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Abstract
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Abstract— The need for telehealth and home-based monitoring
surges during the COVID-19 pandemic. Based on the recent ad-
vancement of concurrent electrocardiograph (ECG) and phono-
cardiogram (PCG) wearable sensors, this paper proposes a novel
framework for synchronized ECG and PCG signal analysis for
cardiac function monitoring. Our system jointly performs R-peak
detection on ECG, fundamental heart sounds segmentation of
PCG, and cardiac condition classification. First, we propose the
use of recurrent neural networks and developed a new type of
labeling method for R-peak detection algorithm. The new labeling
strategy utilizes a regression objective to resolve the previous
imbalanced classification problem. Second, we propose a 1D U-
Net structure for PCG segmentation within a single heartbeat
length. We further utilize the multi-modality of signals and con-
trastive learning to enhance model performance. Finally, we extract
20 features from our signal labeling algorithms to apply to two
real-world problems: snore detection during sleep and COVID-19
detection. The proposed method achieves state-of-the-art perfor-
mance on multiple benchmarks using two public datasets: MIT-
BIH and PhysioNet 2016. The proposed method provides a cost-
effective alternative to labor-intensive manual segmentation, with
more accurate segmentation than existing methods. On the dataset
collected by Bayland Scientific which includes synchronized ECG
and PCG signals, the proposed system achieves an end-to-end R-
peak detection with F1 score of 99.84%, heart sound segmentation
with F1 score of 91.25%, and snore and COVID-19 detection with
accuracy of 96.30% and 95.06% respectively.

Index Terms— ECG R-peak detection, heart sound (PCG)
segmentation, self-supervised learning, multi-modal signal
processing

[. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death
worldwide. According to the report by Centers for Disease Control
and Prevention (CDC) [1], Coronary Artery Disease (CAD), the
most common type of CVDs, killed 360,900 people in 2019. The
characteristics of heart diseases that make them especially dangerous
are that these diseases are salient and unaware by patients, and when
the severity increase, the diseases become deadly in a short time.
For a potential patient, physiological signals monitoring may uncover
important information for doctors to detect potential CVDs and con-
trol the patient’s condition. However, during the ongoing pandemic,
hospitals are overwhelmed by COVID-19 patients, forcing millions
of patients to stay home. Although the communication between
patients and doctors can still be carried out via telehealth methods
through platforms like Zoom, simple video and audio communication
without real-time physiological signal monitoring and analysis made
it difficult for doctors to accurately assess the status of their patients.
Therefore, it becomes an increasing need for a stay-home self-
monitoring system, which can enable the collection of patients’
physiological data at home, provide analysis for gathered data, raise
alerts for abnormal data and transfer it to doctors for diagnosis, and
deliver the clinical treatment plan back to patients. Such a system
can be beneficial via the following three advantages: (1) Patients
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Fig. 1. lllustration of our proposed self-monitoring system workflow. The
user’s physiological data will first be collected by the wearable device
and uploaded to the server. The algorithm implemented on the server
will perform data analysis. If abnormal data is detected, a clinical alert
will be sent to the user, and the filtered-out data will be sent to the
clinician with an analysis report. The clinical can diagnose based on
the report and data, and develop a further treatment plan.

can conduct self-monitoring by having real-time physiological signals
analysis; (2) Abnormal signs in the signals can be detected and
delivered as automated clinical alert, which could alarm the patient
to get treatment, and assist doctors to diagnose the situation; (3) This
system can help to distribute the medical resource more effectively
and prevent an overwhelming burden for patients with no or mild
illness seeking for in-hospital treatment.

In this work, we propose a novel self-monitoring system framework
via multi-modal electrocardiograph (ECG) and phonocardiograph
(PCG) signal processing, as illustrated in Fig. 1. Specifically, we
propose to use a wearable sensor to gather simultaneous ECG and
PCG signal. We then develop a deep-learning-based multi-modal sig-
nal processing framework to extract key features from ECG and PCG
signals, which are useful for providing abnormal alert in downstream
clinical tasks. Both ECG and PCG have been respectively identified
by previous research as vital signal for monitoring cardiovascular
diseases, which are the leading cause of death globally [2], and other
diseases. Moreover, the multi-modal processing of ECG and PCG
brings further information for monitoring the entire cardiac cycle.
For example, the study of Shapiro et al. shows that the prolong
of electromechanical activation time (EMAT), as measured by the
duration of Q-peak on ECG and peak of first heart sound on PCG,
is an indication of left ventricular dysfunction. To the best of our
knowledge, this work presents the first deep-learning-based system
for multi-model ECG and PCG processing, and for the first time
proves that analyzing the joint information of synchronized ECG and
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Fig. 2. lllustration of the Bayland Scientific wearable device used for

the data collection of this project.

PCG has the potential to improve diagnosis accuracy.

The collection of ECG and PCG signal in our work is empowered
by a novel piece of technology developed by WENXIN and Bayland
Scientific Technology: a band-aid-like wearable ECG and PCG
device, as illustrated in Fig. 2. The device has obtained the Chinese
National Medical Products Administration (NMPA) approval and has
been used in a heart failure study by Li et al. [3] for data collecting
purpose. Patients can simply attach the device to their chest and
easily perform ECG and PCG tests at home. The sensed data can
then be recorded and transmitted to the doctor’s office in real time.
Being a wearable device, the chest sticker enables easy continuous
signal monitoring without interfering with normal human activities.
Moreover, unlike previous wearable devices such as wristband and
life shirt [4] etc. that are loosely connected to the human body,
Bayland Scientific’s chest sticker significantly reduce the influence
of outside noises, especially on the PCG signal. With this device
in place, this paper focus on the development of deep-learning-based
algorithms to automatically analyze the gathered ECG and PCG data,
perform screening and raise alerts for potential issues, and extract
critical features to aid the physicians in diagnosing the patient. We
focus on the following two problems: (1) How to locate the key points
on ECG and PCG accurately; (2) How to transform these identified
key points on ECG and PCG into effective features that can be used
for solving health problems e.g., detecting diseases in the early stage.

The ECG, which monitors cardiac conditions by detecting the
muscular electrical signals, is typically cost-effective in collection
and is suitable for processing. Given their wide availability, ECG
signals were thoroughly studied [5], [6] by previous researchers, and
has enabled downstream tasks like arrhythmia detection. Building
upon previous research, in this work we propose the use of LSTM
to identify the R-peaks on ECG signals. We further convert the
commonly used classification objective to a regression objective,
which resolves the problem that number of R-peaks is significantly
less than non-R points faced by previous methods.

