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Abstract

Recovering the actual subsurface electrical resistivity properties from the electrical resistivity tomography data is challenging

because the inverse problem is nonlinear and ill-posed. This paper proposes a Variaional Encoder-Decoder (VED) based

network to obtain resistivity model, which maps the apparent resistivity data(input) to true resistivity data(output). Since

deep learning models are highly dependent on training sets and providing a meaningful geological resistivity model is complex, we

have first developed a method to construct many realistic resistivity synthetic models. Our algorithm automatically constructs

an apparent resistivity pseudo-section from these resistivity models. We further computed the resistivity from two different

neural architectures for comparison – UNet, and attention UNet with and without input depth encoding apparent data. In the

end, we have compared our deep learning results with traditional inversion and borewell data on apparent resistivity datasets

collected for aquifer mapping in the hard rock terrain of the West Medinipur district of West Bengal, India. A detailed

qualitative and quantitative evaluation reveals that our VED approach is the most effective for the inversion compared to other

networks considered.
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Appraisal of Resistivity Inversion Models with
Convolutional Variational Encoder-Decoder Network

Bibin Wilson*, Anand Singh*, Amit Sethi†

Abstract—Recovering the actual subsurface electrical resistiv-
ity properties from the electrical resistivity tomography data
is challenging because the inverse problem is nonlinear and
ill-posed. This paper proposes a Variaional Encoder-Decoder
(VED) based network to obtain resistivity model, which maps the
apparent resistivity data(input) to true resistivity data(output).
Since deep learning models are highly dependent on training
sets and providing a meaningful geological resistivity model is
complex, we have first trained our deep learning method to con-
struct many realistic resistivity synthetic models. Our algorithm
automatically constructs an apparent resistivity pseudo-section
from these resistivity models. We further computed the resistivity
from two different neural architectures for comparison – UNet,
and attention UNet with and without input depth encoding
apparent data. In the end, we have compared our deep learning
results with traditional inversion and borewell data on apparent
resistivity datasets collected for aquifer mapping in the hard rock
terrain of the West Medinipur district of West Bengal, India. A
detailed qualitative and quantitative evaluation reveals that our
VED approach is the most effective for the inversion compared
to other networks considered.

Index Terms—Electrical Resistivity Tomography, Deep Learn-
ing, Inverse Problem, Conductivity Distribution.

I. INTRODUCTION

W ITH a wide range of geophysical and environmental
applications, Electrical Resistivity Tomography (ERT)

is a low-cost geophysical approach [1].The field measurement
procedure is straightforward in an ERT investigation. A known
electrical current is sent using two metal electrodes and the
potential differences through another pair of metal electrodes
is measured. The electrodes can be located on the surface or
in boreholes. The measured electrical currents and potential in
the apparent resistivity of the subsurface are transformed based
on the used electrode array configurations. Inverse modeling
provides a mathematical framework to obtain an actual subsur-
face resistivity distribution from the measured field apparent
resistivity datasets. Since the number of measured ERT data
points is less than the number of resistivity model points, the
inverse problem is intrinsically non-unique and ill-posed [2].
It means that there are too many resistivity models whose
response can fit the measured resistivity data sets within a
certain degree of acceptable error levels.

During the last four decades there have been many devel-
opments in the interpretation of ERT techniques for data col-
lected in two-dimensions [3], [4], [5] [6] and three-dimensions
[7], [8]. The interpretation techniques mentioned above are
mostly linear approximations of nonlinear ERT problems and

*Department of Earth Sciences, †Department of Electrical Engineering
Indian Institute of Technology Bombay, Maharashtra, India

highly dependent on the initial approximations [9]. Global
optimization techniques such as simulated annealing and
genetic algorithms do not need initial approximations [10].
However, for 2D and 3D interpretation, these approaches
are not feasible. In sedimentary contexts, Akcr et al. [11]
used hybrid genetic algorithms to build a structure-based
resistivity inversion.Rücker[12] incorporated a priori infor-
mation of structural constraints from seismic and borehole
data to improve the quality of ERT images. After extracting
the structural orientation from geological sections, Zhou et
al. [13] used a model covariance matrix in order to improve
the inversion findings. Robert G Aykroyd et al.[14] proposed a
Bayesian approach to reconstruct the shape of a homogeneous
resistivity based on monotonicity information.

