
P
os
te
d
on

2
M
ay

20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
96
5
12
48
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

Trustable Blockchain Interoperability: Securing Asset Transfers on

Permissioned Blockchains

Catarina Pedreira 1, Rafael Belchior 2, Miguel Matos 1, and André Vasconcelos 1

1Affiliation not available
2Técnico Lisboa

October 30, 2023

Abstract

Blockchains currently exist in silos, competing when they could be cooperating. Interoperability is essential to allow for

communication between them and motivate mass adoption. In permissioned blockchains, interoperability is harder given their

opaqueness. The solutions proposed so far to address interoperability require a trusted private third party, which may be insecure

and is not ideal. We propose T-ODAP, a secure multi-layered protocol that enables a trustless solution for permissioned

blockchain interoperability, eliminating the need for trust in the protocol’s participants. It provides a Decentralized View

Storage, a connector that connects permissioned blockchains to the latter, and a trustless version of the ODAP protocol. T-

ODAP models the participants as rational agents using game theory techniques and is implemented using \textit{Polkadot}
and \textit{Hyperledger Cactus}. We tested the implemented solution, evaluated the system’s robustness in face of attacks,

and concluded that the system is \textit{(k,t)-weak-robust}.

1

Trustable Blockchain Interoperability: Securing
Asset Transfers on Permissioned Blockchains

Catarina Pedreira
Departamento de Engenharia Informática

Instituto Superior Técnico
Portugal

catarina.pedreira@tecnico.ulisboa.pt

Rafael Belchior
Departamento de Engenharia Informática

Instituto Superior Técnico & INESC-ID
Portugal

rafael.belchior@tecnico.ulisboa.pt

Miguel Matos
Departamento de Engenharia Informática

Instituto Superior Técnico & INESC-ID
Portugal

miguel.marques.matos@tecnico.ulisboa.pt

André Vasconcelos
Departamento de Engenharia Informática

Instituto Superior Técnico & INESC-ID
Portugal

andre.vasconcelos@tecnico.ulisboa.pt

Abstract—Blockchains currently exist in silos, competing when
they could be cooperating. Interoperability is essential to allow
for communication between them and motivate mass adoption.
In permissioned blockchains, interoperability is harder given
their opaqueness. The solutions proposed so far to address
interoperability require a trusted private third party, which may
be insecure and is not ideal. We propose T-ODAP, a secure multi-
layered protocol that enables a trustless solution for permissioned
blockchain interoperability, eliminating the need for trust in the
protocol’s participants. It provides a Decentralized View Storage,
a connector that connects permissioned blockchains to the latter,
and a trustless version of the ODAP protocol. T-ODAP models the
participants as rational agents using game theory techniques and
is implemented using Polkadot and Hyperledger Cactus. We tested
the implemented solution, evaluated the system’s robustness in
face of attacks, and concluded that the system is (k,t)-weak-robust.

Index Terms—Blockchain, Permissioned, Security, Trustless

I. INTRODUCTION

Blockchains are becoming more and more relevant in to-
day’s world as they have been proven to have the potential
to redefine the digital economy [11]. In fact, many use cases
besides cryptocurrencies have emerged for the technology over
time. A blockchain is a distributed, immutable ledger that
stores transactions, containing application dependent data. A
blockchain that places restrictions on who its participants are,
only allows them to perform certain actions and is controlled
by a node or group of nodes is considered to be permissioned
or private, while a blockchain that allows anyone to join and
contribute to the network is permissionless (or public) [2].

Blockchains currently exist in silos - many blockchain
projects encompass different characteristics and specialize in
very distinct areas. Instead of cooperating, they often compete.
In this context, organizations are able to choose from a wide
range of options. However, this is a delicate choice - it is
hard to learn the technology and expensive to invest in it [7].
Blockchain interoperability is of utmost importance, since it

allows risk reduction by enabling migration across different
blockchains. This way, once a blockchain becomes obsolete, it
is possible to replace it. Additionally, interoperability enables
the creation of new use cases, exploiting synergies between
different solutions and scaling of existing ones [7], potentially
fostering the technology’s adoption.