The PCG is a recording of sound and murmur of heart, and contains
more information than ECG signals that can enable further diagnosis.
For example, major cardiac disorders like heart failure and valve
disease caused by heart structure pathological change are hard to be
detected by the electrical signals of ECG; while the cardiac structure
change is likely to generate abnormal vibrations that can de captured
by the PCG signal. It has been demonstrated that vital biomedical
information can be identified by the location of key points and the
strength of heart sound, which are all captured by the PCG signal.
Collins et al. [7] shows the presence of S3 heart sound has highly
positive-correlation with primary heart failure; and the study of Roos
et al. [8] shows the left ventricular ejection time (LVET) measured
on PCG is negatively correlated with the probability of incident heart
failure. Therefore, we find identifying the key points on PCG signals
as a vital component of our self-monitoring pipeline for downstream
clinical alerts. However, the studies on PCG are lacking compared
to the ones on ECG. With only a few successful studies based on

the PhysioNet 2016 challenge of normal and abnormal heart sound
classification [9], [10]. The reason for the lack of attempts on PCG
is that its signal has more complex waveform than ECG, and the
collection process usually leads to significant noises. We develop a 1-
D CNN-based U-Net model to perform fine-grained segmentation on
the PCG signal. The ECG information are also taken as multi-modal
input to increase model performance. Also, we applied Contrastive
Learning method to pretrain the model to achieve higher accuracy.

Based on the temporal relationship and the amplitude of the key
points identified on the ECG and PCG signal, we extract 20 features
to perform further analyze on downstream tasks. ANN models are
trained with our extracted features to perform critical medical tasks
like classifying COVID-19 positive samples and snore detection
during sleeping.

The main contributions of this work can be summarized as follows:

e We propose a deep-learning-based self-monitoring system which
can help allocate medical resources more effectively.

o We propose a novel multi-modal processing framework for the
identification of key points on ECG and PCG waveform, which
attain state-of-the-art results on multiple benchmarks including
both public and private PCG and ECG dataset.

o We extract useful features from ECG and PCG to achieve
high performance on downstream medical tasks like COVID-
19 detection and snoring detection.

e We for the first time shows the effectiveness of multi-modal
ECG and PCG processing in self-monitoring systems.

The content of the paper is organized as follows: Section II
introduces the previous research and dataset on ECG, PCG, and
downstream tasks. Our proposed R-peak detection algorithm is pre-
sented in Section III, along with its evaluation results on the public
MIT-BIH and our private Bayland Scientific dataset. In Section IV,
the PCG segmentation algorithm is proposed, which we compare with
other state-of-the-art methods on the PhysioNet dataset, and analyzes
on our private dataset. The downstream tasks of snoring and COVID-
19 detection based on features from ECG and PCG are presented in
Section V. Finally, Section VI summarizes our work and discusses
the advantages of our proposed methods and our future work.

Il. RELATED WORK
A. ECG R-peak Detection

Among all the R-peak detection algorithms, the most well-known
one is developed by Pan and Tompkins [S] which is widely analyzed
by researchers as a benchmark. It is a good representative of a
family of algorithms constructed in two parts: signal preprocessing
for reducing noise and enhancing the QRS complex, and a peak
searching algorithm by setting proper thresholds. These methods
are computationally efficient and can be easily deployed on mobile
devices. However, in real-world applications, the ECG signal quality
may be influenced by different factors. Data collected by various
types of sensors or devices tend to have scaling variations as well as
very different noisy property and distribution, caused by electronic
or other environmental factors during the data-collection process. In
each of those settings, a tuning of hyper-parameters for filters or
transformation would have to be performed to retain the accuracy.
Moreover, even if the sensory data is being continuously collected,
other dynamic factors such as body posture could cause temporal
variation. Therefore, an algorithm that is robust in complex conditions
is needed in order to deal with sensory data with varying quality.

Deep-learning-based methods for processing the ECG signals are
developed in recent years. These methods are trained with large
training datasets covering different quality signals and can perform



Q. HUANG et al.: A DEEP-LEARNING-BASED MULTI-MODAL ECG AND PCG PROCESSING FRAMEWORK FOR CARDIAC ANALYSIS (APRIL 2022) 3

reasonably well in different conditions. Convolutional Neural Net-
work (CNN) based methods have the ability to draw meaningful
features locally from the waveform and are robust to noise. Xiang
et al. [11] used a two-layer 1D-CNN network for R-peak detection
and reporting an accuracy on MIT-BIH dataset of 99.68%. However,
the CNN based method relies on a moving window with human-
decided window size, so it cannot predict the location of R-peaks
directly. There are other works using Recurrent Neural Network
(RNN) based methods for ECG analysis which can better utilize
temporal information in the signal. Laitala et al. [12] used a Bi-
LSTM model and reported a precision of 99.63% on a subset of the
MIT-BIH dataset. However, LSTM model can only take in down-
sampled data under efficiency constrains, which suffers from the
information loss of the down-sampling process. In this work, we
combine CNN and LSTM models, leveraging CNN’s capability for
spatial feature extractions while using LSTM to capture temporal
feature relationship. Zhou et al. [13] used a combination of 6-layer
CNN and 1-layer LSTM model to detect R-peak and reported an
accuracy of 90.68% in £25 ms window. While they used a labeling
technique that relies on selected window position on signals, we
proposed a Gaussian shape labeling technique that can be applied
across the entire sequence.

We utilize a widely used dataset on ECG signals: MIT-BIH arrhyth-
mia classification dataset [14] which contains ECG and location of
R-peaks. The dataset is sourced from both normal people and patients
with arrhythmia. We also utilize a proprietary Bayland Scientific ECG
dataset, whose signals are mainly normal except for a small subset
of snoring samples and COVID-19 samples. More details regarding
the two datasets will be discussed in Section III.

B. PCG Segmentation

There are already several attempts on PCG segmentation tasks. In
earlier works, traditional signal processing techniques were applied
for segmentation with two steps: first using envelograms [15] or
wavelet transform [16] to extract features related to fundamental
heart sounds, then marking the peaks based on features extracted
using a threshold, and identifying the boundaries of S1s and S2s.
Since these traditional methods rely on threshold-based peak-finding
algorithms, they can not be generalized to signals from different
sources. And these methods are not robust to the significant noise
typically associated with PCG signals will.

Researchers have also developed methods using deep learning
framework for PCG segmentation. Significant amount of work focus
on temporal modeling for PCG segmentation. For example, Logistic
Regression Hidden Semi-Markov Model (LR-HSMM) [17] was used
to predict the sequence of fundamental heart sounds; In another
work, Recurrent Neural Network (RNN) [18] was shown to perform
better than Convolutional Neural Network (CNN) in analyzing the
sequential states of PCG signals. Since these temporal methods lack
the ability to process raw signals, a feature extraction algorithm
will be applied to signals first. Normally, frequency-domain features
will be extracted and proven to be effective, for example, wavelet
transform was used in [17], and Mel-frequency cepstral coefficients
(MFCC) were used in [18], [19].

