiquitous
task in every scientific domain that deals with interacting or inter-
connected data. Graphs are fundamental mathematical entities with
nodes (or vertices) and edges connecting them. The relationship
between two connected nodes is usually captured by the scalar
value of the weight of the edge that links them. In many domains
data is generally available in the form of an unstructured list
of samples or variables, with no available relational information
among them. The construction of the latent graphical structure of
such a dataset often offers an intuitive representation of the data. It
can also result in a dimensionality reduction of the problem through
the utilization of prior knowledge about the underlying graph (e.g.
the level of sparsity or a priori information about the connectivity of
the nodes). Overviews of various recent graph learning approaches
can be found in [1], [2], [3].

Undirected weighted graphs, with edges representing the con-
ditional dependence among the variables, are typically constructed
with a Gaussian graphical modeling (GCM) approach [4]. In this
context, each vertex corresponds to a variable, with edges being
present between the vertices only if the vertices are conditionally
dependent. These dependencies among the data points can be
both positive and negative, and are encoded in a matrix that
represents the graphical structure. The non-zero entries of this
matrix correspond to the dependencies between two variables. This
matrix is the inverse of the covariance matrix, also known as the pre-
cision matrix, which encodes the graphical structure of a Gaussian
Markov random field (GMRF). A common prior imposed on the
estimation of the precision matrix is that the conditional correlations
among the random variables are sparse [5], i.e., there is a limited
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number of conditional correlations between the variables. This
prior corresponds to imposing a degree of sparsity on the estimated
precision matrix. A widely used approach for the estimation of
sparse precision matrices is the `1-regularized maximum likelihood
estimation (MLE), commonly referred to as the “graphical LASSO”
problem [6]. A popular second-order solution method for the
graphical LASSO problem with superlinear convergence is the
QUadratic approximation of Inverse Covariance matrices (QUIC)
algorithm [7]. The Sparse QUIC (SQUIC) algorithm [8] continues
the progress on large-scale, second-order methods by exploiting the
underlying sparse linear algebra operations. In [9], [10] it has been
shown that SQUIC is equivalently accurate and significantly faster
than other state-of-the-art precision matrix estimation routines
(e.g. [11], [12], [13]) in both, synthetic and real-world datasets.

More recently, GCMs under the constraint that all partial
correlations are non-negative have received significant attention.
The problem of finding variables that are only non-negatively
correlated corresponds to enforcing an M -matrix structure on the
precision matrix [14], [15]. Symmetric M -matrices are positive
definite with non-positive off-diagonal elements, i.e. they are part
of the set

SM =
{
Θ ∈ Rp×p|Θij = Θji 6 0 ∀i 6= j, Θ � 0

}
, (1)

where �,< denote positive (semi-)definiteness. Slawski and
Hein [16] estimate matrices from the set (1) with a sign-constrained
log-determinant divergence minimization algorithm without regular-
ization, thus limiting the applicability of their algorithm to smaller
datasets. They also establish that an a-posteriori thresholding of the
off-diagonal entries of the precision matrix successfully retrieves
matrices that encapsulate only the positively correlated variables.
In [17] an algorithm that does not require any tuning parameters
is proposed that estimates only the graphical structure without
the weights. In [18] the optimization problem is solved with an
alternating direction method of multipliers (ADMM) algorithm
with LASSO and adaptive LASSO penalties.
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A tightly connected research direction is concerned with the
estimation of the combinatorial graph Laplacian, a symmetric,
positive semidefinite and weakly diagonally dominant matrix. If
we allow Θ < 0 in (1), then graph Laplacians were part of the
subset of (1) defined as

SL = {Θ ∈ Rp×p|Θij = Θji 6 0 ∀i 6= j;

Θii = −
∑
j:i6=j

Θij , Θ < 0}. (2)

The matrices in the set (2) are singular, with their off-diagonal
entries capturing the weight of the edges of the graph in reversed
sign. Here, the initial work of Lake and Tenenbaum [19] focused in
the estimation of graph Laplacians through the optimization of an
`1-regularized MLE problem by adding a positive constant values
to the diagonal entries of the graph Laplacian to account for its
singularity. In [20], Egilmez et al. build upon previous of their work
in the field [21], and propose an optimization framework for the
estimation of graph Laplacian matrices by introducing new problem
formulations with sign and structural (i.e., connectivity) constraints
and develop tailored algorithms for these problems using again an
`1 regularization term to enforce sparsity in the graph. Similarly,
in [22] the authors convert combinatorial structural constraints
into spectral ones on graph matrices, and develop an optimization
framework based on block majorization-minimization to solve the
graph learning problem. In [23] nonconvex regularization terms are
proposed in order to enforce sparsity in the retrieved matrices.

Additionally, various M -matrix learning algorithms have been
proposed based on the assumption that the graph structure emerges
from a set of smooth signals. The authors in [24] adopted a factor
analysis model and imposed a Gaussian probabilistic prior on the
latent variables that control these signals to obtain a graphical
representation. In [25] the same problem is formulated as a
weighted `1 minimization, and in [26] a scalable variant is proposed
that utilizes approximate nearest neighbors techniques to reduce
the dimensionality of the problem.

Among a plethora of applications, M -matrices in the
sets (1), (2) are commonly used in regularization [27] and clustering
applications [28], [29], and their spectrum is utilized in graph
partitioning tasks [30], [31].

Contributions and outline

The focus of our work is centered around the fact that the learning of
M -matrices belonging to the set (1) via an `1-regularized Gaussian
maximum-likelihood method is currently prohibitive for high
dimensional data. Motivated by the effectiveness of SQUIC [8],
[9], [10] in learning precision matrices of very large dimensions we
introduce hereby two algorithms that learn graphs of non-negatively
correlated random variables. The first one, SQUIC-fit, performs
two consecutive unconstrained precision matrix estimations with
an `1-regularized minimization. It utilizes the positively correlated
variables identified in the first run as graphical bias for the retrieval
of the second precision matrix, which is subsequently thresholded
in order to retrieve the finalM -matrix. The second one, SQUIC-sqp,
is a constrained method that effectively enforces the non-positivity
in the off-diagonal entries of the estimated precision matrix. The
constrained minimization is achieved by means of a sequential
quadratic programming (SQP) algorithm, and the corresponding
projected Karush–Kuhn–Tucker (KKT) system is solved by a
preconditioned conjugate gradient method (PCG).

