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Abstract

Public facilities are important transmission places for respiratory infectious diseases (e.g., COVID-19), due to the frequent

crowd interactions inside. Usually, changes of obstacle factors can affect the movements of human crowds and result in different

epidemic transmission among individuals. Most related studies only focus on the specific scenarios, but the common rules are

usually ignored for the impacts of obstacles’ spatial elements on the epidemic transmission. To tackle these problems, this study

aims to evaluate the impacts of three spatial factors of obstacles (i.e., size, quantity, and placement) on infection spreading

trends in two-dimension, which can provide scientific and concise spatial design guidelines for indoor public places. Firstly, we

used the obstacle area proportion as the indicator of the size factor, gave the mathematical expression of the quantity factor,

and proposed the walkable-space distribution indicator to represent the placement factor. Secondly, two epidemic spreading

indicators (i.e., daily new cases and people’s average exposure risk) were estimated based on the fundamental model named

exposure risk with the virion-laden droplets, which forecasted the disease spreading between individuals accurately. Thirdly, 120

indoor scenarios were built and simulated, based on which the value of independent and dependent variables can be measured.

Besides, the Pearson correlation analysis and linear regression analysis were employed to examine the relations between obstacle

factors and epidemic transmissions. Finally, several design guidelines were provided for policymakers to mitigate the disease

spreading: minimizing the size of obstacles; increasing the obstacle quantity and adopting the uniform obstacle placement by

lifting the smallest size of the walkable convex space.
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Abstract— Public facilities are important transmission places for respiratory infectious diseases (e.g., COVID-19), 

due to the frequent crowd interactions inside. Usually, changes of obstacle factors can affect the movements of human 

crowds and result in different epidemic transmission among individuals. Most related studies only focus on the specific 

scenarios, but the common rules are usually ignored for the impacts of obstacles’ spatial elements on the epidemic 

transmission. To tackle these problems, this study aims to evaluate the impacts of three spatial factors of obstacles (i.e., 

size, quantity, and placement) on infection spreading trends in two-dimension, which can provide scientific and concise 

spatial design guidelines for indoor public places. Firstly, we used the obstacle area proportion as the indicator of the 

size factor, gave the mathematical expression of the quantity factor, and proposed the walkable-space distribution 

indicator to represent the placement factor. Secondly, two epidemic spreading indicators (i.e., daily new cases and 

people’s average exposure risk) were estimated based on the fundamental model named exposure risk with the virion-

laden droplets, which forecasted the disease spreading between individuals accurately. Thirdly, 120 indoor scenarios 

were built and simulated, based on which the value of independent and dependent variables can be measured. Besides, 

the Pearson correlation analysis and linear regression analysis were employed to examine the relations between obstacle 

factors and epidemic transmissions. Finally, several design guidelines were provided for policymakers to mitigate the 

disease spreading: minimizing the size of obstacles; increasing the obstacle quantity and adopting the uniform obstacle 

placement by lifting the smallest size of the walkable convex space. 
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1. Introduction 

The unexpected Corona Virus Disease 2019 (COVID-19) epidemic has been a global concern in the past three years 

and has significantly impacted all aspects of the world [1,2]. The severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) causes this disease, and COVID-19 is a respiratory infectious disease (RID) with a high transmission 

rate [3]. RIDs including COVID-19, SARS and MERS [4] are harmful to public health, which always bring sequelae 

such as fatigue and dyspnea, and even cause the loss of life expectancy [5,6]. To reduce the potential risk of ongoing or 

re-emerging RIDs, the safety of individual staying spaces is of paramount concern [7,8]. Considering the fact that most 

individual contacts take place in indoor public places, recognizing the effective spatial setups in indoor public spaces 

with human crowds is essential for the prevention and control of RIDs [9-12].   

There are some studies exploring the epidemic spreading in different scenarios with a moving crowd [2,13-20]. For 

example, Moritz et al. [13] conducted an experimental indoor mass gathering event under three different hygiene 

practices (i.e., no restrictions, moderate restrictions, and strong restrictions), and measured the contacts of each person 
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during the event with contact tracing devices. Then, based on the data, they simulated the exposure of individuals and 

evaluated the contributions of several preventive and control measures. The study by Ku et al. [14] focused on the 

resulting burden of COVID-19 in public transport. Specifically, they used the smart card data and real data on infected 

individuals to estimate the familiar stranger group, which was a specific public transportation user-frequently encounters. 

Furthermore, they simulated the spreading of the virus among public transportation users, and then predicted the 

transmission probability under the mandatory mask-wearing and social distancing. Mokhtari and Jahangir [2] used a 

university building as the case, and constructed a multi-objective optimization problem to find the optimum occupant 

distribution patterns. However, the spatial settings of obstacles are specified and fixed in these studies.  

Recently, the influences of obstacles on the epidemic transmission have been explored from different perspectives. 

Under the constraints of non-pharmaceutical interventions such as maintaining safe social distance, the layout design of 

obstacles has been optimized to better prevent and control infection. Contardo and Costa [21] aimed to seek a layout that 

maximized the number of people that the restaurant can accommodate under satisfying social distancing constraints. 

Moreover, they analyzed whether adding space separators and considering the sitting sense of customers can increase 

the room capacity separately. Similarly, an equilateral triangle-based seat pattern was provided in symmetrical spaces to 

achieve maximum seating capacity under the physical distancing safety guidelines [22]. Mekawy and Gabr [23] 

presented a multi-objective optimization approach to mitigate the risks of infectious diseases’ transmission in open-plan 

offices. In detail, they maximized the number of workers, window proximity score, “buzz score”, and minimized 

“adjacency score” to respond to relative prevention and control measures. Differently, the impacts of the number of 

equal-size obstacles on disease spreading were studied by Azmi et al. [24]. To evaluate the best setup for the isolation 

room and the sanitizing machine for spreading disinfectant aerosol, they simulated the airflow in three rooms with 

different amounts of equal-size beds, respectively. Although these studies have provided useful findings for the spatial 

design in response to RIDs, they ignore details brought from the individual movements. Therefore, some researchers 

have coupled individual movement and spatial configuration management to study. Based on the space occupation and 

density of the moving crowd, Braidotti et al. [9] used pedestrian simulations to clarify the spatial problems for infection 

prevention in the ship environment. Then, an alternative layout was proposed to solve the above critical issues for the 

ship, but it did not apply to other scenarios. Xiao et al. [10] coupled the pedestrian dynamics and the modified 

susceptible–exposed–infectious model to decipher the spreading process of COVID-19, and they analyzed the resulting 

epidemic transmission in different scenarios (i.e., three closed rooms with different exits, three corridors with different 

settings of impassable railings, and three winding-queue configurations). However, their fundamental model was not 

tested with real-world data.  