In our proposed approach we first employ our R-peak detection
algorithm to separate data into single heartbeats. Then we apply a
U-Net model to arrive at a fine-grain segmentation. In this case, the
heartbeat signal feeding the U-Net is not treated as having temporal
dependency but rather a static object. Therefore, we can leverage
CNN based model’s strength in recognizing spatial patterns on the
raw signals, which allows us to obtain higher accuracy than other
algorithms.

The PhysioNet 2016 heart sound classification dataset [9] is widely
used as a benchmark for the heart sound segmentation task since
it contains PCG signals with simultaneous labels of states of the
heart cycle (S1, systole, S2, diastole). However, only a small set of
data includes double-channel ECG and PCG which is different from
our Bayland Scientific synchronized dataset. For studying the benefit
of multi-modal input for PCG segmentation, we will utilize our
private Bayland Scientific dataset for thorough analysis while using
the double-channel subset of the PhysioNet dataset for comparison
with other state-of-the-art algorithms. More details of the two datasets
can be found in Section IV.

C. Downstream task

We focus on two downstream health monitoring problems based
on ECG and PCG signals: snoring detection during sleeping, and
COVID-19 symptom detection. These two tasks are chosen due to
the real medical concern of sleep quality and severity monitoring of
COVID-19 infection, as well as the need for 24-hour monitoring with
mobile devices. However, there has been limited work done on snor-
ing and COVID-19 detection based on ECG and PCG signal analysis.
The existing dataset for snoring detection is the SOMNIA database
[20], which uses Polysomnography (PSG) for sleep analysis. How-
ever, PSG contains multi-modal physiological signals and requires
hospital-level equipment. For the COVID-19 study, the DiCOVA
database [21] is widely used whose data contains recordings of
users’ cough sounds, breath, sustained vowel phonation, and speech
audio. Unlike Bayland Scientific’s gathering of ECG and PCG signals
via small-form-factor personal wearable devices, the collection of
the DiICOVA dataset requires high-precision microphones which are
not easily obtainable in practice. In our system, the signal analysis
and abnormal detection are performed end-to-end on the Bayland
Scientific collected dataset with dual-channel signals and labels of
normal, snoring, and COVID-19 infection samples.

I[11. ECG R-PEAK DETECTION TASK

An ECG signal measures heart electrical activities. The time
information and strength of activities are revealed by the location
and amplitude of QRS complex which can help in disease diagnosis.
The correct identification of R-peaks on ECG signal is the first step
which enables subsequent QRS and T wave identification and heart
rate analysis. Therefore we first develop an algorithm to correctly
identify the timing of a complete heartbeat through localizing the
R-peaks on ECG signal.

A. Method

1) Labeling: MIT-BIH arrhythmia database included expert-
labeled R-peak labels for every heartbeat. However, the number of
points corresponding to the R-peak is relatively small compared to
that of other points, such that the classes are imbalanced. For a 360 ms
heartbeat, the proportion of R-peak to the heartbeat is ﬁ. If we want
to detect the position of R-peaks through a classification task that
works through each point in the sequence, a weighted classification
loss function will have to be used. However, the weight will be hard
to decide since the length of heartbeats varies among individuals.
Therefore, we transform the task from classification to regression by
converting the label to a Gaussian-shaped target. Let x on the time
axis and centered at R-peak position which means z = 0 at the
R-peak, then the label can be represented in the form:

f(x) =ae 22 . o)
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Fig. 3. lllustration of the proposed Gaussian-shaped labeling for R-peak
on ECG. The red vertical line shows the true location of R-peaks. The
green curve is the Gaussian-shaped label.

TABLE |
CONV-LSTM MODEL STRUCTURE
Layer Output Dim | Stride | Activation
1D Convolution k=101 8 1 Relu
1D Avg-Pooling 8 2 -
1D Convolution k=101 1 1 Relu
1D Avg-Pooling 8 2 -
LSTM 8 - Tanh
Fully Connected 1 - -

Set it in a standard form by letting a = 1, b = 0 and ¢ = 1, then:

22

flz)=e 7. (@)

Fig. 3 shows a typical illustration of how Gaussian-shaped label
apply on ECG in the range of one heartbeat. In the standard setting,
the shape of one Gaussian label covers the R-peak, and at the peak,
the Gaussian-shaped label has a value of 1. This setting will help the
training process with normalized ECG signal as its input and mean
squared loss (MSE) as loss function.

2) CNN-LSTM Model: In this work, we propose a network
combining CNN and LSTM for the R-peak detection task, which is
illustrated in Table I. The proposed model contains 2 1D-CNN layers
each followed by an average pooling layer. These 1D layers will
extract high dimensional spatial features from the input ECG signals
and perform down-sampling to decrease hidden outputs’ dimensions.
Following the stacked convolutional layers is the LSTM layer which
helps the model to capture temporal information. The output of the
LSTM layer is fed into a fully connected layer to make a regression
to our Gaussian labels. Relu is used as the activation function of
the CNN layers and the fully connected layers. The Tanh activation
function is used for the LSTM layer.

3) Loss function: A loss function is used to measure the differ-
ence between the model predicted labels and the true label, which is
then used for calculating the gradient so to dictate the direction of
optimization. In the experiment, we use Mean Squared Error (MSE)
Loss function to perform regression task. The optimization object is
shown as:

. 1
argming EEf;l(yi — f(Ss; 0))27 3)

where B denotes the batch size, (S, y;) is a paired sample of input
signal sequence and Gaussian-shaped label from the training dataset,

TABLE Il
RESULT OF EVALUATION ON MIT-BIH DATABASE
Method Precision (%) Recall (%) FI1 (%)
Pan&Tompkins [5] 99.56 99.76 99.65
CNN [11] 99.91 99.77 99.83
LSTM [12] 99.62 99.53 99.57
Proposed Gaus LSTM 99.70 99.68 99.68
TABLE IlI
R-PEAK LABELING STRATEGY STUDY ON BAYLAND SCIENTIFIC
DATASET
Method Precision (%) Recall (%) F1 (%)
Categorical 50ms 99.96 99.11 99.46
Proposed Gaus 50ms 99.89 99.84 99.84
Categorical 25ms 90.98 90.40 90.64
Proposed Gaus 25ms 96.68 96.63 96.63

and the function f(-;6) denotes the operations made by the Conv-
LSTM model. Thus our optimization aims to minimize the difference
between the model prediction and the smooth approximation of
binary R-peak positional labeling.

