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Abstract

Distributed ledger technology (DLT) provides decentralized and tamper-resistant data storage, replicated among mutually
untrusting participants. With the advancement of this technology, different privacy-preserving blockchains have been pro-
posed, such as Corda, Hyperledger Fabric, and Digital Asset’s Canton. These distributed ledgers only provide \emph{partial
consistency}, which implies that participants can view the same ledger differently.

A \emph{view} represents the states of a blockchain available to a particular stakeholder. The combination of views forms an
integrated view that represents a consistent global state shared by all participants.

This paper introduces BUNGEE (Blockchain UNifier view GEnErator), the first DLT view generator, to allow capturing DLT

snapshots, constructing views, and performing arbitrary operations on those, such as integrating views. Creating and integrating

views allows interesting applications, such as stakeholder-centric snapshots for audits, cross-chain analysis, blockchain migration,

and data analytics.
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Is My Perspective Better Than Yours?

Blockchain Interoperability with Views

Rafael Belchior, Limaris Torres, Jonas Pfannschmidt, André
Vasconcelos, Miguel Correia

Abstract

Distributed ledger technology (DLT) provides decentralized and tamper-resistant
data storage, replicated among mutually untrusting participants. With the ad-
vancement of this technology, different privacy-preserving blockchains have been
proposed, such as Corda, Hyperledger Fabric, and Digital Asset’s Canton. These
distributed ledgers only provide partial consistency, which implies that partic-
ipants can view the same ledger differently. A view represents the states of
a blockchain available to a particular stakeholder. The combination of views
forms an integrated view that represents a consistent global state shared by all
participants.

This paper introduces BUNGEE (Blockchain UNifier view GEnErator), the
first DLT view generator, to allow capturing DLT snapshots, constructing views,
and performing arbitrary operations on those, such as integrating views. Cre-
ating and integrating views allows interesting applications, such as stakeholder-
centric snapshots for audits [21], cross-chain analysis [42], blockchain migration,
and data analytics [5].

1 Introduction

Blockchains1 provide trustworthy and transparent services, leveraging a network
of mutually untrusting participants. A highly desirable property of DLTs is
consistency [22]. Consistency states that all honest parties share a common
prefix of the blockchain. Based on this assumption, each ledger holds a single
source of truth for all its participants2. Consistency is typically the foundation

1We use the terms DLT and blockchain interchangeably. A DLT subsumes a blockchain,
i.e., a blockchain is a DLT.

2A similar assumption could be extended to the business process research area, where a
single model can capture simple processes. However, different representations of the same
process are possible as soon as its complexity increases. The concept of view has its roots
in database schema integration and, more recently, business process view integration [8]. To
account for the multitude of business process views, business view process integration (BVPI)
studies the consolidation of different views regarding a business process [20, 8]. Business view
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of the decentralized trust that DLTs offer.
However, some permissioned DLTs offer partial consistency instead of (full)

consistency, making a trade-off between transparency and privacy. Informally
speaking, partial consistency means that “parties may see only part of the state,
but these views put together should result in a consistent global state” [24].
Blockchains providing partial consistency have been putting resources on en-
abling interoperability with other blockchains, following the growing tendency
of the space to accommodate DLTs offering different properties and features
[10].

A problem naturally emerges from a multi-chain ecosystem: since partici-
pants might have different views of a chain, how to have a consistent view of
it, from the perspective of a third-party blockchain, that we want to interop-
erate with? In particular, how to do so if that blockchain is private, or if the
blockchain provides partial consistency?

We believe that the blockchain view is the answer to this problem. A view
offers a stakeholder-centric, generalizable, self-describing, commitment to the
state of a blockchain, allowing for representing state from different blockchains
in a standardized way. This way, views help an external observer to reason
about partial consistency in DLTs. On the other hand, in public DLTs with
probabilistic consensus, conflicting (usually) temporary views on the same ledger
exist (i.e., forks) but are resolved by a rule (e.g., longest chain rule), and thus
consistency holds.

In this context, building and analyzing views is important to accurately
understand each stakeholder’s view of each DLT at every moment (including in
public blockchains [43]) as a tool for business intelligence (e.g., understanding
better a certain protocol) and auditing (e.g., monitoring a protocol). Views
directly support blockchain interoperability since it would now be easier to share
the perspectives of all participants across heterogeneous DLTs [5, 41], allowing
for a better representation of the business ecosystem. This could enable complex
orchestration of cross-blockchain services and support the new research areas of
DLT interoperability, including blockchain gateway-based interoperability [10,
7, 12, 25].

In this paper, we propose the Blockchain UNifier view GEnErator (BUNGEE),
the first system that creates, merges, and processes DLT views. The views are
generated in two major steps: 1) taking a snapshot of the blockchain states
according to a specific participant, and 2) constructing the view taking into
account the desired time interval. Furthermore, we provide support for views
to be merged in the merging phase. Merging views is a data integration process
that follows the Global as View approach [38]. After different view generators
create partial views, a merge operation may be applied to the views to produce
a consolidated view, according to a merging algorithm. Since BUNGEE can
integrate views, it is considered a view integration system [37, 8, 34]. We focus
our contributions around two research questions:

process integration (BPVI) addresses the challenges of processes involving several participants
with different incentives, alleviating them by merging models that represent a different view
of the same model.
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Research Question 1. How to generate blockchain views?

There are multiple DLT data formats, a consequence of their architecture,
consensus, and even identity models. A formalization of the blockchain view and
surrounding concepts is necessary to reason about data representation across
chains.

We first present the Blockchain View Integration Framework (BVIF) a col-
lection of concepts surrounding the view, rooted in the state abstraction and
causality relationships between transactions, states, and views. BVIF is the
foundation to formally describe the algorithms that BUNGEE uses to generate
a view. BUNGEE is a flexible, modular middleware that sits between the data
and the semantic layers of a blockchain, allowing data to be abstracted into
different data models and formats. To the best of our knowledge, this is the
first time views are used as a mechanism to take stakeholder-specific snapshots
of the ledger, allowing several applications.

Research Question 2. How can one merge views and create an integrated
view?

Creating views allows one to see one stakeholder’s perspective over the whole
network. However, how to obtain a holistic view of a DLT providing partial con-
sistency, i.e., the perspectives of all participants combined? We ensure that the
view’s creation, merging, and processing come with integrity and accountability
guarantees. As a core contribute of this paper, we formally describe the algo-
rithms for each step to merge and process a view, providing a comprehensive
discussion about decentralization, efficiency, and privacy trade-offs.

Paper Outline

This document is organized as follows: Section 2 introduces the background nec-
essary to comprehend this paper. In Section 3 we introduce the blockchain view
integration problem and propose the Blockchain View Integration Framework
(BVIF), a collection of concepts around BUNGEE. Next, Section 4 presents
BUNGEE, including the system model (Section 4.1), the snapshotting phase
(Section 4.2), the view building phase (Section 4.3), the view processing phase
(Section 4.4), and the discussion (Section 4.5). After that we present the related
work, in Section 5. Finally, we conclude the paper (Section 6).