In sum, most previous studies focus on the placement of obstacles and the resulting epidemic transmission, but the 

physical mechanisms behind them are usually not clarified. Moreover, the impact of other obstacle factors, e.g., size and 

quantity, needs further evaluation. On the other hand, existing studies only pay attention to scenarios with the fixed 

function, e.g., office, hospital isolation room, and restaurant. However, exploring the obstacle factors’ influences on a 

general indoor public place without considering its function are more useful. Based on this, scientific and concise 

obstacle adjustment advice can be concluded and further applied in different types of scenarios, which may contribute 

to the prevention and control of RIDs in the public health system.  

This study aims to estimate the influences of the size, quantity, and placement of obstacles on the transmission 

trends in indoor public places, and clarify the mechanisms behind them. In reality, the spread of infection in indoor public 

places is rarely measured, and it is difficult to set obstacles flexibly in different scenarios to make them comparable. As 

a result, there is a lack of real-world data to achieve our goals. To tackle this issue, we attempt to obtain the basic data 

by simulating the epidemic transmission between individuals in indoor rooms with various obstacles. Therefore, we need 

a validated simulation fundamental model which can forecast the spreading trends of RIDs between moving individuals. 
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In addition, as the indicators of obstacle factors are the independent variables in the statistical analysis, it is necessary to 

find quantifiable indicators as dependent variables to represent the transmission trends.  

The framework of our study is presented in Fig. 1, and it should be pointed that our study is conducted in two-

dimension (2D). The rest of the paper is organized as follows. The methodology is presented in section 2. The simulation 

setups are illustrated in section 3, and the results are then reported in section 4. The in-depth discussions and future 

perspectives are reported in section 5. Finally, conclusions are provided in section 6.  

 

Fig. 1. There is the framework of our study. 

2. Methodology 

In this section, three indicators of obstacles factors are first defined, and then the adopted fundamental model is 

introduced, based on which two transmission trend indicators are determined. 

2.1. Obstacle Factors 

In a scenario, an obstacle is defined as a non-walkable object that does not intersect or tangent with others. The 

𝑁Obs refers to the quantity of obstacles in an indoor public place, and obstacles can be numbered as {1, … , 𝑛, … , 𝑁Obs}. 

The 𝑆𝑛
Obs is the size (2D area) of the n-th obstacle, and we have the total size of all obstacles as 

𝑆AllObs = ∑ 𝑆𝑛
Obs𝑁Obs

𝑛=1 .  (1) 

Here, the dimensionless proportion 𝑅AllObs is calculated as 

𝑅AllObs =
𝑆AllObs

𝑆Total × 100%,  (2) 

where 𝑆Total  is the size of the simulation room. Hence, the first and second obstacle indicators are determined 

mathematically, which are respectively the proportion of the obstacle size to the simulation space size 𝑅AllObs and the 

quantity of obstacles 𝑁Obs. 

For the placement of obstacles, previous studies have explored based on the sizes and locations of obstacles [22-24]. In 

fact, individuals are moving in the walkable spaces, which vary with the layout of obstacles. It is more directly to analyze the 

variation of walkable spaces to find the effects and mechanism of the obstacle placement factor. To quantify the impact of 

obstacle placement and the resulting walkable area, we should describe the spaces quantitatively. Therefore, space Syntax, 
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which has successfully analyzed spatial relationships, is adopted here to express the space [25-28]. In Space Syntax, spaces 

can be defined in three ways: Convex Partitions, Axial Lines, and Isovists. As the indoor public place is focused in this study, 

the first way is used here as it is mainly used for small buildings and their interior space. Hence, continuous walkable space is 

divided into a series of convex spaces, and a convex space is defined as “one space where all points within this space are 

visible to one another” by Bill Hillier and his colleagues [27], see Fig. 2.  

                    

(a)                                             (b) 

Fig. 2. There are examples of the (a) convex and (b) non-convex spaces. 

Moreover, Bill Hillier and his colleagues have suggested an algorithm for manually constructing a convex map: 

“Simply find the largest convex space and draw it in, then the next largest, and so on until all the space is accounted 

for.”. However, there may be multiple convex spaces of the same size. Hence, for a given scenario, the algorithm cannot 

be used to represent a unique walkable convex map. For example, a scenario in Fig. 3(a) is a 22m×22m room with a 

6m×6m obstacle at the geometric center. Each blue space in Fig. 3(b) can serve as the first walkable convex space, and 

their corresponding convex maps are different.   

   

(a)                                            (b) 

   

(c)                                           (d) 

Fig. 3. In (a) a scenario, (b) there are four spaces that can be used as the first workable convex space in Hillier’s method, and (c) a unique 

one can be determined as the first in our method. Then, a unique walkable convex map is obtained in (d) based on our method. 
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To tackle this issue, we first construct a rectangular coordinate system and then use greedy strategies to get the unique 

convex map for a scenario. The coordinate system has “x” and “y” axes, and its origin is the geometrical center of the simulation 

room. Moreover, the orientation of the “x” axis is the same as that of the pedestrian outflow. Then, the coordinate of the 

geometrical center in each convex walkable space is measured. Therefore, for a given scenario, we get started by finding the 

first convex space until all walkable areas have been added to the convex map. For each time, a unique convex space can be 

found and added to the map based on the following three steps. 

➢ Step 1: Find the largest convex walkable space. If only one convex space with the largest size can be found, we 

draw it in the convex map; Otherwise, we transfer the spaces with the largest size to step 2. 

➢ Step 2: Find the convex space with the maximum x-axis value among spaces from Step 1. If only one convex space 

with the largest size and the maximum x-axis value can be found, we draw it in the convex map; Otherwise, we 

transfer the spaces with the largest size and the maximum x-axis value to step 3. 

