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Abstract

An artificial general intelligence (AGI), by one definition, is an agent that requires
less information than any other to make an accurate prediction. It is arguable
that the general reinforcement learning agent AIXI not only met this definition,
but was the only mathematical formalism to do so. Though a significant result,
AIXI was incomputable and its performance subjective. This paper proposes an
alternative formalism of AGI which overcomes both problems. Formal proof of its
performance is given, along with a simple implementation and experimental results
that support these claims.

1 Introduction

Intelligence, according to Chollet, is a measure of how little information one requires to attain a skill
[1, 2]. Accordingly a more intelligent agent would need less information to make correct predictions,
would predict at least as accurately as less intelligence agents given the same information and so
adapt more effectively to changing circumstances. More succinctly, intelligence is the ability to
make accurate generalisations [1, 2]. For the purposes of this paper an AGI is the most intelligent
agent by this definition. There are compelling arguments to be made for the development of this
sort of AGI. Such an agent would not only more effectively learn, adapt and even ascribe purpose
to what it observes [3, 4, 5], but may yield social benefits in comparison to methods popular today.
For example, only large organisations have the resources to train models that require a lot of data [6].
AGI would be more accessible. Yet until now there existed only one mathematical formalism which,
arguably and under specific conditions, satisfied this definition of artificial general intelligence [7, 8].
It was named AIXI, and while it was formulated to address a different definition of intelligence, the
universal prior [9, 10] AIXI employed also allowed it to make correct predictions from minimal data.
Unfortunately that universal prior was incomputable, ensuring AIXI could only ever be approximated.
To make matters worse, AIXI’s performance was later shown to be subjective, because it could be
affected by the Universal Turing Machine (UTM) on which it ran [11]. Nevertheless AIXI remains
an important result. Given Deepmind co-founder Shane Legg’s PhD thesis was on AIXI [8] it is
arguable that it shaped the entire AI research sector. However, construction of an AGI requires an
alternative theory which addresses these problems. This paper puts forward such a theory, proves it is
an artificial general intelligence as defined above, and provides experimental evidence in support of
these claims. Background material likely to be unfamiliar is introduced below.

1.1 Semantic Theories of Meaning

Extension. Gottlob Frege, a 19th century philosopher and mathematician, tried to formalise language
so that linguistic expressions could be treated as mathematical expressions [12]. Theories of reference
were the result. These posit each sentence has a truth value, and each subsentential expression within
a sentence contributes to that truth value. Assume it is true that “magpies can fly", but not that “pigs
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can fly". The predicate “can fly" behaves as a boolean function that accepts an object and returns
true if and only if that object is in the set of things which “can fly". The set of things to which an
expression refers is called its extension. “Pigs can fly" yields an empty set, because there are no pigs
of which “can fly" is true.

Intension. Reference alone failed to capture subtle distinctions between logically equivalent sen-
tences [13]. Quine gave an example using animals with hearts (chordates) and animals with kidneys
(renates) [14]. Consider the following expressions:

1. “all chordates are chordates"

2. “all chordates are renates"

In our world chordates and renates share the same extension, and so both expressions have the
same truth value. Yet the first expression is an obvious tautology, while the second reveals the
potentially useful fact that all animals with hearts also have kidneys. Their content, or meaning as
a human might interpret it, is different. Another way to say two logically equivalent expressions
have different content is to say they have different intensions. Logically equivalent sentences share
an extension, but may differ in their intension. This notion underpins a formulation of tasks, which
argues the meaningful difference between logically equivalent sentences lies in the extensions of their
subsentential parts [3].