Both permissioned and permissionless blockchains require
blockchain interoperability. For permissionless blockchains,
there are currently several solutions that provide interoper-
ability. This is challenging to achieve, but still feasible due
to the open nature of these systems. When it comes to
permissioned blockchains, the situation is more challenging.
These blockchains are opaque and thus it is against their
nature to share the internal state with the outside world. This
raises a challenge - in order to know the internal state of
a permissioned blockchain, we have to take the word of at
least one node belonging to the latter and the state we obtain
might be incorrect if we are dealing with malicious nodes.
Some interoperability solutions have also been arising for
permissioned chains, yet most are centralized which may not
be adequate due to the need to trust an extra entity.

Interoperability for permissioned blockchains enables rele-
vant use cases, such as cross-border asset transfers between
banks. These are, generally, still a very inconvenient form
of payment given the high transaction fees, the lack of
transparency and the high latency. In this scenario, with
permissioned blockchain interoperability, each bank could be
associated to a permissioned blockchain (given that a bank’s
data cannot be public) and be able to transfer assets from one
blockchain to the other in a much faster, cheaper and secure
way. Moreover, in this context, the interoperability mechanism
should be trustless for a more secure solution - the less we
have to place trust on centralized intermediaries, the better,
given that we are dealing with sensitive information.

However, there are still not enterprise-grade solutions (this
is, that have some steps implemented towards standardiza-

tion) that enable interoperability across public and private
blockchains.

ODAP (Open Digital Asset Protocol) [5], [9] is a cross-
communication protocol that operates between two gateways
to transfer assets between blockchains. This asset transfer is
unidirectional and comparable to atomic swaps, where an asset
is locked on one blockchain and its representation is created
on another [6]. This solution is not trustless given that the
gateways need to trust each other.

Therefore, a more decentralized, trustless and secure solu-
tion for permissioned blockchains’ interoperability is needed.
We address this with T-ODAP, a multi-layered secure solution
for cross-chain asset transfers with a focus on permissioned
blockchains. In the first layer, T-ODAP encompasses a trust-
less system that performs the publication of permissioned
blockchain’s internal state proofs in a DVS, implemented
in Polkadot [3]. The second layer comprises a connector
built in Hyperledger Cactus [10], that is compatible with
several permissioned blockchains and can connect the latter
to the DVS.The technical requirements for blockchains to be
compatible with T-ODAP are: 1) have simple read and store
functionaltiy, 2) have smart contract functionality that can use
time, such that state (namely assets) can be locked. Finally, the
third layer entails the use of the DVS and state proofs to build
a more trustless and secure version of the ODAP protocol. In
order to model the behavior of the protocol’s participants, we
used game theory techniques.

We evaluate T-ODAP’s robustness in face of attacks and
conclude that the system is (k,t)-weak-robust, similarly to
mechanisms such as HTLC-based payment schemes or side-
chain protocols [14]. We test the correct functioning of the first
two layers of T-ODAP through Hyperledger Cactus, which
enables blockchain and smart contract testing. We present
the metrics we would have evaluated if we had had the
opportunity, as well as expressing our predictions for the
results to expect, in relation to ODAP as our baseline.

A. Work Objectives

The main goal of our work is to provide a secure and
robust system that allows for trustless permissioned blockchain
interoperability through the use of the DVS. The DVS is
implemented in the form of a Polkadot smart contract and
the connector is implemented in Hyperledger Cactus. The
implementation of the theoretical model (i.e. the adaptation
of the ODAP protocol) is intended for future work.

The following research questions are tackled by our solu-
tion:

1) How to guarantee the internal state proofs’ correctness
and integrity if permissioned blockchains are opaque?

2) How can we effectively model the dynamics of the
protocol in regards to its rational participants, using
game theory?

3) How to make T-ODAP strongly robust in terms of
resilience to attacks?

B. Contributions

This work makes the following contributions:
1) A Decentralized View Storage built as a Polkadot smart

contract, which allows for trustless state sharing between
opaque blockchains, that can be leveraged for multiple
use cases;

2) A public Polkadot Connector implemented in Hyper-
ledger Cactus, capable of connecting several permis-
sioned blockchains to Polkadot. Besides implementing
the connector, we contributed to the open-source com-
munity of Hyperledger;

3) A theoretical model of a trustless adaptation of the
ODAP protocol, T-ODAP, that leverages the DVS (and
the connector in order to interact with the latter);

4) A game theory based analysis that demonstrates that T-
ODAP is (k,t)-weak-robust.