➢ Step 3: Find the convex space with the maximum y-axis value among spaces from Step 2. As the geometric center 

coordinates of two convex spaces cannot be the same, the unique convex element can be identified and added to 

the convex map, as shown in Fig. 3(c). 

Consequently, a unique convex map can be obtained for a constructed scenario (see Fig. 3(d)), and each component in 

the map is fixed. When there are 𝑀 walkable convex spaces in a convex map, their determined sizes are respectively 

{𝑆1
Con, … , 𝑆𝑚

Con, … , 𝑆𝑀
Con}.  

Here, we propose the walkable-space distribution indicator 𝐷Con  to measure the variation of walkable spaces 

modified by the placement of obstacles. As the standard deviation is an index that represents the dispersion degree of the 

dataset, it can help measure the distribution of walkable space sizes in a convex map. Hence, the indicator 𝐷Con is 

defined as the standard deviation of walkable convex spaces in a unique map and given as  

𝐷Con = √∑ (𝑆𝑚
Con−𝑆Con̅̅ ̅̅ ̅̅ ̅)2𝑀

𝑚=1

𝑀
, where 𝑆Con̅̅ ̅̅ ̅̅ =

∑ 𝑆𝑚
Con𝑀

𝑚=1

𝑀
. (3) 

2.2. Fundamental Model and Transmission Trends Indicators  

In forecasting the disease spreading between individuals, previous studies have integrated pedestrian dynamics into 

the epidemic spreading models [7,29-33]. These pedestrian-based epidemic models describe the disease transmission 

process with time-varying personal physical distances during individual movements. There are several alternative 

pedestrian-based epidemic models, such as the exposure risk with virion-laden droplets (ERD) model [7], the fixed 

exposure-risk unit (FERU) model [31], and the exposure risk with quality (ERQ) model [32]. As the ERD model has 

been verified with real-world data and exhibits superior prediction performance than FERU and ERQ models, it is 

adopted here as the fundamental model.  

The ERD model [7] focuses on the typical symptom of most RIDs, i.e., coughing. The model has four components: 

individual movement, virion-laden droplet movement, individual exposure risk estimation, and prediction of 

transmission trends. Note that in the ERD model, the instantaneous exposure risk is defined as the possible maximal 

mass of droplets suffered when the individual and cough-generated droplets meet in the same place, and infectors’ 

exposure risks are 0. 

Firstly, based on the model inputs (i.e., number of individuals 𝐶total, number of infectors among individuals 𝐶inf, 

and mean dwell time of individuals 𝑇dwell) and the pedestrian dynamic model (i.e., the social force model [34]), 

individuals’ movements are reproduced in a general simulation place. Note that the social force model considers the 

realistic obstacle avoidance behaviors, and it can reasonably reproduce the people movements in the room with different 

obstacles. The velocity 𝒗𝑖 of individual 𝑖 (with a mass of 𝑚𝑖) at time 𝑡 is estimated as 
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𝑑𝒗𝑖

𝑑𝑡
=

𝑭𝑖
drv+∑ 𝑭

𝑖,𝑖near
ped

𝑖near +∑ 𝑭𝑖,𝑤
obs

𝑤

𝑚𝑖
, (4) 

where 𝑭𝑖
drv, ∑ 𝑭𝑖,𝑖near

ped
𝑖near , ∑ 𝑭𝑖,𝑤

obs
𝑤  are forces from goal, neighbors, and obstacles, respectively. Here, during the 

dwell time 𝑇dwell, people would randomly adjust the goal, and the new goals are required to be away from obstacles. 

Once the staying time reaches the specified time 𝑇dwell, the individual goal changes to the room exit. Therefore, the 

time series positions of each individual can be obtained. 

Secondly, according to models and settings from literature [12,35], the transmission process of virion-laden droplets 

from a typical cough is simulated in a closed environment. The renormalization group (RNG) k-ε model is used as the 

turbulence model, and the discrete phase model is adopted for the droplet diffusion. Then, the velocity 𝒖𝑐 of droplet 𝑐 

at time 𝑡 is estimated as 

𝑑𝒖𝑐

𝑑𝑡
= 𝑭𝐷(𝒖 − 𝒖𝑐) + 𝑭𝑔, (5) 

where 𝒖 is the fluid phase velocity, 𝑭𝐷(𝒖 − 𝒖𝑐) is the Stokes drag force, and 𝑭𝑔 is the gravitational force [36]. Thus, 

each cough droplet’s time series positions and masses can be estimated.  

Thirdly, outputs from the first two modules are coupled to estimate the 𝐸𝑖,𝑗,𝑔, i.e., the instantaneous exposure risk of 

individual 𝑖 exposed to individual (infector) 𝑗′s 𝑔-th cough. Based on these, the exposure risk of individual 𝑖 during 

the dwell time is measured as 

𝐸𝑖 = ∑ ∑ ∑ 𝐸𝑖,𝑗,𝑔(𝑡)𝐽𝐺(𝑗,𝑡)
𝑔=1

𝐽(𝑡)
𝑗=1

𝑡𝑖
enter+𝑇𝑖

dwell

𝑡=𝑡𝑖
enter , (6) 

where 𝑡𝑖
enter is the place enter time, 𝑇𝑖

dwell is the dwell time of individual 𝑖, 𝐽(𝑡) denotes the number of infectors in 

the simulation scenario at time 𝑡, and 𝐽𝐺(𝑗, 𝑡) indicates the number of infectious coughs of the infector 𝑗 at time 𝑡.  

Finally, to predict the daily new cases 𝐶New, the cut-line of high exposure risk 𝛼 and the proportionality coefficient 

in the linear equation 𝛽 should be estimated based on the real-world historical data. Besides, the number of susceptible 

individuals 𝐶sus can be determined according to model inputs (=𝐶total − 𝐶inf). Then, the number of high-risk exposed 

people 𝐶𝑟𝑖𝑠𝑘 during the simulation can be estimated as 

 𝐶𝑟𝑖𝑠𝑘(𝛼) = ∑ 𝜓(𝐸𝑖 , 𝛼)𝐶sus

𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 𝜓(𝐸𝑖 , 𝛼) = {
1, if  𝐸𝑖 > 𝛼

0, otherwise
. (7) 

Therefore, the number of new cases 𝐶New is represented by 

𝐶New = 𝛽 ∗ 𝐶risk(𝛼). (8) 

Based on the ERD model, for a scenario, we can predict the exposure risk of each individual 𝐸𝑖 and the number of 

new cases 𝐶New. As 𝐶New is a direct and useful indicator to describe the disease spreading trends, it is adopted as a 

transmission indicator. Another indicator is people’s average exposure risk 𝐸Ave, which represents the general level of 

all visits’ exposure risks in a scenario and is defined as 

𝐸Ave =
∑ 𝐸𝑖

𝐶sus

𝑖

𝐶sus
, (9) 

where 𝐶sus and 𝐸𝑖 are the same as mentioned before. 