1.2 A Formulation of Tasks

Given a tool, a human will tend to look for problems that the tool might address [15]. Yet it is
arguably better to first identify an urgent problem and only then consider what tools might be needed
[16]. If intelligence is a tool, then the problem it addresses is a task [3]. The greater the intelligence
[1, 2], the more complex the tasks with which it can cope. This begs the question, if it is better to
begin with the problem then what, exactly, is a task? To answer this question a model of an arbitrary
task [3] was formulated. It suggested intelligence is characterised by the ability to learn the purpose
of a task, rather than the means by which one is completed [4]. Both purpose and means were sets
of rules [3], but means to an end were very specific rules. It was argued that what differentiated
extension from intension was how “weak" (nonspecific) the rules involved were [17]. The purpose of
a task together with the circumstances in which it was undertaken then formed an intension, and all
means by which that purpose could be fulfilled the extension [4]. By altering the weakness of those
rules involved, the purpose of a task could be constructed from the means by which it was completed.
Further details are given below of how the formulation of tasks related to intelligent agents. However,
the original formulation lacked rigour, and details needed for implementation. This paper fleshes out
those details.

Agency. An agent must have agency. Typically, intelligent agents are understood using the agent-
environment paradigm [18], in which an agent maps percepts to actions. Nowhere in this paradigm
was a task mentioned, so it was modified (Figure 1) to account for the existence of tasks.

In this modified paradigm (which amounts to enactive cognition [19]), a task would be completed
as follows: an embodied mind would be presented with a situation, about which it would make a
decision, causing the agent to affect the environment. That decision would be correct if sufficiently
likely to cause the task’s completion. Such criteria were assumed, imposed upon the agent through
natural selection or design. Because a decision could specify a sequence of actions, the formulation
of tasks accounted for agency [4].

Rulesets. To distinguish correct from incorrect implied a set of rules. Any ruleset that specified the
desired end of a task would be sufficient. A ruleset would be constructed from a set of only positive
examples [4], known as an ostensive definition [20]. As Russell put it “all nominal definitions, if
pushed back far enough, must lead ultimately to terms having only ostensive definitions" [21]. This
paper assumes an ostensive definition is given, but one might also be constructed through repeated
interaction in the manner of a reinforcement learning agent [4].

Language. Rules correspond unambiguously to the state of a machine (the embodied agent). The
state of a machine is just a set of facts, each pertaining to self evident phenomena one could detect
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Figure 1: Agent environment paradigm, modified to account for tasks.

mechanically, such as the position of a mechanical arm or the electrical current on a wire. Not to be
confused with physical symbol systems [22], preceding work [3] defined a physically implementable
language as one in which statements

1. unambiguously correspond to the state of hardware (dyadic),

2. can be mechanically verified (implementable), which means

3. there is one and only one true interpretation of such a statement.

2 Definitions and Proofs

To predict the world, an agent must have a model of the world. AIXI modelled the world as a program
able to perfectly reproduce what AIXI had experienced. There would always be many such programs,
each of which served to completely explain the past, yet they would differ in how well they predicted
the future. What made AIXI intelligent was that it had a means of discerning which of those programs
would predict the future accurately. The lower a program’s Kolmogorov Complexity k [23], the more
likely it would correctly predict the future. This gave AIXI what is called a universal prior. Yet
Kolmogorov Complexity also introduced problems. It was incomputable, and it equated plausibility
with program length (true only sometimes), making AIXI’s performance subjective [11]. Problems
with Kolmogorov Complexity aside, the underlying ideas remained compelling. All that was needed
was a different means of discerning which model (of a set of models equally capable of explaining
the past) might best predict the future. This was possible using the aforementioned formulation of
tasks. Under this formulation [3], models took the form of rules rather than programs. What was
modelled was a task, not the environment. A universal prior would still be required, but could not
use Kolmogorov Complexity. Chollet formulated a measure of intelligence, but it too relied upon
Kolmogorov Complexity [2] and so could not serve (I would suggest this makes it as subjective as
AIXI’s performance). However, his argument that intelligence is a measure of the ability to generalise
accurately remained compelling. The idea would just need to be reformulated as weakness [3], with
which rulesets could be evaluated, to give a universal prior.

2.1 Definitions

To aid understanding, informal explanations accompany some of the mathematical definitions below.

Definition 0 - Fact: A measurable property of the world which is, at present, true (independent of
any observer).

3



Informal Explanation. For example, a fact might be a specific value held at specific memory address
in a computer, or the occurrence of a pattern of values at positions relative to any memory address in
a computer, or even a pattern over time such as a bit changing from 1 to 0.