The implementation of the Polkadot connector
and the DVS smart contract can be found in
https://github.com/CatarinaPedreira/cactus/tree/polkadot-
connector-draft.

II. RELATED WORK

In this section, we present the related work on blockchain
technology, blockchain interoperability, and game theory to
provide a better understanding of our protocol.

A. Blockchain Interoperability

Interoperability can be defined as “the ability of two or
more software components to cooperate despite differences
in language, interface, and execution platform” [12]. In the
blockchain context, interoperability is a relatively new theme -
interest from academia and industry did not start growing until
about three years ago [7]. This type of interoperability emerged
due to the desire to create new synergies between blockchains,
thus creating new use cases. Due to the core differences
between permissioned and permissionless blockchains, the
interoperability problem is distinct for each of the types. Even
within the same type, it can take many different forms due to
the huge variety of existing blockchain infrastructures.

Several blockchain interoperability mechanisms exist. These
can be divided in three different categories - Public Connec-
tors, Blockchain of Blockchains and Hybrid Solutions, each
of which is then divided into subcategories. The latter are
described in [7].

Particularly important for our work, is a Blockchain
of Blockchains named Polkadot [3], a system that
(among other features) allows for interoperability between
several blockchains, and which leverages its own internal,
costumizable blockchains with a parallel nature - parachains
(which are also interoperable between themselves).
Hyperledger Cactus is also fundamental for our work -
included in the trusted relay type (a hybrid solution). Cactus
achieves interoperability between several blockchains (many
of them permissioned) through the use of trusted nodes -
Cactus nodes.

XCLAIM [13] is a framework that works to achieve
blockchain interoperability in a trustless way (i.e. without the
need of a centralized trusted third party), leveraging game
theory techniques. It is mainly focused on permissionless
blockchains, while in our work we focus on permissioned
blockchains.

Additionally, a recent protocol [4] focuses on enabling
an external party to observe and verify a permissioned
blockchain’s internal state, providing that there is at least
one honest member present in the blockchain’s committee.
The state verification is achieved through the use of a secure
public ledger that acts as a bulletin board - public bulletin
- in which snapshots of the permissioned blockchain’s state
(named ”view” by the authors) are published at fixed intervals.

As mentioned above, ODAP is a cross-communication pro-
tocol that operates between two gateways to perform asset
transfers between blockchains represented by those gateways.
The latter is rather flexible, allowing blockchains of both types
(both permissioned or permissionless) to transfer assets to each
other. In ODAP (Open Digital Asset Protocol), the gateways
are trusted, i.e. it is assumed that they will not drop an asset
before a given transfer or that they will not transfer it to the
wrong gateway.

III. T-ODAP: DECENTRALIZING ASSET TRANSFERS

In this section, we introduce our approach, T-ODAP - Trust-
less Open Digital Asset Protocol, for the problem introduced
in Section I.

The solution should provide a set of functional require-
ments. In T-ODAP, Cross-chain Transfers are performed by
both the end-user (the Client), since this is the entity that
triggers the T-ODAP protocol in the first place by having
an asset to transfer, and also by the Source Gateway, which
conducts the process of transferring the asset from one ledger
to the other. Store Proofs corresponds to the storage of evi-
dence of a blockchain’s internal state (view). The Source and
Recipient Ledger publish views of their own states in the DVS.
Both Source and Recipient Gateways Verify Facts against the
views published in the DVS. Depending on the results of this
verification, their behavior is different. The Source Gateway
triggers the action of a Rollback Asset Transfer in the Source
Ledger in case it is verified that the Recipient Gateway did
not follow the protocol. The same goes for the Recipient
Gateway and Ledger in case the Source Gateway misbehaves.
The ledgers do this by either unlocking the asset if they
are the Source Ledger, or by not creating the corresponding
asset if they are the Recipient Ledger. Finally, the Polkadot
Connector is able to Deploy a Smart Contract (crucial given
that the DVS is implemented as a Smart Contract) and is
also able to Connect several Blockchains to Polkadot, enabling
blockchains to connect to the DVS.