3. Simulation Setups  

3.1. Scenario Setups 

A scenario consists of people and spaces. In this section, we first introduce the human simulation setups, and then 

determine the space simulation setups. 
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Both infectors and susceptible individuals are represented by a circle with a radius of 0.2 meters for simplification [34] 

(see Fig. 4). In the beginning, no individual is in the simulation space. Then, individuals enter the indoor room through the 

entrance in sequence with an average interval of 5 s, and leave through the room exit. In the dwell time, individuals follow the 

random walking pattern with the desired velocity of 1.34 m/s [31,34]. Besides, after entering the room, the infected individual 

averagely coughs every 15 s [31]. A cough’s infectious distance is 1.70 m, and the infectious time follows a uniform distribution 

from 0 to 15 s [7].  

 

Fig. 4. There is the sketch map of the simulation people and room in the case. 

We change the obstacles in the same simulation space to explore their factors influencing the transmission of RIDs. Herein, 

a fixed 22 m × 22 m indoor room is constructed as the simulation space, i.e., 𝑆Total = 484 m2, and there is an entrance on one 

side of the room and an exit on the opposite side (see Fig. 4). There are two steps to determine the size, quantity, and placement 

of obstacles in each simulation scenario:  

➢ Step 1: Determine the size and quantity of obstacles. The obstacle size indicator 𝑆AllObs is formulated firstly. 

To clarify the impacts of the quantity of obstacles, an effective tool to separate the obstacle is needed. Here, a 

horizontal-vertical division rule is proposed for dividing square or rectangle obstacles, and it has four parameters: 

𝐻cut, 𝑉cut, 𝐸cut, and 𝐷cut. Specifically, 𝐻cut and 𝑉cut are the number of divisions in the horizontal and vertical 

directions, respectively. 𝐸cut is a binary variable, where 𝐸cut = 1 indicates the obstacle is divided equally and 

𝐸cut = 0 represents unequal division. 𝐷cut is the shortest distance between adjacent obstacles, whose value can be 

fixed or changeable in the division process.  

➢ Step 2: Determine the placement of obstacles. After determining the size, quantity, and relative positions of 

obstacles, a minimum rectangle that can cover all obstacles can be found. Then, the geometrical center 𝐺AllObs 

of the rectangle is uniquely determined when the placement of obstacles in the room is fixed. Thus, when we 

build a coordinate system with “x” and “y” axes, whose origin is the geometrical center of the simulation space 

𝐺Room, the obstacle positions can be confirmed based on the accurate coordinate of 𝐺AllObs.  

According to the above steps, we set 5 groups with different total obstacle sizes (i.e., 𝑆AllObs = 36 m2, 64 m2, 100 

m2, 144 m2, 196 m2, respectively), and obstacles are all square before segmentation. Besides, we set 𝐻cut ∈ [0,1,2,3] 

and 𝑉cut ∈ [0,1,2] in each group with the same 𝑆AllObs, and explore the simple situation when 𝐸cut = 1 and 𝐷cut =

2.0 m. For example, there are 12 patterns in the group with 𝑆AllObs = 36 m2 (see Fig. 5), and six same obstacles are 

obtained in the pattern with 𝐻cut = 3 and 𝑉cut = 2. Hence, independent variables of 𝑁Obs  and 𝑅AllObs  in each 

scenario can be measured. Moreover, we set two coordinates of 𝐺AllObs for each pattern to explore the influence of 

obstacle placement, and the first coordinate is (0,0). To ensure that all obstacles are in the simulation room, for each 

group with 𝑆AllObs = 36 m2, 64 m2, 100 m2, 144 m2, 196 m2, the second coordinate is set as (0, −5), (0, −4), 

(0, −3), (0, −2), and (0, −1), respectively. For example, for the pattern 𝐻cut = 3 and 𝑉cut = 2 when 𝑆AllObs = 36 
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m2, two obstacle placements in the simulation space are shown in Fig. 6. Based on these, the independent variable 𝐷Con 

in each scenario can be estimated. 

 

Fig. 5. The division results based on the horizontal-vertical division rule when 𝑆non = 36 m2. 

   

Fig. 6. When 𝑆non = 36 m2, 𝐻cut = 3, and 𝑉cut = 2, there are two layouts with different positions of obstacle. 

In sum, there are 5 groups with different obstacle sizes, 12 patterns in each group, and 2 coordinates in each pattern 

to estimate the placement. Thus, there are 5122 = 120 samples collected in this case. Each scenario is simulated at 

least three times to ensure that the standard deviation of their resulting new cases is smaller than 𝐶NewStd, and the 

average experimental results are taken as the final values. In this case, 𝐶NewStd is set as 600 through numerous tests. 

Each scenario is denoted by a sequence of intervention codes in the “𝑆AllObs-[𝐻cut, 𝑉cut]-𝐺AllObs” format. For instance, 

Scenario #36-[3,2]-(0,-5) represents the scenario when the size of obstacle 𝑆AllObs is 36 m2, the position of obstacle 

geometrical center 𝐺AllObs is (0, −5), and the pattern in the horizontal-vertical division rule is 𝐻cut = 3 and  𝑉cut =

2. Fig. 7 shows the configuration of all 24 scenarios when 𝑆AllObs is 36 m2. 

#36-[0,0]-(0,0) #36-[0,0]-(0,-5) #36-[0,1]-(0,0) #36-[0,1]-(0,-5) #36-[0,2]-(0,0) #36-[0,2]-(0,-5) 
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#36-[1,0]-(0,0) #36-[1,0]-(0,-5) #36-[1,1]-(0,0) #36-[1,1]-(0,-5) #36-[1,2]-(0,0) #36-[1,2]-(0,-5) 

#36-[2,0]-(0,0) #36-[2,0]-(0,-5) #36-[2,1]-(0,0) #36-[2,1]-(0,-5) #36-[2,2]-(0,0) #36-[2,2]-(0,-5) 

#36-[3,0]-(0,0) #36-[3,0]-(0,-5) #36-[3,1]-(0,0) #36-[3,1]-(0,-5) #36-[3,2]-(0,0) #36-[3,2]-(0,-5) 

Fig. 7. There are 24 scenarios when 𝑆AllObs is 36 m2. 