Definition 1 - State: The present state of a system is the set of all facts about that system.

Informal Explanation. Naturally, the set of all facts includes what must logically follow or have
preceded the present. A set of facts is also a fact, and so there exists a fact for each and every possible
representation, combination or subset all facts about a system. Further, the present state of a system
is itself a fact. Importantly, a state cannot contradict itself. For example, a bit in a conventional
computer cannot be 0 if it is 1 (the latter prevents the former from occurring).

Definition 2 - Hardware: A set H of possible states. There exists a probability distribution over
these states, and it is assumed to be a uniform distribution.

Informal Explanation. Hardware is the body of the embodied agent. Hardware exists in one state at
a time (only the present state is a fact). H is the set of all states a piece of hardware may occupy.

Definition 3 - Physically Implementable Language: A triple L = ⟨H,L, λ⟩, where:

• H is hardware.
• λ ⊂

⋃
h∈H

h is a finite set, named the vocabulary.

• L = {l ∈ 2λ : ∃h ∈ H (l ⊆ h)}, the elements of which are statements.

Informal Explanation. There may be infinitely many states, and a state may be composed of
infinitely many facts, so to avoid undecidability λ must be finite. If λ is finite, then it follows that
L and every member l ∈ L is also finite. A statement is true at a particular time if it is a subset of
the state at that time. The reason each statement must be a subset of at least one possible state, is so
that statements do not describe impossible combinations of facts. In other words only statements that
can be true are permitted. Not all subsets of λ are statements, because λ may include things which
cannot be true at the same time (λ is not a fact, but a set of things which can be facts if they are in the
present state).

Definition 4 - Extension of a Statement: Given statement a ∈ L, the extension Za of a is defined
as Za = {b ∈ L : a ⊆ b}.

Definition 5 - Extension of a Set of Statements: Given a set A ⊆ L, the extension ZA of A is
defined as ZA =

⋃
a∈A

Za.

Figure 2: A diagramatic representation of definitions 4 and 5.
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Conventions of Notation: To simplify presentation I’ll use the following conventions for notation,
except where stated otherwise:

• Statements are denoted by Latin lower case letters, for example x.

• Sets of statements are denoted by upper case, for example X .

• The extension of an object is denoted by the capital letter Z with the object subscripted.
For example the extension of a would be denoted Za, and the extension of A would be
denoted ZA.

Definition 6 - Task: A task is a triple T = ⟨S,G,C⟩ where:

• S ⊂ L is a set of statements called situations, where ZS is the set of all possible decisions
which can be made in those situations.

• G ⊂ ZS is the set of goal satisficing decisions for this task.

• C ⊂ L is the set of all rulesets for the task, distinguishing between decisions in G and those
in G, where

C = {c ∈ L : ZS ∩ Zc ≡ G,∀z ∈ Zc (z ⊆
⋃
g∈G

g)}

Figure 3: A diagramatic representation of definition 6.

Definition 7 - Process by Which a Decision is Made: An agent trying to complete a task is first

1. presented with a situation s ∈ S, then

2. selects z ∈ Zs, called a decision.

3. If z ∈ G, then the agent has made a correct decision.

Note that ∀c ∈ C : G ≡ ZS ∩ Zc. To abduct a correct decision given a situation, an agent would
require a ruleset c ∈ C.

Definition 8 - Generalise: Given two tasks T1 = ⟨S1, G1, C1⟩ and T2 = ⟨S2, G2, C2⟩, a ruleset
c ∈ C1 generalises to task T2 if c ∈ C2.

An equivalent alternative definition is that c ∈ C1 generalises to T2 if ZS2
∩ Zc ≡ G2.

5



Figure 4: Diagramatic representation of definition 8.

Definition 9 - Sub-task and Parent-task: A task T2 = ⟨S2, G2, C2⟩ is a subtask of T1 =
⟨S1, G1, C1⟩ if:

1. S2 ⊂ S1

2. G2 ⊂ G1

T1 is then a parent task of T2.

