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Abstract

In 2019 appeared a new Coronavirus Disease (COVID-19) in China, spreading rapidly globally and causing a pandemic with high

infection and death numbers. To prevent a collapse of the health institutions, accurate decision making about assignments of

intense care units (ICU) is required, depending on the probable outcome. The usage of machine learning (ML) for other medical

fields had been successful before. So we applied ML techniques to a dataset of COVID-19 and influenza patients from Mexico to

predict the severity of an individual’s infection regarding risk factors including, but not limited to, chronic obstructive pulmonary

disease (COPD), cardiovascular disease, diabetes, asthma, immunosupression, and obesity. We conducted two experiments, one

on hospitalised patients and the other one on a balanced dataset. The resulting applications should not be used as a diagnostic

tool yet, due to a relatively short time period of data collection and 74.64% accuracy for the first experiment and 82.61%

accuracy for the second one. Nonetheless it is a good starting point to continue research about predicting COVID-19 infection’s

outcome based on risk factors.
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Feature Analysis and Machine Learning
Techniques to determine severity of COVID-19

infections
Hanna Helene Gloyna, Mario Fernando Jojoa Acosta, Cristian Castillo, and Begonya Garcia-Zapirain

Abstract— In 2019 appeared a new Coronavirus Disease
(COVID-19) in China, spreading rapidly globally and caus-
ing a pandemic with high infection and death numbers.
To prevent a collapse of the health institutions, accurate
decision making about assignments of intense care units
(ICU) is required, depending on the probable outcome. The
usage of machine learning (ML) for other medical fields had
been successful before. So we applied ML techniques to a
dataset of COVID-19 and influenza patients from Mexico to
predict the severity of an individual’s infection regarding
risk factors including, but not limited to, chronic obstruc-
tive pulmonary disease (COPD), cardiovascular disease,
diabetes, asthma, immunosupression, and obesity. We con-
ducted two experiments, one on hospitalised patients and
the other one on a balanced dataset. The resulting applica-
tions should not be used as a diagnostic tool yet, due to
a relatively short time period of data collection and 74.64%
accuracy for the first experiment and 82.61% accuracy for
the second one. Nonetheless it is a good starting point
to continue research about predicting COVID-19 infection’s
outcome based on risk factors.

Index Terms— COVID-19, Feature Analysis, Machine
Learning, Neural Network, Random Forest, SARS-CoV-2,
Support Vector Machine

I. INTRODUCTION

IN 2019 a new Coronavirus Disease (COVID-19) appeared
in the Chinese city Wuhan, which spread from there fast

over the whole world, causing a global pandemic [1], [2].
COVID-19 is an infection with Serve Acute Respiratory Syn-
drome Coronavirus-2 (SARS-CoV-2) [3]. The clinical mani-
festations are mainly respiratory, with 5% who develop severe
pneumonia with acute respiratory distress syndrome (ARDS)
and were admitted to intense care units (ICU) [4].

Typical symptoms for a mild COVID-19 infection include
fever, a dry cough, fatigue and pneumonia, whereas serve and
critical cases also show dyspnea, ARDS and often multi-organ
failure [5], [6]. The main risk factors for ARDS or death from
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SARS-CoV-2 include high age, gender and underlying comor-
bidities such as hypertension, diabetes, immunosuppression,
obesity, tumors as well as cardiovascular disease [6–10].

A precise estimation of the curse of infection in patients
influences the applied, and necessary treatment. Especially
in a pandemic when a shortage of ICUs occurs an accurate
estimator for decisions of ICU assignments is needed. Bordbar
et al. investigated in [11] the utility of HScore for predicting
the risk of having reactive hemophagocytic syndrome, which
often accompanies SARS-CoV-2 disease and results in serve
cases [12]. They concluded that a higher HScore is associated
with a higher probability of ICU admission and increased risk
of mortality [11].

Having such estimators, it seems logical to combine risk
factors such as comorbidities or age and symptoms of an
individual’s infection to obtain more precise predictions of
COVID-19 outcomes before certain control values are ex-
ceeded. Estimating the outcome of one’s infection does not
only lead to the ability of applying better treatment, but also
a more thoughtful and efficient organisation of hospitals [13].

The usage of machine learning (hereinafter: ML) for deci-
sion making and diagnosing had become popular over the last
decade with a wide variety of data driven applications [14],
such as image-based medical diagnosis [15–17], analysis of
sentiments [18] or predicting complications in ostomy patients
[19].

Trained on a dataset from Mexico we designed a ML appli-
cation to predict the outcome of a COVID-19 or influenza in-
fection based on the idea, that persons with chronicle diseases,
obesity, diabetes or hypertension tend to have more serve
courses of infection. Therefore we take these comorbidities,
treatment and symptoms into account for training. Moreover
we tried to rank the used features by their importance from all
models to give an idea which attributes should be especially
considered for manual decision making.

This paper presents available input data, general methods to
clean up the data and clarification of the used models. Further-
more an explanation about the generation of a feature ranking
by importance for decision making and evaluation of models
is given. It describes 2 experiments which were performed to
determine important features and comparison of the quality of
models trained on subsets of features. Finally limitations and
possible extensions of this research are discussed.
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II. MATERIALS

The used dataset was provided by several public hospitals
from Baja California, including communities like Tijuana,
Mexicali, Ensenada and Rosarito. It consisted initially of
92 features and 6550 entries, where each entry represents a
patient.