The electrical inversion problem is complex because of its
non-linear and ill-posed nature. The ability of deep neural
networks (DNNs) to map nonlinear and complicated functions
has been used to train on electromagnetic induction data to
estimate the distribution of subsurface electrical conductivity
[15]. This method used a fully convolutional network (FCN)
to reconstruct the electromagnetic conductivity images. EMI
inversion through the FCN enabled faster and more accurate
estimation of lower-surface conductivity images. To determine
the diffusion of resistivity, the right probabilistic link between
the facies and the resistivity data is used to classify alluvial
deposits. [16]. B. Liu et al. [17] addressed the problem
of ambiguity in the apparent resistivity data because of its
variant characteristic inherent behavior. They optimized the
loss function to deal with false anomalies. This study achieved
more accurate inversion results and improved the accuracy
of the prediction for regions further from the surface layer.
Similarly, a convolutional neural network with a three-layer
SegNet architecture has been trained for apparent resistivity
data and the models generated theoretically [18]. The encoder
layer extracts the main low-resolution features. The decoders
compensate for the loss of resolution resulting from the
encoder layer. Regression is applied to give better results for
mapping the resistivity inversion problem.

Based on efficient learning models, deep learning has out-
performed iterative and non-iterative optimization techniques
for ERT inverse problems and better image reconstruction
with relatively fewer computations [19], [20]. Since back-
propagation for Neural Networks (NN) belongs to the family
of a stochastic algorithms, their training might not converge
to global optima. To mitigate this, the Quantization of NNs
enables computationally less expensive models, which are
crucial for ubiquitous computing [21], [22], [23].

In our deep learning-based inversion of ERT presented here,
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Fig. 1. Workflow of the deep learning resistivity models prediction algorithm.
We have used the true resistivity model as label and apparent resistivity data
as input to train our network. We aim to predict the resistivity model from
apparent resistivity data using the trained network

CNNs are used directly in the inversion of ERT to learn the
mapping between the input apparent resistivity data and the
output true resistivity model. The present work implements
the workflow in the two stages – training and prediction –
as shown in Fig. 1. CNN-based Variational Auto Encoder
(VAE) [24] is used as the foundation for our Variational
Encoder-Decoder(VED) network, which incorporates residual
blocks for a supervised task. We also compare our results
with traditional UNet and Attention UNet architectures. After
successfully developing the algorithm, we have applied it
to the field data sets. We also compared our results with
traditional inversion algorithms.

With our approach, we make the following contributions:
• To the best of our knowledge, we are the first to perform

layered geological structures(as true resistivity model) for
deep learning inversion studies.

• We show the importance of considering both apparent and
true resistivity as different modalities for a deep learn-
ing model, rather than considering it as a segmentation
task(where pixel-to-pixel mapping is required, which is
not true in inversion due to the pseudo-depth).

This paper is organized into five main sections. Section I
presents the introduction to ERT, background knowledge of
the domain, and the scope of an inverse problem. Sec-
tion II describes step-by-step implementation of the proposed
methodology. Section III explains the experiments conducted
and Section IV discusses the obtained results. Finally, the
conclusions and future work are stated in Section V.

II. METHODOLOGY

In this section, we discuss the details of the traditional
ERT models, ie. geophysical forward and inverse modeling
formulations for the synthetic data generation and the detailed
structure and training of the proposed deep neural network.

A. Forward modeling formulations

Ohm’s law, which governs the flow of electric current in
the ground, is the fundamental physical law used in resistivity
studies. Ohm’s law relates the current density J to the intensity
of the electric field E and the electrical conductivity σ as
shown in Equation 1:

J = σE (1)

Because of the conservatism of stationary electric fields,
the relationship between electric potential and field intensity
is given by

E = −∇Φ (2)

where Φ is the electric potential.
Combining equations 1 and 2, we get

J = −σ∇Φ (3)

All source-free regions must satisfy the continuity equa-
tion’s requirement that J’s divergence vanish.