3.2. Model Setups  

As introduced in section 2.2, there are three main individual inputs in the ERD model: number of individuals  𝐶total, 

number of infectors among individuals 𝐶inf, and mean dwell time 𝑇dwell. Since the impacts of obstacle factors are 

explored in this study, the fixed values of model inputs are enough. Thus, we use data from the United States (U.S.) 

during the spreading of COVID-19 on June 5th, 2020, and there are 𝐶total =257,177,921 [37,38], 𝐶inf=1,759,672 [39], 

and 𝑇dwell =25 minutes [31,38]. Meanwhile, according to the research of [7], to reduce the computational cost, 𝐶total 

and 𝐶inf are scaled down with a proportion 𝜌 = 4.07 × 10−5 for simulation, and the model results 𝐶New are expanded 

with the same proportion after the simulation; the appropriate value of parameters 𝛼 and 𝛽 are set as 7.00 μg and 

6.2010−4, respectively. 

4. Results and Analysis 

4.1. Simulation Results 

Obstacle factors are calculated based on the simulation setups, and transmission trend indicators are collected from 

the simulation outputs. Based on the simulation results, the descriptive statistics of the independent and dependent 

variables are reported in Table 1.  

Table 1 

Descriptive statistics of independent and dependent variables. 

Variables Number of samples Min. Values Max. Values Mean Standard Deviation 

Independent variables      

𝑅AllObs 120 7.40% 40.50% 22.30% 11.80% 

𝑁Obs 120 1.00 12.00 5.00 3.18 

𝐷Con 120 15.01 102.85 46.37 20.04 

Dependent variables      

𝐶New 120 22,560 42,781 30,238 4,697 

𝐸Ave (μg) 120 3.00 4.78 3.64 0.42 
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4.2. Statistical Analysis 

4.2.1 Influences of the Size of Obstacles 

According to the simulation results of 120 scenarios, the number of new cases 𝐶New and the average individual 

exposure risk 𝐸Ave  vary with the proportion of the obstacle size to the simulation space size 𝑅AllObs  in Fig. 8, 

respectively.  

   

(a)                                                  (b) 

Fig. 8. (a) 𝐶New and (b) 𝐸Ave vary with  𝑅AllObs. 

After using standardized data with the min-max scaler method, correlation analysis is adopted to explore the 

relationships between the size attribute and the epidemic transmission. Firstly, we test the distributions of variables with 

the Shapiro-Wilk test, and all variables obey normal distribution characteristics. Secondly, the Pearson coefficient is 

applied for correlation analysis, and the results are reported in Table 2.  

Table 2 

Correlation between 𝑅AllObs and dependent variables. 

Variables 𝐶New 𝐸Ave 

𝑅AllObs 0.917** 0.906** 

Note: * p<0.05, ** p<0.01. 

Based on Table 2, there is a linear interrelationship between 𝑅AllObs and 𝐶New, and the same in 𝑅AllObs and 

𝐸Ave. Hence, the disease spreading indicators (𝐶New and 𝐸Ave) can be modelled as the linear function of the obstacle 

attributes 𝑅AllObs. The mathematical functions are given as  

𝐶New = 𝑎1𝑅AllObs + 𝑏1  (10) 

and 

𝐸Ave = 𝑎2𝑅AllObs + 𝑏2, (11) 

where 𝑅AllObs , 𝐶New , and 𝐸Ave  are constructed variables in section 3; 𝑎1  and 𝑎2  are the coefficients of each 

independent variable; 𝑏1  and 𝑏2  are the intercepts in each function. We employ the ordinary least square method to 

estimate coefficients, and the results are demonstrated in Table 3.  

We test the heteroscedasticity for the model constructed in Table 3 to incorporate potential estimation problems. 

Based on the White test, the χ² of regression models with dependent variable 𝐶New and 𝐸Ave are 23.878 (p-value = 

0.000**) and 29.616 (p-value = 0.000**), respectively. Thus, there is heteroscedasticity in models built. To track this 

issue, we add the robust standard error (see Table 4).  
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Table 3 

Summary of linear regression results. 

Variables 
Dependent Variable 𝐶New  Dependent Variable 𝐸Ave (μg) 

Coefficient St. Err. t-stat p-value  Coefficient St. Err. t-stat p-value 

𝑅AllObs 0.596 0.024 24.939 0.000**  0.591 0.025 23.273 0.000** 

Constant 0.112 0.014 8.149 0.000**  0.096 0.015 6.627 0.000** 

R-Squared 0.841 ——  0.821 —— 

Adjusted R-Squared 0.839 ——  0.820 —— 

F-statistic 621.960 ——  541.624 —— 

Prob(F-statistic) 0.000 ——  0.000 —— 

Durbin-Watson stat 1.630 ——  1.658 —— 

Note: * p<0.05, ** p<0.01. 

Table 4 

Summary of linear regression results with the robust standard error. 

Variables 

Dependent Variable 𝐶New  Dependent Variable 𝐸Ave (μg) 

Coefficient Robust St. 

Err. 

t-stat 
p-value 

 Coefficient Robust 

St. Err. 

t-stat 
p-value 

𝑅AllObs 0.596 0.030 20.159 0.000**  0.591 0.032 18.570 0.000** 

Constant 0.112 0.010 11.183 0.000**  0.096 0.010 9.739 0.000** 

R-Squared 0.841 ——  0.821 —— 

Adjusted R-Squared 0.839 ——  0.820 —— 

F-statistic 406.394 ——  344.848 —— 

Prob(F-statistic) 0.000 ——  0.000 —— 

Durbin-Watson stat 1.630 ——  1.658 —— 

Note: * p<0.05, ** p<0.01. 

According to Table 4, the R-squared value of 0.841 and 0.821 indicated that the transmission variables 𝐶New and 

𝐸Ave can be explained by variables of 𝑅AllObs (84.1% and 82.1%), respectively, while other variables explain the rest. 