The population is made up of 49,7% women and 50,3%
men, respectively. The average age is 43 years and the average
hospital stay lasted 5 days. The data contained 1969 con-
firmed COVID-19 cases, 4331 cases of atypical pneumonia,
46 entries of influenza with other respiratory manifestations
and 250 patients who were affected by identified influenza
variants, influenza with pneumonia and unidentified viruses.
The distribution of prevalent diseases showed that a chronic
disease was most common among patients with 43%, followed
by diabetes and obesity, both affecting 20%.

From this data set 193 erroneous entries needed to be
deleted. The remaining 6357 patients contained 1968 con-
firmed COVID-19 cases of those were 650 serve cases. The
data were recorded from January 2020 until August 2020 and
include 21 categorical, 59 binary or continuous as well as 12
time features.

III. METHODS

Two experiments were executed on different subsets of the
dataset. This section explains the set up of experiments.

A. Implementation

All implementations were done with Python 3.8.12 using
Pandas version 1.3.3 for data analysis and manipulation, Keras
version 2.4.3 and eli5 version 0.11.0 for neural networks as
well as Sklearn version 1.0.1 [20] for classification algorithms
and evaluation. The code and evaluating plots are available in
this github repository (https://github.com/hGl0/Covid-19).

B. Input Data

We could remove 9 features because they represented differ-
ent medical categorisations and their descriptions, respectively.
The latter was kept as it provided better understanding. Ad-
ditionally ID was dropped, because it contained an unique ID
for each patient, but did not gave any relevant information for
statistic models.

Because the data were collected in the first months of
the pandemic, seasonal behaviour of COVID-19 could not
be observed [21–24] and is not represented in the data. To
avoid overfitting due to coincidental correlations between time
features and the resulting outcome, all time features were
removed.

For the first experiment 1732 entries of hospitalised patients
were used. Of those entries were 1206 serve cases and 526
mild cases. The seconded experiment regarded a balance
between serve and mild cases in DMET and did use 2412
entries, with 680 entries randomly drawn from ambulatory
patients, who were supposed to be mild cases. We encoded
serve cases as 1 and mild cases as 0.

The data set was divided in two disjoint and randomly
chosen subsets. The larger subset with 80% of the data was
used for training and cross validation, and respectively 20%
remained for testing and evaluation of the final models on
subsets of features.

All categorical features were encoded with a One Hot
Encoding (OHE). This means that for each attribute of a
feature a new feature was generated which remarked whether
an entry had this attribute or not. Although OHE increases
the dimensions of the input data, it is a promising encoding
of categorical feature, which leads to good results [25], [26].
Furthermore all continuous features were normalised, when
necessary. Equation (1) was used for normalisation with stan-
dard scaling to train the support vector machine (SVM) and
neural network (NN).

x̂ =
x− µ

σ
(1)

Here x is the original input value of an attribute for an
entry and x̂ the value which an entry has for an attribute
after the normalisation. Moreover µ describes the mean of
each feature and σ the corresponding standard deviation. All
numerical features are normalised so that after the normalisa-
tion the mean of a feature is 0 and the standard deviation 1,
disregarding rounding errors due to computational inaccuracy.
The normalisation is needed so that features with different
scales become comparable for non-linear classifiers, i.e. neural
networks and support vector machines.

C. Feature elimination

By the following criteria features were deleted in each data
set:

• Too low variance or entropy
• High Pearson correlation coefficient to another feature
• Equality to another feature
• Information of the feature are contained by another

feature
An attribute was removed due to too low variance if

it contained at least 95% of the same value. Whereas for
categorical features a threshold of 80% for one value was
used. Although several investigations listed pregnancy as a
risk factor [6], [10] for serve cases, we dismissed it as its
variance was very low and an accidental correlation could
not be excluded. Moreover Gao et al. mention in [10] that
black patients and south asiens were found to have a higher
mortality, which is also not represented in the dataset as all
patients are from Mexico.

According to Akoglu in [27] a Pearson correlation co-
efficient p with |p| > 0.75 can be considered as a very
strong correlation between two attributes in medicine. Hence
|p| > 0.75 was used as threshold to obtain highly correlated
feature pairs. One feature of each pair was removed.

All deleted features, including the reason for dropping,
are listed for both experiments in Table III. Some features
have only a high enough variance when just hospitalised
patients were considered, which indicates that this attribute is
a factor for hospitalisation and therefore for more serve cases

https://github.com/hGl0/Covid-19
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Fig. 1: Process of cross validated grid search

as well. This was not considered when executing the second
experiment.

D. Model Selection

For both experiments a cross validated grid search was
applied for hyper-parameter tuning of the following basic
models. The models with the best found hyper-parameters
were used to determine a feature ranking of all features.

Performing a grid search means that a set of parameters is
chosen and for all possible permutations of values for each
parameter a model is trained on a training set. Afterwards a
test score is calculated on a held out testing set. Although
this procedure is computationally expensive, it is easy to
implement and shows good results [28], [29]. A cross validated
grid search is an extension in which more than one testing
score is considered [30]. In this application, the process of
training and calculating a test score is repeated 5 times with
different training and testing sets as seen in Figure 1 from
[31] on 80% of the original data. We use more than one hold-
out testing set to break accidental correlations between the
train and test set leading to better performances. Split 1 to
5 correspond to one model, i.e. one possible set of hyper-
parameters, trained on all green marked subsets, while the blue
marked subset was used for calculating accuracy as testing
score of the model. The final test score is an average of all 5
calculated test scores.