∇ · J = 0 (4)

For a point-like source of current, I at the position rs its
divergence Iδ( r − rs) has to be considered, leading to the
governing equation 5

In the 2D DC resistivity forward modeling, the following
elliptic equation is solved to calculate the potential distribution
Φ(x, y, z) on a 2D conductivity structure σ due to a current
source I

∇ · (σ∇Φ) = −I(x, y, z) (5)

We have used the finite element method to solve equation
5. Furthermore, we have calculated the apparent resistivity
from the potential differences using the general approach of
[25]. This results in a normalized potential difference that is
equal to the system’s response to unity. – Each electrode is
assumed to be a current pole, and the potentials at each node
are calculated accordingly. It is therefore possible to utilize
any combination of current-potential electrodes to calculate
the apparent resistivities. Pseudo-sections are used to display
the apparent resistivity values.

Forward modeling plays a very important role in making
inversion algorithms effective and stable. In discrete form, we
represent it following using equation 6,

dpre = F (m) (6)

where, F is a forward modeling operator and m =
(log σ1, log σ1, ... log σM )T is a vector of model parameters,
where σk is the conductivity of the kth model parameter,
M is the total number of triangles, and dpre is the general
type of data set, which is apparent resistivity in our case.
Equation 6 relates the true resistivity/conductivity distribution
with the apparent resistivity data sets. It can be used to perform
traditional inversion as well as to train the deep learning
model.

B. Constructing the Synthetic True Resistivity Model

A large number of data-model pairs are typically required
to train a deep learning inversion network since it uses
optimization of the network parameters to learn the nonlinear
mapping. Training data and network design are critical to the
success of deep learning approaches. According to Kawaguchi
et al. [26] and Choromanska et al. [27], the convergence
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point that deep learning methods could reach is closer to the
global minimum under certain conditions. A fairly frequent
understanding is that DL resistivity model inversion studies
follow the ”supervised learning paradigm,” which calls for an
enormous amount and variety of data with the desired labels.
Data-driven techniques’ performance is heavily dependent on
the training data that are used. In order to train neural networks
with nonlinear mapping capabilities, testing the model is
critical for deep learning resistivity inversion. Good model
design helps the trained neural network to be more likely to
be deployable in realistic settings. Some studies [28], [29],
[30] have collected their own data sets, including models with
faults, salt bodies, and layered subsurface and trained their
DL network on these models only i.e. faults, salt bodies and
layered subsurface.

Fig. 2. (a)Control (red star) and construction (black) points to define the
lithological interfaces and (b) corresponding constructed resistivity model
generated using Delaunay triangulation.

To train the DL resistivity inversion, we constructed a
resistivity model using a certain lithological unit, as shown
in Fig. 2. Variable control points construct (shown by a red
star and black dots) the resistivity model. Let x1, x2, ..., xn
be the horizontal direction surface control points (red star).
Now, at each control point, we assign the thickness of each
geologic unit. If any geologic units are not present at some
control points, the corresponding thickness values are assigned
to zero. For example, we have assigned the thickness of the
first lithologic unit as layer1=[50 40 50 70 90 100 50]; in
a similar way, we have assigned the thickens of the second
and third layer as layer2 = [70 60 50 30 10 0 0] and layer3
= [100 90 80 50 40 45 70], respectively. Here in the 2(a),
values of control points are [0 250 375 500 625 750 1000].
Now, at this stage, we have assigned the true resistivity values
in all four layers which are 100, 10, 200, and 500 ohm-m
respectively. We have constructed a true subsurface resistivity
model as shown in 2(b). The triangle quality is a measure of
the acceptability of any triangle element and is expressed by
Bank [31]

q =
4A
√

3

h21 + h22 + h23
(7)

Where h1, h2 and h3 are sides and A is the area of a
particular triangular cell. If q > 0.6, then the triangle is
stated to be of acceptable quality[32]. The triangle quality is
equal to one when all sides are equal. Detailed information
on unstructured grids can be found in the study by [33],
which describes a successful application to 2D magnetotelluric
modeling.

C. Deep Learning Inversion

Convolutional neural networks are widely used deep learn-
ing models [34] which has the ability to extract the essential
characteristics of patterns from the data and converge to a
global optimum.