Besides, there is a significant and positive influence of the 𝑅AllObs on epidemic transmission variables (𝐶New and 

𝐸Ave), and we have 

𝐶New = 0.596𝑅AllObs + 0.112  (12) 

and 

𝐸Ave = 0.591𝑅AllObs + 0.096. (13) 

Hence, with the growth of the obstacle size, more and more individuals will be infected, and the average exposure risk 

of the global will increase. Therefore, decreasing the size of obstacles is beneficial for reducing epidemic transmission. 

4.2.2 Influences of the Quantity of Obstacles 

To control the influence of the size factor, we analyze the quantity attribute in each size group. Here, the number 

of new cases 𝐶New and the average individual exposure risk 𝐸Ave change with the quantity of obstacles 𝑁Obs in each 

group with the same 𝑅AllObs, respectively (see Fig. 9).  
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(a)                                                  (b) 

Fig. 9. (a) 𝐶New and (b) 𝐸Ave change with 𝑁Obs in each group with the same 𝑅AllObs. 

We use the min-max scaler method to standardize data, based on which the correlation analysis is performed. The 

distribution of 𝑁Obs in each size group is tested to obey the normal distribution according to the Shapiro-Wilk test. 

Then, we adopt the Pearson coefficient for analysis, and the results are introduced in Table 5.   

Table 5 

Correlation between 𝑁Obs and dependent variables. 

Group Correlation Between 𝑁Obs and 𝐶New Correlation Between 𝑁Obs and 𝐸Ave 

𝑅AllObs=7.44% 0.024 -0.015 

𝑅AllObs=13.22% -0.398 -0.418* 

𝑅AllObs=20.66% -0.582** -0.670** 

𝑅AllObs=29.75% -0.844** -0.856** 

𝑅AllObs=40.50% -0.937** -0.942** 

Note: * p<0.05, ** p<0.01. 

As introduced in Table 5, when 𝑅AllObs is large enough (i.e., 𝑅AllObs = 20.66%, 29.75%, 40.50%), the linear 

relationships between 𝑁Obs and transmission indicators (𝐶New and 𝐸Ave) are respectively observed in each size group. 

Therefore, in a size group with 𝑅AllObs ∈ {20.66%, 29.75%, 40.50%}, the linear mathematical functions are given as  

𝐶New = 𝑎3𝑁Obs + 𝑏3  (14) 

and 

𝐸Ave = 𝑎4𝑁Obs + 𝑏4, (15) 

where 𝑁Obs , 𝐶New , and 𝐸Ave  are constructed variables in section 3; 𝑎3  and 𝑎4  are the coefficients of each 

independent variable; 𝑏3 and 𝑏4 are the intercepts in each function. Then, based on the ordinary least square method, 

regression results are reported in Table 6.  

Table 6 

Summary of linear regression results when 𝑅AllObs = 20.66%, 29.75%, 40.50%. 

Group Variables Dependent Variable 𝐶New  Dependent Variable 𝐸Ave 

Coefficient t-stat (p-value) R-Squared  Coefficient t-stat (p-value) R-Squared 

𝑅AllObs=20.66% 𝑁Obs -0.448 -3.361 (0.003**) 0.339  -0.559 -4.231 (0.000**) 0.449 

Constant 0.745 12.067 (0.000**)  0.798 13.018 (0.000**) 

𝑅AllObs=29.75% 𝑁Obs -0.756 -7.386 (0.000**) 0.713  -0.781 -7.766 (0.000**) 0.733 

Constant 0.884 18.644 (0.000**)  0.893 19.141 (0.000**) 

𝑅AllObs=40.50% 𝑁Obs -0.804 -12.572(0.000**) 0.878  -0.839 -13.199(0.000**) 0.888 

Constant 0.813 27.442 (0.000**)  0.831 28.175 (0.000**) 

Note: * p<0.05, ** p<0.01. 
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In addition, the results of the White test show that there is no heteroscedasticity in the constructed regression models 

in Table 6. Results of Table 6 indicate that the R-squared of the linear regression increases with the growth of 𝑅AllObs. 

The R-squared is respectively as high as 0.878 and 0.888 with dependent variables 𝐶New and 𝐸Ave in the size group 

𝑅AllObs = 40.50%, which implies that 𝑁Obs can explain 87.8% of the changes in 𝐶New and 88.8% of the variations in 

𝐸Ave. Moreover, there are significant and negative effects of the 𝑁Obs on the epidemic transmission variables when 

𝑅AllObs = 20.66%, 29.75%, and 40.50%. Therefore, once the obstacle size is large enough, increasing the obstacle 

quantity can decrease the disease infections. 

4.2.3 Influences of the Placement of Obstacles  

Similarly, we introduce the transmission indicators 𝐶New and 𝐸Ave vary with the standard deviation of walkable 

convex spaces 𝐷Con in each size group to remove the effects of the size factor, as shown in Fig. 10.  

   

(a)                                                (b) 

Fig. 10. (a) 𝐶New and (b) 𝐸Ave vary with 𝐷Con in each group with the same 𝑅AllObs.  

After using the min-max scaler method to standardize data, the correlation analysis is carried out. In each size group, 

𝐷Con is tested to obey normal distribution in each size group with the Shapiro-Wilk test. Hence, the Pearson coefficient 

is used, and the results are introduced in Table 7.  

Table 7 

Correlation between 𝐷Con and dependent variables. 

Group Correlation Between 𝐷Con and 𝐶New Correlation Between 𝐷Con and 𝐸Ave 

𝑅AllObs=7.44% -0.398 -0.365 

𝑅AllObs=13.22% 0.146 0.158 

𝑅AllObs=20.66% 0.408* 0.485* 

𝑅AllObs=29.75% 0.697** 0.692** 

𝑅AllObs=40.50% 0.544** 0.573** 

Note: * p<0.05, ** p<0.01. 