2 Preliminaries

This section presents the necessary background to comprehend the paper, along
with motivating use cases.

Blockchains Providing Partial Consistency

Blockchains providing partial consistency are blockchains that partition the
global state according to some criteria, implying that there will be different
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views on the global state. Private blockchains require their participants to be
authenticated and only expose their content to trusted parties (although those
parties do not necessarily trust each other). In private blockchains, different
views are not only common, but desirable for privacy reasons [23]. Parties may
want to share information with a selected group.

For example, Hyperledger Fabric (Fabric), a private blockchain framework,
provides a feature called private data collections. Private data allows sets of par-
ticipants to hide part of the state they hold, only sharing a hash of that private
data as proof of existence [3, 29]. This feature effectively implements partial
consistency in Fabric, allowing for the existence of different views. In Corda [47],
transactions are ordered as a set of (potentially) disconnected directed acyclic
graphs – parties can access certain sub-graphs, i.e., Corda provides partial con-
sistency. Other examples exist, such as Quorum [33], IOTA [52] and Digital
Asset’s Canton [53]. A visualization of the concept is shown in Figure 1.

Figure 1: Two different participant views over the same DLT. Tx stands for
transaction. A green or red labeled transaction is available (read access) to
Participant P1 or Participant P2, respectively. Transaction Tx1 is available for
both participants.

Blockchain Interoperability

The emergence of many blockchains raised the debate on the need for interoper-
ability amongst them. Interoperability can be defined as the ability of multiple
parties to work together by sharing/exchanging information [55].

A recent survey classifies blockchain interoperability solutions into three cat-
egories: cryptocurrency-directed approaches, blockchain engines, and blockchain
connectors [13]. Public connectors are interoperability solutions allowing for
public blockchains to connect. Blockchain of blockchains are frameworks allow-
ing for the reuse of infrastructure that powers application-specific blockchains:
blockchains powering a specific decentralized application. In those, the users
can configure their instance of a blockchain, customizing its behavior to their
application needs (e.g., consensus algorithm, governance model, and reward
model). Blockchains created with those frameworks interoperate with each
other. Finally, blockchain connectors connect public to private blockchains
and centralized systems. Solutions in this category comprise centralized so-
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lutions (trusted relays), general solutions that require blockchain refactoring
(blockchain-agnostic protocols), and blockchain migrators. Other surveys also
cover this research area [41, 18, 60, 48].

Use cases benefiting from blockchain views

The first use case is cross-chain state creation, managing, and visualization.
While some introductory work has been made [42, 5], it is hard to visualize
and reason about private data partitions (different views) not only in the cross-
chain setting but also in a single blockchain setting. Blockchain platforms could
leverage views to enhance view analysis for auditors, cybersecurity experts, and
developers. Auditors and cybersecurity professionals can facilitate audits be-
cause different data partitions can be analyzed from a specific angle. Developers
can have insights into their applications and processes. This applies to public
blockchains as well. The representation of on-chain data through a DLT view in
multiple chains allows for a visualization of cross-chain state, making it easier
to manage and reason about it. A specific application could be having one view
across multiple Cosmos zones, Polkadot parachains, or across Layer 2 solutions
(Polygon, Arbitrum, and others, for instance) [13].

The second use case is decentralized application migration. Migration of
blockchain-based applications is not only necessary, but increasingly common
[4, 13, 8]. Migration allows enterprises to experiment with different DLT infras-
tructures without the risk of vendor lock-in. The key idea behind application
migration is to capture the DLT state relevant to that application (data and
functionality) and to move it to a different DLT infrastructure. With several
views on participants’ concerns operating on the source blockchain, one might
need to consolidate their diverse views into an integrated view, one that serves as
the foundation of the migration. The integrated view comprises a holistic view
of the application’s state at the source DLT. That view can then be transferred
to the target infrastructure, along with its functionality (i.e., smart contract
migration). We leave the treatment of this interesting problem and its details
(for example, how to manage user keys) for future work.

Finally, the third use case is allowing cross-chain asset transfers [11, 12, 6].
Transferring assets between public DLTs and centralized systems (or private
DLTs) is hard because it relies on strong trust assumptions or transparency.
An asset transfer is typically implemented by locking an asset on the source
chain and unlocking it on the target chain. However, if one of the chains is
private (or centralized), such a state is not visible (by design). Therefore, de-
centralized transfers across these system types rely on proofs (or, rather, nota-
rizations) of the current state of each chain concerning the representation of an
asset. Blockchain views can be the bridge enabling decentralized blockchain in-
teroperability across heterogeneous systems, by representing such notarizations
on a public forum, with a standardized data format, independent of any spe-
cific blockchain implementation. A related use case to this would be to build a
cross-chain wallet that, giving a private key, outputs all tokens in all blockchains
associated with that wallet. This could be particularly useful for people that

5



had LUNA tokens spread across several blockchains, especially after the coin
plummeted in value [31].

3 Blockchain View Integration Framework

This section introduces a running example that applies view integration to the
supply chain industry. After that, we present the BVIF, a formalization of
concepts related to the view, such as access point, blockchain view, and view
generator.

3.1 Motivation Case Study

To illustrate how such problems can provide a solution, we present a typical use
case on private blockchains, supply chain [30], that benefits from representing
the various internal views to an external observer.

Figure 2: Supply chain scenario with five participants engaging in asset trading.

A supply chain transfers value between parties, from the raw product (phys-
ical or intellectual) to its finalized version. Managing a supply chain is complex
because it includes many non-trusting participants (e.g., enterprises and regu-
lators). As many markets are open and fluid, enterprises do not take the time
to build trust and, instead, rely on a paper trail that logs the state of an object
in the supply chain. This paper trail is needed for auditability and typically
can be tampered with, leading to the suitability of blockchain to address these
problems by monitoring the execution of the collaborative process, ensuring
that the process execution is in compliance with business rules [27, 51]. Audits
inspect the trail of transactions referring to a product’s lifecycle, so different
perspectives might need to be analyzed. A challenge naturally emerges: bal-
ancing the necessary transparency for audits while maintaining privacy about
the transactions across other business partner groups? By selectively sharing
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a common domain, parties can have more efficient processes while performing
data-sensitive operations within the same supply chain. A domain is the state
shared by parties enrolling in a private relationship. Views can then be merged
according to custom rules (respecting privacy needs) for auditing purposes.

Let us consider a group of five organizations on a channel that produce,
transport, and trade, as illustrated by Figure 2:

• A Supplier, producing goods.

• A Shipper, moving goods between parties.

• A Distributor, moving goods abroad. Buys goods from Suppliers and sells
them to Wholesalers and Retailers.

• A Wholesaler, acquiring goods from the Distributor.

• A Retailer, acquiring goods from shippers and wholesalers.