Let xεRw×h denote the apparent resistivity data with the
ground truth label yεRw×h. The image’s width and height are
denoted by w and h, respectively. The goal is to learn a robust
inversion model F (x, y : θ) parameterized with that maps the
resistivity from the input space x to the target space y. Deep
CNNs are designed based on a large number of layers for the
convolution process. The feature maps (Z) of the input data
A can be obtained by:

Z = A ∗ f + b (8)

where AεR(H,W,C) is the input data where H, W and C
are height, width and the number of channels of A, respec-
tively. In addition, f is the convolution filter for each layer, b
is the bias parameter and * is the convolution operation. This
procedure generates millions of parameters dependent on the
size of the input data and the kernel of the filter, and these
parameters can be adjusted in each layer.

Our proposed network is based on Variational Auto-Encoder
[24]. A modified version of the Encoder-Decoder structure
of the VAE is utilized for feature extraction. This system
is a variational encoder-decoder (VED) network, since input
and output are not identical, as would be in a standard VAE
system[36]. The apparent data is fed into this network, and
the network returns the true resistivity map as an output.
PyTorch[37] is used to implement the network, and Fig. 3
presents a detailed structure of the network.

On the contracting path, the number of features doubles.
Also downsampled by average-pooling, while in the expansive
path the number of features is half. The encoder process
decreases the feature map resolution to extract the best features
of the original image, after that, the decoder module rebuilds
the final map from these small feature maps to generate the
final decision.

We considered residual blocks for both encoder and decoder.
Each block of the VED model has structures including convo-
lution, instance normalization, random leaky ReLU activation,
and pooling layers as encoder path and a decoder path with
upsample layers.

The encoding model is denoted as qφ(z|x), where z is
the latent embedding paired with spatial information and
x = fγ(i) is semantics from the input image i’s high-level
feature. pθ(m|z) is a probabilistic decoder that outputs the 2-
D grid true resistivity mapping m from the latent embedding
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Fig. 3. Model architecture of encoder in variational encoder-decoder (VED) consists of five layers of convolutional neural network (CNN). Each encoder and
decoder layer is a residual block [35]. At the end of the encoder, the extracted data are converted into mean and standard deviation values with a size of 512
x 4 x 4. The latent variable is sampled from the values of mean and standard deviation. The hyperparameter of the decoder is set symmetrically so that the
output size is the same as that of the encoder.

z. It is possible to learn the parameters (γ,φ,θ) of the neural
networks f , q, or p simultaneously using end-to-end training.

The latent loss increases when the latent embedding z is
forced to follow the usual normal distribution. The Kullback-
Leibler divergence between z and N(0, I) is referred to as
Llatent. Reconstruction loss is defined as the Mean Squared
Error (MSE) between the mapped prediction output layer and
the ground truth.

We also considered perceptual loss Lperceptual. The idea
behind perceptual loss in image similarity is that if people
think one image looks more like the original, it should also
result in a lesser loss [38]. Deep features from a pre-trained
VGG-19 are used as a stand-in for the perception of the
prediction mapping and ground truth of an image.

So the overall loss L for training is the combination of latent
loss, reconstruction loss, and perceptual loss:

L = LReconstruction + Llatent + Lperceptual (9)

We train all considered networks using Adam optimizer with
learning rate = 0.0001, and mini-batch sizes of 20 for 100
epochs.

D. Deterministic Inversion of ERT data

To compare the results of deep learning inversion, we have
also developed a traditional inversion framework to interpret
the datasets. We have used the same forward formulation
as describe in the section A. Since direct current resistivity
inverse problems are a highly underdetermined problem. We

introduced an additional term named model regularization
term φm(m) along with data misfit function φd(m) using
Tikhonov parametric function [39]. Further, these two terms
will be weighted by a regularization term λ1 and yield the
minimization function

min
m

(φtotal) = φd + λ1φ
m, εφd <= φε (10)

where φε is the target misfit. The regularization term λ1
is a very important term and controls the tradeoff between
model regularization and data misfit function. Experience or
the ”trial-and-error” method will yield an accurate regulariza-
tion parameter value. A greater regularization parameter was
evaluated with a damping factor of 0.5, which decreased to a
minimum of 0.01 in subsequent iterations.

The data misfit function is the quantitative measurement
of the difference between the observed apparent resistivity
data dobs and the predicted data dpre. Predicted data is the
mathematical model F(m), where F is derived through nu-
merical modeling using equations 5 and 6. The mathematical
representation of the data misfit function is

φd = ||W d(F (m)− dobs)||22 (11)

where ||.||22 is the l2 norm. W d = diag1/σ2
1 , 1/σ

2
2 , ...1/σ

2
M

and i is the individual standard deviation of the ith observation.
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START

Data Input
Position of Electrodes
Apparent Resistivity

ρdc,obsa

Choose initial model m & λ
m = [σdc]

Compute forward model
dcal = f(m)

∆d = [dobsdc − dcaldc ]

Misfit
RMSk+1 < RMSk

RMS =

√
(Wd∆d)T (Wd∆d)

n
]

DC Model Visualization
Fitting, RMS plot END

Calculate Jacobian matrix
J

Updated Equation
∆mk+1 = (JTWT

d WdJ + λCTC)−1(JTWT
d Wd∆d− λCTCmk)

mk+1 = mke
∆mk+1

λ = λ/2

Fig. 4. Inversion flow-chart of the deterministic approach. In the present work,
we have modified the inversion code of Singh et al.[40] to the triangular grids.

To control the difficulty of the recovered resistivity model,
we have formulated our regularization term according to Li
and Oldenburg [9]

φm = ||α1W
m
s (m−mref )||22 + ||Wmm||22 (12)

Where the mref is the reference model (i.e. a priori known
resistivity model) and the matrix Wm

s is the diagonal matrix
containing block weights. Weighting matrices Wm

i (i = 2, 3, 4)
are the finite-difference x-direction gradient component, z-
direction gradient component, and Laplace’s differential com-
ponent.Figure 4 is the flowchart of the ERT inversion which
we have developed for the deep learning model.

III. EXPERIMENTS

A. Dataset

We generated 24,000 apparent and true resistivity image
pairs for the experiment. We created various models by
changing the locations of the control points, the thickness
of each resistivity layer at the control points, and resistivity
values at each layer as shown in Fig. 2. We consider different
layer structures such as uniform resistivity values, where all
4 layers have a single resistivity value. In 2 layers it will
have 2 different random resistivity values, where the layer
combinations are considered as shown in the TABLE II.
Whichever layers are within brackets (.), we consider them to-
gether with same resistivity value. In two-layer combinations,
we considered either the first layer with a resistivity value
and a combination of (2,3,4) with another resistivity value,

1 and 2 layers combined together with a single resistivity
value, and 3 and 4 layers combined with a single resistivity
value create another two-layer combination, etc. Through
forward modeling as explained in section II-B In each layer
combination, we generated 2000 image pairs. For each layer
structure, the total generated data pairs are shown in TABLE
I.

TABLE I
DATA GENERATED

Layers No of data pairs

Uniform 2000
2 layer 6000
3 layer 6000
4 layer 10000

TABLE II
LAYER COMBINATIONS

Layer Combinations

Uniform [(1,2,3,4)]
2 Layer [1,(2,3,4)], [(1,2),(3,4)], [(1,2,3),4]
3 Layer [1,2,(3,4)], [1,(2,3),4], [(1,2),3,4]
4 Layer [1,2,3,4]

Dataset was also divided into 80:10:10 for training, valida-
tion, and testing.

B. Baseline Methods

To compare the results of our VED model, we considered
the vanilla UNet and Attention UNet architectures. We also
considered a depth-map layer to the input apparent data as
mentioned by B.Liu et al. [17]. A depth map to encode the
position information for the apparent resistivity created in such
a way that, each pixel row will have a fixed value, which
increases from top to bottom of the image as shown in Fig 5.
We create the depth map by setting the values for each layer
as value = 1 for the top row, and value = 2 for the next row,
and similarly, we continued increasing values with increasing
depth.

Fig. 5. Depth input map is with a structure that element in each rows has
the value equal to a number, and which increases while going down the row
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1) UNet: We design our networks based on a widely used
U-Net encoder-decoder neural architecture. U-Net gets its
name due to its contracting path followed by an expansive
path. At each max pooling step in the contracting path,
downsampling occurs which doubles the number of features,
while the number of features is halved in the expansive path
by upsampling. Across the downsampling and upsampling
layers, a copy and crop of the features are performed that
combines low-level feature maps (from the shallow layers) to
the high-level feature maps (from the deep layers) through
skip connections to bring the spatial context in the lower-level
(finer) details. This allows retention of high-frequency detail
for sharp class boundaries. The detailed architecture of the
UNet considered is shown in Fig. 6
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Fig. 6. UNet Architecture Applied. ’n’ is the number of input bands n = 4
when with the depth band, n = 3 without the depth bands.
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Fig. 7. Attention UNet architecture [41]. ’n’ is the number of input bands n
= 4 when with a depth band, n = 3 without depth bands. The numbers within
each block represent the feature maps with (spatial dimension)2 x the number
of channels. Orange arrow represents convolutional layer. Purple arrow means
max-pooling operation which downsamples feature maps, while transparent
arrow means transposed convolution which upsamples feature maps. Black
arrow is the shortcut which concatenates feature maps from shallow layers to
deep layers.

2) Attention UNet: Attention, in the context of computer
vision, is a way to highlight only the relevant activations
during training, which reduces the computational requirements
by avoiding irrelevant activations. [41] That is, certain parts of
the images will get more “attention” from the network based
on attention gates as areas of high relevance that are multiplied
with a larger weight, while the areas of low relevance are
multiplied with smaller weights. As the model is trained, more
focus is given to the regions with higher weights. The detailed
architecture of Attention UNet considered is shown in Fig. 7

C. Evaluation metric

The metrics we used were the coefficient of determination,
Pearson correlation coefficient, and cosine similarity for evalu-
ating our method. For these metrics, larger values imply better
performance.
Coefficient of Determination (R2): R2 is the proportion of the
variation in the dependent variable that is predictable from the
independent variables, given by

R2(y, ŷ) = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

, (13)

where ȳ = 1
n

∑n
i=1 yi and

∑n
i=1(yi − ŷi)2 =

∑n
i=1 ε

2
i .

Pearson Correlation Coefficient (PCC): PCC is a measure
of linear correlation between two sets of data, given by

PCC =
Cov(y, ŷ)

σyσŷ
(14)

where Cov is the covariance and σ is the standard deviation.
Cosine Similarity (CS): CS is a measure of similarity between
two non-zero vectors of an inner product space given by

CS(y, ŷ) =
y.ŷ

‖y‖.‖ŷ‖
, (15)

where y is the ground truth and ŷ is the model prediction.

D. Error metrics

There are error metrics like mean squared log error, root
mean squared error, and mean absolute error that can be used
to evaluate the performance of these methods. For error-based
metrics, smaller values imply better performance.
Mean Squared Log Error (MSLE): MSLE computes a risk
metric corresponding to the expected value of the squared
logarithmic (quadratic) error, given by

MSLE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

(loge(1 + yi)− loge(1 + ŷi))
2.

(16)
Mean Squared Error (MSE): MSE represents the second
sample moment of the differences between predicted values
and observed values. , given by

RMSE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

(yi − ŷi)2. (17)

Mean Absolute Error (MAE): MAE is the arithmetic average
of the absolute errors, given by

MAE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

|yi − ŷi| . (18)

IV. RESULTS

A. Synthetic Datasets

The evaluation metrics on test dataset is shown in TABLE
III and error metrices of the same on the TABLE IV. In it,
’UNet D’ represents the UNet with depth layer input. ’A UNet’
represents the attention UNet, and ’A UNet D’ represents the
attention UNet with depth layer. For both evaluation metrices
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and error metrices, our method(VED) for inversion performs
far better than the compared onces.

A set of samples from the test data set is taken and tested
on the mentioned networks and the corresponding results are
shown in Fig. 8. Here, the rows from top to bottom represent
the uniform resistivity model, 2 layer, 3 layer and 4 layer
resistivity models, respectively. For each layer considered,
the inverted results from the VED outperform other network
predictions.

Table V shows the comparison of the number of training
parameters for each deep learning architecture considered.
Compared to UNet and attention UNet, which have 31 million
trainable parameters, our approach with variational encoder-
decoder architecture gives better results with 22 million train-
able parameters.

TABLE III
EVALUATION METRICS: UNET, ATTENTION-UNET RESULTS FOR WITH

AND WITHOUT DEPTH LAYERS, AND VED

UNet UNet D A UNet A UNet D VED(Our)

R2 0.8882 0.8529 0.8848 0.8926 0.9519
PCC 0.9350 0.9481 0.9399 0.9351 0.9938
CS 0.9785 0.9780 0.9804 0.9782 0.9974

TABLE IV
ERROR METRICES: UNET, ATTENTION-UNET RESULTS FOR WITH AND

WITHOUT DEPTH LAYERS, AND VED

UNet UNet De A UNet A UNet D VED(Our)

MSLE 0.0083 0.0116 0.0083 0.0083 0.0007
MSE 0.0219 0.0170 0.0161 0.0173 0.0033
MAE 0.0643 0.0723 0.0606 0.0521 0.0174

B. Geology of the region and data collection

The study area belongs to the West Medinipur district of
West Bengal, India, as shown in Fig. 9. The latitude and
longitude of the northern and southern points are 21 ° 45 N
86 ° 45 E and 23 ° 00 N 88 ° 00 45 E, respectively. Three
types of geological formations belong from the Proterozoic to
the Quaternary age. They are lateritic terrains, consolidated
crystalline rocks, and unconsolidated to semi-unconsolidated
tertiary sand and gravel. The western part of the Medinipur
district has crystalline rocks marked red in figure 9. The
groundwater mainly exists in the weathered residuum within
10 m of the surface and in fractures within 65 m of the
surface in such formations. Unconsolidated/older alluvium is
the source of West-laterite Medinipur’s landscapes. Laterites

TABLE V
COMPARISON OF NETWORKS ON TRAINABLE PARAMETERS

Network No.of trainable parameters
(in Millions)

UNet 31.04
Attention UNet 31.39
VED(our) 22.89

top the aquifer in earlier alluvium, which has a maximum
thickness of 50 meters. The tertiary sand and gravel-type
formation is found at a depth of 100 to 140 m below this older
alluvium. It has a lot of groundwater due to its porous nature.
Hard rock underneath water levels drop during dry seasons.
The flat alluvial and deltaic plains are present in the east and
southeast of the district [42] [43] The deltaic planes are formed
by younger alluvium. Groundwater levels in these formations
are much higher than those in previous alluvial deposits. The
Kangsabati and Subarnarekha rivers form the backbone of the
research area. (Fig. 9).

Generally speaking, the research area has two distinct
hydro-geological areas. The older alluvium is on top of the
secondary laterite-covered fluvial-deltaic deposits. The aquifer
beneath the flood plain is primarily composed of sands and
silts, with only a trace proportion of clays. In April and
May, the hottest temperatures are reported, and the coldest
are recorded in February and January. The principal sources
of groundwater recharge in the study area are rainwater and
river water. Multi-electrode electrical resistivity surveys using
Wenner configuration were performed using 10 m electrode
spacing (Fig. 10(a)). The total length of the profile is 800
m and is marked as ”ERT Profile” in Fig. 9. The resistance
values of each electrode are shown in Fig. 10(b). Apparent
resistivity pseudo section of the field data is shown in Fig.
10(c). Minimum and maximum apparent resistivity values
were 22 and 190 ohm-m, respectively.

C. Comparison of Inverted Resistivity model with DL
To test the efficacy of deep learning, we have first inverted

the field data using the deterministic inversion approaches
which flowchart has been shown in the Fig. 4. Fig. 12(a) is
the inverted resistivity modes using deterministic minimization
approaches [40] We interpreted the four different geologic
units from the inverted 2D resistivity model namely (1) soil
(50–100 m), (2) compact laterite, (10–100 m), soft laterite
(10–100 m), and coarse sand and gravel (10-20). The high
resistivity zone between 450-800 m along the profile and 10-
50 m depth is soft and compact laterite, which is shown
with the blue color in Figure 12(a). Here, we would like to
highlight that compact laterite is very problematic in terms of
groundwater recharge.

The computed apparent resistivity pseudo-section is shown
in Figure 11(a). It is clear that the computed apparent resis-
tivity pseudo-section (Figure 11(a)) is nearly identical to the
observed apparent resistivity pseudo-section (Figure 10(c)).

We performed five experiments, using our VED approach,
two for UNet and two for Attention-UNet architecture, using
the synthetic apparent resistivity image data. Our proposed
approach accomplished significantly improved outcomes for
mapping the subsurface’s true resistivity from the apparent
resistivity compared to traditional inversion. A comparison of
results for field data is shown in Fig. 12.

One of the significant issues with the resistivity model
obtained via traditional inversion is that it is highly dependent
on the initial guess and choices of the norm.

We noted that our inverted resistivity models of our DL
method (VED) accurately produced the topsoil layer (approx-
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Fig. 8. Synthetic test sample results: The first column(a) is the apparent input data to the network. Second column(b) is the ground truth true resistivity. The
third(c), fourth(d), fifth(e), sixth(f) and seventh(g) columns are the interpreted models from UNet, UNet with depth layer, Attention UNet, Attention UNet
with depth layer and VED(our) respectively. Each row represents Uniform, 2 layer, 3 layer, 4 layer respectively from top to bottom

Fig. 9. The geology of the study area belongs to the West Medinipur district
of West Bengal, India.

imately 7 m, see Fig. 13 ), which was not evident in traditional
inversion (Fig. 12 (a)). It happens because apparent resistivity
data are insensitive to the top 10m as the minimum current
electrode separation is 30m. Thus, our proposed approach
achieved significantly improved results in mapping the true
resistivity of the subsurface from the apparent resistivity
compared to traditional inversion. However, we have noted that
among all deep learning architectures, our variational encoder-
decoder produces more geological relevant models with higher
R2 values. Fig. 13 shows the comparison of inverted and
deep learning resistivity models at 610 m locations of ERT
profile. The first and second columns are the lithology obtained
from the tubewell and the traditional inversion. The rest of
the columns are the lithology obtained from DL. In Fig. 13,
our VED network inversion has predicated the topsoil layer.
However, traditional inversion fails to do this and assigns it as

Fig. 10. (a) Electrode locations and their corresponding collected data using
the Wenner configuration. (b) The resistance value of each current electrode.
(c) Contour plot of the collected apparent resistivity data shown in Fig. 8a.

a compact laterite. The resistivity of the soft laterite (10–100
ohm m) and coarse sand and gravel (10-20 ohm-m) are very
close to each other; DL also faces difficulty differentiating
these two geologic units, also UNet and attention UNet
architectures fail to predict the coarse sand and gravel at the
bottom, but the VED was able to predict that too.
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Fig. 11. (a) Modeled apparent resistivity pseudo-section corresponding to the
resistivity models shown in Fig. 9. (b) Convergence pattern of the inversion.
We stopped the inversion when the root mean square error was no longer
reduced.

V. CONCLUSIONS

This paper describes a novel method to obtain an actual
resistivity distribution from two-dimensional apparent resistiv-
ity data sets. First, we develop a Gauss-Newton minimization
approach on the unstructured grid. The synthetic example
noted that the inverted resistivity models are either lower or
higher than the actual resistivity models due to an inversion al-
gorithm. Also, the inverted images were blurry. Consequently,
we can identify the geologic units on the relative scale on the
basis of the inverted resistivity models. We have developed a
novel deep learning algorithm to interpret the ERT datasets to
overcome this.

In the present work, we have trained our network architec-
ture using the variational encoder-decoder consisting of five
layers of a convolutional neural network. We have trained
our network with 24,000 pairs of apparent resistivity datasets
and true resistivity models. For that we have developed an
automated algorithm that can generate various models by
changing the locations of the control points and the thickness
and resistivity of each layer at the control points.

The synthetic example shows that our VED network ar-
chitecture provides better inverted resistivity models than the
UNet, UNet with depth layer, Attention UNet, and Attention
UNet with depth layer models. Also, our results very close
to the ground truth, as determined using actual data . These
results are consistent for the homogeneous, two-layer, three-
layer, and four-layer resistivity models. In the field data case,
our results were also very consistent and the network achieved
with an R2 score of 0.95. . These results are consistent for the
homogeneous, two-layer, three-layer, and four-layer resistivity
models.
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