According to Table 7, the significant and positive linear relations between 𝐷Con and infection spreading variables 

are obtained when 𝑅AllObs is larger enough (i.e., 𝑅AllObs = 20.66%, 29.75%, 40.50%). Thus, in the size group with 

𝑅AllObs ∈ {20.66%, 29.75%, 40.50%}, the linear mathematical functions are defined as  

𝐶New = 𝑎5𝐷Con + 𝑏5  (16) 

and 

𝐸Ave = 𝑎6𝐷Con + 𝑏6, (17) 

where 𝐷Con , 𝐶New , and 𝐸Ave  are constructed variables in section 3; 𝑎5  and 𝑎6  are the coefficients of each 

independent variable; 𝑏5 and 𝑏6 are the intercepts in each function. Consequently, regression results combining the 

ordinary least square method are demonstrated in Table 8.  
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Table 8 

Summary of linear regression results when 𝑅AllObs = 20.66%, 29.75%, 40.50%. 

Group Variables Dependent Variable 𝐶New  Dependent Variable 𝐸Ave 

Coefficient t-stat (p-value) R-Squared  Coefficient t-stat (p-value) R-Squared 

𝑅AllObs=20.66% 𝐷Con 0.344 2.099 (0.048*) 0.167  0.444 2.603 (0.016*) 0.236 

Constant 0.395 3.996 (0.001**)  0.353 3.428 (0.002**) 

𝑅AllObs=29.75% 𝐷Con 0.656 4.560 (0.000**) 0.486  0.664 4.490 (0.000**) 0.478 

Constant 0.252 2.869 (0.009**)  0.247 2.738 (0.012*) 

𝑅AllObs=40.50% 𝐷Con 0.423 3.038 (0.006**) 0.296  0.463 3.280 (0.003**) 0.328 

Constant 0.303 3.594 (0.002**)  0.287 3.354 (0.003**) 

Note: * p<0.05, ** p<0.01. 

Moreover, results of the White test imply that there is no heteroscedasticity in the constructed models in Table 8. 

As shown in Table 8, with the increase of 𝑅AllObs
, the R-squared value increased firstly and then decreased in models 

with the same dependent variable. The maximum R-squared value appears in the group with 𝑅AllObs
=29.75%, which is 

respectively 0.486 for the dependent variable 𝐶New and 0.478 for the dependent indicator 𝐸Ave. Thus, changes of 𝐶New 

and 𝐸Ave can be explained by variable 𝐷Con up to 48.6% and 47.8%, respectively. Furthermore, the significant and 

positive relations between 𝐷Con and infection spreading variables are found in Table 8. Hence, if the obstacle size is 

large enough, decreasing the standard deviation of walkable convex spaces resulting from the obstacle placement can 

reduce the epidemic infections.  

5. Discussions and Future Perspectives 

Building upon the importance of space design in COVID-19 transmission, the impacts of obstacle factors are 

evaluated using statistical analysis, from which we draw three conclusions if other factors remain constant: 1) the large 

obstacle area proportion facilitates epidemic transmission; when the size of obstacles is fixed and large enough, 2) the 

growing quantity of obstacles and 3) the lower value of walkable-space distribution indicator reduce epidemic spreading. 

In this section, we further discuss the reasons and the scope of applications of these findings. 

In a scenario, with the growth of the obstacle size, the walkable space reduces, and the people density (= the size 

of walkable space/number of individuals in the simulation room) increases accordingly, as shown in Fig. 11. Hence, 

infectious spaces constructed by infectors are denser, and there is a higher possibility that susceptible individuals arrive 

at the infectious areas and facilitates epidemic spreading. In addition, the higher density brings a lower velocity[40,41], 

which results in a longer time to pass through the infectious space and then increases the transmission. As the desired 

velocity is a fixed setup in our cases, we can further explore the impacts of the various crowd walking speeds on the 

infection spread as in previous studies [10,15].  

 

Fig. 11. Density varies with the total size of obstacles. 
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For the second and third findings, once the obstacle size is large enough, increasing the obstacle quantity 𝑁Obs or 

decreasing the value of the walkable-space distribution indicator 𝐷Con brings a reduction in epidemic infections. In 

addition, as reported in Table 9, there is a significant and negative relation between 𝑁Obs and 𝐷Con in each size group. 

Hence, there is a possible reason for the second finding: the growing quantity of obstacles decreases the transmission 

with the reduction of walkable-space distribution indicator 𝐷Con . Besides, the walkable-space distribution indicator 

𝐷Con represents the obstacle placement. Thus, we will explain why the indicator 𝐷Con affects the epidemic spreading 

trends as follows. According to the definition of the indicator 𝐷Con in equation (3), a larger value of 𝐷Con brings a 

lower bound of the walkable convex space size, which results in more gathering and congestion as they always happen 

in small walkable spaces. The gathering and congestion in the crowd lead to a longer time of accompanying motion 

between susceptible individuals and infectors, which increases the transmission. Therefore, if the obstacle is large enough, 

the more uniform distribution of walkable convex space lowers the epidemic spreading. It should be noted that when the 

total obstacle size is too small, the transmission trends affected by the quantity or placement factors are minor, which is 

unlike to cause significant variations.   

Table 9 

Correlation between variables 𝑁Obs and 𝐷Con in each group with the same 𝑅AllObs. 

Group Correlation Between 𝑁Obs and 𝐷Con 

𝑅AllObs=7.44% -0.729** 

𝑅AllObs=13.22% -0.717** 

𝑅AllObs=20.66% -0.729** 

𝑅AllObs=29.75% -0.735** 

𝑅AllObs=40.50% -0.704** 

Note: * p<0.05, ** p<0.01. 

In the simulation setups, the shortest distance between adjacent obstacles 𝐷cut is fixed as 2m. Here, we use scenario 

#100-[1,2]-(0,0) as the base and explore different layouts with 𝐷cut is 1m, 3m, and 4m. These layouts are shown in Fig. 

12(a), and corresponding simulation results indicate that the diverse values of 𝐷cut bring various 𝐷Con and further 

reflect the transmission.  