A. Assumptions

Similarly to related work [13], we assume that adversaries
(in this case, the gateways) are computationally bounded and
rational agents, motivated by actions that increase their utility

(this is, maximizing profit while keeping their reputation) and
avoiding actions that decrease their utility. Keeping reputation
is important to gateways because they are identified and benefit
from an open-market, that is driven by reputation and the law
of demand.

As such, the latter can attempt to perform any attack that
potentially maximizes their utility, such as not completing an
asset transfer. In our context, we assume that a malicious node
is any node which deviates from the established protocol T-
ODAP.

In terms of the network, we assume that honest nodes
are well-connected and there is a maximum delay in which
they receive transaction broadcasts from users. When it comes
to the DVS, we assume that each permissioned network
comprises at least one auditor node (a member of that network)
which validates conflicting views, deciding which ones are
valid and which are not, in case of a dispute. Thus, we assume
all views published in the DVS are valid (i.e. correspond to
the correct internal state).

B. System Overview

Our approach is composed of several layers that stack on
each other - the DVS in the bottom layer, then the Polkadot
Connector and finally T-ODAP.

In the bottom layer of our protocol, we have the DVS. The
DVS is based on the Public Bulletin for permissioned ledgers
presented in Section II and is implemented as a smart contract
in Polkadot. The state proofs (views) are publicly available for
external clients to observe and verify facts against. In practice,
they correspond to a digest of a permissioned blockchain’s
internal state. The necessity for a Public Bulletin or a DVS
stems from the fact that permissioned blockchains are closed
systems. In order to allow for a truly secure and trustless in-
teroperability between permissioned blockchains (or between
a permissioned and a permissionless chain), there needs to
exist a system which securely shares the state of the latter for
external observers. Similarly to the Public Bulletin, the DVS
(Decentralized View Storage) is an immutable public bulletin
where state proofs of a permissioned blockchain are regularly
(i.e. every k blocks) published by its corresponding committee
members.

It also considers a malicious but cautious committee, along
with at least one honest member in the latter, which reports
a conflict if it witnesses malicious behavior. However, there
are some key differences. As stated by the authors of [4], it
is possible that several valid external views exist for the same
state. Differently from the aforementioned work, our algorithm
encompasses a voting mechanism. A quorum of members vote
on the view and the collective decision determines if that view
is either valid or inconclusive, case in which a view conflict is
reported which must be solved externally, by an auditor node.
This auditor node exists in each permissioned network, and
corresponds to a node which function is to decide if a given
view is valid or not.

In our algorithm, even if all but one member voted positively
on a view, one negative vote is sufficient to raise a conflict

on that view (and vice-versa). Since there is at least one
honest member in the committee, an invalid view will never be
published (even if the honest member is not a voting member
in that round, it can still report the view). As mentioned
before, when a conflict is raised on a view, the view is deemed
as either valid or invalid by the auditor node. The members
who voted contrarily are recognized as being malicious and
held accountable for their action. This alone can discourage a
malicious node from trying to block the system indefinitely
by constantly voting negatively, since reputation is rather
important in a permissioned network (given that every entity is
known). In future work, there can be additional punishment for
malicious actors in the DVS. The DVS’s publishing frequency
should be adjusted depending on the blockchain leveraging it,
i.e. for a blockchain in which blocks are frequently added to
the chain, the number should be higher and vice-versa.

The Polkadot connector emerges on top of the DVS layer,
as a bridge for permissioned blockchains to be able to access
Polkadot. This is possible since the connector is part of
Hyperledger Cactus (see Section II). Thus, a permissioned
blockchain supported by Hyperledger Cactus can use the latter
to access Polkadot through this connector. The connector
also implements mechanisms to deploy smart contracts to the
Polkadot network and to interact with them, by being able
to call read and write function from those contracts. Since
the DVS is implemented in the form of a smart contract
and deployed in Polkadot, the Polkadot Connector is able to
interact with the latter.

Our work’s final layer arises as a trustless version of the
existing protocol ODAP, leveraging the use of a DVS for
permissioned blockchains’ internal state sharing. This way,
T-ODAP does not require that gateways trust each other since
they can verify each other’s state in the DVS, prior to any
asset transfer occurring. T-ODAP is compatible with both
permissionless and permissioned blockchains, however in
this work we focused in the latter. This is because the DVS
is necessary for proving the internal state of permissioned
blockchains, but not needed for permissionless ones given
that these are publicly verifiable.