B. Experiment

1) Dataset: We use both the MIT-BIH database and our private
dataset collected by Bayland Scientific to evaluate our method.

The MIT-BIH database has reportedly been used in many publi-
cations. This database includes 48 heartbeat recordings at 360 Hz
from 47 different patients. Each recording is 30 minutes in duration
and contains two leads: 1) a modified Lead II collected on the chest;
2) another channel from lead V1, V2, V5, or V4. The database has
been employed by researchers to test algorithms for QRS detection,
arrhythmia detection, and classification. In our experiment, the first
channel from Lead II is used as input, and R-peak labeling is used
as the target variable.

The second dataset we used is collected using wearable devices
by Bayland Scientific company. This private dataset contains 2076
pieces of dual-channel synchronized ECG and PCG signals with an
average length of 50 seconds. The sampling rate of recordings is
1000 Hz. We also use this set of multi-modal sequential data for the
following PCG segmentation task. However, in the scope of the ECG
R-peak identification task, we only use the ECG channel. This ECG
signal is a single lead signal of Lead II which is the same one used
in the MIT-BIH dataset. All the positions of R-peak are fully labeled
by professionals from Bayland Scientific.

2) Evaluation Metrics: The algorithm performance is evaluated
with Precision, Recall, and F1. We measure the True Positives, False
Positives and False Negatives within a tolerance of 50 ms for the
public MIT-BIH dataset. For the private dataset, we examined the
performance within a tolerance of 50 ms and 25 m.

3) Implementation: The initial learning rate is set to 0.1, and the
SGD optimizer is used to train the proposed model with momentum
set to 0.8. If the value of loss on the validation set cannot be reduced
within five epochs, the training process will be terminated. And we
set the maximum training epochs to 100.

C. Results

1) MIT-BIH Result: Table II summarizes the performance of our
algorithm for the MIT-BIH database. Most of the online algorithms
achieved high accuracy on this challenge. Our work achieved the
same level of accuracy when compared to models that operate on an
entire sequential ECG and produce continuous labels.
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Fig. 4. llustration of typical Conv-LSTM model prediction for R-peak,

the red line is the prediction and the purple line is the true label. The
above figure is the output with a categorical labeling strategy and the
below one is with Gaussian-shaped labeling.
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Fig. 5. lllustration of four states of heart cycle with ECG and PCG
signal: S1, Systole, S2, and Diastole. R-peaks are labeled as an
approximate start of S1. Systole and diastole labeled in between S1
and S2, actually start at the beginning of S1 and S2 respectively.

2) Private Result: On our private dataset, we perform an ablation
study on the choice of continuous Gaussian shape labeling and
categorical labeling. In this experiment, the categorical label for R-
peak is 1 and O for the rest in a given sequence. The loss function
we used is weighted Cross-Entropy Loss with a weight of 1 : 550 for
class 0 vs class 1. The predictions made by the model are shown in
Fig. 4. Table III shows the results of our experiment. We can observe
the lower recall for categorical labeling strategy which indicates the
model is likely to incorrectly identify normal points on ECG signals
as R-peaks. It is possibly caused by the sub-optimal class weight
setting for Cross-Entropy Loss, while the Gaussian-shaped labeling
does not have such a problem.

IV. PCG SEGMENTATION TASK

Heart sound or its graphical representation phonocardiogram
(PCG) is one of the commonly used physiological data for diagnosing
cardiac diseases including arrhythmia, heart failure, etc. In computer-
aided heart sound analysis, diagnosis can be divided into two parts:
signal segmentation and classification. An accurate classification
model relies on the precise localization of first/second heart sounds
and other states on the heart sound signal. During a cardiac cycle, the
heart experiences atrial and ventricular contractions. These vibrations
generate sounds, the magnitude of which can be displayed on PCG.
Most commonly, we can observe four states in one heartbeat cycle:
first (S1) and second (S2) heart sound, systole whose beginning
is signaled by the start of S1, and diastole whose beginning is
signaled by the start of S2, as shown in Fig. 5. Since we already

developed an algorithm that can identify the location of R-peaks on
ECG signal, it can also be used to identify the PCG heart sound
cycles. Thus, our next task is to segment the individual heart states
given a particular heartbeat extracted by our R-peak identification
algorithm. PCG segmentation is a more challenging task since the
similarity between S1 and S2 peaks, and the occasionally appearing
sinus rhythm which is considered as noise compare to our major
objects: S1 and S2.

A. Method

1) Data Preprocessing: Let s denote a normalized 2-channel
signal from ECG and PCG which contains N heartbeats as segmented
by the R-peak identification algorithm. Each heartbeat is defined as
starting from 100ms preceding one R-peak and ending at 100ms
preceding the next R-peak. In such a setting, the heartbeat period
includes all four states of heart cycle,

s=1[b1,...,bN] “)

Since for CNN processing, the inputs are required to have the same
shape, we resize the heartbeat sequence to have the same length. For
those heartbeats with a length less than 1536, we pad them to 1536
with zeros after the original sequence; For those longer ones, we only
keep the first 1536 samples. After resizing the signals, we obtain a
set of equal-length heartbeats from original sequence for our training
set: X = [b),...,by] and Y = [y1, ..., yn], where each y; is an 1D
array filled with class index (0,1,2,3) corresponding to systole, S1
period, diastole, and S2 period respectively.

2) U-Net Based CNN model: Inspired by the wide usage of
2D U-Net in biomedical image segmentation tasks, we designed a
1D variant of U-Net in our PCG segmentation framework. Similar
to the original U-Net, we maintain the Encoder-Decoder structure
and the 2 convolutional layers per block architecture with Relu
activation function and skip connections. Meanwhile, we change all
the convolution layer, max-pooling layer, and up-convolution layer
to one-dimensional. Also, we adjust the number of filters in each
convolution layer to better extract the spatial features for 1D signals.
The kernel size is set to 7 for smooth feature extraction on signals.
The convolution is applied with padding for keeping sizes of input
and segmented output the same. We use the average pooling layer
instead of max-pooling layer. And the step of pooling layer and up-
convolution layer is set to 4. The structure of the model is shown in
Fig. 6.

3) Loss Function: For this segmentation task, we try to minimize
the categorical difference on each pixel between our model output and
the true segmentation. In the experiment, we use Cross-Entropy Loss
function for our optimization problem. The optimization object for a
segmentation object in the batch is shown as:

N
1
argming NZ Z p;j(yi)log f;(bi; 0), )

i=1;€(0,1,2)

where (b;,y;) is a pair of point on heartbeat and label at x = ¢; N is
the heartbeats length which in our case is 1536; p;(y;) = 1 when j
is the same as the class in y;, O otherwise; and the function f;(b;;6)
denotes the output probability on class j from the U-Net model. Thus
our optimization aims to minimize the pixel-wise difference between
the model prediction and the true labeling of original signals.

