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Abstract

Automatic segmentation of multi-modal Cardiac Magnetic Resonance Imaging (CMRI) scans is challenging due to the variant

intensity distribution and unclear boundaries between the neighbouring tissues and other organs. The deep convolutional neural

networks have shown great potential in medical image segmentation tasks. In this paper, we present a deep convolutional neural

network model named Multi-Modal Cardiac Network (MMC-Net) for segmenting three cardiac structures namely right ventricle

(RV), left ventricle (LV), and left ventricular myocardium (LVM) from multi-modal CMRI’s. The proposed MMC-Net is designed

using a densely connected backbone enabling feature reuse, an atrous convolution module for fusing multi-scale features, and

a pixel-classification module for generating the segmentation result. This model was evaluated on a publicly available MS-

CMRSeg-2019 challenge dataset in segmentation of RV, LV, and LVM from CMRI scans. The segmentation results from

extensive experiments demonstrate our MMC-Net can achieve better segmentation performance compared to other state-of-

the-art models, and the existing approaches. Additionally, the generalization ability of the proposed MMC-Net is validated on

another publicly available ACDC dataset without fine-tuning. The results demonstrate that the proposed MMC-Net shows a

powerful generalisation ability of segmenting RV, LV, and LVM with higher performance.

1



JOURNAL OF IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, XXXXX 2022 1

MMC-Net: Multi-modal network for cardiac MRI
segmentation of ventricular structures, and

myocardium
G. Jignesh Chowdary, Pratheepan Yogarajah, Member, IEEE and Priyanka Chaurasia

Abstract—Automatic segmentation of multi-modal Cardiac Magnetic Resonance Imaging (CMRI) scans is challenging due to the
variant intensity distribution and unclear boundaries between the neighbouring tissues and other organs. The deep convolutional
neural networks have shown great potential in medical image segmentation tasks. In this paper, we present a deep convolutional
neural network model named Multi-Modal Cardiac Network (MMC-Net) for segmenting three cardiac structures namely right ventricle
(RV), left ventricle (LV), and left ventricular myocardium (LVM) from multi-modal CMRI’s. The proposed MMC-Net is designed using a
densely connected backbone enabling feature reuse, an atrous convolution module for fusing multi-scale features, and a
pixel-classification module for generating the segmentation result. This model was evaluated on a publicly available MS-CMRSeg-2019
challenge dataset in segmentation of RV, LV, and LVM from CMRI scans. The segmentation results from extensive experiments
demonstrate our MMC-Net can achieve better segmentation performance compared to other state-of-the-art models, and the existing
approaches. Additionally, the generalization ability of the proposed MMC-Net is validated on another publicly available ACDC dataset
without fine-tuning. The results demonstrate that the proposed MMC-Net shows a powerful generalisation ability of segmenting RV, LV,
and LVM with higher performance.

Index Terms—CMRI, atrous convolution, MS-CMRSeg-2019, cardiac structures, multi-modal, ACDC.

✦

1 INTRODUCTION

CARDIAC Magnetic Resonance Imaging (CMRI) is a non-
invasive imaging procedure used to diagnose cardio-

vascular diseases. In CMRI, the Left ventricle (LV), Right
Ventricle (RV), and Left ventricular Myocardium (LVM)
are obtained for evaluating the type of cardiac disease
and potential threats [1]. CMRI is used to monitor cardiac
health, especially in cases where patients are suffering from
arrhythmia and facing issues of holding thriller breath. Dif-
ferent pulse sequences like Late Gadolinium enhancement
(LGE), balanced steady-state free precession (bSSFP), T2-
Spectral Presaturation Attenuated Inversion-Recovery (T2-
SPAIR) can help to distinguish normal anatomy from var-
ious pathologies. The LGE CMR is capable of highlighting
the infarcted myocardium with distinctive brightness over
the healthy myocardium [2], [3]. The T2-SPAIR CMR is a
black-blood technique sensitive to myocardium edema. The
bSSFP CMR can obtain clear ventricular boundaries and
capture cardiac motions. But the manual delineation of the
cardiac structures (LV, RV, LVM) is tedious, time-consuming,
subject to inter and intra variations [2], [4], and often prone
to human error. Even for experienced medical professionals,
it is very challenging to delineate the LVM, LV, and RV from
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the CMR images [5], [6]. Thus, automation of this procedure
is the need of the hour in clinical practice. Fig. 1 shows
sample of of LGE, bSSFP and T2-SPAIR CMRI slices and
ground truth region of LV, RV, and LVM.

Fig. 1. Sample of LGE, bSSFP and T2-SPAIR CMRI slices; the red,
green, and yellow regions represents the ground truth of LV, RV, and
LVM.

However the automatic segmentation of LVM, LV, and
RV from the CMR images is challenging due to motion
artifacts, ambiguous boundaries between the neighboring
tissues and organs, non-uniform intensity distribution, and
shape variations [7]. The LGE, and bSSFP CMR images have
same intensity distribution, whereas for T2-SPAIR CMRI,
the intensity distribution is different. The existing automatic
image segmentation approaches can be divided into two
categories, namely conventional image processing (atlas-
based and prior knowledge-based methods) and deep learn-
ing methods. The prior knowledge-based methods [8], [9],
[10], [11], [12], [13], [14] acquire the prior shape information
from the corresponding CMR images of the same patient
for segmentation; these methods require inter-modality reg-
istration of CMR images. Atlas-based methods rely on 3D
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or 2D image registration to align the images from different
image modalities or patients. These inter-subject and inter-
modality image registrations are very challenging problems.

The deep learning-based methods employ deep convo-
lutional neural networks (DCNN) to segment regions of
interest. The Fully Connected Network (FCN) [15] is a repre-
sentative DCNN that has achieved good results in semantic
segmentation and bio-medical segmentation tasks. This net-
work has been adopted by [16] for segmenting the cardiac
regions in CMR images. Another representative DCNN is U-
Net [17]; this network is widely used as a baseline in many
biomedical segmentation tasks, including cardiac structure
segmentation. Li et al. [18] designed a dilated inception
module and embedded it in U-Net to extract multi-scale fea-
tures from CMR images for RV segmentation. Painchaud et
al. [19] designed a network that includes a variational auto-
encoder (VAE) and an anatomical post-processing module
based on U-Net for cardiac image segmentation. Okasuz et
al. [20] designed a time-DCNN network for the detection
of motion artifacts, reconstruction, and segmentation of
cardiac structures from CMRI.