Definition 10 - Weakness: w : C → N is a function which accepts a ruleset and returns the
cardinality of its extension:

w(c) = |Zc|

This expressed the weakness of a given ruleset (the greater the cardinality, the weaker the ruleset).

2.2 Theoretical Results

Proposition 1: The probability that a ruleset generalises to a parent task increases monotonically
with its weakness.

Proof. Let Tm = ⟨Sm, Gm, Cm⟩ be a task of which the complete definition is known. Let Tn =
⟨Sn, Gn, Cn⟩ be a task to which I wish to generalise. All I know of Tn is that it is a parent task of
Tm, meaning Gm ⊂ Gn and Sm ⊂ Sn.

1. The set of all decisions which may potentially be required to address the situations in Sn,
and which are not required for Sm, is ZSm

= A.

2. For any given cm ∈ Cm, the set of decisions cm implies which fall outside the scope of
what is required for the known task Tm is ZSm ∩ Zcm = B.

3. 2|A| is the number of tasks which fall outside of what it is necessary for a ruleset of Tm to
generalise to, and 2|B| is the number of those tasks to which a given cm does generalise.

4. Therefore the probability that a given ruleset cm ∈ Cm generalises to the unknown parent
task Tn is

p(cm ∈ Cn) =
2|B|

2|A|

p(cm ∈ Cn) increases monotonically with the weakness of cm. □

Proposition 2: Weakness is necessary for generalisation.

6



Proof. Once again let Tm be a task of which the complete definition is known, and Tn be a
parent task of Tm to which I wish to generalise, for which the complete definition is not known. If
ZSn ∩ Zcm ≡ Gn then it must be he case that Gn ⊆ Zcm . The weaker a ruleset is, the more likely it
is that Gn ⊆ Zcm . Therefore a sufficiently weak ruleset is necessary for generalisation. □

A universal prior is one that assigns belief to every possible hypothesis, or in this case ruleset.
Weakness is a means of accurately predicting p(c), how likely one ruleset c is to generalise relative to
others.

Corollary - A Computable Universal Prior: p(c) = 2w(c)

2|L|

Proposition 3: Agent which chooses the weakest rulesets is an artificial general intelligence.

Proof. Intelligence is a measure of the ability to generalise, and an artificial general intelligence is
the most intelligent agent by this measure. Propositions 1 and 2 show that a preference for weaker
rulesets is both necessary and sufficient to maximise the probability of generalisation. Therefore the
most intelligent agent is one that constructs the weakest rulesets. □

3 Experiments

Included with this paper is a simple program [24]. It computes rulesets to solve 8-bit string prediction
problems. With this, experiments were performed (see appendix B).

3.1 Methods

The purpose of these experiments was to try and falsify proposition 3. Minimum description length
(MDL) rulesets were compared with the weakest rulesets. MDL was chosen because it is arguably the
only plausible alternative to weakness [25, 26, 27, 28, 29]. As this was a comparison between rulesets,
a MDL ruleset was defined as cmdl ∈ argminc∈C |c|. The hardware H contained 256 states, one
for every possible 8-bit string. Propositional logic was employed for the physically implementable
language (to clarify, a written example of this is also provided in the appendix), meaning L was
a set of 256 different statements in propositional logic. A task was specified by choosing G ⊂ L
such that all g ∈ G conformed to the rules of either binary addition or multiplication with 4-bits of
input, followed by 4-bits of output (the included code may be re-run with any alternative operation
the reader wishes). The experiments were made up of trials. The parameters of each trial were
“operation" (a function), and an even integer “number_of_trials" between 4 and 14 which determined
the cardinality of the set Gk (defined below). Each trial was divided into training and testing phases.
The training phase proceeded as follows:

1. A task Tn was generated:
(a) First, every possible 4-bit input for the chosen binary operation was used to generate

an 8-bit string. These 16 strings then formed Gn.
(b) A bit between 0 and 7 was then chosen. Sn was then created by cloning Gn and

deleting the chosen bit from every string (meaning Sn was composed of 16 different
7-bit strings, each of which could be found in an 8-bit string in Gn).