4) Pretraining: Supervised learning models rely on large training
samples to boost generalization ability. However, the data labeling
process is both expensive and time-consuming. This is particularly
a tougher problem in the biomedical field than in the fields of
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Fig. 7. lllustration of Contrastive Learning Framework

computer vision or natural language, as it requires skilled profes-
sionals. Self-supervised pretraining has recently been established as
a successful technique in terms of having the capacity to learn better-
generalizable representations to improve the accuracy of supervised
training through the use of unlabeled data. Among all the pretraining
tasks, contrastive learning is one of the advanced techniques in self-
supervised pretraining learning and has shown outstanding results on
tasks dealing with images. However, for the data associated with a
single heartbeat, typical image data augmentation methods like clip or
rotation used by SimCLR [22] is not suitable. Here we propose a new
contrastive learning method that is effective in training a model with
encoder-type structure to obtain general representations for single
heartbeat signals.

Our work is inspired by the work proposed by Saeed et al. [23],
the general idea is to distinguish the source of segmented signal. The
first step is to perform data augmentation on all the heartbeat signals.
For each input heartbeat, b, we generate one random augmentation,
br Aug(b). Here we apply two types of augmentation: the
frequency masking method from SpecAugment [24]; and masking
the ECG channel since we want to guide our encoder to rely more
on features from PCG channel. Each of the augmentation does not
perturb the location information of the original signals. Then we

pass the signals to the encoder of our U-Net, Enc, which maps b/
to a representation vector, r = Enc(b/). Then the representation is
passed through a projection network, Proj, which maps r to a vector
z = Proj(r). We instantiate Proj as a single linear layer perceptron
of size 128. We normalize the output of this network to lie on the
unit hypersphere, which allows using an inner product to measure
distances in the projection space. As in self-supervised contrastive
learning [25], we discard Proj at the end of contrastive training
and use the output of Enc to perform the downstream supervised
training.

Since our contrastive learning strategy involves arbitrary number
of positive samples for an anchor one, we refer to the supervised
contrastive loss function introduced in [26]. For a set of [N heartbeat
subset, {b,¥k}k=1,.,~ randomly chosen from the contrastive
training dataset, in which the label y; is the index of source ECG
signal of each heartbeat, its corresponding batch consists of 2N pairs
of training samples, {Bl,ﬂl}l=1,...,2N, where boy, and boj_; are
two random data augmentations of by and ¥op = Yop_1 = Yk-
Then in the supervised contrastive learning setting, within a batch,
leti € {1,..,2N} and z; = Proj(Enc(b;)), then the loss of a batch
can be defined as :
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2N
Lt =3t (6)
i=1
1 exp (sim(z;, zp)/T)
L = —— log P L , ()
|P(4)] p;i) SN 12 exp (sim(z, 25) /)

where the P(%) denotes the set of indices of positives samples in this
batch which share the same source signal as anchor sample ¢, and
cos(z;, z;) computes the cosine similarity between the latent embed-
dings z; and z;. By optimizing this loss function, the Encoder of
the U-Net will pull all the positive samples with their augmentations
together and push away the negatives. The framework of contrastive
learning is shown in Fig. 7.

B. Experiment

1) Datasets: We use both the 2016 Physionet Challenge database
and the private Bayland Scientific dataset to evaluate our method.

The Physionet 2016 database is the most widely used database for
heart sound research. Although the objective of this challenge is the
heart sound normal/abnormal classification, this database is also the
primary benchmark for research on the heart sound segmentation task.
This database includes 3,126 heart sound recordings. Each recording
lasts from 5 seconds to 120 seconds with a sampling frequency of
2000 Hz. Since signals in this database are collected from different
locations of the body, from both adults and children, under clinical
and non-clinical settings, with or without diseases, the scales and the
patterns vary among different signals. Also due to the uncontrolled
environment, significant noise including talking, breathing and etc.
will be captured by the sensors. For the classification task, this dataset
contains annotations of normal/abnormal. For the segmentation task,
this challenge provides annotations for fundamental heart sound,
S1, systole, S2, and diastole on signals. These annotations are
generated by the LR-HSMM algorithm [17] and manually decide
their correctness.

There are five training sets provided by the challenge while only
’training-a’ subsets contain 2 channels signals of ECG and PCG. So
we will only use the ’training-a’ subset including 409 recordings for
training and test purpose.

The second dataset we used is the Bayland Scientific dual-modal
dataset introduced earlier. We use the synchronized ECG and PCG
signals as input. The positions of S1 start, S1 end, S2 start, and S2 end
are identified and labeled by professionals from Bayland Scientific.

2) Evaluation Metrics: We evaluate the performance of our PCG
segmentation algorithm using five metrics: positive predictive value
(PPV), sensitivity (Se), specificity (Spe), F1 score, and accuracy
(Acc). Unlike the ECG task which is evaluated on detecting R-peaks,
the performance of PCG segmentation is evaluated for each state of
the heart cycle. The evaluation metrics, except the accuracy, for each
state in terms of whether our algorithm correctly classifies this target
state can be denoted as:

PPV = TPT+PFP ®
Spe = % (10)
Fl= % (1)

Since these metrics are calculated for each of the four states, to
evaluate the overall performance of the segmentation algorithm, we

TABLE IV
RESULT ON PHYSIONET 2016 DATASET.
Method PPV Se Spe Acc F1
U-Net [27] 93.2 923 98.2 95.0 92.7
BiLSTM Attention [18] 96.3 97.2 97.5 969  96.70
BiLSTM Attention (our imp)  94.2 95.0 95.1 935 9475
GRNN [19] 94.9 95.9 - - 95.4
Proposed U-Net+Pretrain 96.21 96.04 99.16 9759 96.12
TABLE V
RESULT ON BAYLAND SCIENTIFIC DATASET.
Input Signal PPV Se Spe Acc F1
PCG Only 90.4  91.24 9848 95.85 90.68
PCG+ECG  90.73 91.76 9849 95.89 91.11

arrive at the final metrics by globally averaging among the four
classes. The accuracy is calculated globally by the number of the
correctly classified states divided by the number of pixels:

_ TP (12)
" TP4+TN+FP+FN

3) Implementation: The initial learning rate is set to 0.001 for
performing Contrastive Learning and training the U-Net segmentation
model from scratch, as well as for finetuning the U-Net segmentation
model with pretrained encoder to ensure the preservation of the
general feature extraction ability of the encoder. The Adam optimizer
is used to train the proposed model. If the value of the loss on
the validation set cannot be reduced within five epochs, the training
process will be terminated. And we set the maximum training epoch
to 150 epochs for both encoder training and U-Net training.