These methods achieved satisfactory performance when
CMRI slices were not closely related. A 3D-DCNN is a
good solution for slices with tight correlation. The Re-
current Neural Networks (RNNs) are another option for
processing successive MRIs. Poudel et al. [21] designed a
recurrent fully-convolutional network for multi-slice CMRI
segmentation. For capturing the important dynamics of
cardiac motion, Zhang et al. [22] developed a multi-stage
convolutional LSTM for segmenting LVM from infarcted
porcine cine MR images. But these 3D networks are com-
putationally expensive, so researchers frequently utilize 2D
CNN for CMR segmentation. The above-discussed methods
are prone to over-segmentation or under-segmentation of
cardiac structures.

We present an atrous convolution-based model named
Multi-Modal Cardiac Network (MMC-Net) for CMRI seg-
mentation to improve the segmentation performance. We
evaluated the proposed segmentation model on the MICCAI
CMR segmentation challenge (MS-CMRSeg-2019) dataset
and the ACDC dataset. The MS-CMRSeg consists of CMR
sequences (LGE, T2-SPAIR, and bSSFP) from 45 patients.
The ACDC dataset consists of cine CMR sequences collected
from 100 patients. The main contributions of this work are:

• The proposed MMC-Net can segment the RV, LV, and
myocardium volume or LVM from short-axis CMR
images with a high degree of precision and recall.

• The proposed MMC-Net does not require image
registration, complicated pre/post-processing, or a
complex training strategy. It is trained with the multi-
modality directly.

• The proposed MMC-Net demonstrates a powerful
generalization capability without any fine-tuning.

• On the MS-CMRSeg and ACDC dataset, the pro-
posed MMC-Net achieved higher performance than
the state-of-the-art methods and existing works.

The rest of the paper is organized as follows, Section
2 describes the methodology, Section 3 presents the results
and discussion of the experiments, and Section 4 concludes
the proposed work.

2 METHODOLOGY

The proposed MMC-Net is shown in Fig. 2. This model
consists of a densely connected backbone, an atrous con-
volution module (ACM), and a pixel classification module.
The densely connected backbone consists of nine convo-
lutional layers, where the first convolutional layer is used
to extract initial features, and the rest eight convolutional
layers are connected densely. The ACM is integrated with
the backbone for learning multi-scale contextual features
of the cardiac structures. Finally, the extracted features are
passed to the pixel-classification module, where a set of two
1 × 1 convolution layers followed by a soft-max layer are
used for generating the segmentation result. The densely
connected backbone, and the ACM module are explained
below.

2.1 Densely connected backbone

In this work, we employed dense connectivity [23] to design
our backbone network to promote the information flow
among the layers and effectively reuse the features. In the
backbone, each layer is connected to the succeeding layers.
The group of convolution layers with this connectivity pat-
tern is called dense block, as shown in Fig. 2. The output of
the dense block is defined as follows:

OutputDB = σ(yo) + σ(y1) + ......+ σ(yn) (1)

In Equation 1, the σ represents the non-linear mapping of
convolutional layers followed by batch-normalization and
ReLU layers, y0, y1, ......, yn represents the input to the lay-
ers in the dense block, and + represents the concatenation.
In this work, as we have used only one dense block, i.e.,
DB = 1. The input of the last layer (yn) in the dense block
is a concatenated result of all the preceding layer’s output
of non-linear mapping, as shown below:

yn = σ(y0) + σ(y1) + ......+ σ(yn−1) (2)

This indicates that the layers in the dense block are fully
connected, and the feature maps have a consistent size.
Each non-linear mapping outputs m feature maps, where
m is a hyper-parameter known as growth rate. In other
words, m can be expressed as the number of filters for
each convolutional layer in the dense block. For instance,
let’s consider the m0 as the input feature map to the dense
block, then the last layer (nth layer) of the dense block has
m0 +m× (n− 1) feature-maps as input.

To summarise, the backbone employed in this work uses
dense connectivity for learning discriminative features. The
proposed backbone uses skip connections to deal with the
problem of vanishing gradients as the network goes deeper.
In addition, this dense connectivity employs concatenation
operations to aggregate the network’s features. This ensures
the flow of information between the layers, which permits
the model to reuse the feature maps outputted by the
preceding layers to retain the highly-discriminative local
features.
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Fig. 2. Architecture of the proposed MMC-Net.

2.2 Atrous Convolution Module

Atrous convolutions resolve the issue of reduced resolution
(by the CNN) by adjusting the filter’s receptive field. The
atrous convolution works by inserting holes (i.e., zeros)
between the pixels in the convolutional kernels. This was
initially used to compute the wavelet decomposition [24],
and undecimated wavelet transform [25] and is also known
as the “algorithm atrous” [26]. Consider an example of a
one-dimensional signal with input signal as x[i] and output
signal as y[i] for every location of i, the atrous convolution
can be defined as:

y[i] =
K∑

k=1

x[i+ r · k]a[k] (3)

In Equation 3, the r is the dilation fraction and a[k] is
the kernel with the length of k. When r = 1, the atrous
convolution is the same as the standard convolution. When
r = 1, stride = 1, and padding = 0, the operation is similar
to downsampling. The CNN’s can learn dense features
when the stride is smaller, and padding approximates the
dilation rate. The density of the feature maps extracted by
the CNN’s can be controlled by adjusting the dilation rate
and stride. Assuming a 2D standard convolution of size
c× c, the corresponding atrous convolution size catrous can
be calculated using the formula below:

catrous = c+ (c− 1)× (r − 1) (4)