The following actors exist in T-ODAP:
• Source Ledger BS - The ledger that desires to transfer

an asset to the recipient ledger, by locking x units from
asset type a to be created in the latter;

• Source Gateway GS - The gateway that transfers the
locked x units from asset type a to the recipient gateway;

• Decentralized View Storage (DVS) - The immutable bul-
letin where a permissioned blockchain’s internal state
proofs are published regularly;

• Recipient Gateway GR - The gateway that responds to
GS and is the target of the transfer;

• Recipient Ledger BR - The ledger that receives the asset
transfer, by creating the corresponding tokens in its ledger
and making them available.

We previously saw that rational agents are motivated by
actions that increase their utility and unmotivated by the

actions that decrease it. In order to provide a secure protocol
and motivate the players to choose desired actions (actions
according with the specification of the protocol) instead of
the contrary, T-ODAP punishes a gateway each time it chooses
an undesired action. This punishment consists of decreasing
that gateway’s public reputation, making it less likely that it is
chosen in the next T-ODAP instance. This mechanism works
because each gateway is publicly identified (e.g., needs to be
registered within a virtual asset service provider). The latter
has a negative value associated to it, which will decrease the
player’s overall utility.

C. Protocol

We now discuss the design and architecture of the T-
ODAP protocol. Figure 1, built with the Archimate language
[1], illustrates the latter. In this figure, we can observe the
several components forming T-ODAP’s architecture, which are
divided in four different groups for a better understanding.

The first group (on top) comprises the source ledger Bs,
as well as an asset of type A and the source gateway Gs,
which executes the asset transfer. The source gateway is a
specialized type of Cactus Node, and it can be defined as ”a
computer system in a blockchain network for the purpose of
assisting in the movement of virtual assets into (out of) the
blockchain network” [8]. The end-user is connected to Gs.
The latter is the component which triggers the whole protocol,
by issuing a CC-Tx asset transfer request. This request is
associated with the transfer of x units of an asset of a given
type A from Bs, which (if the protocol is successful) will
be created as y units of an asset of given type B in the
recipient ledger Br. The second group is similar to the first
one, however this one comprises, instead, a recipient ledger
Br, the corresponding recipient gateway Gr which interacts
with Gs and which is the target of the transfer, and the
resulting created y units of asset of type B in Br. This group is
not directly connected to an end-user. Both gateways interact
with each other, being that Gs is the one that initiates the
connection. Then, we can observe the third and fourth groups.
The third group encompasses Hyperledger Cactus and its
several connectors to blockchains/interoperability mechanisms
(not all are represented), as well as its several Cactus Nodes.
The fourth group comprises the Polkadot network and the
DVS smart contract, deployed in it. In order to (indirectly)
access the DVS, the gateways have to leverage the Polkadot
Connector. Before the protocol instance begins, the connector
connects to Polkadot and deploys the contract code containing
the logic of the DVS. Then, Gs and Gr can use the connector
to retrieve and read views from it, analyzing the state of Br

and Bs, respectively.
Bs and Br are also connected to the DVS since, in order

to guarantee the integrity of the views, the latter must be
published by members of the blockchain itself and not by the
gateways. If the gateways were able to publish views, since
the latter can be malicious, we would not be able to be certain
that the published views were always correct.

Fig. 1. Archimate T-ODAP Protocol Architecture

D. Protocol Flow

We will now discuss the protocol flow of T-ODAP.
Figure 2 illustrates an example of T-ODAP’s protocol flow,

having Fabric as the source ledger and Quorum as its recipient
counterpart. Here, we can observe the main differences in
relation to ODAP:

• DVS is a participant;
• Phase 3 - View Publication Flow - is introduced.
We can also observe that an if condition is introduced at

the bottom, which depends on the outcome of the last step of
Phase 3.