Acc

C. Results

1) PhysioNet Results: Table IV shows the evaluation result
of the proposed segmentation algorithm on the PhysioNet dataset
compared with other state-of-the-art algorithms. All numbers in the
table are in percentage. For our proposed method, contrastive learning
and multi-modal inputs are included and applied as aforementioned.
The baseline models we compared with include a GRNN model [19],
a U-Net model [27] and a Bi-LSTM with attention mechanism [18].
For the GRNN model, we refer to the performances declared by their
published results. For the U-Net and LSTM with attention models,
due to the unavailability of public implementation and the difference
in evaluation metrics, we implement a similar algorithm with the 1D
U-Net and LSTM with attention structure, and report the performance
with our metrics.

Through the observation, the recurrent neural network achieves
overall better results than the regular 1D U-Net. This suggests that
the temporal models and their Frequency-domain feature-extraction
methods are powerful in processing cardiac sequential data. However,
with our proposed pretraining and multi-modal techniques, the U-Net
becomes competitive. The reason is that by using an R-peak detection
algorithm to select a proper heartbeat-long window size, the CNN-
based method is now able to take advantage to perform fine-grain
segmentation. As the recurrent network can only make a classification
on a selected small window, such approximation is prone to make less
accurate predictions at the boundary of fundamental heart sounds.

2) Ablation Study Results:

Ablation to Benefit of Multi-Modal Inputs. Our dataset contains
two channels of synchronized ECG and PCG signals, which measure
different aspects of cardiac activities. It is natural to assume that
analyzing the ECG together with PCG would benefit the segmentation
of heart sound. Thus we set out to quantify the benefits of employing
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Fig. 8. lllustration of labeled data size influence on the performance

of U-Net with or without pretrained Encoder. The Encoder is pretrained
with full training data set of 9000 labeled heartbeats.

multi-modality. Table V displays the results of experimenting with
single-channel analysis vs dual-channel analysis on the Bayland
Scientific dataset. Thus we have demonstrated that by adopting a
multi-modal perspective, the model indeed achieves higher accuracy
and F1 score as a result of leveraging the joint information content.

Ablation to Pretraining Effect on Reduced Training Data Size
Besides improving the performance of the U-Net model, another
important reason to utilize contrastive learning pretraining is to reduce
the need for labeled training data. Therefore, we design an experiment
to examine the efficacy of contrastive learning in terms of data
labeling requirements. We train the U-Net from scratch, and with
pretrained Encoder respectively with labeled data sizes of 9000,
1000, 400, and 200 heartbeats. In the pretraining setting, the Encoder
is trained with 9000 unlabeled data under the contrastive learning
framework. When we train the U-Net with pretrained Encoder, we
do the experiments with Encoder’s gradient frozen and finetuned. We
evaluate the result with the F1 score as the metric. Fig. 8 shows the
results of this experiment.

As can be observed, utilizing the pretrained Encoder brings about
consistent accuracy improvement. The advantage of using pretrained
Encoder with finetuning than training the U-Net model from scratch
becomes more evident when the training set size is reduced. With
the training set size shrinks from 9000 to 3000, 1000, 400 and 200,
the differences of F1 score increases from 0.14% to 0.30%, 0.35%,
0.37%, and 0.51%. This enlargement of performance difference
demonstrates the Encoder pretrained by the Contrastive Learning
method has weights initialized with better generalization ability
than random weights initialization. Thus, our proposed pretraining
method is able to perform better when the data size is relatively
small. Furthermore, by observation, the model with gradient-frozen
pretrained Encoder has a similar F1 score as the model trained from
scratch when the training data size is large but achieves higher a F1
score when the data size shrinks. This trend indicates our pretrained
Encoder is able to produce a better-informed and more-generalized
representation of the input.

V. DOWNSTREAM TASKS

We developed the PCG segmentation algorithm that can be de-
ployed on wearable devices. In order to examine its effectiveness in
solving the real-world biomedical problems, we conducted two down-
stream experiments: COVID-19 sample classification, and snore/non-
snore classification from heart sound during sleep. Both tasks try
to solve problems based on features extracted from ECG and PCG
signals using locations of R-peak, S1 and S2 heart sound localized
by R-peak identification and PCG segmentation algorithms.

| et - ol

1000 2000

E
time (ms)

Fig. 9. Example of typical PCG signals. Subfigures (a), (b), and (c)
correspond to COVID-19 patient, snoring and normal PCG signals.

A. COVID-19 Patient Classification Description

During the COVID-19 pandemic, physicians employed wearable
ECG and PCG sensors to monitor the ECG and heart sound of
COVID-19 patients in a way that minimized direct contact. One
discovery that was found is that for moderate to severe COVID-
19 patients, there were distinctive respiration sounds embedded
within the heart sound that was captured by the wearable sensor.
This respiration sound is due to lung infections, and many patients
exhibiting the symptom were put on ECMO within 48 hours. As
for COVID-19 patients self-quarantined at home, the wearable ECG
and PCG sensor can be used to remotely monitor the patient. That
way, if such respiration sound is detected, the patient will know to
seek immediate medical attention. However, due to a large number
of COVID-19 patients, it is impossible to have physicians manually
process the PCG of every patient and provide an accurate diagnosis
in a timely fashion. Using an automated Al-based algorithm to detect
the said respiration sound or acoustic signature from the PCG signal
expedites the process significantly.

There is already a widely used dataset along with a prediction task
proposed online that is intended to detect COVID-19 positive cases
based on acoustic signals [21]. Such signals include breathing, cough,
voice and etc. The acoustic data needed to be collected intentionally
which proves difficult in COVID-19 self-monitoring. Therefore, if the
acoustic signature that indicates serious COVID-19 can be detected
solely based on the ECG and PCG, it will help people monitor their
COVID-19 infection status using personal wearable devices.

In this experiment, we collected a set of synchronized ECG and
PCG data from 92 COVID-19 positive patients and 95 negative
ones. Recordings were collected by Bayland Scientific wearable
devices, and have a standard length of 60 seconds sampled at 1-kHz
frequency. Subfigure (a) from Fig. 9 illustrates a typical type of PCG
from a COVID-19 positive patient. From observation, a particular
characteristic of this type of PCG signal is the overlay of heavy
breath noise added on top of a normal waveform, which is caused
by the attack on the respiratory system by COVID-19 infection.