The following part explains the used model types and choice
of searched parameters.

Random Forest
Random Forest (hereinafter RF) is a classification
algorithm based on ensemble voting. Therefore a set
S of decision trees is trained and the prediction done
by a majority vote of all trees in S, with |S| ∈ {10∗
i2} for i ∈ [1, 7]. To avoid overfitting a maximum
depth d ∈ {3, 4, 5, 7, 9, 15, 20, 30} is estimated for
all trees in S. Additionally the splitting criteria of
nodes in trees can be varied. Typical criteria are
entropy, which implements information gain, and
gini coefficient for splitting. As both criteria might

select different attributes, both were used for hyper-
parameter tuning [32].

Support Vector Machine
A support vector machine (SVM) algorithm aims
to find a hyperplane in Rn, with n equal to the
number of features, so that data points are distinctly
classified and the margin from the hyperplane to both
classes is maximised. When no linear hyperplane in
Rn can be found, a SVM is extended with kernels
to higher dimensions. Kernels can be regarded as a
measure for similarity of two different data points
xi and xj with i ̸= j, 1 ≤ i, j,≤ m, where m is the
number of entries. Because the assumption of linear
separable data seemed unrealistic, only radial basis
function (hereinafter rbf ) and sigmoid kernel were
used. They are calculated by the following Equations
2.

krbf (xi, xj) = e−γ||xi−xj ||2 (2a)
ksigmoid(xi, xj) = tanh(γ⟨xi, xj⟩) (2b)

This introduces some more hyper-parameters which
need to be tuned. The parameters used for the grid
search are C and γ. Here γ defines the influence of
one training sample. Tested γ are given by Equation
3, where n again describes the amount of features
and var(X) calculates the variance of the input
matrix X .

auto =
1

n ∗ var(X)
(3a)

scale =
1

n
(3b)

Additionally different values for C are tried with
an exponential increasing scale, i.e. C ∈ {2i, i ∈
[−2, 4]}. C is intuitively a parameter for error regu-
larisation. A large C value does encourage a higher
accuracy, i.e. a lower margin, while a lower C
value supports lower accuracy but a larger margin,
respectively.

Neural Network
A neural network (NN) is a collection of connected
nodes. They are ordered in layers and a NN consists
of an input layer, an output layer and at least one
hidden layer in between the two former. Every layer
contains a certain amount of units, also called neu-
rons, which are activated by an activation function
to transmit information to the units of the next layer.
Common activation functions are shown by Equation
4.
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relu(x) = max(0, x) (4a)

sigmoid(x) =
1

1 + e−x
(4b)

softmax(z)i =
ezi
n∑

j=i

zj

(4c)

softmax and sigmoid are working similar, but
sigmoid as well as relu are taking a tensor x as
input while softmax is calculated for every vector
z separately. softmax is especially desirable when
you want to predict probabilities.
To improve the training process, initial weights can
be set for each unit at each layer. This is done by so
called kernel initialisation, which can be completely
random, all zero or by drawing randomly from a
certain distribution. The used initialisations are glorot
uniform, uniform and normal. For glorot uniform ini-
tial weights are randomly drawn from a uniform dis-
tribution within

[
−
√

6
nin+nout

,
√

6
nin+nout

]
, with

nin corresponding to the amount of input units in
the weight tensor and nout to the number of output
units, i.e. the number of units of the current layer
and, respectively, next layer [33]. This was proposed
by Glorot et al. in [33] as this initialisation resulted
in a desirable less varying variance between layers
and preservation of signal when back propagating
through the network. Furthermore uniform means
that the weights are drawn randomly from a uniform
distribution U(−0.05, 0.05) and for normal from a
normal distribution N (0, 0.05).
Kingma and Ba present adam in [34] as an efficient
algorithm for optimisation of stochastic objective
functions, wherefore adam is included in the grid
search for NN. Additionally rmsprop was tried as
optimisation function, which was proposed by Hin-
ton [35].
Beside kernel initialisation, activation and optimi-
sation function also the batch size and epoch was
tuned for NN. A batch is a set of samples, which are
processed through to the network independently at
one time and afterwards an update step is performed
with an average stochastic gradient from all samples
in a batch. The batch size is consequently the number
of samples a batch contains. Batches lead to more ro-
bustness with respect to hyper-parameters. An epoch
is one entire pass of all training data through the NN.
Logically the number of epochs is how many times
the data pass the NN during its training process.
As neural networks contain a huge amount of hyper-
parameters for tuning, a parameter hunt for the
activation function was performed before applying
grid searching. All hunted NN consisted of 3 layers,
one input layer, one hidden layer with 256 units and
an output layer. In total 4 NN were tested, two with
relu as activation function and once sigmoid, once

softmax as output. The other two had sigmoid as
activation and softmax as output, and softmax as
activation and sigmoid as output function.

E. Feature Ranking
A feature ranking was obtained from rankings of 5 different

model. Additionally to rankings by feature importance from
the 3 models described in the previous part, rankings with
ANOVAs f-value and chi-square (χ2) were used.