The Distributor may prefer to make private transactions with the Supplier
and the Shipper, to keep confidentiality towards the Wholesaler and Retailer
(hiding their profit margins). Conversely, the Distributor may also want to have
a different relationship with the Wholesaler. It charges them a lower price than
it does with the Retailer (as it sells assets in bulk). Finally, the Wholesaler may
also want to have a private relationship with the Retailer and the Shipper (as it
charges them a higher price than the Wholesaler). These private relationships
are the domains of our use case.

Domains hold a subset of the ledger only accessible by authorized parties.
By sectioning the shared ledger, different views over the same blockchain are
possible, depending on a stakeholder’s participation in a given domain, as shown
in Table 1. In this table, the asset ID is 1 across all domains. However, its
price differs across domains, translating into different views. For instance, the
Supplier has access to the asset’s price on d1, but only to access to its price’s
hash d2 and d3. This three-dimensional tuple access-deny-deny corresponds to
v1. Retailers’ view, v5 can see the price of the asset only in d2 . The three
existing domains (see Figure 3, translate into three different price values for the
same item – five participants originate five different views.

Let us now suppose that we identify each asset tracked in a supply chain
by an ID and a price. For the same asset (and thus, the same state on the
blockchain, as it is uniquely identifiable by its ID), the Distributor-Supplier-
Shipper (Domain 1, d1) has the same view of the price, but the Wholesaler-
Retailer-Shipper (Domain 2, d2) and Distributor-Wholesaler (Domain 3, d3)
and have different views. The different domains are illustrated by Figure 3.

All domains together represent the whole ledger. All views of the users al-
low to compose the integrated DLT view V.In d1, the Distributor, Supplier, and
Shipper share information regarding the asset ID and its respective price, which
is the lowest price across views. Note that the Distributor has access to d1 and
d3, the Shipper can access d1 and d2, and the Wholesaler can access d2 and
d3. As every stakeholder has a different combination of the domains that are
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Supplier

Shipper

RetailerWholesaler

Distributer

AuditorDomain 3

Domain 1

Domain 2

Figure 3: Different domains on the blockchain supporting the supply chain
scenario. For instance, the Supplier has access to domain 1, while the Shipper
acesses domains 1 and 2. Access to different domains leads to the creation of
different views.

accessible, the DLT infrastructure yields five different views. The unique com-
bination of each stakeholder’s participation in the different domains originates
a view, as illustrated in Table 1.

Let us now imagine that an auditor wants to inspect the Distributor’s opera-
tions regarding a good. The auditor would retrieve snapshots of the blockchain
in light of each participant’s view. After that, the auditor can analyze each
view from the perspective of each participant. If a general picture is needed, all
views can be merged into an integrated one and jointly analyzed. Since there
are different viewpoints, there are different prices for the same object, and dif-
ferent merge procedures are possible. The first would be to reveal only one price
corresponding to one of the views; a second option would be to show all prices
corresponding to all views; a third option would be to hide all prices. In par-
ticular, the different views are translated to an integrated view that only refers
to a consolidated price as a summary of the prices of the different views. The
processing and merging of the views are the consortium’s responsibility manag-
ing the blockchain, and thus several options are possible. We will address this
point later in this paper.

3.2 Blockchain View Integration Framework

In this section, we formally define the necessary terms for blockchain view in-
tegration, the Blockchain View Integration Framework (BVIF). BVIF provides
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Table 1: Participant views on the supply-chain blockchain regarding an asset
with ID = 1.

Participant\Domain d1 d2 d3

Supplier
ID: 1
Price: 1

ID: 1
Price: hidden

ID: 1
Price: hidden

v1

Shipper
ID: 1
Price: 1

ID: 1
Price: 2

ID: 1
Price: hidden

v2

Distributor
ID: 1
Price: 1

ID: 1
Price: hidden

ID: 1
Price: 3

v3

Wholesaler
ID: 1
Price: hidden

ID: 1
Price: 2

ID: 1
Price: 3

v4

Retailer
ID: 1
Price: hidden

ID: 1
Price: 2

ID: 1
Price: hidden

v5

the conceptual framework to build programs that can merge blockchain views.
The first concept of our framework is the ledger. A ledger is a simple key-

value database with two functionalities: read and store. It supports a state
machine implementing a DLT. We define ledger as follows:

Definition 1. Ledger. A ledger L is a tuple (D,A) such that:

• D is a database, specifically a key-value store. Each entry in the database
is a key-value tuple, i.e., d ∈ D : (k, v), where k stands for key and v for
value.

D has two functions: read and writes. read returns the value associated
with a key, the empty set ∅ (if there is no value for that key) or an error
⊥ (if the user does not have access permissions), i.e., read → {v, ∅,⊥}.
store saves the (k, v) pair in the database, indexed by k, returning 1 if
the operation was successful and 0 otherwise, i.e., store : k × v → {0, 1}.
The read and store primitives support the representation of simple UXTO
blockchains (e.g., Bitcoin) or more complex ones, an account model (e.g.,
Ethereum), or others by combining the operations mentioned above (e.g.,
Hyperledger Fabric).

• A is an access control list that specifies access rights to read entries from
the database. Each entry of the list has the form (p, k). Each entry
indicates that participant p can read the state with key k. A participant
p can access a key k when the primitive access(A, p, k) returns 1, or 0
otherwise.

The simple functionality of the notion of ledger given in Definition 1 allows
us to represent Bitcoin [44] as follows: the database (collection of all states) is a
list of UTXO entries (states). A UTXO has a unique identifier, the transaction
hash, the state key (we present a simplified version of UTXO). Its value is in the
form (input, output, metadata). The input corresponds to a reference to the
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previous transaction and a key to unlock the previous output the current input
refers to. The output consists of a cryptographic lock and time. Metadata is
any other relevant information for a transaction using that UTXO (for example,
the timestamp and the fees). Hyperledger Fabric’s state is more straighforward
to map since it is a key-value store.

We define the entities that can read or write on the ledger by participants:

Definition 2. Participant. A participant p ∈ Υ is an entity (Kid
k , Kid

P , id),
capable of reading and write to a ledger L, where:

• Kid
k is a private key. The private key is used as the signing key.

• Kid
P is a public key. The public key is used as the veryfing key.

• id is the unique identifier of the participant. It is the output of a function
over the participant’s public key. For instance, Bitcoin addresses are used
to uniquely identify Bitcoin accounts and are formed by double-hashing
the public key associated with that account.

Participants interact with the ledger via nodes. Nodes are software systems
that participate in the ledger consensus by aggregating and executing transac-
tions, and sending them to other peers (for example, miners in proof of work
blockchains or peer nodes in Hyperledger Fabric). Participants need a node
client (or simply, a node) to transact on DLTs (by redirecting signed transac-
tions to them). In practice, nodes mediate read and write operations issued
by participants. We introduce the concept of Access Point to formalize the
relationship between participants and nodes as follows:

Definition 3. Access Point (AP). An AP ω maps a node n connected to ledger
L to a set of participants pn, i.e., ω(n) −→ pn ⊆ ΥL. Conversely, ω−1 returns
the node set np that a participant can access, i.e., ω−1(υ)→ np.