Equation 4 indicates that the input signal is not changed,
but it is just upsampled by inserting r − 1 zeros between
the pixels. The size of the receptive field of (z − 1)th layer
be denoted as Rz−1, the receptive field of the zth 2D atrous
convolution can be computed as:

Rz = Rz−1 + [c+ (c− 1)× (r − 1))]× Tz (5)

In Equation 5, r is the dilation fraction, T is the stride of
the zth layer. The stride of the zth layer can be computed as
the product of the preceding strides. For a 2D image I , the
output feature map Y at the zth layer can be computed as
follows:

Y = (I + 2Pd −Rz−1)/Tz + 1 (6)

Where Pd is the padding of the atrous convolution.
In this work, we design a novel module known as Atrous

Convolution Module (ACM) that is added at the end of
the backbone to promote multi-scale feature learning. This
module employs multi-input-parallel-branch structure as
shown in Fig. 2, with four atrous convolutions in parallel
with different dilation rates. In ACM we also employed up-
sampling layers between atrous convolutions and concate-
nation at each branch to keep the dimensions of the feature-
maps consistent with the previous branch.

2.3 Loss function
In this work, we employed a weighted dice loss function to
deal with the complex nature of cardiac structure segmen-
tation on CMR images. This loss function is illustrated as
follows:

Diceweighted = 1−Dweighted (7)

In Equation 7, Dweighted is the weighted dice score and
it can be computed as follows:

Dweighted =
2
∑

p wpDp∑
p wp

(8)

In Equation 8, the wp indicates the weight assigned to
class p. We have empirically assigned 4, 4, 4, and 1 for RV,
LV, LVM, and background in this work. We assigned a lower
weight to the background because it covers a large portion
of the CMRI slice than the other three structures (i.e., RV,
LV, LVM), and the other three structures are assigned equal
weights because they were given equal importance. Higher
weights are assigned to force the segmentation model to
emphasize more on these structures during training. Dp is
the dice score for class p, and it can be computed as follows.

Dp =
2
∑

giŷi∑
gi +

∑
ŷi

(9)

In Equation 9, ŷi is the predicted output of the proposed
MMC-Net and gi is the ground-truth.
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3 EXPERIMENTS AND RESULTS

3.1 Dataset
The proposed MMC-Net is trained and evaluated using the
MS-CMRSeg 2019 challenge [2], [3]. For understanding the
generalization ability of the MMC-Net we additionally used
a publicly available dataset from different imaging modal-
ity namely the Automated Cardiac Diagnosis Challenge
(ACDC) [27].

The MS-CMRSeg-2019 dataset consists of MRI data from
45 cardiomyopathy patients, each scanned using LGE, T2-
SPAIR, and bSSFP sequences from short-axis orientation.
The LGE sequences have more than ten slices covering
the entire ventricular region with a resolution of 5 mm
in slice and 0.75 × 0.75 mm in-plane thickness. The T2-
SPAIR sequences are very short, with only 4 to 7 slices, and
their image resolution is about 12 to 20 mm in slice and
1.35× 1.35 mm in in-plane thickness. The bSSFP sequences
cover the ventricular region from the apex to the basal plane
of the mitral valve with a resolution of 8 to 13 mm in
slice and 1.25 × 1.25 mm in-plane thickness. During the
challenge, the manual annotations are provided only for
a subset of scans, which includes 35 scans of T2-SPAIR
and bSSFP sequences and only 5 scans of LGE sequences.
The remaining scans are used for evaluation and are not
released. But recently the challenge organisers provided the
gold-standard annotations for the remaining scans, which
are used for evaluation in this work.

The ACDC dataset is created by the University Hospital
of Dijon (France). This dataset consists of short-axis cine
CMRI scans acquired from 150 subjects in both end diastole
(ED), and end systole (ES) phases. These scans are taken
using two MRI scanners with different weighting strategies
(1.5T and 3T) respectively. These scans are obtained from
healthy patients and also from patients with abnormal right
ventricle (ARV), hypertrophic cardiomyopathy (HCM), di-
lated cardiomyopathy (DCM), and previous myocardial in-
farction (MINF). These cine CMRIs have a slice thickness
of 5 to 9 mm, inter-slice gap of 5 or 10 mm, and spatial
resolution of 1.37 - 1.68 mm2. In this dataset, the segmenta-
tion ground-truths are provided for only for 100 scans. The
LV, RV, and LVM regions are delinated and provided in the
ground-truth, but the ground-truths are provided for only
100 subjects.

3.2 Performance metrics
In this work, several metrics are used to comprehensively
evaluate and compare the performance of the proposed seg-
mentation model with the other works. We used distance-
based metrics, namely Hausdorff distance (HD) [28], and
Mean Surface Distance (MSD) [29] to evaluate the segmen-
tation in terms of shape accuracy of the predicted regions.
These metrics are formulated as:

MSD =
1

2
(
1

ny

∑
lϵsy

min
l ϵ sy

Ed(l,m)+
1

nx

∑
mϵsx

min
m ϵ sx

Ed(l,m))

(10)

HD = max(max
l ϵ sy

min
m ϵ sx

Ed(l,m), max
m ϵ sx

min
l ϵ sy

Ed(l,m))

(11)

In Equation 10, and 11, sy , and sx represent the surfaces
of the predicted and ground truth masks with nx, and
ny indicating the number of surface points, and the Ed()
represent the Euclidean distance.

In addition to distance-based metrics, we also used
area-based metrics to compare the ground truth with the
predicted mask. These metrics include Recall (REC) [30],
Precision (PRE) [31], Jaccard Similarity Index (JSI) [32], and
Dice Coefficient (DC) [33]. These metrics are formulated as
follows:

Recall(REC) =
TPseg

TPseg + FNseg
(12)

Precision(PRE) =
TPseg

TPseg + FPseg
(13)

Dice Coefficient(DC) =
2 |X ∩ Y |
|X|+ |Y |

(14)

Jaccard Similarity Index(JSI) =
|X ∩ Y |
|X ∪ Y |

(15)

In Equations (12)-(13), TPseg represents the number of
pixels that are correctly predicted as the region of interest
(i.e, RV, LV, LVM), FPseg , and FNseg represents the number
pixels that are wrongly predicted as the region of interest
and background. In Equations (14)-(15), the X , Y represent
the predicted mask, and the ground-truth.