The ranking from the RF based on the feature importance,
i.e. the mean decrease in impurity of each feature. This is
not simply applicable for NN and SVM, except when using a
SVM with a linear kernel, because more dimensional models
are constructed. Consequently a permutation importance was
used to determine the importance of a feature. This means
that first a baseline metric with all features was calculated
and afterwards each feature was removed or permuted and the
metric calculated again. The difference between baseline met-
ric and newly calculated metric can be interpreted as feature
importance, i.e. a large difference means a feature is important,
and a small difference corresponds to an unimportant feature,
respectively. As this is computationally expensive this process
was only performed for NN and SVM and not for RF.

Because the resulting rankings are only indicators for how
important a feature is for a certain model, they were merged
into one ranking based on a score to obtain a more general
applicable ranking. The score of a feature was calculated by
the sum of ranks from all 5 rankings. This means the minimal
score is 5, and the maximal score 375. Afterwards all features
got ordered increasingly by their score and the feature with
the lowest score is regarded as most important. Table I as well
as Table II give an overview of the 40 most important features
and their scores for both experiments.

F. Model Evaluation on Subsets of Features
Finally subsets of features were chosen to train the models

again and evaluate their performance afterwards on a, through
the previous process completely unseen, testing set which
contained 20% of the data. Starting with the 2 most important
features from the final ranking 3 features were added until
a maximum of 38 features was reached. The added features
were chosen in order of their positions in the ranking from
Table I and Table II for the respective experiment. To evaluate
a model several metrics were used which are elaborated below.

The predicted class and actual class are taken as input. For
each entry one of the following states is possible.

• true positives (tp): A patient is predicted as a serve case
and actually is a serve case.

• false positives (fp): A patient is predicted as a serve case,
but actually is not a serve case.

• true negatives (tn): A patient is predicted as a mild case
and actually is a mild case.

• false negatives (fn): A patient is predicted as a mild case,
but actually is a serve case.

In the following tp, fp, tn and fn remark the amount of
occurrences from a performed prediction and corresponding
actual value.
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The used metrics to evaluate the resulting models are accu-
racy (ACC), recall (R), precision (P ) and F1 score (F1). They
are calculated by Equations 5 with the amount of tp, fp, tn and
fn given through prediction and actual value. Each function
has a maximum value of 1, which is best, and a minimum of
0, which is respectively worst. A model is considered good,
when most metrics are close to 1.

ACC =
tp+ tn

tp+ tn+ fp+ fn
(5a)

R =
tp

tp+ fn
(5b)

P =
tp

tp+ fp
(5c)

F1 =
2 ∗ P ∗R
P +R

(5d)

Accuracy (ACC) describes the percentage of correct predic-
tions in total. Recall corresponds to the percentage of correct
positive classifications from actual positives, whereas precision
P is the percentage of correct positive classifications among
the predictions. F1 is consequently the weighted average of
P and R.

Additionally the area under the receiver operating charac-
teristic curve (AUC) was calculated. AUC can be understood
as the probability for a correct prediction from a randomly
drawn example. Here a value of 0.5 corresponds to a random
process, whereas 1 and 0 describe a perfect model.

To visualise the influence of more features on the quality of
models all metrics are plotted in Fig. 2 for the first experiment
and Fig. 3 for the second experiment, respectively.

IV. RESULTS

A. Experiment 1
The first experiment did train models on 1732 hospitalised

patients to determinate a risk for a serve case.
The performed grid search delivered the following results

for RF, SVM and NN. In general all RF with a maximum
depth greater than 9 and more than 10 trees performed decent.
Unsurprisingly the combination of d = 30 and |S| = 10
performed worst due to overfitting. The best performance was
achieved with a maximum depth d = 15, a set size of |S| = 90
and entropy as a splitting criterion as parameters. For the
SVM all combinations of γ and kernel showed a trend for
C = 1, which indicates that a low C did have a too large
margin whereas the larger C over fitted the training set. The
results of the SVM were best with parameters as follows
C = 1, γ = scale and kernel=sigmoid. During hunting the
network with 2 relu layers and softmax output achieved the
highest AUC and was therefore chosen for grid searching. A
batch size of 50 and an epoch size of 10 achieved the best
results in every setting of optimiser and initialisation. But it
worked best with a glorot uniform initialisation, and rmsprop
as an optimiser.

A feature ranking of all features was generated as
mentioned in section III. It is interesting to notice that
INDICADOR SOSP COVID (engl. indicator for suspected
COVID-19) was the most important feature as it encodes

Rank Score Feature

1 27 INDICADOR SOSP COVID
2 34 RINORREA
3 36 POSTRACION
4 37 DIAG CLIN NEUMONIA
5 41 DESC RESULTADO CONF2 NEGATIVO
6 42 DESC TIPO MUESTRA 1 EXUDADO