Nodes can access a DLT via a primitive obtainDLT. The result of obtainDLT(np) =
B. An access point tells us which participants can access the ledger via a spe-
cific node. The information that participants can read and write in the ledgers
through nodes falls into the concept of virtual ledger :

Definition 4. Virtual ledgers. A virtual ledger Lv is a projection of a ledger L
in the form (L,Fπ) such that:

• L is the ledger that provides the database where projections are made.

• FΠ, a set of projection functions {Fπ1
,Fπ2

, ...,Fπn
} that returns a subset

dπ of the database from L, i.e., Fπ ∈ FΠ: LD×LA×p→ {∅, dπ}, according
to the participant’s access control list entries (or ∅, if the participant
is not authorized to access the ledger). This corresponds to “what the
participant can see”.
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dπl,pn
d1 d2 d3

p1 = Supplier s1 s2 s3

p2 = Shipper s1 s2 s3

p3 = Distributor s1 s2 s3

p4 = Wholesaler s1 s2 s3

p5 = Retailer s1 s2 s3

p6 = Retailer s1 s2 s3

Table 2: Ledger l projections onto all the participants from the use case depicted
in Section 3.1. The projection function is a simple read of the database. A state
si in the green background is a state that can be accessed by a participant,
whereas a state si is a state that is not accessible for a given participant.

Let us recall that the database or a subset of it is a collection of keys and
their values. We can simplify its representation by referring to the projection of
ledger l against participant p (this is, the projection function Fπ that is chosen
projects the states of the virtual ledger that are accessible by p). The projection
on ledger L using the projection function Fp outputs a set of states {s1, ..., sn}
that participant p can access:

dL,Fp
= {s1, ..., sn}

We use the notation s to represent the absence of a state in a projection.
Let us consider the following projections, illustrated by Figure 2:

• dL,Fp1
= {s1, s2, s3} = s1

• dL,Fp2
= {s1, s2, s3} = s1, s2

• dL,Fp3
= {s1, s2, s3} = s1, s3

• dL,Fp4
= {s1, s2, s3} = s2, s3

• dL,Fp5
= {s1, s2, s3} = s2

• dL,Fp6
= {s1, s2, s3} = s2

We define a function obtainVirtualLedger that receives as input a ledger
L and a projection function Fp and returns a projection dL,Fp

or the empty
set. Each projection from a virtual ledger maps a participant to states. Some
projections are not unique (e.g., dL,Fp5

and dL,Fp6
). This concept is the basis

of the DLT view, which we will define later in this section.

Definition 5. DLT System. Let T be a set of ordered transactions, L the
ledger, N the set of nodes, Υ the set of participants, and τ a global clock. A
DLT is a tuple B .

= (L,W, V alidate, Consensus, τ), where:

• Υ is the set of participants, the entities accessing and interacting with the
blockchain. Each participant p ∈ Υ can interact with the blockchain via
a node n ∈ N .

11



• A set of ordered transactions T .

• The transaction poolW which holds the transactions to be included in L.

• Consensus, a predicate on W and on consensus information from a sub-
set of nodes ∈ N and returns true or false: Consensus(W,N ) =⇒
{true, false}. Consensus defines the rules for valid state transitions.

• V alidate, an algorithm taking as input a ledger and the pool of transac-
tions, and yielding an updated ledger that incorporates a subset of the

transactions from the transaction pool: (L′,W ′) Consensus←− (L,W), with
L′ = L∪W \W ′. The application of V alidate is only successful upon the
Consensus predicate over W.

• The clock, τ , captures the order of transactions, mapping ledger rounds
r to a time t, i.e., τ : s −→ t. The clock can output the time from
transactions and states since it retrieves the round associated with each.

Both ledgers and virtual ledgers that support DLTs are abstractions to access
a state, represented by a key-value store. Participants issue transactions to
change the state. A transaction is defined as follows:

Definition 6. Transaction. A transaction t is a tuple (tid, ti, targeti, payloadi, σKp
s
(tid, ti, targeti, payloadi), Stid),

where:

• tid is a unique increasing sequence identifier for a transaction. This iden-
tifier allows to construct a transaction ID, a unique identifier for a trans-
action. Transaction ti precedes tj ,i.e., ti 2 tj if and only if j > i.

• ti is the transaction timestamp

• targeti is the target of the transaction (corresponding to a state).

• payloadi is the transaction payload. The payload can carry arbitrary
information (smart contract parameters, UTXO input value).

• a signature on the transaction σKp
s
(tid, ti, targeti, payloadi), where sk,v

from the creator of the transaction, p.

• Stid, a set of input states given as input to transaction with transaction
ID sid.

A transaction takes as input a Stid and outputs S′tid. We define a primitive
VerifyTx(.) that takes a set of initial states, a transaction, and a set of
output states, and outputs 1 if and only if the state transition is valid according
to some algorithm ρ, i.e., VerifyTx(Stid, tid, S

′
tid, ρ = 1). Checking the validity

of a transaction w.r.t. the states it changes implies re-running the transaction
on its run environment.

Transactions produce state changes. We define the state as:
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Definition 7. State. A state s is a tuple (sk, sk,v, t, πk), where

• sk is a unique identifier (the state’s key).

• a transaction list T , referring to that state, i.e., ∀ti ∈ T : ti.target = sk

• the value it holds sk,v. The value of a state can be calculated using the
set of transactions TS = {Ti ⊂ T , s ∈ S : Ti.target = sk}, i.e., the
transactions referring to that state, in the following manner:

sk,v =

{
∅ i = 0
apply(ti, sk,i−1) i ≤ |TS|

where apply is a function that executes the payload of the transaction ti
over the state sk. This is, the data is the most recent state value, the
result of the successive transformations (over the previous versions of the
same state). Function apply is blockchain-dependent.

• a proof of state validity πk = σKP
s

(sk, sk,v, v), where sk,v is the value of
state sk at version v, and σm is the set of signatures of the participants
P ⊂ Υ that creates the proof, over a payload m .

A state has a unique reference (or key) sk, and a version v such that when
v is updated, it yields v′ > v. We denote the value pointed by that reference
by sk,v. If we omit the version, then we refer sk as the latest value on a certain
state. Thus, for all k 6= k′, sk and s′k represent the latest value of different
states. In practice, the value of a state is the result of successively executing
transactions over the same object. The value for sk,v or (sn) can be calculated
as follows, where transaction set {t1, ...tk−1} ∈ TS are the transactions referring
specifically to sk:

sk,0
t1−→ sk,1

t2−→ sk,2
tk−1−−−→ sk,v

Each ledger database stores states in its key-value store. The state identifier,
sk is the key, while the tuple (sk,v, t, πk) is the value.