3.3 Experimental setup
Despite the fact that 3D segmentation methods can improve
the tight correlation between consecutive slices, we em-
ployed 2D slices for training and testing due to the large
slice thickness and differences in slice thickness for different
sequences. For making the images suitable to be fed into the
proposed MMC-Net, they are resized to 224 × 224 pixels.
The number slices are kept unchanged. The intensity of the
resized images is normalized to a distribution of one vari-
ance and zero means. Due to the limited number of training
samples, data augmentation is employed to increase the
size of the training set. The data augmentation operation
includes random rotation (-20 to -20 degrees), flipping (90
degrees), horizontal and vertical flipping. For model train-
ing, the Adam optimizer [34] is used. The learning rate is
set to 0.0005, which reduces by a factor of 25 for every 20
epochs. The batch size is set to 16 and trained for 200 epochs.

The experiments are conducted using MS-CMRSeg and
ACDC dataset and the results are explained in the following
sections.

3.4 Performance of the proposed MMC-Net
In the first experiment, we have trained the proposed MMC-
Net with all the data available in the train set of the MS-
CMRSeg Challenge 2019 irrespective of the sequence. Since
the submissions for the challenge are closed, we used the
gold-standard T2-SPAIR, LGE, and bSSFP test set provided
by the challenge organizers for evaluating the proposed
MMC-Net. The MMC-Net is evaluated individually on each
of the sequence, and the results achieved are tabulated in
Table 1.
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Fig. 3. ACM with different layer configurations.

TABLE 1
Performance achieved by the proposed MMC-Net.

MRI
Seq.

Cardiac
Struct.

HD
(mm)

MSD
(mm)

DC
(%)

JSI
(%)

REC
(%)

PRE
(%)

LGE
RV 7.07 0.94 93.85 94.70 93.96 94.86
LV 7.62 0.87 96.20 94.93 96.76 97.34
LVM 6.32 0.88 97.80 95.64 98.20 98.83

T2-
SPAIR

RV 6.95 0.83 94.19 93.87 94.50 95.76
LV 7.14 0.79 95.05 96.00 94.92 96.42
LVM 6.83 0.81 95.86 96.11 95.90 95.97

bSSFP
RV 6.57 0.82 95.42 96.57 96.31 97.85
LV 6.09 0.75 96.47 95.89 95.57 98.41
LVM 6.25 0.81 96.23 96.52 95.78 97.53

As shown in Table 1, the area-based metrics, namely
DC, JSI, REC, and PRE, are pretty high for all the cardiac
structures. The MSD is also very low (less than 1.0 mm)
for all the structures, which indicates that the predicted
region boundaries are close to the ground-truth boundaries.
But the HD values are a bit high, indicating the presence
of minor irregularities in the segmentation results. These
minor irregularities are due to the presence of noise and
low contrast in the CMRI scans. The proposed MMC-Net
achieved the highest performance in terms of HD, MSD,
DC, JSI, REC, and PRE for LVM than the other structures.
The segmentation of LVM is very difficult because they have

abnormal tissues which appear similar to the blood pool,
making the segmentation of LVM difficult.

3.5 Ablation study

3.5.1 Evaluating the effectiveness of growth rate

The growth rate, m, is a very important hyperparameter
because the densely connected backbone’s parametric size
depends on the growth rate. In this experiment, the MMC-
Net is trained and evaluated several times by varying the
growth rate using the same dataset and the training strategy.
The results obtained are tabulated in Table 2. The growth
rate controls how much new features maps can be added to
each layer. The small growth rate may not produce enough
feature maps to learn the different cardiac structures. At the
same time, large growth rate may shift our model towards
overfitting.

As seen in Table 2, the DC, JSI, and REC of the seg-
mentation model improves with the increase in the growth
rate until the value 60. This is because, with the increase
in growth rate, more convolutional filters are added to the
network. Thus, enhancing the capability of the network to
learn more discriminative features, thereby achieving higher
DC, JSI and REC. However, when the growth rate equals
to 70 the performance decreases. This indicates that the
model is shifted towards overfitting. Therefore, the optimal



JOURNAL OF IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, XXXXX 2022 6

TABLE 2
Performance achieved with different growth rates.

Growth rate
(m)

Cardiac
Structure

LGE T2-SPAIR bSSFP
DC
(%)

JSI
(%)

REC
(%)

DC
(%)

JSI
(%)

REC
(%)

DC
(%)

JSI
(%)

REC
(%)

20
RV 70.24 71.65 71.82 74.79 73.31 74.65 74.62 75.91 73.67
LV 76.31 75.94 76.63 75.62 74.89 75.21 77.25 75.56 72.56

LVM 75.09 76.27 76.38 77.51 75.35 75.42 72.46 70.15 72.67

30
RV 79.05 80.15 80.32 80.46 79.63 81.53 80.93 79.52 81.62
LV 80.36 79.85 80.68 79.39 78.52 80.86 81.46 78.93 79.89

LVM 80.52 81.43 81.35 80.52 81.43 79.48 80.72 80.46 81.62

40
RV 83.67 82.53 83.25 83.26 83.65 84.13 85.74 83.56 84.27
LV 84.54 83.96 83.54 84.21 84.54 83.69 83.56 84.73 82.45

LVM 84.89 82.94 84.62 84.96 85.23 82.46 83.84 82.51 84.24

50
RV 85.71 86.35 86.36 85.32 84.9 85.35 87.38 86.31 86.87
LV 87.92 86.83 85.72 86.63 85.76 84.62 85.84 85.49 85.93

LVM 87.32 87.92 88.41 86.87 85.34 84.58 84.56 85.06 85.63

60
(employed)

RV 93.85 94.70 93.96 94.19 93.87 94.50 95.42 96.57 96.31
LV 96.20 94.93 96.76 95.05 96.00 94.92 96.47 95.89 95.57

LVM 97.80 95.64 98.20 95.86 96.11 95.90 96.23 96.52 95.78

70
RV 89.52 88.51 87.92 89.15 90.62 88.48 90.24 87.26 89.41
LV 90.62 88.83 88.56 88.83 87.93 88.31 88.73 87.84 86.32

LVM 89.81 87.62 88.91 89.52 88.61 87.83 87.62 86.58 86.92

TABLE 3
Performance achieved with different ACM configurations.