B. Snoring Classification Description

Another important application of wearable ECG and PCG sensors
is sleep monitoring. PCG recordings contain not only the heart sound
but also the snores of the user. Identifying the presence and timing
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TABLE VI
FEATURES FOR DOWNSTREAM TASKS

Index Heartbeat-wise  Extract from Heartbeat
1,2 RR interval
34 S1 interval
5,6 S2 interval
7.8 systolic interval
9,10 diastolic interval
systolic interval
11,12 mean,SD “RRinterval
13.14 dlastol_lc mterval
’ sy];m 115l E%rt\ézr‘lfal
15’ 16 jascliol(ijc interval
17.18 amp. 1tu~ e during systole
’ amplitude during S1
19.20 amplitude during diastole
> amplitude during S2
TABLE VII
DOWNSTREAM TASKS
Task Accuracy AUROC

COVID Classification
Snore Classification

95.06 £(1.07)
96.30 £(1.86)

98.44 +(0.57)
99.42 £(0.24)

of the snores can help doctors identify how vital signs (ECG, blood
oxygen level, heart sound, and heart function) change before and
after the snore. However, because sleep monitoring is a lengthy
process of roughly 8-10 hours, manually identifying every snore in
the PCG recording is unfeasible and thus an Al-based algorithm is
needed to automate the process. While most sleep quality monitoring
involves comprehensive polysomnography (PSG) study which cap-
tures a multitude of signals including ECG, electromyogram (EMG),
eye movements (EOG), electroencephalogram (EEG), etc., snoring
detection can be achieved by looking at fewer types of signals. Here
we perform a snoring classification task to detect if a snore happens
during a 10-seconds sleep period using the dual-channel synchronized
ECG and PCG signals. Data we collected includes 320 samples with
snoring presence and 414 samples without. Each recording has a
length of 10 seconds with a sampling frequency of 1-kHz. Subfigure
(b) from Fig. 9 illustrates a typical type of PCG of a snoring sample.
From observation, the salient characteristic of this type of PCG signal
is the continuous high-frequency noise added on top of the normal
waveform, and the noise typically lasts for one to two heartbeat
periods.

C. Method

Inspired by the method used in the famous Heart Sound Classifica-
tion challenge introduced by Liu et al. [9], we extract features based
on key points locations on PCG signals. Twenty features that are the
same as the one used in PhysioNet 2016 were extracted for each
10-seconds signals as shown in Table VI. For each task, we trained
a three-layer Neural Network which contains 68,610 parameters to
perform binary classification.

D. Experiment

Considering that the size of the dataset is small and we want
to minimize the impact of train-test set partitions, we use K-fold
cross-validation where K = 5 to test the performance of our model
with selected features. Table VII shows the corresponding results
from 5-fold cross-validation. On average, our classification algorithm
based on features extracted from key points on PCG signals achieved
95.06% accuracy on COVID-19 classification and 96.30% on snore
classification. It is worth noticing that the COVID-19 task is relatively
harder since the noise signature may be small and subtle to detect
in certain cases due to their relatively mild symptoms. The scores of

AUC on two tasks are also high since the dataset is relatively balanced
between the two classes. Also note that the emphasis here is not to
present a new method on these specific downstream problems, but
rather to demonstrate that high accuracy can be achieved by simple
downstream algorithms leveraging features extracted by our upstream
segmentation algorithm.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a deep-learning-based self-monitoring
system. For this system, we developed a deep learning framework
aimed at automatic multi-modal physiological signal analysis and
abnormal health condition detection. Our proposed method for key
points detection on ECG signals with label smoothing achieves state-
of-the-art results on the MIT-BIH dataset. We qualitatively analyze
the advantages of regression on Gaussian-shaped labels than classifi-
cation on categorical labels. Based on the R-peak detection method,
our proposed beat-wise heart sound segmentation method achieves
competitive results compared with other state-of-the-art algorithms on
PhysioNet 2016 dataset. Moreover, we examined the benefit of using
synchronized multi-modal ECG and PCG signals for segmentation
instead of using only a single channel. The evaluation of contrastive
learning as an unsupervised pretraining method for the Encoder of U-
Net demonstrates both the performance improvement via pretraining
on the segmentation tasks and further relieves the reliance on costly
labeled data.

Furthermore, our downstream experiment proves the advantage that
our system can be easily extended to other types of cardiac diagnosis
based on ECG and PCG signals. The pipeline and features can be
transferred without modification. This algorithm also possesses the
flexibility to support feature modifications and additions, and features
crafted for specific downstream tasks can be inserted into the training
pipeline appropriately. The only preparation needed is to collect a
small dataset for the new tasks. The labeling work is relatively easy
for classification tasks like those we did for our snore and COVID-19
detection by assigning the sample signal a normal or abnormal flag.
The size of the dataset can also be kept small as demonstrated by the
small-size collection of only 320 signals with a length of 10-seconds
for our snore detection task.

Building upon our proposed method, one important future aspect
of this work is to improve the efficiency of the utilized deep learning
models. As we would like to deploy the proposed method into the
mobile devices or smart sensors of end-users, the memory usage and
computation cost are typically constrained by the limited resource
available on the target hardware. To enable wider and more efficient
deployment of deep-learning-based methods, model compression
techniques like pruning [28], [29], quantization [30], [31], and neural
architecture search [32], [33] on vital signal processing tasks are
worth investigating. Besides efficiency, the deep learning method
benefits from the availability of more labeled data, which potentially
requires large-scale health data collection, crowdsourcing across
different users as well as clinical facilities. In these scenarios, data
privacy protection is of paramount importance and typically requires
personal health data not leaving the user’s own device or associated
clinical or research facility. Future research will focus on extending
and adapting federated learning methodologies [34] to our multi-
modal ECG and PCG processing framework, which will support
real-world applications targeting better performance for healthcare
applications while preserving data privacy.

REFERENCES

[1] Centers for Disease Control and Prevention, “Heart disease facts,” [On-
line]. Available: https://www.cdc.gov/heartdisease/facts.htm. Accessed
on: Apr. 14, 2022.



GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

[2]

[3]

[4]

[5

=

[6

=

[7

—

[8

[t}

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

K. Mc Namara, H. Alzubaidi, and J. K. Jackson, “Cardiovascular disease
as a leading cause of death: how are pharmacists getting involved?”
Integrated pharmacy research & practice, vol. 8, p. 1, 2019.

X.-C. Li, X.-H. Liu, L.-B. Liu, S.-M. Li, Y.-Q. Wang, and R. H. Mead,
“Evaluation of left ventricular systolic function using synchronized
analysis of heart sounds and the electrocardiogram,” Heart Rhythm,
vol. 17, no. 5, pp. 876-880, 2020.