Each proof π ∈ Π is an object accounting for the validity of the item it
describes (transaction, state, view). In Bitcoin, for instance, the proof of validity
for a transaction is the issuer’s signature, along with a nonce whereby its hash
begins with a certain number of zeroes and is smaller than a certain threshold
(valid transaction within a valid block). In Hyperledger Fabric, the proof is a
collection of signatures from the endorsing peer nodes that achieved consensus
on the transaction’s validity.

We define the cardinality of a state sn as |sn| as the number of transactions
composing it. If sn has a set of transctions T = {t1, ..., ti}, then |sn| = i. The
state of a particular object can be reconstructed from the execution of all the
transactions that refer it. The global state is then the set of all states, the set
S.

The set of states visible by a certain participant (states that authorize the
participant to read/write/update) is what we call a view of the blockchain. A
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view is an abstraction at a certain point of time that encompasses the set of
states a participant can access.

Having introduced all the basilar concepts, we can finally define a DLT view:

Definition 8. View. A view vLv,p is a projection of a virtual ledger Lv, in the
form of (vk, vktime

, p, dπl,p
, Svk,v

,Π), where

• its key, vk, is a unique ID

• the projection function dπl,p
that originated the view

• an initial time ti, and a final time tf , that constitute the time interval
tk = tf − ti. The time interval restricts the states belonging to that
view to the specified time limit. A view may have no restriction on the
temporal interval, i.e., all states that a participant p accesses through dπl,p

are included in the view.

• p ⊆ Υ is the participant set associated with the view. A participant
upsilon can be associated with a node n, accessible by a blockchain access
point ω.

• Svk,v
corresponds to the set of versioned states held by υ.

• Π is a set of proofs accounting for the validity of a view (e.g., accumulator
value for over states ordered by last update).

A DLT view corresponds to the sets of different values referring to the same
key that a participant can access.

The consolidated view, or the global view V, is the set of all participant
views, i.e., V = ∪ii=0pi, that captures the whole ledger L.

Definition 9. View Cardinality. Let there be a DLT view vl,p belonging to
a participant p. A view vl,p has cardinality i when the the number of states
composing that view is i, i.e., dπl,p

= {s1, ..., si}. In other words, |vl,p| = i.

Definition 10. DLT Domain t is a tuple (d, sk, sk,v,Fd, P, value), where:

• d is the identifier of the domain

• sk is the state key which that domain referrers to.

• sk,v is the state value corresponding to sk.

• projection function that generates the state value sk,v of domain d indexed
by sk.

• P is the set of participants that can read the value v of state sk on domain
d.
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Domains represent private relationships; they capture how many participants
can share the same state. Domains then capture if a state is accessible (value
readable) or not by a set of participants. The same state’s key can have different
values on different domains (depending on the projection function generating
the domain). Participants sharing the same domain do not imply having the
same view (views are not necessarily equivalent, see Definition 11).

Definition 11. View equivalence. Let there be a ledger L composed by a set of
views {v1, v2, ..., vn} ∈ V, holding respectively the sets of states {S1, S2, ..., Sn} ∈
S, i.e., there are the pairs {(v1, S1), (v2, S2), ...(vn, Sn)}. There is view equiva-
lence, denoted by equivalent(vi, vj) if, for any pair of views vi, vj ∈ V there is
a bijection ϕ : si → sj such that if both sets of states from the views are the
same, their views are equivalent, i.e., ϕ(si) = sj =⇒ ∀s ∈ si, s could replace
all s′ ∈ sj =⇒ vi ≡ vj .

Following the example of Table 2, v1 and v6 are equivalent views because
the states that are accessible to those views are the same. However, those views
are not equal, as the other parameters might change.

A view can be unique:

Definition 12. View Uniqueness. Let there be a ledger L originating a set of
views {v1, v2, ..., vn} ∈ V, constructed by sets of states {S1, S2, ..., Sn} ∈ S, in
which views are associated with their set of states {(v1, S1), (v2, S2), ...(vn, Sn)}.
Let us call each pair (vn, Sn) = εn. Let V be a monotone collection of non-
empty subsets of V, i.e., V ⊆ 2{vi,vj ,...,vn} \ ∅. A view vi is unique, denoted
by unique(vi), if, for any pair Vi, Vj of monotone V there is NOT a bijection
ϕ : si → sn such that ∀si ∈ εi, si = sj , with sj ∈ εj .
Definition 13. View Transparency. Let there be a ledger L with a set of par-
ticipants Υ and a set of DLT views {v1, ..., vn} = V. We define the transparency
grade κ of a DLT view vv, denoted as κ(vv), as the ratio of participants who
can access the states encoded in that view. More formally,

κ(vv) =

∑n
i6=v ∀vi[equivalent(vn, vj) + 1]

|V|
This concept is useful to understand how many participants can access a

certain set of states. Taking example from Table 2, κ(vl,Fp6
) = 2

6 because the
view created by projecting ledger l with dFp6

is equivalent with v5 (summing
with the view being compared). Therefore, two out of six participants can access
the same set of states (this is, each participant has a different view, apart from
p5 and p6).

4 BUNGEE, a Multi-Purpose View Generator

In this section, we present BUNGEE. First, we present the system model, key
management processes, and adversary model. After that, we present the snap-
shot process. Next, we present how are views built, and then merged. Finally,
we discuss the processes around creating snapshots, views, and merging views.
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4.1 System Model

We consider an asynchronous distributed system, the DLT, hosting a ledger L.
Three types of participants interact with the ledger: i) participants Υ: entities
that transact on the network (can use read and write operations) via the nodes
that their AP exposes; ii) nodes N , who hold the full state of the DLT, and
contribute to the consensus of the later; and iii) view generators G, programs
that build views, via node that has access to the target participant of the view.
This implies that a view generator trusts the node that is the access point to
the DLT.

In public DLTs, participants can generally assume that the information re-
trieved by nodes is accurate and cannot be tampered with, as it is easy to verify
it against other nodes. However, in private blockchains, the verification is not
as straightforward, as participants may not have visibility of the internal state
of the ledger via other nodes. Each party manages its keys.

Key management

Each participant p ∈ Υ, node n ∈ N , and view generator G is identified by a
pair of keys (Kp

p , Kp
k), (Kn

p , Kn
k ), and (KG

p , KG
k ) respectively. The private key is

the signing key, while the public key is the verifying key. The generated keys are
independent of all other keys, implying that no adversary with limited computa-
tional resources can distinguish the key from one selected randomly. We assume
keys are generated and distributed in an authenticated channel preserving in-
tegrity; digital signatures cannot be forged. We say an entity x signs a message
m with its private key with the following notation: signx(m). Verifying a mes-
sage m with the public key from x can be done with a verify primitive, which
outputs 1 if the message was correctly signed by m i.e., verify(m,x,Kp

x) = 1,
and 0 otherwise.