Configuration Cardiac Structure LGE T2-SPAIR bSSFP
DC
(%)

JSI
(%)

REC
(%)

DC
(%)

JSI
(%)

REC
(%)

DC
(%)

JSI
(%)

REC
(%)

Network + No ACM
RV 63.01 59.4 60.49 61.68 60.73 60.42 62.47 61.53 61.62
LV 62.90 60.50 59.14 61.83 62.63 62.55 60.52 61.38 62.07
LVM 63.40 66.40 60.66 60.37 61.44 61.65 63.11 62.42 63.66

Network + ACM (1)
RV 75.69 70.88 77.63 73.64 72.37 72.68 70.53 69.54 69.42
LV 77.36 75.26 76.59 75.13 74.78 75.99 72.47 70.49 69.73
LVM 79.46 73.46 78.22 77.42 75.07 76.94 71.33 70.32 70.28

Network + ACM (2)
RV 81.97 79.06 80.09 82.53 83.07 83.47 80.78 80.85 79.04
LV 83.89 81.41 81.05 81.64 80.16 82.00 82.31 80.11 81.52
LVM 85.20 79.62 84.18 83.45 82.53 82.58 83.77 83.00 82.94

Network + ACM (3)
RV 89.54 86.29 89.16 87.82 86.79 85.76 87.12 86.82 87.88
LV 89.17 87.44 87.05 86.73 86.78 86.34 86.53 86.79 85.84
LVM 88.62 83.35 88.53 86.84 85.09 86.41 86.25 87.35 87.43

Network + ACM (4)
(proposed)

RV 93.85 94.70 93.96 94.19 93.87 94.50 95.42 96.57 96.31
LV 96.20 94.93 96.76 95.05 96.00 94.92 96.47 95.89 95.57
LVM 97.80 95.64 98.20 95.86 96.11 95.90 96.23 96.52 95.78

Network + ACM (5)
RV 88.29 84.21 87.14 90.63 88.35 88.56 87.65 88.52 87.94
LV 87.94 85.00 86.94 89.32 89.54 88.93 89.64 87.93 86.03
LVM 86.74 80.78 86.31 89.73 88.63 89.16 88.62 87.64 86.84

segmentation performance is obtained when the growth rate
is set to 60.

3.5.2 Evaluating the effectiveness of ACM
For understanding the effectiveness of the proposed ACM
module, we first removed the ACM from the network and
evaluated the performance. Then, we added the ACM to the
network and tried with different layer configurations (one-
layered to five layered). The different ACM configurations
are shown in Fig. 3. The DC, JSI, and REC achieved by these
networks on the gold-standard test set is shown in Table 3.
It shows that the networks with ACM achieved better DC,
JSI, and REC than the network with no ACM. This shows
the importance of ACM for enhancing the performance in
cardiac image segmentation.

Among the different layered configurations of ACM, the
ACM with four atrous convolutions achieved better DC, JSI,
and REC in the segmentation of LV, RV, and LVM than the
other configurations. This demonstrates that the receptive

field captured by the four-layered configuration is suitable
for learning more discriminative features of LV, RV, and
LVM than the one-layered, two-layered, three-layered, and
five-layered configurations. The receptive fields captured by
one-layered, two-layered, and three-layered configurations
are not big enough to learn the features of the cardiac
structures, whereas the receptive field captured by the five-
layered configuration is too large to mix-up with the back-
ground.

3.5.3 Evaluating the effectiveness of upsampling technique
used in ACM
The ACM module contains four atrous convolution layers
arranged hierarchically in this work, as shown in Fig. 2.
In the ACM module, the output feature map of the lower
atrous convolution layer is upsampled to be concatenated
with the output of the above atrous convolution layer. There
are two well-known upsampling techniques, namely de-
convolution, and bi-linear interpolation. To understand the
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performance affected by these two upsampling techniques,
we have trained and evaluated the MMC-Net individually
with these two up-sampling techniques. The DC, JSI, and
REC achieved with different upsampling techniques are
summarised in Table 4.

The experimental results tabulated in Table 4 shows that
the model using the deconvolution technique in the ACM
achieved better JSI, DC, and REC than the model with
bilinear interpolation. This is because the deconvolution is
trained during the training phase, which means that the
filter’s weights can adjust themselves to an appropriate
value for optimizing the objective function. In bilinear inter-
polation, the output feature maps are upsampled three times
their original size and then cropped to match the network’s
receptive field. As a result, some redundant information will
be introduced, impacting the overall segmentation perfor-
mance. Therefore, deconvolution is more suitable for this
work than bilinear interpolation.

3.6 Comparison with State-of-the-art Models

The performance achieved by the proposed segmentation
model is compared with the state-of-the-art segmentation
methods, including DUpsample [35], UNet++ [36], SegNet
[37], and DeepLabV3+ [38]. All these methods employed
an encoder-decoder network structure. SegNet is one of the
earlier segmentation works proposed for multi-class seg-
mentation tasks. The DeepLabV3+ is another segmentation
network that has achieved state-of-the-art performance on
Cityscapes and PASCAL VOC 2012 datasets. UNet++ is an
extended version of UNet, where a set of dense and nested
skip paths are added to the UNet. This network has shown
impressive performance on several medical image datasets,
including poly segmentation [36], nuclei segmentation, and
lung nodule segmentation. The DUpsample is the most
recent method proposed for enhancing the upsampling op-
eration in the decoder for recovering pixel-wise predictions
from low-resolution images. This network has shown state-
of-the-art performance on the PASCAL VOC 2012 dataset.
For a fair comparison, these models are downloaded from
their public implementations and trained and evaluated
with the same evaluation protocol and parameter setting
as the proposed MMC-Net.