2. A subtask Tk = ⟨Sk, Gk, Ck⟩ was sampled from the parent task Tn. Recall, |Gk| was
determined as a parameter of the trial.

3. From Tk two rulesets were then generated; a weakest cw, and a MDL cmdl.

For each ruleset c, the testing phase was as follows:

1. The extension Zc of c was then generated.
2. A prediction Grecon was then constructed s.t. Grecon = {z ∈ Zc : ∃s ∈ Sn (s ⊂ z)}.
3. Grecon was then compared to the ground truth Gn, and results recorded.

Between 75 and 256 trials were run for each value of the parameter |Gk|. Fewer trials were run for
larger values of |Gk| as these took longer to process. The largest and smallest values of |Gk| were
discarded due to time and resource constraints. The results of these trails were then averaged for each
value of |Gk|.

7



Table 1: Results for Binary Addition

cw cmdl

|Gk| Rate ±95% AvgExt StdErr Rate ±95% AvgExt StdErr

6 .11 .039 .75 .008 .10 .037 .48 .012
10 .27 .064 .91 .006 .13 .048 .69 .009
14 .68 .106 .98 .005 .24 .097 .91 .006

Table 2: Results for Binary Multiplication

cw cmdl

|Gk| Rate ±95% AvgExt StdErr Rate ±95% AvgExt StdErr

6 .05 .026 .74 .009 .01 .011 .58 .011
10 .16 .045 .86 .006 .08 .034 .78 .008
14 .46 .061 .96 .003 .21 .050 .93 .003

Rate at which rulesets generalised completely. Generalisation was deemed to have occurred where
Grecon = Gn. The number of trials in which generalisation occurred was measured, and divided by
n to obtain the rate of generalisation for each ruleset cw and cmdl. Error was computed as a Wald
95% confidence interval. Intuitively, generalisation meant the task was correctly understood (rate
being the portion of trials in which the ruleset in question perfectly matched the ground truth).

Average Extent to which rulesets generalised. Where Grecon ̸= Gn, the extent to which rulesets
generalised could still be ascertained. |Grecon∩Gn|

|Gn| was measured for each ruleset, averaged for each
value of |Gk|, and the standard error computed.

3.2 Results

The results (displayed in Table 1, Table 2 and Figure 5) support proposition 3, in that there was not a
single trial in which cmdl outperformed cw.

The generalisation rate for cw exceeded that of cmdl. Reviewing the raw output data, there was one
instance of cmdl generalising where cw did not. The extent to which rulesets generalised was also
greater for weaker rulesets. cw always generated as many or more true positives than cmdl. The
performance difference between cmdl and cw was smaller than it was for generalisation rate.

Figure 5: Plot of the experimental results. The horizontal axis is |Gk|.
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4 Discussion

4.1 On Subjectivity and The Measure of Intelligence

AIXI’s performance is subjective because the universal prior it employs equates plausibility with
Kolmogorov Complexity, the truth of which depends upon the Universal Turing Machine (UTM) on
which AIXI runs [11]. The computable universal prior presented here involves neither Kolmogorov
Complexity nor UTMs, and so does not suffer this flaw. Chollet’s formalism to measure intelligence
also depends upon Kolmogorov Complexity, and so I suggest it is as subjective as AIXI’s performance.
Weakness, however, may facilitate an objective measure of intelligence.

4.2 Limitations

There is one important limitation to take note of. The vocabulary λ affects how weak rulesets can
be. For example, one might write that “address 109 contains 1 and address 110 contains 0", or that
“there exists an address i containing 1 such that address i+ 1 contains 0, and i = 109". These two
sentences are equivalent, but the extensions of their subsentential expressions are different. Remove
“i = 109" from the 2nd sentence, and what remains could be interpreted as a convolution over
all i. In other words, these two sentences have different intensions but the same extension. This
suggests that what separates such intensions from one another is the extensions of their subsentential
expressions. Weaker subsentential expressions may be recombined to form weaker sentences than
stronger subsentential expressions.