The DLT is assumed to be able to preserve its safety and liveness abilities
despite the possible existence of malicious nodes. This implies that building
and operating views based on networks that cannot guarantee safety properties
(e.g., DLT forks due to attack) are not valid.

Adversary Model

The DLT where view generators operate is trusted, meaning that most internal
nodes are honest, and thus the network is trusted. Given this assumption, there
can be different adversary models for nodes, generators, and view generators.

Nodes can be honest, meaning that they follow the DLT protocol and es-
tablish consensus with other honest nodes – as a consequence, they report the
actual status of the DLT to participants who request it. Nodes can, instead, be
malicious, i.e., Byzantine, being able to deviate from the protocol and falsely
report the DLT status to participants (endangering the creation of truthful
views). Finally, nodes can be malicious but cautious, meaning that nodes are
only malicious if there are no accountability checks that can penalize them (this
is if nodes know that there cannot get caught).
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View generators constitute a trusted group with the participant that is the
target of the view because the generator needs the participant’s credentials to
access a (private) subset of the ledger. We then assume that each participant
runs its view generator. View generators can only build views for participants
whose keys they do not control if the ledger does not have any partition (i.e., it
is public).

Since participants might access DLT partitions from different nodes, the
trust group (participant, view generator) does not include a node or set of
nodes, i.e., view generators and DLT participants are independent of the nodes
that sustain the DLT.

View Generation Process Overview

BUNGEE constructs views from a set of states from an underlying DLT, called
the snapshot. After the snapshot is captured, it is redirected to a controller,
who can create, process, and distribute views.

To achieve the proposed goals, BUNGEE leverages a three-phase process,
following our definition of view generator (see Figure 4).

Firstly, each state accessible by each stakeholder is collected in the snapshot-
ting phase. States are processed, and a representation of the ledger that the
participant has access to is built (this is, the state is collected using a specific
projection function). An example of a projection function behavior could be
retrieving all the states (versions included) and their respective values from a
participant’s perspective (according to the domain the participant can access).

Right after that, in the view building phase, a view is built from the vir-
tual ledger that the view generator has access to by temporarily limiting the
states that one can see. Views can be stored in a local database, providing
relational semantics and rich queries. Views are assured to provide provenance,
i.e., BUNGEE can trace each component constituting a view down to the trans-
action. Proofs of the view can be published in a public forum.

Finally, the view merging phase, which is optional, comprises merging views
into an integrated one. Different views obtained from other generators require
communication with other BUNGEE instances (the diagram shows a simplifi-
cation. After that, an extended state is created from the states present on each
view that share the same key. Finally, a merging algorithm is applied over the
extended state. Finally, each view generator signs the integrated view, which
can optionally be published in a public forum.

Once the three steps are completed, the views (the generated view and op-
tionally the integrated view are returned by BUNGEE to a client application
(for example, a blockchain migration application). Due to the modularity that
BUNGEE offers, adding support for different applications is facilitated. Next,
we present each phase depicted in this overview in finer detail.
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Figure 4: Sequence diagram detailing the interactions between a BUNGEE
client application, an instance of BUNGEE, and a blockchain.

4.2 Snapshot

A snapshot is a set of states that a certain stakeholder can access, plus proofs
of the validity of that state. We view each state as a versioned (key, value)
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store. A snapshot has a snapshot identifier id, a version v, a participant p,
a set of state bins, sb, an initial time ti that refers to the timestamp of the
first transaction of any of the states belonging to sb, a final time tf that refers
to the timestamp of the last transaction of any of the states belonging to sb,
i.e., snapshot

.
= {id, v, sb, ti, tf , T}. Each state bin is indexed by a state id

sk, the latest value to that key, sk,−→v , a version v that refers to the number
of transactions applied on state key sk to yield the latest value sk,−→v and a
list of transactions T referring to that state. Versioning snapshots allows for
efficiently building snapshots from older snapshots (this is, building snapshots
from incremental changes from older snapshots), similarly to how Git tracks
updates to the files it manages.

Algorithm 1 depicts the snapshotting process. The snapshot phase occurs
when the BUNGEE client requests the beginning of the view integration process
to a node n on behalf of participant p (line 8). After that, the node connects to
the DLT. Upon a successful connection, n retrieves the ledger (line 9).

Obtaining a list of states from a ledger requires re-execute all transactions.
For each transaction, a BUNGEE has to check its target. If there is no state key
with a target equal to the current transaction, BUNGEE creates a new state.
The version of the new state is one. Then, BUNGEE runs the transaction’s
payload against the current state value (empty at initialization). Otherwise, if
the transaction target refers to an existing state key, run the transaction pay-
load against the state’s current value, yielding the new value and incrementing
the version by one. This process outputs a list of states. According to the
participants’ perspective, the process is abstracted by the ledger’s projection
(according to the participants’ perspective) that the algorithm uses (line 11).

Building the snapshot maps each state to a state bin. For each state, we
collect its key (line 15), version (line 16), latest value (line 17), the auxiliary
first timestamp (line 18), and auxiliary latest timestamp (line 19). After that,
the first and last timestamps are updated (lines 27 and 28), and, finally, the
algorithm returns a snapshot.

4.3 View Building

This section explains how views are built, therefore answering research question
How to generate blockchain views?. A view generator can generate a set of
views depending on the input p. The following steps occur for each view to be
built: first, the view generator generates a snapshot. After that, the snapshot
is limited to a time interval and signed by the view generator.

Algorithm 2 shows the process of building a view from a snapshot. First, the
view generator temporarily limits each included state, proceeding to abort if no
states are within its boundaries (line 7). If there are, each state in the snapshot
is included if it belongs to the temporal limit (line 17) and removed otherwise
(line 14). Finally, the view generator signs the view (line 19) and returns it to
the client application (line 20).
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Algorithm 1: Snapshotting of ledger L through node n and participant
p, via projection function Fp

Input: Access point AP , participant p, projection function Fp,
snapshot identifier snapshotid

Output: Snapshot from participant p through node n, snapshot
1 snapshot.id← snapshotid
2 snapshot.v← 1
3 snapshot.sb← ∅
4 snapshot.ti ←⊥
5 snapshot.tf ←⊥
6 tit ←∞ . temporary variable to hold minimum state timestamp to

date
7 tft ← 0 . temporary variable to hold maximum state timestamp to date

8 n = ω−1(p) . choose any available node
9 B = obtainDLT(n) . depends on the DLT client implementation

10 L = B.L
11 dL,Fp = obtainVirtualLedger(L,Fp) . obtain projection of L

according to p
12 foreach s ∈ dL,Fp

do
13 sk,it ← ∅ . the timestamp of the first transaction applied to state sk
14 sk,lt ← ∅ . the timestamp of the last transaction applied to state sk
15 snapshot.sb[sk].sk = sk
16 snapshot.sb[sk].version = dL,Fp [sk].T.length
17 snapshot.sb[sk].latestValue = dL,Fp [sk].sk,v
18 snapshot.sb[sk].T = dL,Fp

[sk].T . save list of transactions referring
to each state key

19 sk,it = dL,Fp
[sk].T [0] . transaction list is ordered chronologically

20 sk,lt = dL,Fp
[sk].T.length

21 if sk,it < tit then
22 tit = sk,it . update the auxiliary first timestamp
23 end if
24 if sk,lt > tft then
25 tft = sk,lt . update the auxiliary last timestamp
26 end if

27 end foreach
28 snapshot.ti = tit
29 snapshot.tf = tft
30 return snapshot

4.4 Merging views

In this section, we describe how to merge views and answer the research question
How can one merge views, and create an integrated view?. The merging of views
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Algorithm 2: Constructing a view V of ledger L with snapshot
snapshot, from the perspective of participant p.