3.6.1 LGE CMRI
The performance comparison is tabulated in Table 5, and
sample segmentation results on apical, middle, and basal
slices are shown in Fig. 4. As presented in Table 5 and Fig.
4, DeepLabV3+ has achieved worse performance than the
other methods in cardiac segmentation. The other methods
achieved better performance than the DeepLabV3+, but they
faced difficulty in segmenting the LVM from apical slices.
However, manual delineation of LVM is also very hard for
experienced cardiologists, radiologists, and other medical
professionals. Because the boundaries of LVM are not clear
in the apical slice. The middle slice has better contrast, so
the boundaries of the LV, RV, and LVM are much clearer.
As shown in Fig. 4, all models except the DeepLabV3+ seg-
mented the myocardium (LVM) and ventricular structures
(LV and RV) better in middle slice than in the other slices.
However, the segmentation performance achieved by the

SegNet is not so accurate; this may be due to the lack of
skip connections between the decoder and the encoder. The
DUpsample achieved better performance than the UNet,
SegNet, and DeepLabV3+, but it over-segmented the LVM
and RV on the basal and middle slices (Fig. 4). Overall, the
proposed segmentation method achieved better recall than
the other models, and predicted results are mostly matched
with the ground truth, as shown in Fig. 4.

3.6.2 bSSFP CMRI
The quantitative performance achieved by the proposed
MMC-Net and the state-of-the-art models is presented in
Table 6. It can be seen that the proposed segmentation model
achieved higher performance than the other state-of-the-art
methods on the gold-standard test set. The segmentation
results produced by these models on sample bSSFP CMR
slices is presented in Fig 5. Except the DeepLabV3+, all other
models obtained better segmentation results for LV, and RV
on all the three slices. The DeepLabV3+ poorly delinated
the LV, RV, and LVM in all the three slices. Only the MMC-
Net obtained accurate segmentation results on all the three
slices. The UNet++ and the SegNet incorrectly segmented
the background for LVM in the basal slice as shown in Fig.
5.

3.6.3 T2-SPAIR CMRI
The comparative results reported by the proposed MMC-
Net and the state-of-the-art models are presented in Table 7.
The pictorial comparisons is shown in Fig. 6. The MMC-Net
achieved highest DC, and JSI than the other state-of-the-
art-methods. In T2-SPAIR CMR images, the DeepLabV3+
performed better than on the LGE, and bSSFP slices. The
UNet++ reported poor results than the other state-of-the-
art models. The segmentation of RV by DUpsample, and
SegNet on the basal slice is not so accurate. Compared to
DUpsample, and SegNet, the DeepLabV3+ produced better
segmentation of RV. But the DeepLabV3+ produced better
segmentation result for LV on the basal slice. Our MMC-Net
reported accurate segmentation results for LV, RV, and LVM
in all the three slices.

3.7 Comparison with the existing studies in the litera-
ture
In this work, we have compared the performance achieved
by the proposed MMC-Net with three existing methods
namely Li et al. [39], SK-Unet [40], and Li et al. [41]. Among
these approaches, the Li et al. [39], and Li et al. [41] experi-
mented on all the three modalities in the dataset (i.e, bSSFP,
LGE, and T2-SPAIR), but SK-Unet [40] was experimented on
only LGE CMRI. These approaches were experimented with
different evaluation protocol like Li et al. [39] used 4-fold
cross validation, Li et al. [41] used 5-fold cross-validation,
and SK-Unet [40] used the entire training set provided in
the MS-CMRSeg-2019 dataset for training, and tested only
on the LGE CMRI in the test set. So for a fair comparison,
we have also evaluated our MMC-Net using 4-fold, and 5-
fold cross evaluation protocol. Since the evaluation protocol
employed in this work (i.e, as presented in sub-section 3.4)
is as the one used by SK-Unet [40], we have compared
directly without reevaluation. This comparison is tabulated
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TABLE 4
Performance achieved by Bilinear interpolation and deconvolution upsampling techniques.

Upsampling
technique

Cardiac
Structure

LGE T2-SPAIR bSSFP
DC
(%)

JSI
(%)

REC
(%)

DC
(%)

JSI
(%)

REC
(%)

DC
(%)

JSI
(%)

REC
(%)

Bi-linear
interpolation

RV 87.26 85.72 82.56 86.83 85.72 86.03 84.13 83.37 84.62
LV 88.41 86.00 87.62 83.51 84.36 82.22 85.06 84.86 84.45
LVM 82.53 85.53 86.04 84.24 84.68 84.72 84.53 84.07 84.92

Deconvolution
(employed)

RV 93.85 94.70 93.96 94.19 93.87 94.50 95.42 96.57 96.31
LV 96.20 94.93 96.76 95.05 96.00 94.92 96.47 95.89 95.57
LVM 97.80 95.64 98.20 95.86 96.11 95.90 96.23 96.52 95.78

Fig. 4. Comparison of segmentation performance on sample LGE CMRI slices; the red, green, and yellow regions represents the LV, RV, and LVM.

TABLE 5
Performance comparison with the state-of-the-art-networks in

segmenting LGE CMRI.

Methods Cardiac
structures

DC
(%)

JSI
(%)

REC
(%)

DUpsample [35]
RV 85.60 85.80 89.83
LV 88.70 80.30 93.45
LVM 87.30 77.80 88.10

UNet++ [36]
RV 83.90 84.20 82.53
LV 85.20 78.40 85.96
LVM 84.70 72.90 86.73

SegNet [37]
RV 76.00 83.90 82.27
LV 84.40 77.40 80.95
LVM 83.10 70.70 79.07

DeepLabV3+ [38]
RV 59.10 64.40 61.32
LV 59.60 59.50 61.90
LVM 61.80 56.40 62.33

MMC-Net (Proposed)
RV 93.85 94.70 93.96
LV 96.20 94.93 96.76
LVM 97.80 95.64 98.20

in Table 8. The proposed MMC-Net outperformed all the
three existing approaches. The performance enhancement
achieved by the MMC-Net on all the three MRI modalities is
phenomenal. Especially compared to SK-Unet [40], the DC
enhancement is 9.1% in segmenting LVM for LGE CMRI.
Also, compared to Li et al. [39], the enhancement is 6.21%
in segmenting LV for T2-SPAIR CMRI, and compared to Li
et al. [41], the DC enhancement is 17.52% in segmenting RV

TABLE 6
Performance comparison with the state-of-the-art-networks in

segmenting bSSFP CMRI.