Extensive numerical experiments are provided for both intro-
duced algorithms. We begin with a performance and accuracy
comparison with several state-of-the-art M -matrix estimation
packages for synthetic datasets with up to 104 random variables.
Then we proceed with a study on the recovery accuracy of SQUIC-
fit and SQUIC-sqp when prior graphical information is available
and incorporated in the optimization procedure. Following the
synthetic tests, we present two didactic case studies where we
highlight the applicability of the introduced algorithms in real-
world datasets. For the first case study we perform the spectral
clustering of p = 3·103 US counties based on the number of daily
COVID-19 cases they reported for a window of 671 days. Finally,
we classify image datasets with up to p = 7·104 dimensions based
on the eigenvectors of the M -matrices estimated by the proposed
algorithms.

The remainder of this paper is organized as follows. In
Section 2, we briefly recap the learning of graphs in the form
of precision and M -matrices when assuming that data samples
are drawn from a GMRF field. In Section 3 we initially present
at a high level the plain SQUIC method for large-scale sparse
precision matrix estimation. We then proceed with introducing the
SQUIC-fit and SQUIC-sqp algorithms for the learning of graphs
in the set (1). In Section 4, we perform numerical experiments on
synthetic datasets and compare with state-of-the-art methods in
order to validate our proposed routines. In Section 5, we present
the case studies on real-world datasets, and finally in Section 6 we
draw conclusions from this work.

Notation
In what follows, we denote scalar quantities with lowercase, vectors
with lowercase bold, sets by uppercase, and matrices with uppercase
bold characters. The (i, j)th entry of a matrix A is symbolized
by Aij and all entries in row i or column j by Ai: and A:j ,
respectively. Sets are denoted by capital calligraphic characters, for
example, A, the identity matrix as I and the vector of all ones as e.

2 GRAPH LEARNING BACKGROUND

A common approach for various graph learning approaches consists
of assuming that the data samples are drawn from a GMRF field.
In subsection 2.1 we describe the problem of estimating precision
matrices from GMRFs. Subsequently, in subsection 2.2 we show
how this optimization procedure can be formulated in order to learn
graph M -matrices in the set (1).

2.1 Sparse precision matrix estimation
The retrieval of the graphical structure of a GMRF model corre-
sponds to the estimation of the precision matrix (inverse covariance
matrix) by means of the MLE problem. The basic assumption on
the given data Y ∈ Rp×n is that one reads its columns as a set
n independently and identically distributed (i.i.d.) samples of a
p-variate Gaussian distribution N (µ∗,Σ∗), where Σ∗ ∈ Rp×p
and µ∗ ∈ Rp are the true covariance matrix and mean, respectively.
Even if the assumption i.i.d. is not fulfilled, determining Σ∗ or
its inverse Θ∗ := (Σ∗)−1 yields sufficient information that
could be used for graph learning purposes. More specifically,
in a setting with non-Gaussian distribution, the estimation of
positive definite precision matrices can be related to the Bregman
divergence regularized optimization problem [32]. The entries Θ∗ij
of the precision matrix describe the conditional dependence of



3

components i, j provided that all other components are fixed and
the associated graph leads to the GMRF. In statistics, the MLE
method is employed to approximate Θ∗. To do so, the negative
log-likelihood objective function

f(Θ) = − log det Θ + tr[SΘ] (3)

is minimized, where S ∈ Rp×p is the sample covariance matrix.
The graph of Θ∗ is essential to describe the GMRF, thus one
reformulates the minimization as a LASSO problem by adding an
additional `1 regularization term. This term enforces sparsity in
the graphical representation of Θ∗ and explains the term graphical
LASSO (GLASSO). Given a sparsity parameter matrix Λ ∈ Rp,p
with Λij > 0, we aim to solve the following convex `1-regularized
negative log-likelihood problem

Θ̂ = argmin
Θ�0

f(Θ) + ‖Λ�Θ‖1, (4)

where � denotes the element-wise Hadamard product and Θ � 0
denotes positive-definiteness. The regularization term can be
expanded as ‖Λ � Θ‖1 =

∑p
i,j=1 Λij |Θij |. Typically, small

entries in Λ result in reduced sparsity in the estimated precision
matrix Θ̂. Besides enforcing sparsity for the computed Θ̂, the
minimization in (4) is also suitable when the number of dimensions
p is significantly larger than the number of samples n, thus
making (4) an appealing problem formulation for large-scale data
science applications.

There is a plethora of methods available for solving (4), see,
e.g. [6], [7], [8], [33], [34], [35] for a selection of them. Recently
some of these methods have gained attraction because of using a
quadratic approximation, briefly outlined hereby, with the purpose
of accelerating convergence.

Let f : Θ→ R be the nonregularized negative log-likelihood
function in (3). Up to a constant, the second-order Taylor expansion
of f around Θ is

f̂(∆) = tr[(S−W)∆] +
1

2
tr[W∆W∆], (5)

where W = Θ−1 denotes the inverse of the computed approxi-
mation Θ. The Newton direction ∆ ∈ Rp×p of the approximate
objective function f̂ can now be written as the solution of the
following problem:

argmin
∆

{
f̂(∆) + ‖Λ� (Θ + ∆)‖1

}
. (6)

The quadratic approximation approach solves (4) as a sequence
of optimization problems of the form (6). Since (6) is an `1-
regularized quadratic convex minimization problem, one can find a
closed form solution if ∆ is restricted to the scalar case with either
one single diagonal entry ∆ii or two single identical off-diagonal
entries ∆ij = ∆ji. A natural solution strategy is a coordinate
descent update where one successively minimizes over all indices
{i, j}. Looking at the subgradient of f(Θ), it suffices to only
consider {i, j} from the free set Ifree, where

Ifree :=
{
{i, j} ∈ I : |Sij −Wij | > Λij or Θij 6= 0

}
, (7)

with the cardinality of the free set Ifree typically expected to be
much less than p2. This way an update matrix ∆ is obtained and
in order to ensure that the next iterate Θ is positive definite and
meets an Armijo-type criterion, we update our current estimate of
the optimizer Θ with α∆ for an appropriate step size α ∈ [0, 1).
For more details we refer the reader to [7] and references therein.

A =


0 A12 0 A14

A12 0 A23 A24

0 A23 0 A34

A14 A24 A34 0

 ,

Tii =


∑
j A1j∑
j A2j∑
j A3j∑
j A4j

 , L = T−A.

Fig. 1: A simple, undirected, and connected graph G(V,E,A) with 4 vertices
and 5 edges, with its weighted adjacency A, degree T, and combinatorial graph
Laplacian L matrices.

Alternatively to optimizing f(Θ) by a sequence of quadratic
problems such as (6), some methods directly substitute f(Θ) by a
single quadratic loss surrogate function, which is then required to
be minimized. Among these methods are, e.g. [11], [36].