Given any β ∈ λ, let Hβ = {h ∈ H : β ∈ h}. This is like the extension of β, but in terms of
hardware states rather than statements in L. The members of λ are like subsentential expressions. If
Hα ⊂ Hβ , and if {β} and {α} are both rulesets, then it must be the case that w({β}) ≥ w({α}).
Therefore λ which contains β but not α will permit construction of weaker rulesets than λ containing
α but not β. All else being equal, it follows that construction of the weakest rulesets possible would
always be possible if the following rule, strict objectivity, were applied to λ:

∀β ∈ λ ¬(∃γ ∈ λ (Hβ ⊂ Hγ)).

The ruleset most likely to generalise is the weakest, but the ability to construct weaker rulesets still
depends upon λ. An agent which always chooses the weakest rulesets meets the definition of AGI
to the extent possible given λ. However in the context of every possible λ, strict objectivity would
ensure no more intelligent agent could exist.

4.3 Connectionist Interpretations

This is not necessarily an endorsement of either symbolic or connectionist methods. Both work with
this theory. I used symbolic methods here because they’re easier to interpret, but the theory is as easy
to apply in the context of neural networks (and can be explained in kind with category theory). For
example, the rules determining correctness could be modelled by training a classifier o(l) ∈ [0, 1]
such that l ∈ ZS and o(l) = 1 if l ∈ G and o(l) = 0 otherwise. o must behave in accordance with
the definition of ruleset, the weakness of which could then be maximised. o could be used as a loss
function to train another network n : S → G which outputs correct decisions. o learns the desired
end of the task, while n learns means by which it can be completed. I will publish a paper and
implementation of exactly this soon.

4.4 Potential Negative Consequences

The potential negative consequences of AGI are the subject of both popular fiction and extensive
research [4]. A scaleable implementation of this theory is not given. Nevertheless this research may
precipitate the automation of jobs, the development of autonomous weapons and greater instability in
financial markets.

4.5 Concluding Remarks

The proofs in 2.2 show that the optimal choice of ruleset for generalisation is the weakest. The experi-
mental results in 3.2 support this claim, as there was not a single trial in which cmdl outperformed cw.
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Weakness is a computable, objective measure of how likely a ruleset is to generalise. Subsequently an
agent that prefers the weakest rulesets is an artificial general intelligence (by the definition discussed
in this paper’s introduction [1, 2]). According to preceding work, the weakest ruleset is the purpose
of a task [3]. Because it is the optimal choice for generalisation, it follows that general intelligence is
characterised by the ability to learn the ends, not just the means. However, general intelligence alone
is insufficient to emulate human intelligence, as human intelligence employs various inductive biases
[15, 27]. The work of Evans et. al. [27, 28, 29] of Deepmind illustrates how a curated vocabulary
(in which to construct rules) can provide such an inductive bias (which would make weaker rulesets
easier to find in some contexts). Finally, the formulation of tasks employed here has been used to
explain how human language functions [3] and lends itself to an artificial theory of mind [4, 5]. The
more rigorous mathematical treatment given here can also been applied to those derivatives in future
work.
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A Physically Implementable Language

Example of a physically implementable language:

• Assume there are 4 bits bit1, bit2, bit3 and bit4, and that there exists a unique member of H
corresponding to each possible assignment of values to those 4 bits. There are subsequently
16 states in H , but the length of each state is infinite because each contains every possible
means of describing the subsequent 4-bit string.