First, an end-user (i.e. an application) issues a CC-Tx asset
transfer request through Cactus, which triggers the beginning
of the protocol. Then, Phase 1 (Transfer Initiation Flow) and
Phase 2 (Lock-Evidence Verification Flow) take place. The
first phase leverages the initiation processes, necessary for
connection between the gateways and the second phase takes
care of locking the asset, along with verifying that the recipient
ledger is indeed interested in receiving the asset transfer. Then,
Phase 3 begins. Here, we begin with Hyperledger Fabric (Bs)
publishing a view at a given time t (note that views are
frequently published, with the value k depending on the source
blockchain). This step is particularly important since it shares
the internal state of Fabric at that moment in time, and since
this view contains information about the state of the asset to be
transferred. The protocol proceeds with Gr retrieving Fabric’s

most recent published view, in order to be able to analyze
its contents and confirm that the asset is indeed in a blocked
state. Note that, in this stage, Gr only retrieves the view after
a given time t has passed. This amount of time depends on
the blockchain Bs. This is due to the fact that even if the
asset is locked, the view containing this information might
only be published after some time, or the network can have
some delay. To guarantee that the retrieved view contains the
correct and most recent information about the lock, we wait t
units of time. The outcome of this verification triggers one of
two options within the protocol:

• If the asset is indeed locked, Phase 4 (Commitment
Establishment Flow) takes place. This phase comprises
a preparation commit, a final lock (by Bs) and a final
commit of the transfer, containing all the information
necessary for Br to create the asset.
After Gr claims that the asset was created in Quorum,
Phase 5 (Asset Creation Verification Flow) starts. Here,
Gs will retrieve Quorum’s most recent published view
(again, waiting t units of time before doing so) and verify
if the information provided by Gr is correct. In case it
is, the transfer process finishes with success, having the
asset in its final state - digital twin asset. Otherwise, Gr

attempted to execute an attack by not creating the asset in
the Quorum blockchain. The transfer is rolled back and
the blocked asset in Bs is set to a pure state again, so

Fig. 2. T-ODAP Protocol Flow example

that it is not lost.
• If the asset is unlocked, this means that Gs opted for

an undesired action. The transfer has to be rolled back;
otherwise, by creating a representation of the asset in Bs,
double spend would occur.

E. Threat Model

We now present the threat model and security analysis for
T-ODAP. Note that each threat corresponds to an action that
can be performed by a malicious node. There are several
threats included:

Threat 1 - The source gateway Gs steals the asset to be
transferred (it does not lock the asset before transferring it to
Gr).

Let us imagine Gs is meant to transfer an asset to Gr, so
that the latter creates the asset’s representation in Br. Gs can
try to steal the asset by not providing instructions for Bs to
lock the asset, while lying to Gr about locking it. This way,

Br will still end up creating the asset’s representation although
the asset has not been locked in the source ledger.

T-ODAP mitigates this attack through the use of the
Decentralized View Storage. As we have previously seen
in the protocol’s flow, the latter allows for the removal of
trust between the gateways, since the recipient gateway Gr

can observe the source ledger’s internal state (including the
asset’s state) prior to the transfer, so that it can stop the latter
in case the asset’s is incorrect.

Threat 2 - The source gateway Gs steals part of the asset
to be transferred but transfers the remaining portion.

This threat is a slight variation of the previous. In this
context, imagine the asset transfer comprises transferring 5
units of token of type A to be created as x units of token of
type B in Gr. The source gateway can try to lock only 3 of
those units and steal the remaining 2. The transfer will still
take place, since Gr believes that Bs locked the entire asset.

T-ODAP mitigates this threat as it mitigates threat 1 - the
recipient gateway can verify Bs the exact amount of token
units that must be locked. If this number does not match
what is expected, the transfer is rolled back.

Threat 3 - The recipient gateway Gr does not create the
assets in the recipient ledger.

Here, the threat is focused on the recipient gateway, which
performs a denial-of-service attack by not creating the assets in
Br. The latter can be executed by a malicious Gr that desires
to harm the users of the source gateway, the source gateway or
both by causing them to lock funds that will never be created
in Br. Despite not having a monetary incentive (given that
the assets are not created), the malicious intent towards the
participants can suffice as an incentive for the attack (i.e. the
valuation value is high for this attacker).

T-ODAP mitigates threat 3 through the fifth phase of the
protocol (see Figure 2), in which the internal state of the
recipient ledger is verified after Gr claims that the assets
were created. In case the gateway is malicious and the assets
are not created, the transfer suffers a rollback and the asset’s
state in Bs goes back to pure state.

The attacks described in threat 1, threat 2 and threat 3 can
still be successfully executed during the attack windows - i.e.
during the intervals between view publications, since during
the latter the attack is not registered and thus can not be proven
to have happened. In order to diminish the attack window as
much as possible, the view publishing frequency should be
high (i.e. k should be low). However, this is a trade-off - highly
frequent publications incur higher costs.

IV. EVALUATION

In this section, we evaluate T-ODAP both from a theoret-
ical perspective. In order to do this, we leverage the game
theoretical framework in [14].

The latter evaluates a blockchain protocol’s robustness by
first identifying the players involved, the actions they can
perform (tied with specific utilities) and the game or games
that better represent that protocol.

In T-ODAP, we have two players - the source gateway
Gs, and the recipient gateway Gr. These are considered to
be rational players, meaning that they both always desire to
maximize their own utility. Based on the protocol flow of T-
ODAP, we divided the protocol into three different games, the
first (A) corresponding to Phases 1, 2 and 3, the second (B)
corresponding to the scenario where the asset is locked and
the third (C) to the remaining scenario.

In each game, the order of the actions performed matters.
In this context, if any player deviates the protocol, the game
goes back to the initial state, with a null outcome (0) for each
(i.e. (0,0), where the first position corresponds to Gs and the
second one to Gr). The initial state corresponds to the state
before the asset transfer. If they follow each step correctly,
they receive a positive utility of (1,1). If a player is harmed by
another player’s action, the harmed player receives a negative
utility of -1, similarly to authors in [14]. The values of 1 and
-1 were chosen by convention.

Figure 3, Figure4 and Figure 5 correspond to Game A,
Game B and Game C, respectively, and are presented below.

Fig. 3. Game A - Diagram

An instance of T-ODAP can be composed by Game A and
Game B forming mechanism AB or by Game A and Game C,
forming mechanism AC. In the latter case, the outcome will
never be the best outcome possible for any of the players -
it will either be 0 or -1. In Game A, if the players reach the
outcome (1,1), the next game will be Game B. Else, the next
game will be Game C. This means that the mechanism AB
is the only one which can lead to an optimal outcome (i.e.
if both players follow the protocol in every step). Therefore,
mechanism AB is the one relevant to decide if T-ODAP is
resilient to attacks given the fact that, out of the two, AB is

Fig. 4. Game B - Diagram

Fig. 5. Game C - Diagram

the only one that presents a possibility of players following
the protocol from the beginning to the end.

Through the analysis of the AB mechanism, and through
the theorems presented in [14] - more specifically, due to the
fact that the mechanism is both optimal-resilient (no subset
of players has an incentive to deviate from the protocol) and
t-weak-immune (for any altruistic player, the lowest possible
outcome is the initial state’s outcome, even if other players
misbehave), we can conclude that T-ODAP is (k,t)-weak-
robust.

In a simplified manner, when analyzing game A and game
B, we can see that in both cases both players are incentivized
to follow the protocol given that the best possible outcome is
(1,1). This means that the players have no incentive to deviate
from the protocol, which makes both games optimal-resilient.
Moreover, the worst possible utility for an honest player is the
initial state’s utility - (0,0). Only deviant players can receive
negative utility when they misbehave (in Game B). Therefore,
the games are also t-weak-immune [14]. Since both games are
optimal resilient and weak immune, by applying the Theorems
2, 3 and 4 of [14] which ensure the invariance of properties

once the composition operator is applied, we get that the
resulting mechanism AB is both optimal resilient and weak
immune, which makes it (k,t)-weak-robust, the same level of
robustness as a cross-chain swap protocol.

This means that the honest players can trust that they will
never lose utility by taking part in the protocol. Their utility
will either remain the same, if there is a malicious player in
the game, or be increased if both players follow the protocol.
Players are incentivized to cooperate given that that gives
them the best possible outcome, and are at the same time
discouraged from misbehaving given that, if they do, their
utility will either stay the same or be reduced.

V. LIMITATIONS AND FUTURE WORK

T-ODAP has some limitations, the first being that it is more
costly than ODAP. This makes sense since T-ODAP adds
complexity to the latter, as well as several transactions in
blockchains, which causes this higher cost. However, as stated
before, the biggest focus of T-ODAP is in a trustless and secure
solution, so the higher cost comes as a trade-off.

Additionally, in future work, other features may be added to
T-ODAP such as the support of slashing to punish participants
that deviate the protocol. This can correspond, for example, to
the use of a collateral ([7], [13]), which is removed in case the
participants misbehave. This mechanism involves, however,
some challenges: how to assure that an internal state proof
is actually invalid, in order to punish a participant fairly? The
latter is hard to achieve due to the opaqueness of permissioned
blockchains.

It is also interesting to leverage a crash-recovery mechanism
[5] for the T-ODAP gateways, given that one of them can crash
in the middle of an asset transfer and it is not desirable to have
to rollback that transfer every time this happens. [6] presents a
first approach to this problem, however it is not implemented
yet.

VI. CONCLUSION

Blockchain interoperability is essential for mass adoption.
Some projects have been studying and presenting ways to
achieve this, however many require a centralized trusted third
party, which is not desirable.

This paper presents T-ODAP, a multi-layered secure and
trustless system leveraging a DVS to publish internal state
proofs, a Polkadot Connector to interact with the latter and a
trustless adaptation of the ODAP protocol. T-ODAP has the
goal to arise as an alternative to the centralized interoperability
solutions currently offered to permissioned blockchains, pro-
viding stronger levels of security in relation to other protocols
such as ODAP due to being trustless.

We evaluated the full system’s robustness in face of attacks
and concluded that the system is (k,t)-weak-robust, similarly to
popular mechanisms such as HTLC-based payment schemes.
We performed tests to the implemented layers of our solution,
which were successful. The latter were realized through Hy-
perledger Cactus, which enables blockchain and smart contract
testing.

Our solution contributes to the development of permissioned
blockchain interoperability, which in turn will hopefully con-
tribute to the widespread adoption of blockchain technology
in enterprises.

REFERENCES

[1] Archi – open source archimate modelling.
[2] On public and private blockchains — ethereum foundation blog.
[3] Polkadot: Vision for a heterogeneous multi-chain framework.
[4] E. Abebe, Y. Hu, A. Irvin, D. Karunamoorthy, V. Pandit, V. Ra-

makrishna, and J. Yu. Verifiable observation of permissioned ledgers.
2021 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), pages 1–9, 2021.

[5] R. Belchior, M. Correia, and T. Hardjono. DLT Gateway Crash Recovery
Mechanism draft 02. Internet-Draft draft-belchior-gateway-recovery-02,
Internet Engineering Task Force, 2021.

[6] R. Belchior, A. Vasconcelos, M. Correia, and T. Hardjono. HERMES:
Fault-Tolerant Middleware for Blockchain Interoperability. Future
Generation Computer Systems, mar 2021.

[7] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia. A survey
on blockchain interoperability: Past, present, and future trends. ACM
Comput. Surv., 54(8), Oct. 2021.

[8] T. Hardjono. Blockchain gateways, bridges and delegated hash-locks.
ArXiv, abs/2102.03933, 2021.

[9] M. Hargreaves, T. Hardjono, and R. Belchior. Open Digital Asset
Protocol draft 02. Internet-Draft draft-hargreaves-odap-02, Internet
Engineering Task Force, 2021.

[10] H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman, P. Somogy-
vari, S. Fujimoto, T. Takeuchi, T. Kuhrt, and R. Belchior. Hyperledger
Cactus Whitepaper, 2020.

[11] S. Underwood. Blockchain beyond bitcoin. Communications of the
ACM, 59:15–17, 10 2016.

[12] P. Wegner. Interoperability. ACM Computing Surveys, 28:285–287, 3
1996.

[13] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knot-
tenbelt. Xclaim: Trustless, interoperable, cryptocurrency-backed assets.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 193–210,
2019.

[14] P. Zappalà, M. Belotti, M. Potop-Butucaru, and S. Secci. Game Theo-
retical Framework for Analyzing Blockchains Robustness. In S. Gilbert,
editor, 35th International Symposium on Distributed Computing (DISC
2021), volume 209 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 42:1–42:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