Input: Snapshot snapshot, initial time ti, final time tf
Output: View V

1 V.ti ← ti
2 V.tf ← tf
3 V.dπl,p

← snapshot.Fp
4 V.p← snapshot.p
5 V.Π←⊥
6 V.Sk,v ←⊥
7 if ti < snapshot.tf OR tf > snapshot.ti then
8 return; . there are no intersecting states that we want to capture, on

the snapshot
9 end if

10 . each sb = {sk, sk,−→v , v}
11 foreach sk ∈ snapshot.sb do
12 foreach t ∈ sk do
13 if t.timestamp < ti OR t.timestamp > t.f then
14 snapshot.sb[sk]← snapshot.sb[sk].T \ t . removes transaction

that is not within the specified time frame
15 end if

16 end foreach
17 V.Sk,v ← snapshot.sb[sk]

18 end foreach
19 V.Π← signG(V)
20 return V
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creates an integrated view I from a set V of input views. The idea is to compare
the state keys indexed by every view and compare their value according to a
merging algorithm M that is given as input. This merging algorithm controls
how the merge is performed.

Algorithm 3 shows the procedure for merging views. The algorithm receives
the views to be merged and returns an integrated (or consolidated) view as
input. We initialize an auxiliary list SV1,...,Vn (on line 1) that holds all the
values (coming from different views) for each state key. We propose a construct
called an extended state. An extended state is a state, where each state key
maps to a set of values. Additionally, an extended state has a metadata field
holding a list of operations applied to that extended state.

Definition 14. An Extended State −→s is a tuple−→sk ,−−→sk,v, t, πk,metadata, version),
where

• −→sk is a unique identifier (the state’s key);

• −−→sk,v is a list of values;

• a transaction list T ;

• a proof of of state validity;

• metadata, which holds a list of operations that have been applied to the
extended state;

• version, a monotonically increasing integer. The counter increases when
an update is done to the extended state (the number of elements in the
metadata field is the same as the version).

Thus, each index of the set of extended states S will index all different values
for each key for all the views to be merged, i.e.,

SV1,...,Vn = {∀si ∈ S : ∃ki ∈ si : ki =⇒ (sV1 (ki,v), ..., sVn (ki,v))}

After we initialize the list of extended states, we initialize the integrated view
properties: its initial timestamp (line 2), final timestamp (line 3), projection
functions (taken as the union of the projection functions of all the views, on
line 4), participants (the participants from each view, on line 5), a set of proofs
(line 6) and a set of states (line 7). The set of states to be assigned as the set of
states of the integrated view is a function of the processed auxiliary set of states
S. After all, we check each state key for each view to be merged. If the tested
state is already on the auxiliary state set (line 10), then we add its value −−→sk,v as
a value for the current extended state key (line 11). This outputs a list of values
(between one and the number of views to be merged) for each extended state
key. Otherwise, we set a new extended state, adding the current state value (as
the first value for that key, on line 14).
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On line 18, we apply an optional view processing phase by giving our list of
states S to an arbitrary algorithm that needs to respect a simple interface and
functionality (later defined). After that, we add algorithm M as a projection
function for I for future traceability and auditing. Next, we adjust the initial
and final timestamps (lines 20 and 21) because the merging algorithm might
have changed the time boundaries of the included states (for example, the state
corresponding to the lowest timestamp might have been removed). All the
view generators have to sign I (line 21) to promote accountability. Signing
the integrated view can be done in a distributed way using a multi-signature
algorithm (for example, BLS Multi-Signatures [17]).

Each merging phase has an optional application of a merging algorithmM,
which dictates how the merge is conducted (otherwise, all states are included
without any further processing). We define a simple interface for merging al-
gorithms: a merging algorithm receives a set of extended states as input and
outputs a set of extended states.

The functionality of the merging functions should be: 1) apply arbitrary
operations on the set of extended states, 2) add a reference to the current
merging algorithm to the metadata field of each extended state key that is
altered, 3) increase the version of each extended state key that is altered. Each
merging algorithm should be public and well-known to the parties involved.

Examples of merging algorithms are:

• Selective Join: keeps certain values from an extended view.

Algorithm 4 presents the selective join algorithm. This algorithm selects
the value by the first view of the view list that is being integrated. In
practice, the value for each key that view 1 holds overrides the other values.
If there is no value for the first view, that state is removed. Applications
are similar to join operations in relational databases; selective join allows
the view to focus primarily on the ledger state from a perspective of a
particular participant while considering others.

• Pruning: removes the values coming from a certain view.

Algorithm 5 prunes the values belonging to a certain view from a set of
extended states. Note that times do NOT need to be updated because
those are re-calculated in steps 23 and 24 of Algorithm 3. Applications in-
clude removing sensitive information in the context of existing regulations
and laws.

4.5 Discussion

In this section, we discuss BUNGEE. The proliferation of blockchain interoper-
ability solutions will create an exponential interest in exploring cross-chain logic
and the need to model and analyze it. Our proposal constitutes the foundation
to make sense of that diversity by allowing us to create views and integrate
views from different blockchains systematically.
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Algorithm 3: Merging a set of views V = V1,V2, ...,Vn, where each view
was built referring to participant p1, p2, ...pn respectively by a set of view
generators G = G1,G2, ...,Gn

Input: Views to be merged V = V1,V2, ...,Vn, merging algorithm M
Output: Integrated view I

1 S ← [] . state list SV1,...,Vn(S for simplicity) where each index (representing
a state key) maps to tuple of values from referring to that key, from each
view to be merged