• λ = {a, b, c, d, e, f, g, h, i, j, k, l} is a subset of all logical tests which might be applied to
these 4 bits:

– a : bit1 = 1

– b : bit2 = 1

– c : bit3 = 1

– d : bit4 = 1

– e : bit1 = 0

– f : bit2 = 0

– g : bit3 = 0

– h : bit4 = 0

– i : j ∧ k

– j : bit1 = bit3
– k : bit2 = bit4
– l : i ∨ bit2 = 1

• L = {{a, b, c, d, i, j, k, l}, {e, b, c, d, k, l}, {a, f, c, d, j}, {e, f, c, d}, {a, b, g, d, k, l}, {e, b, g, d, i, j, k, l},
{a, f, g, d}, {e, f, g, d, j}, {a, b, c, h, j, l}, {e, b, c, h, l}, {a, f, c, h, i, j, k, l}, {e, f, c, h, k}, {a, b, g, h, l},
{e, b, g, h, j}, {a, f, g, h, k}, {e, f, g, h, i, j, k, l}}

Example of a task T1

• S = {{a, b}, {e, b}, {a, f}, {e, f}}
• G = {{a, b, c, d, i, j, k, l}, {e, b, g, d, i, j, k, l}, {a, f, c, h, i, j, k, l}, {e, f, g, h, i, j, k, l}}
• C = {{i}, {j, k}, {i, j, k}, {i, l}...}

Example of subtask T2 sufficient for generalisation to T1

• S = {{a, b}, {e, b}}
• G = {{a, b, c, d, i, j, k, l}, {e, b, g, d, i, j, k, l}}
• C = {{i, j, k, l}, {b, d, j}, ...}

– Weakest (intensional) ruleset i = {i, j, k, l}
– Strongest (extensional) ruleset e = {b, d, j}
– Zi = {{a, b, c, d, i, j, k, l}, {e, b, g, d, i, j, k, l}, {a, f, c, h, i, j, k, l}, {e, f, g, h, i, j, k, l}}
– Ze = {{a, b, c, d, i, j, k, l}, {e, b, g, d, i, j, k, l}}

B Experiments

The experiments were run on a Dell Precision laptop with 32GB of RAM, an RTX A5000 GPU with
16GB of VRAM and an i7 CPU. CUDA was used, but it’s optional (the experiments will run on a
CPU).

The exact results are available in “genrates.xlsx". To rerun the experiments, execute “experiments.py"
included with this paper. Results will be printed to terminal and displayed in a PyPlot.

Parameters can be altered at the end of the file. “number_of_trials" changes the number of trials
attempted for each value of |Gk|, and “operation" is the function modelled (binary multiplication by
default). It can be changed as desired, but will throw divide by zero errors for some operators.
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There is also “depth_limit" and “time_limit" which were not used in the experiments, but which will
significantly speed up the running of the experiments for any who want to run them. They shouldn’t
alter the results too much unless set to very low extremes. They are thresholds beyond which searches
for rulesets will be aborted.

A large number of comments have been added to the code to make it more understandable.

The code was written with interpretability and expediency in mind. It is not intended to be fast.
However I created a means of doing propositional logic with tensors and PyTorch to save time. There
are potential further uses for this, for example to speed up SAT solvers.

C Supplemental Definitions and Preceding Work

The formulation of tasks upon which this was based used different terms. Rulesets were named
solutions, decisions were named responses and so on. These terms were changed so that the theory
would be more understandable. Though not defined above, intensional and extensional solutions, as
they are called in preceding work, may be useful for future work if defined as part of the formulation
given in this paper. Supplementary definitions are provided below:

Supplementary Definition 1 - Intensional Ruleset:

i ∈ argmax
c∈C

w(c)

Supplementary Definition 2 - Extensional Ruleset:

e ∈ argmin
c∈C

w(c)

Intensional and extensional rulesets provide bounds on weakness such that

∀c ∈ C : w(e) ≤ w(c) ≤ w(i)

e ≡ Ze = G ⊆ Zi ≡ i

Supplementary Definition 3 - Sufficient Subtask: A subtask T2 of T1 is sufficient if for every
intensional ruleset i2 ∈ C2 there exists an intensional ruleset i1 ∈ C1 such that i2 = i1. In other
words:

argmax
c∈C2

w(c) ⊆ argmax
c∈C1

w(c)

In other words every intensional ruleset to T2 generalises to T1. I call T2 sufficient because it provides
sufficient information to be absolutely certain of the rules of the parent task. T2 is also called a
sufficient ostensive definition of T1, as per previous publications on the topic.
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