Methods Cardiac
structures

DC
(%)

JSI
(%)

REC
(%)

DUpsample [35]
RV 86.42 85.92 83.89
LV 81.85 84.08 84.16
LVM 86.62 85.00 83.68

UNet++ [36]
RV 78.69 79.56 77.93
LV 80.15 81.42 73.78
LVM 77.05 77.63 78.64

SegNet [37]
RV 77.72 75.79 74.96
LV 79.86 78.31 75.70
LVM 76.35 75.93 73.07

DeepLabV3+ [38]
RV 57.91 64.40 61.32
LV 59.62 59.50 61.90
LVM 58.36 56.40 62.33

MMC-Net (Proposed)
RV 95.42 96.57 96.31
LV 96.47 95.89 95.57
LVM 96.23 96.52 95.78

for bSSFP CMRI.

3.8 Generalization ability of the proposed MMC-Net
We further evaluate the proposed MMC-Net on another
publicly available challenging dataset the ACDC [27]. For
understanding the generalization ability, we trained and
evaluated our model on the ACDC dataset without any fine-
tuning based on the experimental setup provided in [42].
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Fig. 5. Comparison of segmentation performance on sample bSSFP CMRI slices; the red, green, and yellow regions represents the LV, RV, and
LVM.

Fig. 6. Comparison of segmentation performance on sample T2-SPAIR CMRI slices; the red, green, and yellow regions represents the LV, RV, and
LVM.

The results achieved by the MMC-Net on the ACDC dataset
are discussed below:

3.8.1 Comparison with state-of-the-art

We compared the segmentation results produced by the
MMC-Net with the state-of-the-art methods employing the
ACDC dataset. This comparison is tabulated in Table 9. As
seen in Table 9, the proposed MMC-Net achieved better
performance than the state-of-the-art methods. Except for
the UNet++, all other state-of-the-art methods achieved
better HD, and DC in both ED, and ES phases. The SegNet
achieved the highest HD, and DC among the state-of-the-art
methods.

The qualitative segmentation results produced by these
methods are presented in Fig 7. From Fig 7, it can be seen

that the segmentation mask predicted by the MMC-Net is
close to the ground truth. The UNet++ produced under-
segmentation results on all three slices. The DUpsample
slightly over segmented the RV in the middle slice, whereas
the DeepLabV3+ slightly over segmented the RV, LVM in
the middle, and the basal slices.

3.8.2 Comparison with the methods listed on competition
leader board.

We also compared the performance achieved by the pro-
posed MMC-Net with methods listed on the ACDC chal-
lenge leaderboard. These results are tabulated in Table 10.
Only the top-four methods [19], [43], [44], [45] from chal-
lenge leader board are used for comparison. We briefly
discuss the architectures of the above mentioned methods:
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Fig. 7. Comparison of segmentation performance on sample slices from ACDC dataset; the red, green, and yellow regions represents the LV, RV,
and LVM.

TABLE 7
Performance comparison with the state-of-the-art-networks in

segmenting T2-SPAIR CMRI.

Methods Cardiac
structures

DC
(%)

JSI
(%)

REC
(%)

DUpsample [35]
RV 85.69 87.42 87.42
LV 85.78 88.37 86.94
LVM 86.25 87.91 87.72

UNet++ [36]
RV 68.42 70.42 69.14
LV 70.12 71.57 70.62
LVM 70.34 71.83 71.58

SegNet [37]
RV 83.47 82.64 83.75
LV 84.92 83.52 85.42
LVM 85.78 85.89 84.67

DeepLabV3+ [38]
RV 72.68 73.36 72.62
LV 73.72 74.19 73.85
LVM 74.51 73.96 72.26

MMC-Net (Proposed)
RV 94.19 93.87 94.50
LV 95.05 96.00 94.92
LVM 95.86 96.11 95.90

Zotti et al. [45] employed a multi-resolution gradient struc-
ture, which can be considered to be an extension to the U-
Net, Khened et al. [43] developed a two stage U-Net based
network by embedding Densely connected blocks in the
place of convolutional layers in the standard U-Net, Isensee
et al. [44] developed an ensemble of 10 models based on
2D, and 3D UNet architectures, and Painchaud et al. [19]
designed an adhersal variational autoencoder for producing
better segmentation results.

As shown in Table 10, the proposed MMC-Net has
achieved better DC than the other four models in segment-
ing all the three structures. Among the other methods, the
2D-3D U-Net ensemble approach proposed by the Isense
[44] achived highest performance. When compared to 2D-
3D U-Net, the proposed MMC-Net enhanced the DC in
segmenting LV via ED and ES phases by 0.3% and 2.3%
respectively. Also, compared to 2D-3D U-Net, the proposed
MMC-Net enhanced the DC in segmenting RV and LVM via
ED and ES phases by 2.4%, 5.7%, 4.3%, and 4.1% respec-

tively.

3.8.3 Comparison with existing approaches
We have also compared the segmentation DC, HD achieved
by the proposed MMC-Net with the three recently proposed
methods [46], [47], [48] that were not listed on the leader
board. This comparison is tabulated in Table 11. As shown in
Table 11, the proposed method outperformed the methods
listed in the table. Overall, we conclude that the proposed
MMC-Net is a more efficient method for segmenting LV,
RV and LVM than other existing methods in the literature.
This shows a powerful generalization performance of the
proposed MMC-Net.

4 CONCLUSION

This work presents a novel convolutional neural network
model named Multi-Modal Cardiac Net (MMC-Net) for the
automatic segmentation of RV, LV, and LVM from multi-
modal CMRI scans. In this network, a densely connected
backbone enables feature reuse for retaining more useful
information. And we propose an atrous-convolution mod-
ule to integrate with the backbone for multi-scale context-
learning. The experimental results illustrate that the pro-
posed segmentation model achieved higher performance
than the state-of-the-art methods and the other studies
found in the literature. The proposed MMC-Net’s significant
achievement is that with just five LGE scans and 35 T2-
SPAIR and bSSFP scans from the MS-CMRSeg for training,
the proposed MMC-Net was able to segment RV, LV, and
LVM from the LGE, T2-SPAIR, and bSSFP CMR scans with
high precision and recall.

In addition, based on the experiment results, the pro-
posed MMC-Net outperformed all the advanced methods
without any fine-tuning on the ACDC dataset. This shows
a powerful generalization performance of the MMC-Net.
In the future, the studies can focus on training and eval-
uating their models on data from various modalities, MRI
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TABLE 8
Performance comparison with existing approaches employing MS-CMRSeg 2019 dataset.

Methods Evaluation
protocol

LGE T2-SPAIR bSSFP
RV LV LVM RV LV LVM RV LV LVM

Li et al. [39] 4-Fold 98.68 92.29 96.73 96.77 91.94 95.69 91.52 94.93 96.08
Li et al. [41] 5-Fold 83.20 91.90 96.5 81.30 92.40 85.70 77.90 94.60 83.10
SK-Unet [40] Official split 93.20 95.80 88.70 - - - - - -

MMC
model

4-Fold 99.12 96.69 97.64 97.19 98.15 98.49 97.37 97.79 98.17
5-Fold 98.36 97.89 98.51 98.53 97.31 96.73 97.69 97.36 97.05

Official split 93.85 96.20 97.80 94.19 95.05 95.86 95.42 96.47 96.23

TABLE 9
Comparison of state-of-the-art performance on ACDC dataset.

Methods
LV RV LVM
HD DC HD DC HD DC
ED ES ED ES ED ES ED ES ED ES ED ES

DUpsample [35] 7.34 7.40 89.13 90.67 8.10 7.80 89.68 87.82 7.40 7.29 89.52 90.46
UNet++ [36] 8.39 8.54 79.62 80.35 9.47 9.63 80.18 79.92 8.94 8.91 75.25 74.95
SegNet [37] 7.10 7.30 89.61 91.23 7.90 7.70 90.52 88.79 6.80 7.00 91.83 92.93
DeepLabV3+ [38] 7.59 8.01 86.69 84.94 8.42 8.00 87.91 83.61 7.82 7.55 86.26 85.91
MMC-Net (Proposed) 5.90 6.50 97.10 95.40 6.70 5.30 97.00 95.60 5.40 6.20 94.50 96.00

TABLE 10
Comparison of DC, and HD with methods presented on the ACDC challenge.

Methods
LV RV LVM
HD DC HD DC HD DC
ED ES ED ES ED ES ED ES ED ES ED ES

Isensee et al. [44] 7.38 6.90 96.80 93.10 10.12 12.14 94.60 89.90 8.72 8.67 90.20 91.90
Zotti et al. [45] 6.64 8.70 95.70 90.50 10.31 14.05 94.10 88.20 9.60 9.30 89.00 90.00
Painchaud et al. [19] 6.10 8.30 96.10 91.10 13.70 13.30 93.30 88.40 8.60 9.60 88.10 89.70
Khened et al. [43] 8.12 8.96 96.40 91.70 13.99 13.93 93.50 87.90 9.84 12.58 88.90 89.80
MMC-Net (Proposed) 5.90 6.50 97.10 95.40 6.70 5.30 97.00 95.60 5.40 6.20 94.50 96.00

TABLE 11
Comparison of DC, and HD with the recently proposed methods.

Methods
LV RV LVM
HD DC HD DC HD DC
ED ES ED ES ED ES ED ES ED ES ED ES

DBAN [46] 6.70 8.10 96.00 90.00 10.60 12.60 94.00 89.00 8.80 8.70 85.00 88.00
Silva et al. [47] 8.06 10.40 96.30 91.20 14.60 17.50 90.00 86.00 7.90 9.90 89.40 90.50
Zhang et al. [48] 6.26 8.42 96.30 91.50 13.06 13.93 92.20 87.20 8.65 9.53 89.00 90.10
MMC-Net (Proposed) 5.90 6.50 97.10 95.40 6.70 5.30 97.00 95.60 5.40 6.20 94.50 96.00

manufacturers, and medical centers across the globe. And
include statistical shape models for improving the precision
in locating boundaries of cardiac structures.

REFERENCES

[1] B. Ruijsink, E. Puyol-Antón, I. Oksuz, M. Sinclair, W. Bai, J. A.
Schnabel, R. Razavi, and A. P. King, “Fully automated, quality-
controlled cardiac analysis from cmr: validation and large-scale
application to characterize cardiac function,” Cardiovascular Imag-
ing, vol. 13, no. 3, pp. 684–695, 2020.

[2] X. Zhuang, “Multivariate mixture model for cardiac segmentation
from multi-sequence mri,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer,
2016, pp. 581–588.

[3] Z. Xiahai, “Multivariate mixture model for myocardial segmenta-
tion combining multi source images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 12, pp. 2933–2946,
2019.

[4] M. Khened, V. A. Kollerathu, and G. Krishnamurthi, “Fully con-
volutional multi-scale residual densenets for cardiac segmentation
and automated cardiac diagnosis using ensemble of classifiers,”
Medical image analysis, vol. 51, pp. 21–45, 2019.

[5] L. Grosse-Wortmann, C. K. Macgowan, L. Vidarsson, and S.-
J. Yoo, “Late gadolinium enhancement of the right ventricular
myocardium: is it really different from the left?” Journal of Car-
diovascular Magnetic Resonance, vol. 10, no. 1, pp. 1–9, 2008.
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