H. Ren, H. Jin, C. Chen, H. Ghayvat, and W. Chen, “A novel cardiac aus-
cultation monitoring system based on wireless sensing for healthcare,”
IEEE journal of translational engineering in health and medicine, vol. 6,
pp. 1-12, 2018.

J. Pan and W. J. Tompkins, “A real-time qrs detection algorithm,” IEEE
transactions on biomedical engineering, no. 3, pp. 230-236, 1985.

S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-time patient-specific ecg
classification by 1-d convolutional neural networks,” IEEE Transactions
on Biomedical Engineering, vol. 63, no. 3, pp. 664-675, 2015.

S. P. Collins, C. J. Lindsell, W. F. Peacock, V. D. Hedger, J. Askew, D. C.
Eckert, and A. B. Storrow, “The combined utility of an s3 heart sound
and b-type natriuretic peptide levels in emergency department patients
with dyspnea,” Journal of cardiac failure, vol. 12, no. 4, pp. 286292,
2006.

T. Biering-Sgrensen, G. Querejeta Roca, S. M. Hegde, A. M. Shah,
B. Claggett, T. H. Mosley Jr, K. R. Butler Jr, and S. D. Solomon, “Left
ventricular ejection time is an independent predictor of incident heart
failure in a community-based cohort,” European journal of heart failure,
vol. 20, no. 7, pp. 1106-1114, 2018.

C. Liu, D. Springer, Q. Li, B. Moody, R. A. Juan, F. J. Chorro,
F. Castells, J. M. Roig, 1. Silva, A. E. Johnson et al., “An open access
database for the evaluation of heart sound algorithms,” Physiological
Measurement, vol. 37, no. 12, p. 2181, 2016.

A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “Physiobank, physiotoolkit, and physionet: components of a new
research resource for complex physiologic signals,” circulation, vol. 101,
no. 23, pp. e215—-220, 2000.

Y. Xiang, Z. Lin, and J. Meng, “Automatic qrs complex detection using
two-level convolutional neural network,” Biomedical engineering online,
vol. 17, no. 1, pp. 1-17, 2018.

J. Laitala, M. Jiang, E. Syrjdld, E. K. Naeini, A. Airola, A. M. Rahmani,
N. D. Dutt, and P. Liljeberg, “Robust ecg r-peak detection using Istm,” in
Proceedings of the 35th annual ACM symposium on applied computing,
2020, pp. 1104-1111.

P. Zhou, B. Schwerin, B. Lauder, and S. So, “Deep learning for real-time
ecg r-peak prediction,” in 2020 14th International Conference on Signal
Processing and Communication Systems (ICSPsCS). 1EEE, 2020, pp.
1-7.

G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhyth-
mia database,” IEEE Engineering in Medicine and Biology Magazine,
vol. 20, no. 3, pp. 45-50, 2001.

H. Liang, S. Lukkarinen, and I. Hartimo, “Heart sound segmentation al-
gorithm based on heart sound envelogram,” in Computers in Cardiology
1997. IEEE, 1997, pp. 105-108.

L. Huiying, L. Sakari, and H. Iiro, “A heart sound segmentation algo-
rithm using wavelet decomposition and reconstruction,” in Proceedings
of the 19th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society.’Magnificent Milestones and Emerging
Opportunities in Medical Engineering’(Cat. No. 97CH36136), vol. 4.
IEEE, 1997, pp. 1630-1633.

D. B. Springer, L. Tarassenko, and G. D. Clifford, “Logistic regression-
hsmm-based heart sound segmentation,” IEEE Transactions on Biomed-
ical Engineering, vol. 63, no. 4, pp. 822-832, 2015.

T. Fernando, H. Ghaemmaghami, S. Denman, S. Sridharan, N. Hussain,
and C. Fookes, “Heart sound segmentation using bidirectional Istms with
attention,” IEEE journal of biomedical and health informatics, vol. 24,
no. 6, pp. 1601-1609, 2019.

E. Messner, M. Zohrer, and F. Pernkopf, “Heart sound segmentation—an
event detection approach using deep recurrent neural networks,” IEEE
transactions on biomedical engineering, vol. 65, no. 9, pp. 1964-1974,
2018.

M. M. van Gilst, J. P. van Dijk, R. Krijn, B. Hoondert, P. Fonseca,
R. J. van Sloun, B. Arsenali, N. Vandenbussche, S. Pillen, H. Maass
et al., “Protocol of the somnia project: an observational study to create
a neurophysiological database for advanced clinical sleep monitoring,”
BMJ open, vol. 9, no. 11, p. €030996, 2019.

A. Muguli, L. Pinto, N. Sharma, P. Krishnan, P. K. Ghosh, R. Kumar,
S. Bhat, S. R. Chetupalli, S. Ganapathy, S. Ramoji et al., “Dicova

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[34]

challenge: Dataset, task, and baseline system for covid-19 diagnosis
using acoustics,” arXiv preprint arXiv:2103.09148, 2021.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597-1607.

A. Saeed, D. Grangier, and N. Zeghidour, “Contrastive learning of
general-purpose audio representations,” in [CASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2021, pp. 3875-3879.

D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “Specaugment: A simple data augmentation method for
automatic speech recognition,” arXiv preprint arXiv:1904.08779, 2019.
Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,” in
European conference on computer vision. Springer, 2020, pp. 776-794.
P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” Advances in Neural Information Processing Systems, vol. 33, pp.
18661-18 673, 2020.

F. Renna, J. Oliveira, and M. T. Coimbra, “Deep convolutional neural
networks for heart sound segmentation,” IEEE journal of biomedical and
health informatics, vol. 23, no. 6, pp. 2435-2445, 2019.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” Advances in neural information
processing systems, vol. 29, 2016.

H. Yang, W. Wen, and H. Li, “Deephoyer: Learning sparser neural
network with differentiable scale-invariant sparsity measures,” arXiv
preprint arXiv:1908.09979, 2019.

Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer, “Hawq:
Hessian aware quantization of neural networks with mixed-precision,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 293-302.

H. Yang, L. Duan, Y. Chen, and H. Li, “Bsq: Exploring bit-level
sparsity for mixed-precision neural network quantization,” arXiv preprint
arXiv:2102.10462, 2021.

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv preprint
arXiv:1908.09791, 2019.

T. Zhang, H.-P. Cheng, Z. Li, F. Yan, C. Huang, H. Li, and Y. Chen,
“Autoshrink: A topology-aware nas for discovering efficient neural
architecture,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 6829-6836.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273—
1282.