2 I.ti ← ∅
3 I.tf ← ∅
4 I.dπl,p

←
⋃n
i=0 Vn.dπl,p

5 I.p←
⋃n
i=0 Vn.p

6 I.Π←⊥
7 I.Sk,v ←⊥
8 foreach v ∈ V do
9 foreach s ∈ v.Sk,v do

10 if s ∈ S then

11 S[
−→
s.k] = S[

−→
s.k] ∪ −−→sk,v . if state exists, add value referring to that

state, from current view

12 S[
−→
s.k].version← S[

−→
s.k].version+ 1

13 end if
14 else

15 S[
−→
s.k] = −−→sk,v . otherwise, initialize state key list

16 S[
−→
s.k].version← 0

17 S[
−→
s.k].metadata← {MERGE − INIT}

18 end if

19 end foreach

20 end foreach
21 I.Sk,v = callalgorithmM(S) . OPTIONAL. Computes the state list of the

integrated view according to M (see for example algorithm 5)
22 I.dπl,p

← I.dπl,p
∪ {M} . add reference to the merging algorithm

23 I.ti = min{I.Sk,v.ti} . initial timestamp correspond to the initial
timestamp of the processed states

24 I.tf = min{I.Sk,v.tf}
25 I.Π← signG(I) . signed collectively by G
26 return I
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Algorithm 4: Merging algorithm example – SELECTIVE JOIN (by view V1)

Input: The set of states to be processed S
Output: A processed set of states S ′

1 S ′ ← ∅ .
2 foreach s ∈ S do
3 if |sk| = 1 then
4 . if the state key for every view only points to one value, then it means

that state is the same for each view
5 continue

6 end if
7 if @s[0] then
8 continue . if there is no value for the first view, do not capture this

state
9 end if

10 else
11 S ′[sk]← s[0] . otherwise, the value for sk is the first value indexed

(belonging to V1)
12 S ′[sk].metadata← JOIN-VIEW-1

13 S ′[sk].version← S ′[sk].version+ 1

14 end if

15 end foreach
16 return S ′

Algorithm 5: Merging algorithm example – PRUNE (by V1)

Input: The set of states to be processed S
Output: A processed set of states S ′

1 S ′ ← ∅ .
2 foreach s ∈ S do
3 if sk[0] then
4 S ′[sk] = S ′[sk] \ s[0] . if there exists a value for view V1, then remove that

value from the state list
5 S ′[sk].metadata← PRUNE-VIEW-1

6 S ′[sk].version← S ′[sk].version+ 1

7 end if

8 end foreach
9 return S ′
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Do views provide integrity and accountability guarantees?

The existence of proofs on states are proofs of creation by the entity or set of
entities that executed the transactions referring to that state. For example, a
signed transaction hash qualifies as a proof of a transaction that makes part
of the state proof (as many proofs as signed transactions referring to a certain
state).

On the other hand, views are also signed by the view generator that either
generates it, merges views, applies a merging algorithm, or notarizes the view as
truthful. This set of proofs allows independent parties to validate the truthful-
ness of the view (by verifying each state) and hold view generators accountable
for them.

The existence of the metadata fields, both on each extended state and on
the views that encompass, allows one to understand who, when, and how a
view generator changes a certain view. However, more accountability measures
can be implemented. In particular, if a view is only shared across the view
generators that endorsed it, there might be limited exposure and, therefore,
limited transparency. To enhance transparency, our key insight is to store a
view in a public forum such as the InterPlanetary File System [14] (a distributed
peer-to-peer file system maintained by a network of public nodes), or a public
blockchain, similarly to some related work [12, 1]. In case a view is deemed to
be false, automatic view conflict detection and resolution can take place.

An honest view generator, connected to an honest internal node, holds the
knowledge of the view v, and can publish it. If a malicious node broadcasts
a false view v′, an honest node can dispute it. Disputes can be calculated
by calculating the difference between views and by checking the proofs that
constitute each view. In particular, if an instance of BUNGEE, on behalf of
participant A, holds the knowledge of a pair of different views v, v′ referring
to the same participant at the same time frame, then one of the views is false.
Thus, the creator of one of the views is malicious. An honest view generator
can reconstruct the disputed view and compare it to the view publicised by the
malicious participant.

It is unlikely that all participants are colluding to change the perception
of the inner state because, in principle, participants have different interests;
however, there might be several situations in which the whole network gains
if it is colluding (i.e., blockchain with financial information). If all internal
nodes collude, the ledger is unreliable because the safety properties cannot be
guaranteed. We hypothesize that using a view similarity metric could be a
good tool to assess the quality of the view merging process. In other words,
one could systematically compare how the final integrated view is different from
each view that composes it. We leave a more exhaustive security analysis for
future work, when we can analyse the impact of several attacks, such as Eclipse
attacks, where the attacker isolates a blockchain node by connecting several of
their nodes to the victim [26]. A participant connecting to a sufficiently big
number of nodes should be able to alleviate such attack.
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Can one prove facts with blockchain view?

In this paper, we have introduced how to create, merge, and process views.
However, a challenge remains unsolved: how to share views in a decentralized
way? How does one manage the lifecycle of a view, including its creation,
endorsement, and dispute? Although the work by Abebe et al. [1] sheds some
light on this matter, how can one verify that a view is false? The solution
offered by Abebe et al. includes parties voting on an invalid view, but this does
not solve the problem per se because if the source blockchain is private, there
is no canonical answer. In fact, if at least one view from the integrated view
comes from a private blockchain, the signatures of the view guarantee that a
certain participant has voted on the validity of that view. This could introduce
problems if all the participants collude to show a false view. However, with the
assumption that at least one view generator is honest, the view generator could
initiate a dispute with the suspect of a false view.

A view generator could use fraud proofs to create disputes on the validity
of views, allowing for an efficient and decentralized view management proto-
col. Application clients can then use the proof field from views, states, and
transactions to validate a certain fact on a ledger. However, in the instances
where BUNGEE merges views, completeness may not be guaranteed because
the merged view depends on each input view, and processing might be applied
(including pruning), possibly leading to information excluded. A case to apply
pruning might be the case when sensitive data is recorded on a ledger and later
removed from the processing stage or even to remove “obsolete” data from the
blockchain and therefore contribute to efficient bootstraping of light clients [19].
An interesting detail is that each view only comports the state and respective
proofs on timeframe tk. However, to guarantee that it is possible to validate the
view, a pointer to the validity of the latest state before tk should be available.

Are views suitable for representing on-chain data from different sources?

Our integration process follows a semantic approach to information based on
a conceptual standard data model that we define as a view. Thus, for each
practical implementation of BUNGEE, there needs to be a mapping between
the data model of the underlying blockchain and the view concept. Being all
views uniform, we can not only represent data in all blockchains but merge views
belonging to different blockchains. The applicability is building a full picture
of a participant’s activity on each network, but can also be leverage to disclose
information according to an access control policy [50]. While selective access
control to views has been explored, there is space to explore decentralized iden-
tity access control mecanisms to provide fine-grain access over views, leveraging
the need to unify the different notions of identity that emerge from different
blockchains. Zero-knowledge proofs can also be explored as a vehicle to prove
facts on a ledger by disclosing limited information about such fact [57, 9]. We
leave those interesting research paths for future work.

Another challenge refers to the problem of updating views. Let us assume
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one view generator creates a view at a certain time step t. The generated view
will be different from its predecessor upon a new transaction. