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Abstract

Speech enhancement (SE) systems aim to improve the quality and intelligibility of degraded speech signals obtained from far-
field microphones. Subjective evaluation of the intelligibility performance of these SE systems is uncommon. Instead, objective
intelligibility measures (OIMs) are generally used to predict subjective performance increases. Many recent deep learning based
SE systems, are expected to improve the intelligibility of degraded speech as measured by OIMs.

However, validation of the OIMs for this purpose is lacking. Therefore, in this study, we evaluate the predictive performance
of five popular OIMs. We compare the metrics’ predictions with subjective results. For this purpose, we recruited 50 human
listeners, and subjectively tested both single channel and multi-channel Deep Complex Convolutional Recurrent Network
(DCCRN) based speech systems.

We find that none of the OIMs gave reliable predictions, and that all OIMs overestimated the intelligibility of ‘enhanced’ speech

signals.
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On the Predictive Power of Objective Intelligibility
Metrics for the Subjective Performance of Deep

Complex Convolutional Recurrent Speech
Enhancement Networks

Femke B. Gelderblom, Tron V. Tronstad, Torbjørn Svendsen, Tor Andre Myrvoll

Abstract—Speech enhancement (SE) systems aim to improve
the quality and intelligibility of degraded speech signals ob-
tained from far-field microphones. Subjective evaluation of the
intelligibility performance of these SE systems is uncommon.
Instead, objective intelligibility measures (OIMs) are generally
used to predict subjective performance increases. Many recent
deep learning based SE systems, are expected to improve the
intelligibility of degraded speech as measured by OIMs.

However, validation of the OIMs for this purpose is lacking.
Therefore, in this study, we evaluate the predictive performance
of five popular OIMs. We compare the metrics’ predictions
with subjective results. For this purpose, we recruited 50 hu-
man listeners, and subjectively tested both single channel and
multi-channel Deep Complex Convolutional Recurrent Network
(DCCRN) based speech systems.

We find that none of the OIMs gave reliable predictions,
and that all OIMs overestimated the intelligibility of ‘enhanced’
speech signals.

Index Terms—Speech enhancement, intelligibility, objective
metrics, subjective evaluation

I. INTRODUCTION

BUSINESSES have embraced online meetings at a never-
before-seen rate during the Covid-19 pandemic. As so-

cieties are opening up again, many organizations are adopting
to combinations of remote and on-location work. So-called
’hybrid’ meetings, with both in-office and remote participants,
are becoming increasingly common.

The quality and intelligibility of the audio is crucial to the
meeting experience, but those on the remote end often find
themselves straining to hear what is being said by in-office
participants that do not use near-mouth microphones. Far-field
microphones, such as those embedded into a webcam, ceiling-
mounted conference systems, or table-top speakerphones, in-
evitably pick up noise and reverberation, reducing both the
quality and intelligibility of the transmitted speech signal.

As such, speech enhancement (SE) of far-field microphone
recordings for online meetings is more relevant than ever.
Hand-in-hand comes the need to ensure that we have reliable
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tools for measuring the performance of SE systems; this is the
topic of our study.

Microsoft has organised several challenges to stimulate
research on improving the quality of noisy and reverberant
speech signals and simultaneously open-sourced a subjective
evaluation framework for this purpose [1]–[3].

This has resulted in several State-Of-The-Art-Systems that
significantly improve the quality of single channel speech
signals. For the Interspeech 2020 Deep Noise Suppression
(DNS) challenge [1], Hu et al. proposed the deep complex
convolution recurrent network (DCCRN) [4], which won the
real-time-track. For the ICASSP 2021 DNS challenge [2],
it was Li et al. who proposed the winning system: a two-
stage complex network with a low-complexity post-processing
scheme (TSCN-PP) [5]. The authors later extended this net-
work into the simultaneous speech denoising and dereverber-
ation network (SDDNet) [6], which became the winner of the
third DNS challenge [3].

All of these networks (and many other competitors) im-
proved the subjective quality of speech: human listeners rated
the output of these SE systems to have higher quality than
the noisy input speech. As such, the challenges had two
(arguably equally) important outcomes: not only did they
stimulate the development of better SE systems, they also led
to a far more widespread reliance on subjective evaluation of
system performance with respect to quality. Evidence for the
significance of the latter was, for example, provided by Li et
al. who found that including the proposed post-processing step
of their winning system was consistently preferred by listeners,
even though the objective measures had predicted the opposite
effect [5].

Reducing noise, distortion and reverberance, should not only
be beneficial for quality (how comfortable or annoying the
sound is to listen to), but also for intelligibility. Intelligibility
is defined as the proportion of phonemes/words/sentences
perceived correctly. Like quality, it can be measured both
subjectively (with listening tests) and objectively (with math-
ematical metrics).

Since subjective testing is costly and time consuming,
objective intelligibility measures (OIMs) are the most com-
mon method for evaluating the intelligibility performance
of speech enhancement systems. These metrics can be ei-
ther ‘intrusive’ or ‘non-intrusive’. ‘Intrusive’ means they re-
quire the clean reference/target speech in addition to the
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noisy/distorted/processed signal to be evaluated. Generally
speaking, the intelligibility score is then based on some
measure of mathematically defined (human hearing inspired)
closeness between the signals. Their non-intrusive counterparts
usually have less predictive power [7], and during the training
of supervised speech enhancement systems, the clean reference
signal is readily available. As such, intrusive measures of
intelligibility are logical choices for the evaluation of speech
enhancement systems.

While the previously mentioned DNS challenges focused
on subjective quality, many of the participants also provided
objective performance scores of their systems with respect to
intelligibility, recognizing the importance of the latter. Most
of the studies (i.e. [8]–[18]) provided short-time objective
intelligibility (STOI [19], [20]) scores, while a few (i.e. [13],
[21], [22]) presented extended STOI (ESTOI [23]) scores.

However, OIMs have their limitations and do not necessarily
work well for complex nonlinear DNN-based processing, or
for the more realistic degradations of speech signals that
include reverberation and distortion [24]–[28]. This means
that the intelligibility performance of SE systems should be
checked with subjective testing.

Yet, it is rare to see SE systems being evaluated subjectively
for intelligibility. Notable exceptions to this observation come
from the field of SE for hearing impaired users, where a
limited number of research groups have put considerable effort
into systematically testing their denoising or speech separation
systems subjectively. Over the years, they have published
single channel models that improve subjective intelligibil-
ity for different levels of generalization (for example from
known speakers to complete language mismatch, and from
overlapping noise samples to completely unseen noise types)
and from simpler to more complex degradations (including
reverberation and non-stationary noises) [25], [28]–[36]. The
difficulty of improving subjective intelligibility is evident from
the fact that we were unable to find any studies demonstrating
subjectively improved intelligibility of noisy reverberant single
channel speech, under combined novel noise and unseen
speaker/speech conditions.

While these studies mostly focus on applications for the
hearing impaired, their results are also highly relevant for the
setting of online meetings.

One general conclusion we can draw from the above men-
tioned work, is that it seems to be easier to provide benefit to
those that struggle the most. Subjective intelligibility is mea-
sured by means of the speech recognition threshold (SRT) of a
subject: the SRT is the level where the subject can repeat 50 %
of the speech material correctly. Hearing impaired listeners
have elevated SRTs, meaning their intelligibility scores are
lower at relatively high signal to noise ratios (SNRs). At these
higher SNRs, SE systems have to remove less noise to recover
the clean speech, than at the lower SNRs where people with
normal hearing start to struggle.

For the meeting experience, the intelligibility should be
(close to) 100 %, which requires SNRs well above the SRTs
of normal hearing subject. If SNRs are that high, quality
would be the more important factor. However, it is all too
common to see poorly placed equipment and sub-optimal

sound absorption in meeting rooms, which often leads to
problematic SNRs and reduced intelligibility. Humans are
also extremely apt at ’guessing’ content from context, and
will report full intelligibility when they may actually have
missed out on approximately 20-30 % of the speech content.
This happens at the cost of increased listening effort, making
such meetings more tiring than they would have been if the
speech signals had been clearer. Additionally, retirement age
is increasing, and international cooperation is well-established,
so many meeting participants do have elevated SRTs due to
(mild) hearing loss and/or unfamiliarity with the language,
which reduces their ability to guess from context. Therefore,
we argue that intelligibility is highly relevant also at the higher
SNRs that one may expect for hybrid meetings from a decent
conference room.

Subjective evaluation is currently the only way to determine
how a particular SE system actually affects intelligibility, but
objective metrics are much faster and simpler to use. Relying
solely on subjective testing would be impending progress, but
we do need to validate the use of OIMs on modern SE systems.

In this study, we contribute by evaluating the predictive
power of 5 popular intrusive objective intelligibility measures
by comparing objective predictions to subjective results of
both the multi-channel and single channel DCCRN speech en-
hancement systems from [37] and [4]. We have taken particular
care to create a challenging and realistic test set, where speech
is made reverberant with room impulse responses (RIRs)
recorded in the same meeting room as where the noise was
recorded. Speakers do not necessarily look at the microphone
(array), which leads to a weaker direct path to the microphone,
and more reverberant input. Furthermore, there is a speaker
and language mismatch as training data did not include
Norwegian, the language used for the subjective evaluation.
Subjective intelligibility was evaluated by obtaining speech
recognition thresholds for 50 participants, representing both
native and non native office workers with or without self
reported normal hearing.

II. SPEECH ENHANCEMENT SYSTEMS

A. Problem formulation

A speech signal from a single stationary speaker, recorded
by a single microphone at a fixed position in stationary room
conditions can be expressed as:

ŷt,f = hfst,f + nt,f , (1)

where ŷt,f ,st,f and nt,f are the short-time Fourier transform
(STFT) coefficients of the noisy, clean and noise signals at
time t and frequency f , respectively. Furthermore, hf denotes
the frequency response of the reverberation filter, which is time
invariant, as long as relative positions between the speaker,
the microphone and the reflective surfaces in the room do not
change. The noise signal may come from one or more sources,
and each of these will have their own reverberance, but all of
these signal components are here collected in the definition of
nt,f .

As a microphone array is nothing more than a collection of
multiple microphones (each located at a unique location), the
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Fig. 1. Overview of the proposed speech enhancement and dereverberation system. The highlighted WPE and GCC-Phat boxes are only employed during
inference. The red frame contains all blocks with trainable parameters, where each Encoder-Estimator-Decoder structure represents a single channel DCCRN.

problem can be expanded to a multi-channel problem using
index i for each microphone element:

ŷi,t,f = hi,fst,f + ni,t,f , i = 1 . . . N, (2)

where N is the number of microphone elements in the array.
Both noise and reverberance degrade the intelligibility and

quality of speech [38], [39]. The ultimate goal of speech
enhancement is therefore to recover the speech signal s from
the single or multi-channel noisy signal ŷ.

B. SE models

From a machine learning perspective, it is natural to formu-
late the speech enhancement problem in terms of supervised
regression. This requires two matching datasets containing
corrupted input samples of ŷ and their respective clean speech
targets s. A model is then trained to minimize the difference
between these two, using a suitable loss function and output
formulation (often defined as a mask) that ideally puts extra
weight on differences that are particularly important for human
perception.

Figure 1 shows an overview of our multi-channel system
first proposed in [37]. It builds upon the challenge winning
single channel DCCRN system proposed in [4].

At its input, the multi-channel corrupted speech signal is
taken to the Fourier domain by a short-time Fourier transform
(STFT) operation. The STFTs for each channel are then passed
through a weighted prediction error (WPE) block for dere-
verberation [40]. Single channel DCCRN blocks estimate N
masks (one for each channel), all of which are then collapsed
into a single mask using the median operator. Finally, this
mask is applied to a beamformed version of the output of the
WPE blocks, before the enhanced signal is converted back to
a time-signal using an inverse STFT block.

During beamforming, the channels of a multi-channel signal
are delayed, weighted, and then combined into a single sig-
nal that is steered towards a specific source/direction. This
so-called steering vector requires time difference of arrival
(TDOA) values. During training, the system knows the true
speaker direction. During evaluation, we can either estimate

TDOAs by performing generalized cross correlation with
phase transform (GCC-Phat) [41] on the dereverberated WPE
output, or set them to the true TDOAs.

For the beamformer, we rely on the minimum power dis-
tortionless response (MPDR) beamformer. This beamformer
is also often referred to as a specific implementation of the
popular minimum variance distortionless response (MVDR)
beamformer, where the implementation differentiates itself
from the general MVDR beamformer, by deriving the distor-
tionless filter for a specified steering direction that minimizes
the mean square output power, and as such, it requires only the
corrupted input signal. To avoid ambiguity, we have chosen to
comply with Van Trees’ practice of referring to it as the MPDR
beamformer [42]. Further implementation details of the multi-
channel system are given in [37].

We evaluate two variants of this multi-channel system (with
oracle and unknown TDOAs), in addition to the single-channel
DCCRN it is based on. To ensure we obtain the change caused
by the DCCRN component of the systems over the results
that we would have obtained just with beamforming and WPE
dereverberation, we also define a relevant baseline for each
of the three systems. This gives us a total of six processing
conditions:

• Baseline 1, Noisy: Single channel noisy and reverberant
speech.

• Baseline 2, MPDR (estimated TDOAs): Multi-channel
noisy and reverberant speech that has been dereverbed
with WPE and beamformed with the MPDR beamformer,
where TDOAs were estimated using GCC-Phat on the
noisy reverberant input.

• Baseline 3, MPDR (oracle TDOAs): Multi-channel
noisy and reverberant speech that has been dereverbed
with WPE and beamformed with the MPDR beamformer,
using oracle TDOAs.

• SE system 1, DCCRN: Single channel noisy and rever-
berant speech passed through a WPE block and a single
channel DCCRN SE model.

• SE system 2, MPDR (estimated TDOAs) + DCCRN:
Multi-channel noisy and reverberant speech that has been
passed through the complete multi-channel system shown
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in 1. Here TDOAs are estimated from the dereverberated
output of the WPE blocks using GCC-Phat.

• SE system 3, MPDR (oracle TDOAs) + DCCRN:
Multi-channel noisy and reverberant speech that has been
passed through the complete multi-channel system shown
in 1. Here oracle TDOAs are used.

C. Training Data

The performance of deep learning based SE models is
highly dependent on the data that these models are trained on.
Training data needs to be varied enough to cover all possible
use cases, and realistic enough to avoid mismatch during later
use. Supervised training also requires that the desired target is
available. Therefore, we have taken the common approach of
corrupting clean speech with suitable noise and reverberance.

We relied on the DNS Challenge 2021 speech and noise
data, as it is a high quality database that covers multiple
languages and many different types of noises. For the RIRs,
we used the ISM-dir dataset described in [27]. These RIRs are
simulated using the image source method with the addition that
all speaker sources are modelled as directive sources with an
average male/female speaker pattern directivity.

Training input samples were generated in an ‘online’ man-
ner, meaning that new samples were generated during training
from convolving random samples of speech with random RIRs
and then adding (non-reverberant) random noise. In 20 % of
the cases the speech was also left non-reverberant. We ex-
perimented both with reverberant and non-reverberant speech
as target samples during training, and found the reverberant
speech to work best, as objective testing showed that the
DCCRN network was not able to remove reverberance.

III. EVALUATION

A. Evaluation Data

In order to directly compare results, we used the same
dataset for the objective and the subjective evaluations.

We chose a highly common type of meeting noise for the
evaluation, with transient components produced by typing on
a keyboard on a background of mostly stationary noise from
the air conditioning system. More than an hour of this type of
noise was recorded with a 9-channel circular microphone array
(planar) with 4 cm radius, positioned on a table approximately
in the middle of a typical rectangular meeting room with
dimensions 4.5 x 3.8 x 2.6 m, and a reverberation time
(RT601kHz) of 0.3 s.

RIRs were then recorded with the same microphone array in
the same room, at various speaker positions and orientations.
More details on how these RIRs were obtained can be found
in [27]. We included both the RIR recordings for speakers
looking towards the array, and the RIRs for speakers looking
away at a 90 degree angle.

We used these noise and RIR recordings to corrupt the
clean speech material from the Norwegian speech-in-noise test
developed by Øygarden [43]. This test is based on five-word
Hagerman sentences, each built up as follows: [Name], [Verb],
[Numeral], [Adjective], [Noun]. There are 10 possible options
for each class of word, giving 105 possible unique sentences,

but for practical purposes we relied on a subset of 500 unique
sentences from this database.

For each sentence and SNR, a random clip of noise and a
random RIR was selected, to corrupt the clean speech to all
SNRs ranging from -36 dB to 10 dB, with a 2 dB stepsize.

As such, we obtained a challenging evaluation dataset
with an unknown and unseen noise type, recorded RIRs that
‘looked’ at or away from the array, and speech material from
an unknown speaker in a language that was not present in the
training material.

B. Objective evaluation

Being able to objectively determine the intelligibility of
a speech signal has been relevant since the invention of
telephony, over a hundred years ago. This eventually lead to
the Articulation Index (AI), which was standardized in 1969
and revised in 1997, into an updated metric called the ‘speech
intelligibility index’ (SII). In 1980, the speech transmission
index (STI) was proposed, which can account for some simple
nonlinear degradations such as clipping. All these metrics are
still in use today.

However, these metrics are based on long-term signal statis-
tics, which make them unsuitable for non-stationary noise
and enhancement algorithms that introduce distortions. Several
metrics have been proposed to improve upon these important
limitations and we evaluate five of these metrics that are
commonly used when testing speech enhancement systems.

All of these metrics are intrusive, which means they require
both the corrupted signal and a corruption free reference
signal, as input. The metrics then estimate intelligibility based
on a mathematical measure of similarity between these two
signals. Intrusive measures generally perform better than their
non-intrusive counterparts, making intrusive testing the obvi-
ous choice in cases like ours where the reference signal is
readily available [7].

For objective testing we have obtained predictions for each
metric for the entire evaluation dataset. The evaluated metrics
are:

1) NCM (normalized covariance metric): The normalized
covariance measure (originally proposed in [44]) is closely
related to the STI. First both the corrupted signal and the
clean reference are band-pass filtered into different frequency
bands. Then the normalized covariance (the Pearson cor-
relation coefficient) is calculated for all the temporal en-
velopes of the reference and corrupted frequency bands. The
normalized covariances are converted to apparent SNRs for
each frequency, which are clipped and averaged into a single
score using frequency dependent weights. We relied on the
implementation from [45] for the calculation of NCM scores,
using the updated signal dependent weights proposed in [46].
Van Kuyk et al. found that this NCM implementation works
well for datasets where a speech enhancement system has
post-processed degraded speech, but had less correlation with
subjective results for datasets where speech was only degraded,
or where enhancement had been added as a pre-processing step
(before the speech was corrupted) [24].
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2) CSII (coherence speech intelligibility index): The CSII
metric attempts to extend the SII metric by making it appli-
cable to a wider range of distortions, where SII was designed
specifically for additive noise. Instead of finding the SNR of
each frequency band, the signal-to-distortion ratio (SDR) is
estimated for each band, based on the coherence between the
corrupted speech, and the clean reference signal. Speech seg-
ments are also divided into three energy level based categories,
and different weights determine the contribution of low-, mid-
and high-level speech segment scores (CSIIMid,CSIIMid and
CSIIMid, respectively) to the total CSII score [47]. We have
relied on the implementation from [45]. Van Kuyk et al. found
that a slightly different implementation of the CSII score had
acceptable predictive power on most datasets (in terms of
improved correlation coefficients), but notably struggled with
datasets where speech enhancement was applied as a post
processing step [24].

3) STOI (short-time objective intelligibility): STOI has
been specifically designed to deal with noisy speech processed
with time-frequency (TF) weighting techniques. To ensure
that the effect of local TF degradation is taken into account,
signals are segmented into short-time windows, and the overall
score is obtained by averaging the scores of all segments.
These scores themselves depend on the Pearson correlation
coefficient between the temporal envelopes of the corrupted
and clean reference speech signals [19], [20]. We relied on
the implementation provided by the original authors. STOI
is possibly the most popular OIM within the field of speech
enhancement, but multiple studies have noted its limitations
for evaluating performance of DNN-based SE systems [25],
[26], [28], [48].

4) ESTOI (extended STOI): ESTOI is similar to STOI,
but does not assume mutual independence between frequency
bands and incorporates spectral correlation, to improve its
performance on modulated noise sources [23]. We relied on
the implementation provided by the original authors. Van Kuyk
et al. found that ESTOI was one of the higher performing
metrics, but noted that ‘its usefulness is limited to situations
where noise is the main source of degradation’. Zhao et al.
found that ESTOI especially underestimated intelligibility of
unprocessed noisy-reverberant speech [28].

5) HASPI (hearing-aid speech perception index): HASPI
was first introduced in [49], and later updated to better
predict the intelligibility of reverberant speech (HASPI ver-
sion 2) [50]. We relied on the implementation of version
2 that we obtained from the original authors through direct
communication. HASPI allows for intelligibility predictions
based on the subject’s hearing loss, but we assumed normal
hearing conditions for all calculations. This means that during
calculation, both the corrupted signal and its reference were
passed through the same auditory model, giving two sets of
envelope modulation features. These outputs are then passed
through an ensemble of neural networks that have been fit to
subjective intelligibility data. HASPI has the most complicated
auditory model of the tested metrics, and Van Kuyk found
HASPI (version 1) to be the overall top performing intrusive
metric [24].

Subjective intelligibility is not just dependent on the speech

degradation, but also on the test setup. As such, it is common
to map predicted scores to subjective results for a given test
setup [23]. In order to obtain intelligibility predictions for our
specific subjective evaluation setup, we have mapped the OIM
scores to the subjective results of our single channel noisy
and reverberant baseline. Crucial concepts here are that the
mapping is monotonic, and kept equal for all the six processing
conditions defined in Section II-B.

For STOI and ESTOI, we have relied on the mapping
proposed in their respective papers [19], [20], [23]

Î =
100

1 + exp (aĨ + b)
, (3)

where Î is the predicted intelligibility, Ĩ the predicted score,
and a and b are the coefficients to be determined with the
non-linear least squares method. This mapping was empirically
found to also work well for NCM scores. For HASPI (which
has already been fit to subjective data), we found that a simple
translation along the SNR-axis lead to a closer match. For the
CSII metric, we used non-linear least squares to fit our data
to the mapping proposed by the original authors [47],

c = a1 + a2CSIILow + a3CSIIMid + a4CSIIHigh, (4)

Î =
100

1 + exp (−c)
, (5)

where the tunable parameters are the coefficients a.
We rely on the paired Wilcoxon rank sum test (also called

the Mann–Whitney U test), which is a nonparametric test
for paired observations that does not assume normality of
distributions, for testing whether results obtained for the differ-
ent processing conditions are significantly different. First we
obtain the SNR where the metric predicts 50 % intelligibility
for the noisy single channel processing condition. Then we
test, pairwise, for equality of the population medians of the
scores obtained at this SNR, for the noisy single channel
baseline condition, and the 5 remaining processing conditions
defined in Section II-B.

C. Subjective evaluation

For the subjective evaluation of the different SE models,
we recruited 50 (25 male and 25 female) office workers. Our
recruitment process was intentionally inclusive also to those
who may struggle more in such meetings, either because they
suspect/know their hearing is not optimal, or because they are
not native speakers of Norwegian. The informants included
19 non-native listeners (all with self-reported normal hearing),
and 31 native listeners (15 listeners with normal hearing, and
16 with self-reported known/suspected hearing loss). Only one
of the subjects was a hearing aid user. None of the participants
had participated in any form of speech-in-noise test in the past
year. We were not required to notify the Norwegian Centre for
Research Data (NSD) about our study as we only collected
anonymous data.

Self-reported hearing loss was found to be a rather poor
indicator of speech recognition thresholds (SRTs). While non-
nativity was a better predictor of SRTs, we observed a large
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Fig. 2. Intelligibility versus SNR predicted by each metric, for the following conditions: noisy, Single channel DCCRN, MPDR (estimated
TDOAs), , MPDR (estimated TDOAs) + single channel DCCRN, MPDR (oracle TDOAs), MPDR (oracle TDOAs) + single channel DCCRN.

(expected) performance spread, depending on a subject’s num-
ber of years of experience with Norwegian, and the closeness
of the subject’s mother tongue to Norwegian. Therefore we
divided the subjects into three subgroups based on their SRT
results for the unprocessed noisy speech condition. Results
from one subject were discarded as this subject’s complete
unfamiliarity with the language caused intelligibility scores to
be lower than the SRT threshold (50 %) even at the highest
test SNRs.

The chosen Norwegian speech-in-noise test had been im-
plemented in Matlab, and allowed subjects to complete the
procedure independent of an operator. The program presented
the subject with a graphical user interface that showed ten
possible words for each of the five word categories. Each
noisy/processed 5-word sentence was presented only once, and
the subject was asked to click on all the words he/she had
recognized. Guessing was allowed, but the test was not forced
choice.

Responses were recorded and scored automatically and
used as input to an adaptive psychometric function estimation
procedure called the Ψ method [51]. Using this procedure,
the routine continuously estimated the SRT and slope of the
psychometric function during the test. The final threshold
estimate was obtained after 20 sentences.

Each subject was asked to complete a training round of the
speech-in-noise test, followed by the six different processing
conditions in an order that was randomized for each individual.
Subjects were encouraged to take small breaks in between
models, were allowed to repeat the training round (though
none did), and could adjust the volume of the test to their
own preferred setting. All participants received a 150 NOK
(≈ 15 EUR) voucher for their effort.

Experiments were conducted in the sound insulated lab of
SINTEF’s acoustics group. Sentences were presented binau-
rally through a Sennheiser HD 600 type headphone.

We again relied on the paired Wilcoxon rank sum test
for testing our null hypothesis. Here we tested pairwise for
equality of the population medians of the SRT scores (obtained
for each subject) for the single channel noisy condition, versus
the 5 remaining processing conditions defined in Section II-B.
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Fig. 3. Change in SRT predicted by each metric, when the following systems
are compared to the single channel noisy condition: Single channel
DCCRN, MPDR (estimated TDOAs) only, MPDR (estimated
TDOAs) + single channel DCCRN, MPDR (oracle TDOAs) only,

MPDR (oracle TDOAs) + single channel DCCRN. Negative numbers
indicate improvement in speech intelligibility.

IV. RESULTS

A. Objective results

Figure 2 shows the predicted psychometric functions for
the six different processing conditions defined in Section II-B,
and the five different objective metrics. Figure 3 summarises
these objective predictions by presenting the change in SRT
predicted by each metric when five of these processing con-
ditions are compared to the remaining noisy single channel
condition.

The change in predicted intelligibility at the SRT of the
single channel noisy baseline condition (i.e. SNR = -16 dB)
was found to be highly significant (p ≪ 0.01) for all but one
of the systems. Namely, for the MPDR on its own and with
estimated TDOAs, only ESTOI and HASPI predicted (small
but) significant changes (p < 0.05), while all other metrics
predicted insignificant changes (p > 0.05).

We see similar trends across metrics in the predictions. The
objective measures do not necessarily agree on how much
improvement the systems provide, but performance gain is
nonetheless predicted whenever we compare a DCCRN-based
system to its appropriate baseline, or the noisy single channel
condition. Additionally, all metrics predict that beamforming
on its own (without DCCRN involvement) gives increased
intelligibility over the single channel noisy condition, but
only for oracle TDOAs. When the TDOAs are unknown,
beamforming is predicted to have little to no effect at all.
The noisy (unprocessed) input is expected to give the lowest
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Fig. 4. Psychometric functions obtained from normal hearing native speakers (n=14) for different processing pipelines. The subjective responses (error bars
indicating confidence intervals) and their logistic fits are shown in black ( ), together with the corresponding predictions from the objective metrics:
CSII, HASPI, NCM, ESTOI, and STOI.
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Fig. 5. Subjective Intelligibility versus SNR for each subgroup of subjects: noisy, Single channel DCCRN, MPDR (estimated TDOAs),
, MPDR (estimated TDOAs) + single channel DCCRN, MPDR (oracle TDOAs), MPDR (oracle TDOAs) + single channel DCCRN.

intelligibility independent of the predictive measure chosen,
and all metrics predict that the combined MPDR + DCCRN
(with oracle DOAs) will give the highest intelligibility.

B. Subjective results

Figure 4 shows the subjective results for all processing
conditions, together with their respective objective predictions
by each different metric. The results are averaged over the 16
respondents with SRTs below -15 dB on the single channel
noisy baseline: our best hearing subjects.

Objective scores for the single channel noisy condition are
mapped to the corresponding subjective results as described in
Section II-B. The mappings work equally well for all metrics,
as evident from the overlap of all plots. All mappings slightly
underestimate the slope of the psychometric function, but even
at the extreme ends, the differences between objective scores
and subjective answers are minor. The same mapping also
works reasonably well for the other baseline systems (Figure 4,
top row), although there seems to be a slight systematic

overestimation of intelligibility performance of the MPDR
with oracle TDOAs.

When we move our attention to the DCCRN-based systems
(Figure 4, bottom row), we see that all metrics overestimate
intelligibility. This is not only true close to the SRT (SNR at
intelligibility 50 %), but across the entire intelligibility range.

Looking at the subjective results, the two systems based on
an MPDR supplied with oracle TDOAs (Figure 4, rightmost
column) are the only ones that lead to lower SRT scores when
compared to the noisy input (indicating improved intelligibil-
ity). All other forms of processing make the noisy input less
intelligible. Here it is important to note that the MPDR (oracle
TDOAs) system without a DCCRN outperforms the system
with a DCCRN.

Figure 5 shows the subjective results for all three subject
groups and the six processing conditions. Here we can see
that all systems with a DCCRN have comparable performance
or do worse than their respective baselines, over the entire
range of test SNRs. Only the systems with a MPDR that
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Fig. 6. Change in SRT for each group of subjects, when the following systems
are compared to the single channel noisy condition: Single channel
DCCRN, MPDR (estimated TDOAs) only, MPDR (estimated
TDOAs) + single channel DCCRN, MPDR (oracle TDOAs) only,

MPDR (oracle TDOAs) + single channel DCCRN. Positive numbers
indicate a degradation in speech intelligibility. Statistically significant changes
are marked with an *.

knows where the speaker is (with or without DCCRN), clearly
outperform the single channel noisy baseline.

This observation is also apparent in Figure 6. Here sta-
tistically significant changes (as determined by the paired
Wilcoxon rank sum test) are marked with an asterisk. For the
low SRT group (our best hearing subjects), processing with
a single channel DCCRN significantly reduces intelligibility,
while for the other groups, the change in SRT is insignificant.
An MPDR that needs to estimate the direction of speech (the
MPDR with unknown TDOAs) neither degrades nor improves
the signal for any of the groups. When a DCCRN is added to
this type of MPDR, we see a degradation of speech intelligi-
bility for both the low and medium SRT groups. Contrarily,
the MPDR-based systems where the TDOAs are known, do
significantly improve intelligibility. Here it is important to note
that the system without a DCCRN consistently outperforms the
combined system.

V. DISCUSSION

Absolute intelligibility scores are highly dependent on test
conditions: the type of noise, type of test, presence of context,
lengths of sentences, etc. From the SE system developer’s
point of view, these absolute intelligibility scores obtained for
a specific processing condition are therefore not that crucial.
Instead, we need tools to reliably predict whether a specific
type of processing enhances or reduces speech intelligibility.
This study flags the danger of relying on OIMs for this
purpose.

The SE systems fail to deliver their expected performance.
Increased intelligibility performance was expected, but instead
we see that all DCCRN-based systems have no significant
effect on the intelligibility, or even worse: they cause intel-
ligibility to be reduced.

For our subgroup with the lowest SRTs (best hearing
subjects, with high language familiarity) at higher SNRs (>-
10 dB), the SE systems seem to be doing little harm. So from
a system evaluation perspective, the systems may have merit
if the focus is only on quality, the usage SNRs are high, and
all users have normal hearing and are native speakers. The last
of these requirements is problematic from a Universal Design

perspective, and many regular users of online conferencing
systems will fall outside of this category.

Furthermore, we observe that subjects in the two other sub-
groups (with elevated SRTs) struggle more with the ‘enhanced’
speech also at these higher SNRs. Their lower scores at these
higher SNR ranges also clearly indicate that the ‘enhanced’
speech signal is actually less intelligible also at these higher
SNRS, even if those with normal hearing and high language
familiarity manage to accommodate for the degradation.

Additionally, it’s important to note that the metrics predicted
significant increases in intelligibility for all SNRs, making the
OIMs unreliable across the range.

Finally, we note the potential of an MPDR beamformer
that knows the speaker location. That beamforming works
(as long as you know where to steer the beam), is not
new knowledge of course, but it does provide us with a
clear opportunity to avoid the issue of objective intelligibility
predictions altogether. Instead of relying on OIMs to develop
and evaluate multi-channel SE systems, focus could be moved
to speaker localization. For this study we used a TDOA
estimation algorithm that can easily be improved upon, and
even so, the results shown in Figure 6 already suggest it was
close to starting to provide benefit to those subjects with the
lowest SRTs.

Most importantly, the advantage of direction of arrival
estimation is that the error between target and estimate is math-
ematically speaking well defined, and in no way dependent on
human hearing and perception.

VI. CONCLUSION

We have evaluated the predictive power of five popular
OIMs (i.e.: NCM, CSII, STOI, ESTOI and HASPI) by compar-
ing objective prediction to subjective results for single-channel
and multi-channel DCCRN-based SE systems. All metrics
predicted increased intelligibility across the entire range of
relevant SNRs. The results from the subjective tests tell a
different story: performance is either worse, or insignificantly
different. Predictions were unreliable across the entire range
of SNRs, including the higher SNRs that are the most relevant
for the online meeting scenario.

Therefore we conclude that there are severe limitations to
the usefulness of these OIMs for the purpose of developing
SE systems.
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