2.2 Sparse M -matrix estimation

M -matrices in the set (1) can be considered as precision matrices
Θ whose partial correlations −Θij/

√
ΘiiΘjj , i 6= j are all non-

negative [14]. The GMRF corresponding to a precision matrix of
that form is referred to as attractive [37]. The constrained GLASSO
estimator is defined as

Θ̂ = argmin
Θ∈SM

f(Θ) + ‖Λ�Θ‖1. (8)

The off-diagonal elements of Θ̂ are now constrained to non-
positive values Θ̂ij ≤ 0 and correspond to the weights of the
resulting graph of the GMRF. In subsection 3.3 we describe how (8)
can be approximated by a sequence of quadratic and differentiable
functions with linear inequality constraints.

Connection to graph Laplacians

The combinatorial graph Laplacian L ∈ Rp×p is a symmetric
positive semidefinite matrix in the set (2) with off-diagonal
elements non-positive, thus it is considered as (singular) M -
matrix. The constant vector of ones e is in its nullspace, i.e.
L · e = 0, because the row and column sums of L are zero, i.e.
Lii +

∑
i 6=j Lij = 0. A very important property of the spectrum

of L is that the multiplicity of the zero eigenvalue corresponds to
the number of connected components k of the graph [30]. This also
implies that the Laplacian matrix is singular, with rank p− k > 0.
Note that L encodes an improper GMRF (IGMRF) [22], [38] of
rank p− k, as opposed to Θ in (8) which is of full rank.

An undirected weighted graph G(V,E,A), as illustrated in
Figure 1, is defined by its node set V = {1, 2, · · · , p} representing
the data points, and the similarity between the edges E which is
encoded in the elements of the weighted adjacency matrix A ∈
Rp×p. Its combinatorial graph Laplacian L can be understood in
terms of the weighted adjacency matrix A, that encodes the weights
Aij ≥ 0 of the edges, and the diagonal degree matrix T ∈ Rp×p,
which captures the degree of each node Tii =

∑p
j=1 Aij , as

L = T − A. The positive entries of A, or equivalently the
negative off-diagonal entries of L, represent the edge weights of a
graph, while zero entries Aij = 0, i 6= j, imply that there is no
connection between nodes i and j.
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Different variants of graph Laplacian matrices have also
been extensively studied. The normalized symmetric Lsym =
T−1/2LT−1/2 and random walk Lrw = T−1L Laplacians [39]
are both scaled by the degree of the edges and have been
successfully used for clustering tasks [28], [40], [29]. Additionally,
nonlinear reformulations of the graph Laplacian from the traditional
2-norm to the p-norm for p ∈ (1, 2] have proven to lead to a sharp
approximation of balanced cut metrics and improved clustering
assignments [41], [42], [43].

All abovementioned graph Laplacian variants can be con-
structed after obtaining the weights of the graph’s edges, encoded
in the adjacency matrix A. In what follows we estimate non-
negatively correlated variables in the form of an M -matrix Θ̂ from
an optimization problem of the form (8), and then set A = −Θ̂.
The appropriate type of graph Laplacian is subsequently built
according to the application at hand.

3 ESTIMATING M -MATRICES WITH SQUIC
In this section we present two algorithms developed for the MLE
of M -matrices emerging from high dimensional datasets. Our
contributions build on top of the existing SQUIC library for large
scale precision matrix estimation, thus we begin in 3.1 with a
short overview of the method [8], [9] and its latest development as
demonstrated in [10]. In 3.2 we present the SQUIC-fit algorithm,
an unconstrained approach to M -matrix estimation based on two
consecutive `1-regularized optimization problems. Then, in 3.3
we introduce SQUIC-sqp, a constrained sequential quadratic
programming approach for the solution of problems of the form (8).

3.1 MLE for large dimensions
The SQUIC algorithm extends the original QUIC algorithm [7]
for large-scale applications and is effective for problems that
exhibit a high degree of sparsity in both Θ and the intermediary
computations. The critical components of the MLE method based
on quadratic approximations can be summarized in five tasks,
namely

1) efficient data structures for the matrices S,Θ,W and ∆,
2) computation of the sparse sample covariance matrix S,
3) Cholesky decomposition of Θ to check its positive definite-

ness and to compute log det Θ,
4) computation of the inverse of the computed approximation

W ≈ Θ−1,
5) efficiently solving the quadratic approximation problem (6).

The SQUIC method addresses these challenges by using com-
pressed sparse column storage, which is common when working
with sparse matrices, and by replacing several dense matrix
operations by state-of-the-art sparse matrix computations. Though
the sample covariance matrix S is approximated as being sparse,
the computation is dense due to the undetermined sparsity pattern.
Initially, the off-diagonal values |Sij | < Λij are discarded. During
the overall iteration, any values of S which have not been computed
yet and which have a corresponding nonzero entry in W are
computed on the fly. The kernel operation in computing the matrix
S is matrix-matrix multiplication, which is highly parallelizable.

To efficiently compute the Cholesky decomposition, SQUIC
uses the algorithm CHOLMOD [44] which is part of the SuiteS-
parse Matrix Collection.1 CHOLMOD is based on the supernodal
approach, which successively detects dense block structures during

1. https://sparse.tamu.edu/

the factorization and produces a matrix in a hybrid format. In
this format, several consecutive columns with the same nonzero
pattern are treated as one dense block. These dense blocks can
be efficiently handled with high-performance libraries such as the
Intel(R) Math Kernel Library (MKL). For details we refer to [45].
Once the Cholesky decomposition of Θ is successfully computed,
log det Θ can be easily obtained as a by-product.

The Cholesky decomposition returns a block-structured trian-
gular factorization Θ = PBDB>P>, where P is a suitably
chosen permutation matrix in order to reduce the fill-in for the
factorization, B is block lower triangular with unit diagonal and
D is block diagonal. This factorization can be employed to approx-
imately compute W ≈ Θ−1 via W ≈ P(Binv)>D−1BinvP>.
Here Binv is approximated by a Neumann series applied to
B−1 = (I − E)−1, with −E being the strictly lower triangular
part of B and with entries of small magnitude being dropped.
Similarly, the final product (Binv)>D−1Binv also drops entries
of small magnitude. We note that the computation of Binv as well
as the final product P(Binv)>D−1BinvP> are also efficiently
parallelized in SQUIC. The convergence of the algorithm is
determined by measuring that the relative difference between the
objective function at the updated Θ and the previous Θprev is
below a threshold τ , i.e. ‖f(Θprev)−f(Θ)‖

f(Θprev)
< τ.

The quadratic optimization problem (6) also uses block struc-
tures which leads to block coordinate descent updates by efficiently
recycling as many information as possible from previous descent
steps. We are not going into the details of this approach and kindly
refer the reader to [10].

3.2 A post-processing approach for M -matrix estima-
tion

The first learning algorithm of M -matrices in the set (1) that
we present hereby can be considered as an unconstrained `1-
regularized technique. In SQUIC-fit we do not enforce additional
sign constraints in the estimation of the precision matrix, but instead
follow a post processing approach coupled with the utilization of a
matrix sparsity parameter in order to obtain the graphical structure
of non-negatively correlated variables. Our approach consists of

two consecutive estimations of precision matrices Θ̂
(1)
, Θ̂

(2)
that

are solutions of a problem of the form (4). The first precision matrix

Θ̂
(1)

is computed with the aid of a scalar regularization parameter
λ, and is utilized in order to estimate the binary graphical structure
of the non-negatively correlated variables in the data Y ∈ Rp×n

under question. The second precision matrix Θ̂
(2)

is estimated with
a matrix sparsity parameter Λ that encodes this graphical structure.
Finally, the M -matrix in the set (1) is extracted by post-processing

the entries of Θ̂
(2)

.
An outline of the algorithmic scheme for SQUIC-fit is presented

in Algorithm 1. In step 1 we aim to solve the `1-regularized
negative log-likelihood problem, that is,

Θ̂
(1)

= argmin
Θ�0

{
− log det Θ + tr[SΘ] + λ‖Θ‖1

}
, (9)

The scalar tuning parameter λ is set such that the resulting graph
is sparse, and its values usually adjust the regularization according
to the number of variables p and the number of features n. Then in

https://sparse.tamu.edu/
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Algorithm 1 SQUIC-fit

input data Y, tuning parameters λ, η, thresholds κ, τ

1: estimate : Θ̂
(1)

// acc. (9)
2: Build graphical bias G // acc. (10)
3: Build matrix regularization parameter Λ // acc. (12)

4: estimate : Θ̂
(2)

// acc. (11)
5: Build M -matrix Θ̂ // acc. (13)

output Θ̂

step 2 we estimate the structure of the negative off-diagonal entries

of Θ̂
(1)

as

Gij =

0, if i = j,

I

(
−Θ̂

(1)

ij > κ

)
, if i 6= j.

(10)

The thresholding parameter κ > 0 is chosen sufficiently small so

that all negative off-diagonal elements in Θ̂
(1)

ij are detected. These
values correspond to an attractive GMRF, and capture the notion
of positive correlation between two nodes (variables) i, j of the
graph.

In steps 3–4 we subsequently utilize the graphical structure of
G ∈ Rp×p in the composition of the matrix tuning parameter Λ
for solving

Θ̂
(2)

= argmin
Θ�0

{
− log det Θ + tr[SΘ] + ‖Λ�Θ‖1

}
. (11)

The matrix sparsity parameter is composed as

Λij =

{
η for Gij 6= 0,
λ for Gij = 0.

(12)

where η < λ ∈ R, thus the regularization matrix Λ effectively
uses the sparsity pattern of G as a graphical bias in the estimation

of the structure of Θ̂
(2)

. The final step 5 of SQUIC-fit involves
a post-processing procedure to construct the M -matrix from the

entries of Θ̂
(2)

. The final matrix Θ̂ is formed by selecting the
structure and the weights of the non-positive off-diagonal entries

of the estimated precision matrix Θ̂
(2)

as

Θ̂ij =

{
0, if i = j,

I
(
−Θ̂

(2)
ij > κ

)
Θ̂

(2)
ij , if i 6= j.

(13)

In both steps 1 and 4 the SQUIC algorithm is executed up to a
convergence tolerance τ .

Incorporating available connectivity information for the graphi-
cal structure of non-negatively correlated variables in the data Y is
also possible in the Algorithm 1. In this case the structure of G is
part of the input, and the algorithm is reduced to steps 3–5.

3.3 An SQP approach for M -matrix estimation
The second learning algorithm that we introduce, SQUIC-sqp, is
a constrained approach for the estimation of M -matrices based
on sequential quadratic programming. The minimization of the
`1-regularized log-likelihood problem in (4) restricted to the set
SM in (1) can be reformulated as the constrained minimization
problem

minimize
Θ�0

{f(Θ) + ‖Λ�Θ‖1} , (14a)

subject to Θij 6 0 for all i 6= j. (14b)

In order to approximate (14) locally, we employ again the second-
order Taylor expansion of f around Θ as in (5). According to
Ifree in (7), problem (14) is restricted to entries Θij which are
potentially nonzero and for this reason they can be assumed to have
either positive sign (i = j) or negative sign (i 6= j). Thus the local
regularized quadratic objective function can be rewritten as

q(∆) = tr[(S−W)∆] +
1

2
tr[W∆W∆]

+
∑
i

Λii(Θii + ∆ii)−
∑
i 6=j

Λij(Θij + ∆ij). (15)

Similarly to SQUIC-fit, prior knowledge on the latent graphical
structure can be incorporated in the objective function through
a matrix sparsity parameter of the form (12). The constrained
M -matrix estimation problem (14) is substituted by

Θ̂ = argmin
∆

q(∆) (16a)

subject to Θij + ∆ij 6 0 for all i 6= j. (16b)

Now the local approximate function (15) is quadratic and dif-
ferentiable with linear inequality constraints (16b). Therefore it
can be easily solved by sequential quadratic programming [46],
[47]. The SQP method distinguishes successively between active
constraints (which refer to ∆ij such that ∆ij ≈ −Θij) and
inactive constraints (i.e. ∆ij � −Θij). The gradient of the
quadratic function q(∆) in (15) reads

∇q(∆) = W∆W + S−W + Λ� (2I− ee>). (17)

Since (16b) corresponds to box constraints, the KKT system for the
unconstrained variables can be solved using a straight projection,
i.e., systems (16) and (17) are restricted to the diagonal entries
∆ii (which are always unconstrained) and the inactive off-diagonal
entries ∆ij , whereas for active constraints, the entries ∆ij enter as
inhomogeneity. We denote the affiliated index subsets of Ifree by
Iu for the unconstrained indices and by Ic for the active constraints.
The minimization problem is therefore reduced to solving the
projected system ∇q(∆) = 0 restricted to Iu. Note that the
matrix associated with the term W∆W in (17) is equivalent to
W ⊗W, where ⊗ refers to the Kronecker product (i.e. the size
of the resulting matrix is squared compared with W). Since W is
positive definite, so is W⊗W. This requires solving systems with
the submatrix of W ⊗W belonging to the unconstrained indices
{i, j} ∈ Iu. With respect to the linear system ∇q(∆) = 0, the
sought matrix ∆ ∈ Rp×p is treated as a vector in a subspace
of Rp

2

defined via Iu. Because of the shear size of this system,
even when projected to the set of unconstrained variables, the only
viable option is to use an iterative method. In our case we use
the preconditioned conjugate gradient (PCG) method [47], [48]
with diagonal preconditioning, implemented in a parallel fashion. It
should be noted that the vectors used in the PCG method are sparse
symmetric matrices stored in compressed column storage format,
and as a result, the data is naturally partitioned. The parallelization
is then performed along the set of columns of the underlying
matrices. As an example consider tr[XY] of two sparse symmetric
matrices which takes over the role of the scalar product of two
vectors. To do so, perform scalar products of the columns of
X and Y in parallel and finally accumulate these independent
scalar products to a single number. The SQP method successively
evaluates the computed ∆ij , checks the constraints, activates and
de-activates constraints until eventually the solution is computed.
We sketch the SQP part in Algorithm 2.
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Algorithm 2 SQP-loop of SQUIC-sqp

input objective function g(∆) from (15)
1: Θold ← Θ
2: while not satisfied do
3: Compute set Iu ⊂ Ifree of inactive constraints and

diagonal indices
4: Ic ← Ifree \ Iu, ∆← 0
5: Call PCG with diagonal preconditioning for solving

∇g(∆) = 0 from (17) restricted to variables associated
with Iu as unknowns and Ic as constants

6: if ∆ ≈ 0 and there is no further descent direction then
7: break
8: else if ∆ ≈ 0 but there exists a further descent direction

then
9: de-activate a promising constraint and update Iu, Ic

10: else
11: Compute ν ∈ (0, 1] such that Θij + ν∆ij 6 0 for all

{i, j} ∈ Iu, i 6= j
12: Θ← Θ + ν∆
13: end if
14: end while
15: ∆← Θ−Θold

output ∆

Due to the simplicity of box constraints in (16b), the Lagrangian
multiplier Mij of the augmented system g(∆)+

∑
i 6=j Mij(Θij+

∆ij) is easily obtained as M = −∇g(∆) for all {i, j} ∈ Ic. If
there exist negative components in M, then there must be further
descent directions and the index pair {i, j} associated with the most
negative entry of M is a promising candidate to be de-activated.
We do not go into further details of the SQP method but kindly refer
to the literature [46]. In what follows we denote the SQP-based
variant of SQUIC as SQUIC-sqp.

4 ANALYSIS AND VALIDATION ON SYNTHETIC DATA

In this section, we present experimental results on synthetic data
for an extensive evaluation of the accuracy and efficacy of the
proposed M -matrix estimation routines SQUIC-fit, as outlined in
Section 3.2, and SQUIC-sqp as summarized in Section 3.3. We will
compare our methods against the following state-of-the-art graph
learning packages:2

1) Combinatorial Graph Laplacian (CGL) [20]: Graph Laplacian
estimation via an iterative block-coordinate descent algorithm.
The authors here decompose the original problem into a series
of lower-dimensional subproblems. We use a cycle of 100
row/column updates for the minimization of the objective
function.

2) Structured Graph Learning (SGL) [22]: The graph Laplacian
is estimated by converting combinatorial structural constraints
into spectral constraints, and the resulting optimization prob-
lem is solved with an algorithm based on quadratic methods.
The parameter controlling the quadratic approximation term
is set at β = 20, as suggested by the authors.

The following subsection 4.1 summarizes our experimental
setup, and then 4.2 is devoted in a comparison of the accuracy

2. The CGL code is available at: https://github.com/STAC-
USC/Graph Learning. The code for SGL is available as an R package
at: https://cran.r-project.org/web/packages/spectralGraphTopology/index.html.

of the methods under consideration. Then in subsection 4.3 we
present timing comparisons between the methods for datasets of
an increasing size. Last, in subsection 4.4, we shift our attention to
the way incorporating prior knowledge of the graphical structure
of a dataset influences the accuracy of the M -matrix retrieval.

4.1 Experimental setup
Since both external algorithms directly estimate the combinatorial
graph Laplacian in the set (2), we compare the accuracy of our
proposed methods by estimating theM -matrix Θ̂ and then building
the combinatorial graph Laplacian as

L̂ij =

{
Θ̂ij , for all i 6= j

−
∑p
r:r 6=i Θ̂ir, for all i = j

(18)

The accuracy in the estimation of L̂ is measured in terms of F-score
and relative error (RE). The F-score is defined as

F-score = 2 · precision · recall
precision + recall

, (19)

where precision is defined as precision = TP/(TP + FP ) and
recall as recall = TP/(TP + FN). TP stands for true positive
entries, i.e. actual edges that are detected by the algorithm; FP
corresponds to the false positives, i.e. edges that are falsely detected,
and FN stands for the edges that the algorithm failed to detect. A
score of F = 1 suggests that the matrix has been fully recovered,
while smaller values of F suggest worse recovery success. The
relative error is defined as

RE =
‖L̂− Ltrue‖F
‖Ltrue‖F

, (20)

where L̂ is the estimated matrix and Ltrue the true reference graph
Laplacian matrix.

We base our results on two synthetic datasets generated from
Gaussian distributions with a mean of zero and the following types
of predefined graphical structures:

• A grid graph structure denoted as G(p)grid, where p is the number
of nodes. Each node is connected to its four nearest neighbors
(except the nodes at the boundaries).

• A random structured matrix denoted as G(p)clust representing a
graphical structure of p/100 balanced clusters with an average
node degree of 20 and with 90% of the edges contained within
the clusters [49].

Edge weights are then randomly selected based on a uniform distri-
bution from the interval [0.1, 3]. From these structures we generate
an IGMRF model parametrized by the true graph Laplacian Ltrue.
From this IGMRF model n samples are drawn from the degenerate
zero-mean multivariate Gaussian distribution xi ∼ N

(
0,L†true

)
,

where L†true is the Moore-Penrose pseudoinverse of Ltrue. The
sample covariance matrix Σ is computed as

Σ =
1

n

n∑
i=1

(xi − x̄i) (x̄i − xi)
T
, with x̄i =

1

n

n∑
i=1

xi.

(21)
We follow the approach of [50] and define the regularization
parameter as

λ = c ·
√

log (p)/n, (22)

where the scaling term
√

log (p)/n adjusts the regularization
according to p and n, and c ∈ R is based on experimental results.

https://github.com/STAC-USC/Graph_Learning
https://github.com/STAC-USC/Graph_Learning
https://cran.r-project.org/web/packages/spectralGraphTopology/index.html
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(a) (b) (c) (d)

Fig. 2: Accuracy comparisons between the different combinatorial graph Laplacian estimation methods measured in terms of F-score (19) and relative error (20).
a) F-scores for the lattice grid graph G(64)grid . b) F-scores for the random clusters graph G(60)clust. c) RE for the lattice grid graph G(64)grid . d) RE for the random clusters

graph G(60)clust.

The convergence tolerance for all the methods is set to τ = 10−4,
the threshold parameter for SQUIC-fit to κ = 0, and all the results
reported hereby correspond to their mean value after 10 runs.

4.2 Accuracy estimation
Our first round of numerical experiments is designed to evaluate
and compare the accuracy of the two proposed algorithms in the
retrieval of the synthetic combinatorial graph Laplacian matrices
emerging from the graphical structure of G(64)grid and G(60)clust.

We generate 10 instances of each synthetic graph, and
present in Figure 2 the mean accuracy results in terms of F-
score (19) and the associated RE (20). The performance of
the algorithms is compared for different ratios of sample sizes
n/p = {0.1, 0.25, 0.5, 1, 5, 10, 25, 50, 100}. The parameter c in
(22) is selected independently at each level for each method, and
corresponds to the one that maximizes the F-score. Additionally,
for SQUIC-fit we set in (12) η = λ/10.

For the lattice grid graphs (Figures 2a, 2c) SQUIC-fit achieves
very high F-scores and low RE for higher sampling ratios n/p > 1,
while still remaining competitive in the low sampling regimes
n/p ≤ 1 in terms of F-score. The accuracy of our post processing
approach is similar to that of SGL both in terms of F-score and
RE. For low sampling ratios n/p ≤ 1 SQUIC-sqp reports the best
F-scores and RE, as exploiting M -matrix constraints satisfies the
model assumptions of attractive GMRFs. For the random clusters
graphs (Figures 2b, 2d) SQUIC-fit achieves the highest F-scores for
sampling ratios n/p > 1, with the RE reported being comparable
with that of SGL. Our constrained approach SQUIC-sqp reports
here similar F-score and RE with CGL for all sampling regimes.

4.3 Timing comparisons
We proceed with a comparison of the runtimes of the methods
under question when learning M -matrices. To this end, we
consider a sequence of 6 true combinatorial graph Laplacian
matrices Ltrue of increasing size. In particular, for the lat-
tice grid graph G(p)grid we consider graphs of dimension p =
{16, 64, 256, 1024, 4096, 16384} and for the random clusters
graph G(p)clust of p = {100, 200, 1000, 2000, 5000, 10000}. The
number of samples is fixed in both cases at n = 500 and the
parameter c in (22) is set for each method such that the best
solution in terms of F-score is reported at each p level. We report
these timing results in Figure 3.

The timing results for CGL and SGL are excluded if the
runtimes exceed 104 seconds. For the lattice grid graph (Figure 3a)

(a) (b)

Fig. 3: Timing comparisons between the different graph Laplacian estimation
methods when learning Θ̂ from synthetic graphs with an increasing number
of p. a) Results for the lattice grid graph G(p)grid with p ∈ {16, . . . , 16384}. b)

Results for the random clusters graph G(p)clust with p ∈ {100, . . . , 10000}.

SGL exceeds this time limit for p ≥ 4096 and CGL for p = 16384.
For the random clusters graph (Figure 3b) the time limit is exceeded
by SGL at p ≥ 5000 and by CGL at p = 104. In Figure 3 we
additionally observe that SQUIC-fit outperforms all competing
algorithms across all dimensions for both graphical structures. This
is an expected behaviour, as SQUIC-fit is the only unconstrained
method included in the comparisons. SQUIC-sqp is outperformed
by CGL only in the lattice grid experiments for the low dimensional
cases p ≤ 64. In all experiments both SQUIC variants are up to 3
orders of magnitude faster that the competing methods for p ≥ 256.

4.4 Incorporating graphical bias
In this unit test we study the recovery accuracy of the two intro-
duced SQUIC algorithms when using prior graphical knowledge in
the estimation of the sparse M -matrix Θ̂. The graphical structure
of the bias G is defined as a corrupted version of the structure of
the true graph Laplacian matrix Ltrue. We control the degree of
this corruption with a random symmetric sparse matrix Z ∈ Rp×p
with δ · |Ltrue|/p number of nonzeros per row. The structure of G
is then defined as

Gij =

{
0, if i = j,

I
(
Ltrue
ij > 0

)
+ I (Zij > 0) , if i 6= j.

(23)

Notice that for δ = 0 we retrieve the exact structure of Ltrue,
while for an increasing δ > 0 the structure of G has an increasing
number of noisy entries. Then the matrix tuning parameter is
composed in similar fashion to (12) as
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(a) (b)

Fig. 4: Studying the effect that incorporating the structure of G in the matrix
tuning parameter Λ has on the retrieval accuracy of L̂. a) Results for the lattice
grid graph G(1024)grid . b) Results for the random clusters graph G(1000)clust . We use
n = 500 samples in both cases.

Λij =

{
λopt/b for Gij 6= 0,
b · λopt for Gij = 0,

(24)

with λopt being the scalar regularization parameter resulting in the
highest F-score, and b ∈ R a scalar parameter controlling the effect
of the matrix bias on the regularization. Larger values of b in (24)
result in the matrix bias G being more strictly enforced. We select
b = 2 for a moderate influence of G on the estimated L̂.

We consider two true graph Laplacian matrices emerging from
the graphical structure of G1024grid and G1000clust with n = 500 number
of samples. In Figure 4 we present the effect that an increasing
noise factor δ = {0, 1, . . . , 70} has on the retrieval accuracy of
both SQUIC-fit and SQUIC-sqp in terms of F-score, and compare it
with the retrieval accuracy achieved by the algorithms when using
a scalar regularization parameter λ with no graphical bias. Note
that the corruption matrix Z has no effect on the retrieval accuracy
when using a scalar regularization parameter, as no graphical bias
is utilized in the composition of the matrix penalty term Λ.

The best F-scores achieved at the optimal scalar λopt are
represented with the horizontal dashed lines. The performance of
the SQUIC algorithms when taking into account a noisy graphical
bias G in the matrix sparsity parameter Λ (solid lines) greatly
outperforms the scalar counterparts. In particular, for the lattice
grid graph G(1024)grid (Figure 4a) utilizing the graphical structure
with SQUIC-fit improves the achieved F-score of 0.49 for noise
factors of δ ≤ 35. For SQUIC-sqp improvements over the baseline
of F− score = 0.46 are observed for δ ≤ 40. For the random
clusters graph G(1000)clust (Figure 4b) the baseline of SQUIC-fit is
F− score = 0.59, and is improved for δ ≤ 30, while for SQUIC-
sqp the best F-score of 0.56 is improved when considering a
graphical bias with δ ≤ 45.

5 EXPERIMENTS WITH REAL-WORLD DATA

In this section, we illustrate the applicability and efficiency of
SQUIC-sqp and SQUIC-fit in the estimation of sparse M -matrices
emerging from real-world problems. In subsection 5.1 we identify
the largest connected components of a graph emerging from the
COVID-19 daily cases in the USA, and perform spectral clustering
with the M -Matrix of the largest component. Subsequently, in
subsection 5.2 we classify image datasets of up to p = 7 ·104

dimensions based on the eigenvectors of the estimated M -matrices.

5.1 Clustering of COVID-19 daily cases
We consider the publicly available 3 data for the US confirmed
daily cases, reported at the county level [51]. We emphasize that the
case study presented here is intended to highlight the capabilities of
the proposed algorithms and not propose any course of COVID-19
related actions.

The dataset under consideration consists of p = 3342 counties
and reports the number of daily COVID-19 cases C for n = 671
days for the time window 22 January 2020 to 23 November 2021.
Counties with a total number of cases

∑
n C < 100 are discarded,

resulting in p = 3209, and these cases are normalized by the
number of residents per county 4 in order to obtain information on
the infection rate per capita.

Subsequently, the M -matrix Θ̂ of the positively correlated
counties is constructed with SQUIC-fit in 72 seconds and in 211
seconds with SQUIC-sqp, and the largest connected components of
the resulting graphical structure are identified. For the SQUIC-sqp
variant we use a scalar regularization parameter of λ = 0.7, and
for the SQUIC-fit algorithm we set in (9) λ = 0.7 and in (12)
η = 2λ/3. The matrices retrieved from both algorithms are almost
identical, thus in what follows we report the results obtained with
SQUIC-fit.

We illustrate in Figure 5 the six largest connected components
of Θ̂. The largest component (Figure 5a) includes 1774 counties
from the entire USA, the second one (Figure 5b) captures 165
counties from the states of Oklahoma and Iowa, the third one
(Figure 5c) 113 counties from Missouri, the fourth one (Figure 5d)
81 counties from Michigan, the fifth one (Figure 5e) 79 counties
from Nebraska, and the sixth largest connected component of Θ̂
(Figure 5f) includes 66 counties from the state of Florida. The clear
geographic partition of the components 2 − 6 demonstrates that
SQUIC-fit successfully captures the positively correlated variables
of the dataset.

We proceed with an analysis of the clusters present in the largest
connected component of Θ̂. This component is denoted as Θ̂a,
and is used to build the random-walk normalized graph Laplacian
L̂rw = T−1L̂, where L̂ is defined as in (18) and T is the diagonal
degree matrix satisfying Tii = L̂ii for all i. After computing the
eigenvalues λk of L̂rw the number of natural clusters present in
the dataset is estimated with the relative eigengap

γk =
λk+1 − λk

λk
, k > 2. (25)

A high value of γk indicates that Θ̂a admits a natural decomposi-
tion into at least k clusters [52]. In order to obtain discrete partitions,
the eigenvectors corresponding to the k smallest eigenvalues of
L̂rw are clustered with the k-means algorithm with 20 orthogonal
and 10 random initializations [53].

We present the clustering results using Θ̂a in Figure 6.
According to the relative eigengap, 8 distinct clusters are present in
the subgraph. The locations of the counties present at each cluster
are illustrated in Figure 6a, and the cardinality of the respective
clusters is presented in Figure 6b. The largest cluster (black)
captures 734 counties located mostly in the south and mideast

3. The COVID-19 Data Repository is provided by the Center for Sys-
tems Science and Engineering (CSSE) at Johns Hopkins University at htt
ps://github.com/CSSEGISandData/COVID-19. Puerto Rico municipalities are
included.

4. Demographic information of the USA at the county level is avail-
able at https://www.census.gov/data/datasets/time-series/demo/popest/2010s-
counties-total.html.

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html
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(a) (b) (c)

(d) (e) (f)

Fig. 5: Visualizing the US counties corresponding to the six largest connected components of the estimated Θ̂ with p = 3209 dimensions. The number of
COVID-19 daily instances is represented by the n = 671 available samples. The six components are illustrated in a – f in descending order according to their size.

states of Georgia, South and North Carolina, Virgina, Tenessee,
Kentucky, and the northwest states of Washington and Oregon and
Alaska. The second largest cluster (orange) includes 279 counties
in the northeast states of West Virginia, Pennsylvania, New York,
Maine, Delaware, the District of Columbia, the southwest state
of California and Hawaii. The third largest cluster (cyan) has 214
counties mostly located in the neighboring states of North and
South Dakota, Minnesota and Wisconsin. The fourth cluster in size
(dark blue) is comprised of 211 nodes in the states of Massachusetts,
Ohio and Indiana. The fifth cluster (light blue) includes 169 nodes
mostly located in Illinois, Utah, Colorado and New Mexico. The
sixth (green) captures 101 counties of Arkansas and Alabama,
the seventh (red) 56 counties of Louisiana and finally the eighth
(purple) 10 counties of New Hampshire. The clear geographical
patterns present in the clusters indicate that the M -matrix Θ̂a

estimated by SQUIC-fit accurately captures the latent graphical
structure of the dataset, and that the resulting eigenvectors of L̂rw

are well suited for spectral clustering tasks.

5.2 Image classification

In this case study we demonstrate the applicability of the introduced
algorithms in the estimation of M -matrices emerging from image
applications. We study the problem of classifying facial images
and handwritten characters according to their labels by applying
a spectral clustering routine on the eigenvectors of the estimated
random walk Laplacian L̂rw. Classification accuracy is measured
in terms of the unsupervised clustering accuracy (ACC ∈ [0, 1]),
and the normalized mutual information (NMI ∈ [0, 1]) [54]. For
both classification metrics a value of 1 suggests a perfect grouping
of the nodes according to the true labels. We consider the following
publicly available datasets

(a)

(b)

Fig. 6: Spectral clustering of the largest connected component of Θ̂ a)
Geographical locations of the nodes belonging to each cluster. b) Cardinality of
each cluster. (Best viewed in color.)
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• YaleA [55]: A collection of p = 165 grayscale images of 15
individuals at resolution n = 64 × 64 pixels. There are 11
images per subject, one per different facial expression.

• Olivetti [56]: A set of 10 different facial images of 40 distinct
subjects, resulting p = 400 instances at resolution 64 ×
64 pixels, taken at different times, varying lighting, facial
expressions and facial details.

• USPS [57]: A balanced set of p = 11000 images of 10
distinct handwritten digits with n = 16× 16 pixels.

• KMNIST [58]: The entire Kuzushiji-MNIST balanced dataset
with p = 70000 images of 10 modern Japanese hiragana
characters at resolution n = 28× 28.

The high dimensionality p of these datasets renders them
computationally unfavorable for the CGL [?] and SGL [22]
methods, thus here we compare our proposed algorithms against
the traditional approach of building adjacency matrices A. This
approach consists of initially creating the connectivity matrix
G ∈ Rp×p from a k-nearest neighbors routine, with the number
of nearest neighbors (NN) set such that the resulting graph is
connected. For these datasets the number of nearest neighbors
needed for a connected graph is NN = 12 for YaleA and Olivetti
and NN = 11 for both USPS and KMNIST. Subsequently,
the similarity matrix H ∈ Rp×p between the data points is
defined similarly to [59] as Hij = max{Hi(j),Hj(i)} with
Hi(j) = exp

(
−4
‖yi−yj‖2

σ2
i

)
, with σi standing for the Euclidean

distance between the i-th data point and its k-th nearest neighbor.
The adjacency matrix A is then created as

A = G�H. (26)

We utilize the kNN connectivity matrix G as graphical bias for
SQUIC-fit and SQUIC-sqp and find the optimal scalar tuning
parameter λ = λopt for each case. The matrix tuning parameter
Λ in (12) is then set with η = λopt/

√
p for both SQUIC-fit and

SQUIC-sqp. Our strategy is thus penalizing the graphical bias G
with a decreasing rate for an increasing number of dimensions
p. The goal is to obtain within a reasonable amount of time
graphical representations of the datasets that are sparser than G and
more accurate, and which will therefore lead to an increase in the
classification accuracy metrics after applying a spectral clustering
routine. Sparsity in the graph is measured in term of edge density,
defined as ε = |E|/(|V | ∗ (|V | − 1)), which is a ratio reflecting
how close the graph is to a complete graph, with ε = 1 for a
complete graph.

The M -matrices of the 4 datasets under consideration are
retrieved in t = 0.9, 6.7, 46.3 and 1255.6 seconds with SQUIC-
fit, and in t = 2.4, 3.6, 31.5 and 2024 seconds with SQUIC-sqp
respectively. We summarize the rest of our results in Table 1. For
each dataset we report the edge density, the ACC and the NMI
achieved by the best method, and the percentage the remaining
methods are inferior to that value. Inferiority in percentage values
is defined as I = 100 · γ · (eref − ebest) /ebest, where ebest is the
best value, eref the value it is compared against, and γ = −1 for
minimization scenarios (ε) and γ = 1 for maximization ones (ACC,
NMI). Both SQUIC-fit and SQUIC-sqp improve the classification
accuracy of the traditional kNN graph for all the datasets considered.
In particular, SQUIC-fit achieves the highest accuracy metrics for
all cases, and the lowest edge density for all cases except USPS.
The reduction of the edge density is more evident for YaleA and
Olivetti, as the tuning parameter η = λopt/

√
p applied on the

entries of the graphical bias G has a less impact for graphs of low

(a) (b)

Fig. 7: Comparison of the graphical structure of the adjacency matrix A for
a subset of the dataset YaleA. The coloring indicates the edges that were
removed (in red) from the initial kNN graphical bias, and the edges (in gray)
that remained after the application of the two proposed algorithms. (a) Graph
estimated with SQUIC-fit with 398 remaining and 68 removed edges. (c) Graph
estimated with SQUIC-sqp with 432 remaining and 28 removed edges. (Best
viewed in color.)

dimensions p. In Figure 7 we illustrate this reduction in ε for the
YaleA dataset. For visual clarity we select a subset (variables 100 to
155) of the image dataset YaleA, organized in five distinct classes,
denoted by letters A to E, with each class composed by eleven
variables. We order the variables in a circular layout and compare
the graphical structure obtained by SQUIC-fit (398 gray edges in
Figure 7a) and SQUIC-sqp (432 gray edges in Figure 7b). The red
edges in both figures represent the edges that were removed from
the graphical bias G, estimated with a kNN routine, after applying
SQUIC-fit (68 edges) and SQUIC-sqp (28 edges). Multiple edges
that connect variables belonging to different classes are removed in
both cases, thus reducing the interclass connectivity of the graph.
The advantages of these sparser graphical structures, with edge
weights assigned by solving the MLE problem, are verified by the
increased classification scores of Table 1.

6 CONCLUSIONS

In this work, motivated by the effectiveness of the SQUIC package
in learning precision matrices of very large dimensions, we
developed two algorithms for learning M -matrices that represent
graphs whose nodes are non-negatively correlated random variables.
Both algorithms are based on the `1-regularized minimization of
the MLE problem, and are able to incorporate available information
about the latent graphical structure of the data under question in the
form of a matrix regularization parameter. The first one, SQUIC-
fit, is an unconstrained approach that performs two consecutive
precision matrix estimations, and utilizes the positively correlated
variables identified in the first run as graphical bias for the retrieval
of the second precision matrix. Subsequent post-processing on
its entries guarantees that the resulting matrix is positive definite
and an M -matrix. The second one, SQUIC-sqp, is a constrained
method that enforces the M -matrix structure during the MLE
optimization procedure. The constrained minimization is achieved
by means of a sequential quadratic programming algorithm, with
the corresponding KKT system being solved with a preconditioned
conjugate gradient method.

Our methods are compared against various state-of-the-art meth-
ods in a series of synthetic tests, showcasing that the introduced
algorithms offers significant gains in terms of time-to-solution,
while accurately retrieving the underlying M -matrix structure. In
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YaleA Olivetti USPS KMNIST
Method density ACC NMI density ACC NMI density ACC NMI density ACC NMI

kNN −16.81% −5.13% −7.26% −9.39% −5.57% −5.29% −0.28% −12.63% −7.73% −0.24% −15.72% −11.54%
SQUIC-fit 0.083 0.613 0.650 0.04 0.646 0.7852 −0.02% 0.652 0.683 0.0003 0.61 0.587
SQUIC-sqp −8.32% −3.06% −4.62% −8.16% −1.87% −1.81% 0.002 −1.89% −1.85% −0.05% −0.23% −0.37%

TABLE 1. Classification results for the image datasets of subsection 5.2.

particular, for artificial graphs emerging from a grid and a randomly
clustered structure the two introduced algorithms attain equivalent
retrieval accuracy scores, and are up to 3 orders of magnitude faster
for graph dimensions p ∈ [256, 104]. Additionally, we see that
for these synthetic cases incorporating in the matrix regularization
parameter available information regarding the latent graphical
structure of the data greatly improves the retrieval accuracy of both
SQUIC-fit and SQUIC-sqp.

Furthermore, we provide two case studies that demonstrate the
applicability of the introduced algorithms in real-world scenarios.
In the first one we identify the largest connected components of
the M -matrix emerging from daily 671 COVID-19 cases for 3209
US counties, and observe that these components correspond to
clear geographical patterns. Subsequently, we perform spectral
clustering on the largest connected component and report that the
resulting clusters are also revealing distinct geographic partitions.
For the second case study we classify with image datasets with up
to p = 7·104 variables based on the eigenvectors of the estimated
M -matrices, and report increases in the classification accuracy over
the traditional approach of building adjacency matrices for spectral
methods.

The consistency of our results, from the artificial tests to the real-
world cases, highlights the effectiveness of the introduced graph
learning algorithms and the broad applicability of the presented
work.
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