 

Layout 𝐷cut=2.0m (Base) Layout 𝐷cut=3.0m 

 

Layout 𝐷cut=4.0m 

 

Layout 𝐷cut=5.0m 

(a) 

                  

(b)                                                   (c) 

Fig. 12. Using the scenario #100-[1,2]-(0,0) as the base, there are (a) different layouts with 𝐷cut is 1m, 3m, and 4m, and their 

corresponding (b) 𝐷Con and (c) transmission indicators are reported. 
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Meanwhile, several limitations need to be further studied. Firstly, due to a lack of real-world data to achieve the 

research goal, we use the simulated data based on the ERD fundamental model. As the ERD model has been 

quantitatively calibrated and validated through the macroscopic real-life data, the prediction transmission trends are 

reliable to some extent, and the results can be applied for scenario investigation and comparison. Once we get the real-

world data in the future, the findings in this paper can be further validated. Secondly, in our cases, individuals walk 

freely inside the simulated space, but people’s diverse behavior and the points of interest in the scenario are ignored. For 

example, in a cinema, visitors stay in a fixed seat for a long time instead of walking randomly. Thus, individuals moving 

patterns in various scenarios should be considered in the future, which helps determine the customized prevention and 

control measures for a scenario. Thirdly, the shape of the pedestrian and the obstacle are respectively fixed as the circle 

and the rectangular for simplicity. However, both the pedestrian and the obstacle in real scenarios have various shapes 

and thus bring more dynamic properties. Therefore, further studies can be carried out in applying the realistic object 

features.  

6. Conclusions 

In this paper, the association between obstacle factors (i.e., size, quantity, and placement) and RIDs transmission trends 

were examined. Firstly, we constructed three spatial indicators of obstacle factors in 2D: the obstacle area proportion, the 

quantity of obstacles, and the walkable-space distribution indicator. Note that the last factor was built based on the 

walkable space, which represented the influence of obstacle placement instead of using the obstacle locations in previous 

studies, and helped explore the mechanism behind the impacts because individuals were moving in the walkable space. 

Then, we used the ERD model as the foundation, and selected daily new cases and people’s average exposure risk as infection 

indicators. Finally, we built 120 scenarios with different sizes, quantities, and placements for simulation, and corresponding 

results were fed to the statistical analysis, including correlation analysis and linear regression. 

There are three main findings in our study. 1) Increasing the obstacle size enhances the epidemic spreading by lifting the 

probability of susceptible individuals reaching the infectious walkable spaces and the time of passing through the space. 

Once the obstacle size is large enough, 2) increasing the obstacle quantity and 3) optimizing the obstacle placement can 

decrease the infections by reducing the walkable convex space with a small size where gathering and congestion always 

happen. 

Therefore, in daily presentation and control of RIDs, we should minimize obstacles in the room. However, if the obstacles 

are indispensable and large, dividing obstacles into more sub-blocks and putting them uniformly can help decrease the 

epidemic transmission. 

Appendix A   

There are five different sizes of obstacles in our study, i.e. 36 m2, 64 m2, 100 m2, 144 m2, 196 m2. As the 

scenarios with the size of 36 m2 have been shown in Fig. 7, the rest scenarios are illustrated in Fig. A1.  

#64-[0,0]-(0,0) #64-[0,0]-(0,-4) #64-[0,1]-(0,0) #64-[0,1]-(0,-4) #64-[0,2]-(0,0) #64-[0,2]-(0,-4) 
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#64-[1,0]-(0,0) #64-[1,0]-(0,-4) #64-[1,1]-(0,0) #64-[1,1]-(0,-4) #64-[1,2]-(0,0) #64-[1,2]-(0,-4) 

#64-[2,0]-(0,0) #64-[2,0]-(0,-4) #64-[2,1]-(0,0) #64-[2,1]-(0,-4) #64-[2,2]-(0,0) #64-[2,2]-(0,-4) 

#64-[3,0]-(0,0) #64-[3,0]-(0,-4) #64-[3,1]-(0,0) #64-[3,1]-(0,-4) #64-[3,2]-(0,0) #64-[3,2]-(0,-4) 

#100-[0,0]-(0,0) #100-[0,0]-(0,-3) #100-[0,1]-(0,0) #100-[0,1]-(0,-3) #100-[0,2]-(0,0) #100-[0,2]-(0,-3) 

#100-[1,0]-(0,0) #100-[1,0]-(0,-3) #100-[1,1]-(0,0) #100-[1,1]-(0,-3) #100-[1,2]-(0,0) #100-[1,2]-(0,-3) 

#100-[2,0]-(0,0) #100-[2,0]-(0,-3) #100-[2,1]-(0,0) #100-[2,1]-(0,-3) #100-[2,2]-(0,0) #100-[2,2]-(0,-3) 

#100-[3,0]-(0,0) #100-[3,0]-(0,-3) #100-[3,1]-(0,0) #100-[3,1]-(0,-3) #100-[3,2]-(0,0) #100-[3,2]-(0,-3) 

#144-[0,0]-(0,0) #144-[0,0]-(0,-2) #144-[0,1]-(0,0) #144-[0,1]-(0,-2) #144-[0,2]-(0,0) #144-[0,2]-(0,-2) 

#144-[1,0]-(0,0) #144-[1,0]-(0,-2) #144-[1,1]-(0,0) #144-[1,1]-(0,-2) #144-[1,2]-(0,0) #144-[1,2]-(0,-2) 
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#144-[2,0]-(0,0) #144-[2,0]-(0,-2) #144-[2,1]-(0,0) #144-[2,1]-(0,-2) #144-[2,2]-(0,0) #144-[2,2]-(0,-2) 

#144-[3,0]-(0,0) #144-[3,0]-(0,-2) #144-[3,1]-(0,0) #144-[3,1]-(0,-2) #144-[3,2]-(0,0) #144-[3,2]-(0,-2) 

#196-[0,0]-(0,0) #196-[0,0]-(0,-1) #196-[0,1]-(0,0) #196-[0,1]-(0,-1) #196-[0,2]-(0,0) #196-[0,2]-(0,-1) 

#196-[1,0]-(0,0) #196-[1,0]-(0,-1) #196-[1,1]-(0,0) #196-[1,1]-(0,-1) #196-[1,2]-(0,0) #196-[1,2]-(0,-1) 

#196-[2,0]-(0,0) #196-[2,0]-(0,-1) #196-[2,1]-(0,0) #196-[2,1]-(0,-1) #196-[2,2]-(0,0) #196-[2,2]-(0,-1) 

#196-[3,0]-(0,0) #196-[3,0]-(0,-1) #196-[3,1]-(0,0) #196-[3,1]-(0,-1) #196-[3,2]-(0,0) #196-[3,2]-(0,-1) 

Fig. A1. There are scenarios with the obstacle size of 64 m2, 100 m2, 144 m2, 196 m2. 
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