FARINGEO
7 43 DESC TIPO MUESTRA 1 EXUDADO

FARINGEO/NASOFARINGEO
8 58 ESTANCIA HOSP MEDICINA INTERNA
9 71 NEUMONIA RADIOGRAFIA

10 74 EDAD
11 76 DESC ESTATUS CONF1 VALIDADA
12 81 ESTANCIA HOSP URGENCIAS ADULTOS
13 98 ESTANCIA HOSP NEUMOLOGIA
14 108 INICIO SUBITO
15 118 ANTECED OBESIDAD
16 131 OCUPACION Médicos
17 132 DOLOR TORACICO
18 132 GENERO
19 134 ESCALOFRIO
20 136 DISNEA
21 136 DESC RESULTADO CONF2 POSITIVO
22 137 ENFERMEDAD CRONICA
23 140 CEFALEA
24 141 DESC TIPO MUESTRA 1

EXUDADO NASOFARINGEO
25 141 DESC ESTATUS CONF1 POR RECIBIR
26 143 OCUPACION Enfermeras
27 143 ODINOFAGIA
28 146 DIARREA
29 150 DOLOR ABDOMINAL
30 156 OCUPACION Otras Ocupaciones
31 163 CIANOSIS
32 178 DIAGNOSTICO FINAL COVID-19
33 181 ANTECED HIPERTENSION
34 185 DIAGNOSTICO FINAL Neumonia atipica
35 189 OCUPACION Choferes
36 190 FIEBRE
37 191 RESULTADO DE MUESTRA1
38 196 DIAGNOSTICO FINAL Influenza

con otras manifestaciones
39 199 ATAQUE AL ESTADO GENERAL
40 199 OCUPACION Ama de casa

TABLE I: Top 40 features of final ranking for experiment 1

whether COVID-19 was suspected or not. This indicates that
an early diagnosis whether an infection is really SARS-CoV-
2 or not might be very important to predict the severity of
a case. Furthermore it is remarkable that RINORREA (engl.
rhinorrhoea) seems to be an important feature and symptom
instead of TOS (engl. cough) or FIEBRE (engl. fever). This
might be, because cough and fever are typical symptoms and
occur a lot in mild cases as well [5]. Features like EDAD
(engl. age) or DISNEA (engl. dyspnea) are important, but
not as much as could have been expected [6]. On the other
side ANTECED OBESIDAD (engl. obesity) and ENFER-
MEDAD CRONICA (engl. chronicle disease) are of similar
importance as dyspnea, which supports our idea to predict the
severity of cases based on comorbidities.

The 40 most important features from totally 75 features are
listed in Table I including their rank and score. It needs to be
noted, that features like DIAGNOSTICO FINAL (engl. final
diagnosis) or ESTANCIA HOSP (engl. hospitalisation) should
be regarded carefully as they can change or are decided during
the infection.



6 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2022

Fig. 2: Different metrics for each model trained on a subset of features for experiment 1

Finally RF, SVM and NN were trained on feature subsets
regarding the ranking given by Table I. The results are plotted
in Fig. 2 for each metric and model in dependence of the
amount of used features.

Surprisingly some features introduce noise in all models
when more than 8 and less than 15 features are used as can
be seen in the huge peak downwards in Fig. 2. This might be
explained by a non-linear correlation between used features
and other features which are added later. Especially the SVM
seems to be affected as can be observed in Fig. 2. This setting
has an impact on the results of RF and NN as well, but not as
strong as for the SVM. Furthermore R (5b) is very close to 1
when just INDICADOR SOSP COVID and RINORREA are
used. This means, that only few false negatives were predicted.
On the contrary P (5c) is not very high, which leads to the
conclusion that the model predict a lot false positives. This
behaviour does not have to be undesirable as will be discussed
later in section V.

The SVM performs poorly regarding P (5c) and AUC.
Additionally it does not perform remarkably good in any of
the other metrics and has the highest loss. Therefore SVM can
be ruled out as a suitable model. The NN on the other hand
clearly out performs SVM and RF in P (5c) and AUC when
more than 25 features are used. In other metrics it is often a bit
inferior to the RF and often superior to the SVM. Finally the
RF has the best metrics regarding ACC (5a), F1 (5d) and the

lowest loss. Furthermore RF is often superior or at least equal
to the NN. This observation leads to the statement that the
RF is best to predict the severity of a case for a hospitalised
patient whereas the SVM is the least appropriate model.

B. Experiment 2

The second experiment trained models on hospitalised and
ambulatory patients to estimate a risk for a serve case on a
balanced dataset with 2412 entries, so that the amount of serve
cases equals the amount of mild cases.

The grid search showed that for the balanced dataset the
depth of the RF seemed to have less influence on its per-
formance than in the first experiment. Instead the amount of
estimators was the main thriving factor to increase the testing
score ACC (5a). Additionally no huge difference between the
splitting criteria could be noted. The best parameters for RF
are |S| = 490, a maximum depth of d = 20 and entropy
as a splitting criteria. Contrary to experiment 1 a clear trend
for C = 1 could not be observed for SVMs, although C ≥ 8
resulted in overfitting and respectively worse performance on
the hold-out set. SVM performed best on a balanced dataset
with C = 2, γ = auto and a rbf kernel. The hunting search
resulted in a network using sigmoid as activation function and
again softmax as output function. The following grid search
for NN displayed a clear trend towards rmsprop as optimiser, a



GLOYNA et al.: FEATURE ANALYSIS AND MACHINE LEARNING TECHNIQUES TO DETERMINE SEVERITY OF COVID-19 INFECTIONS 7

Fig. 3: Different metrics for each model trained on a subset of features for experiment 2

batch size of 20 and an epoch of 100 could be seen. Initialising
weights from a normal distribution achieved the best results.

The final ranking of features was obtained by the procedure
described in section III. The 40 most important features are
displayed by Table II.

Aligning with our expectations ESTANICA HOSP NO
HOSP (engl. no hospitalisation) is very important, because
about 28% of the samples are ambulatory patients, which are
counted as mild cases. Also the second feature is not really
surprising, because a clinical diagnosed pneumonia definitely
can indicate a serve infection.

Compared to experiment 1 the age of the patient got
less important, which is surprising. But age is ranked as
very unimportant for the SVM (rank 74 of 75), which at
least explains the bad score. All other models ranked age
as important. Moreover dyspnea got more important, which
aligns with the characteristics of serve COVID-19 infections
[5], [6]. On the other hand INDICADOR SOSP COVID and
RINORREA, which were the most important feature in the
first experiment, got less important.

For the second experiment all metrics are almost perfectly
increasing with a higher amount of features. In 5 of 6 metrics
the SVM is superior or at least equal to the RF and NN as can
be seen in Fig. 3. Only P (5c) of SVM is inferior until more
than 26 feature are used. Although a low P does not have to
be undesirable when R is adequate.

Interestingly the RF and SVM show the same behavior of
overestimating serve cases with very few features as we saw
in Fig. 2. On the other hand the peak in between 8 and 15
features, which occurred in the first experiment, disappeared.

Furthermore the NN performs worst with only a few features
and later, with more than 30 features better than the 2 other
models. The bad performance with just a few features can
be explained by overfitting as a lot of parameters need to
be trained, but only few features and samples are given.
Consequently the given samples can be matched perfectly,
but on the unseen testing set new situations are not matched
accordingly.

In general this experiment has a better quality and greater
significance as it was trained and tested with more samples.
Looking at the performance of the SVM, this is clearly the
most suitable model to make a decision for this setting.

V. DISCUSSION AND FUTURE WORK

A. Discussion

In [36], [37], and [38] machine learning approaches were
used to predict the severity of cases and assignment of ICU.
They used laboratory test results, clinical reports and CT im-
ages. Although they achieved very good results, none of them
did take comorbidities into account and therefore differ from
our work. Additionally all models were trained on smaller data
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Rank Score Feature

1 7 ESTANCIA HOSP NO HOSP
2 26 DIAG CLIN NEUMONIA
3 46 DESC TIPO MUESTRA 1 EXUDADO

FARINGEO/NASOFARINGEO
4 48 NEUMONIA RADIOGRAFIA
5 61 ESTANICA HOSP MEDICINA INTERNA
6 82 DOLOR TORACICO
7 86 DISNEA
8 94 ANTECED DIABETES
9 94 DIAGNOSTICO FINAL COVID-19
10 104 OCUPACION Jubilado
11 104 RINORREA
12 105 ESTANICA HOSP URGENCIAS ADULTOS
13 109 DIAGNOSTICO FINAL Neumonia atipica
14 113 EDAD
15 114 ANTECED HIPERTENSION
16 126 DESC ESTATUS CONF1 VALIDADA
17 135 ENFERMEDAD CRONICA
18 135 DESC RESULTADO CONF2 POSITIVO
19 135 RESULTADO DE MUESTRA1
20 140 CIANOSIS
21 140 POSTRACION
22 140 ANTECED OBESIDAD
23 140 ANTECED RENAL
24 141 DESC TIPO MUESTRA 1 EXUDADO

NASOFARINGEO
25 143 DESC TIPO MUESTRA 1 EXUDADO

FARINGEO
26 146 OCUPACION Ama de casa
27 151 DESC RESULTADO CONF2 NEGATIVO
28 154 ODINOFAGIA
29 154 ANTECED EPOC
30 157 INICIO SUBITO
31 161 DIARREA
32 166 FIEBRE
33 167 OCUPACION Otras Ocupaciones
34 169 OCUPACION Sin ocupación
35 170 INDICADOR SOSP COVID
36 174 MIALGIAS
37 183 GENERO
38 184 OCUPACION Médicos
39 185 ATAQUE AL ESTADO GENERAL
40 185 CEFALEA

TABLE II: Top 40 features of final ranking for experiment 2

sets containing mainly clinical test results, whereas our models
rely mainly on common and obvious symptoms.

Jojoa Acosta and Garcia-Zapirain proposed successfully a
multilayered perceptron (MLP) and SVM in [39] to predict
the number of new daily infections in America. This tool
is useful for decision making at public health strategies and
organisation of hospitals in advance. Similar to this work a
model for epidemic spread of COVID-19 was presented in [40]
by Hosseini et al., so governments can take action accordingly.
Our work can be regarded as an extension to help organising
hospitalisation further and vary not only because of another
geographical location, but its ability to predict severity of
hospitalised cases.

In [41] and [42] applications to detect COVID-19 infections
through cough sounds or chest X-ray images are presented.
Their work produces great results with accuracies over 89.2%.
[41] differentiates between healthy and COVID-19, but not
between COVID-19 and other respiratory diseases, whereas
[42] considers multi classifier with COVID-19, pneumonia
and healthy. The final diagnosis of COVID-19 an important

feature for both our models. Ideally an early and precise
diagnosis of COVID-19 would also improve the quality of our
models and the applied health care. If not only the diagnosis
is known early, but moreover the severity of infection, further
appropriate actions can be taken.

In [43] another ML approach is presented, where patient’s
basic information and clinical data were used for predicting
whether an infection is a COVID-19 case or not. Because
all models on the original data set performed insufficient, a
Generative Adversarial Network (GAN) was used to generate
a balanced dataset. This supports our approach for the second
experiment. Training with a balanced dataset achieved much
better results in [43], but as other works mentioned before
did not take comorbidities and prevalent diseases into account.
Furthermore the works differs from ours as it predicts whether
an infection is COVID-19 or not.

Although other models perform better regarding prediction
of a COVID-19 diagnosis, our models were trained on a larger
amount of data from a longer time period and are therefore bet-
ter for generalisation. Additionally our prediction based more
on previous diseases, comorbidities and obvious symptoms of
a patient whereas information like CT images or results from a
huge variety of laboratory tests were not included in detail. Our
models are not computationally expensive and can be trained
easily again on a larger amount of data as well as adjusted
to deal with data sets with further features to improve the
predictions.

B. Future work

Possible extensions of this work could be done by repeating
the experiments with more data collected over a longer time
period or different locations. This might result in a more
representative evaluation of the actual importance of time
features as SARS-CoV-2 seems to be correlated to seasonal
behaviour, but also regarding environmental influences and ac-
cessibility of health institutions [21–24]. Additionally aspects
like SARS-CoV-2 mutations, times of vaccination and date of
last vaccination could be included and improve the reliability
of the model by now.

Another direct extension of our work would be to extended
the classifiers to multiclassing and differentiate between mild
cases which need no treatment at all, only treatment at home or
treatment at the hospital. Especially the differentiation between
no treatment and treatment at home cases could be challenging
for a statistical model. But this is probably less important to
physicians and consequently could be ignored.

We noticed that both experiments resulted in high recall R
when the models were trained on only a few features. When
precision P is not equal to accuracy ACC, i.e. not everything is
predicted as a serve case, this can be desirable as this models is
good at predicting serve cases. On the other hand if a shortage
of ICU units occurs, this behaviour is unsuitable. For this case
a model to predict the probability of death in case of lack of
sufficient treatment may be a better fit.

How suspiciously COVID-19 infections, whose SARS-CoV-
2 diagnosis is ruled out in the end, influence the organisation
of hospitalisation flows and help avoiding an overload of the
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health system is discussed by Rogier et al. [44]. According to
Rogier et al. especially the time of being symptomatic until
hospitalisation is shorter for COVID-19-negative patients [44]
. Applying a machine learning technique and developing a
simple application to recognize COVID-19 cases earlier would
help to organise hospitalisation as well as necessary treatment
of patients as proposed by [41], [43]. Here again a dataset
over a longer time period would be helpful to determinate
how important time features, like the time period between first
symptoms and hospitalisation, are.

Additionally varying treatment and regularisation depending
on the mutation would be more clear with an application
predicting not only COVID-19 or not COVID-19, but also
the possible mutation or other respiratory infections regarding
the symptoms and results of laboratory tests.

VI. CONCLUSION

It needs to be noted that there are certain limitations for this
research. First of all only data from the first 6 months of the
pandemic were collected, where COVID-19 was still relatively
new to treat and no vaccinations available. Additionally the
periodical behaviour of the disease was unknown and is not
represented in the data [21–24]. Although our data set is
larger than for most other research in this topic, it is still
relatively small and more data would increase the significance
and quality of the models. Furthermore it should be regarded
that by now a lot of mutations did occur, which immensely
influence the course of infection as well as infection rate [45].

Our model can be helpful for early clinical decision making,
because of its good results, usage of common symptoms and
prevalent diseases. It is not computationally expensive and
can be understood intuitively. Although the results are not as
precise as desirable, both models perform well and can pro-
vide in combination with diagnosing tools support for health
care decisions. Beside this the ranking of feature importance
aligns with current research on COVID-19 risk factors, which
supports the reliability of our model and provides help for
manual decision making. For future work the main focus is
retraining and extending our models to perform multiclassing
and consider further features from a larger dataset.
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setti, C. Bnà, and M. Galelli, “A hybrid machine learning/deep learning
covid-19 severity predictive model from ct images and clinical data,”
2021.

[39] M. F. Jojoa Acosta and B. Garcı́a-Zapirain Soto, “Machine learning
algorithms for forecasting covid 19 confirmed cases in america,” 2020
IEEE International Symposium on Signal Processing and Information
Technology (ISSPIT), pp. 1–6, 2020.

[40] E. Hosseini, K. Z. Ghafoor, A. S. Sadiq, M. Guizani, and A. Em-
rouznejad, “Covid-19 optimizer algorithm, modeling and controlling
of coronavirus distribution process,” IEEE Journal of Biomedical and
Health Informatics, vol. 24, no. 10, pp. 2765–2775, 2020.

[41] R. Islam, E. Abdel-Raheem, and M. Tarique, “A study of using cough
sounds and deep neural networks for the early detection of covid-19,”
Biomedical Engineering Advances, vol. 3, p. 100025, 2022.

[42] P. Bhowal, S. Sen, J. H. Yoon, Z. W. Geem, and R. Sarkar, “Choquet
integral and coalition game-based ensemble of deep learning models
for covid-19 screening from chest x-ray images,” IEEE Journal of

Biomedical and Health Informatics, vol. 25, no. 12, pp. 4328–4339,
2021.

[43] L. Wang, H. Shen, K. Enfield, and K. Rheuban, “Covid-19 infection de-
tection using machine learning,” in 2021 IEEE International Conference
on Big Data (Big Data), pp. 4780–4789, 2021.

[44] T. Rogier, I. Eberl, F. Moretto, T. Sixt, F.-X. Catherine, C. Estève,
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APPENDIX

Experiment 1 Experiment 2 Reason for removal

F REGISTRO DEFUNCION F REGISTRO DEFUNCION contained by other feature
FECHA DEFUNCION FECHA DEFUNCION contained by other feature

FECHA MUESTRA CONF2 FECHA MUESTRA CONF2 contained by other feature
DESC TIPO MUESTRA 2 DESC TIPO MUESTRA 2 contained by other feature
DESC ESTATUS CONF2 DESC ESTATUS CONF2 contained by other feature

DESC TIPO INFLUENZA CONF1 DESC TIPO INFLUENZA CONF1 contained by other feature
DESC TIPO INFLUENZA CONF2 DESC TIPO INFLUENZA CONF2 contained by other feature

TIPO INFLUENZA CONF1 TIPO INFLUENZA CONF1 equal to other feature
TIPO INFLUENZA CONF2 TIPO INFLUENZA CONF2 equal to other feature
TIPO MUESTRA CONF 1 TIPO MUESTRA CONF 1 equal to other feature
TIPO MUESTRA CONF 2 TIPO MUESTRA CONF 2 equal to other feature

RESULTADO DE MUESTRA2 RESULTADO DE MUESTRA2 equal to other feature
CIE10 DIAGNOSTICO FINAL CIE10 DIAGNOSTICO FINAL equal to other feature

DIAGNOSTICO EGRESO 1 DIAGNOSTICO EGRESO 1 equal to other feature
DIAGNOSTICO EGRESO 2 DIAGNOSTICO EGRESO 2 equal to other feature
DIAGNOSTICO EGRESO 3 DIAGNOSTICO EGRESO 3 equal to other feature

CONGESTION NASAL CONGESTION NASAL too low variance
DISFONIA DISFONIA too low variance

LUMBALGIA LUMBALGIA too low variance
ANTECED ASMA ANTECED ASMA too low variance

ANTECED INMUNOSUPRESION ANTECED INMUNOSUPRESION too low variance
ANTECED VIH EVIH ANTECED VIH EVIH too low variance

EMBARAZO EMBARAZO too low variance
LACTANCIA LACTANCIA too low variance
PUERPERIO PUERPERIO too low variance

TIENE INTUBACION ENDOTRAQUEAL too low variance
ANTECED CARDIOVASCULAR too low variance

ANT ENF HEPATICA CRONICA ANT ENF HEPATICA CRONICA too low variance
ANT ANEMIA HEMOLITICA ANT ANEMIA HEMOLITICA too low variance

ANT ENF NEUROLOGICA ANT ENF NEUROLOGICA too low variance
RECIBIO VAC NEUMOCOCO RECIBIO VAC NEUMOCOCO too low variance

DESC VARIANTE INFLUENZA DESC VARIANTE INFLUENZA too low variance
ANTECED TUBERCULOSIS ANTECED TUBERCULOSIS too low variance

ANTECED CANCER ANTECED CANCER too low variance
DIAS PUERP DIAS PUERP too low variance

SEMANAS DE GESTACION SEMANAS DE GESTACION too low entropy
FECHA VAC NEUMOCOCO FECHA VAC NEUMOCOCO too low entropy

DESC DIAGNOSTICO EGRESO 1 DESC DIAGNOSTICO EGRESO 1 too low entropy
DESC DIAGNOSTICO EGRESO 2 DESC DIAGNOSTICO EGRESO 2 too low entropy
DESC DIAGNOSTICO EGRESO 3 DESC DIAGNOSTICO EGRESO 3 too low entropy

FECHA INICIO CUADRO CLINICO FECHA INICIO CUADRO CLINICO high correlation
ARTRALGIAS ARTRALGIAS high correlation

POLIPNEA POLIPNEA high correlation
F REGISTRO RESULT CONF2 F REGISTRO RESULT CONF2 high correlation

DIAGNOSTICO CONFIRMADO DIAGNOSTICO CONFIRMADO high correlation
DEFUNCION DEFUNCION high correlation

MOTIVO EGRESO MOTIVO EGRESO high correlation
FECHA INGRESO.1 FECHA INGRESO.1 high correlation

F REGISTRO EGRESO F REGISTRO EGRESO high correlation
PACIENTE PACIENTE high correlation

FECHA INGRESO FECHA INGRESO not representative
FECHA MUESTRA CONF1 FECHA MUESTRA CONF1 not representative

F REGISTRO RESULT CONF1 F REGISTRO RESULT CONF1 not representative
FECHA EGRESO O DEFUNCION FECHA EGRESO O DEFUNCION not representative

ID ID contains no information

TABLE III: Features which were dropped in Experiment 1 and 2, including the reason for dropping.
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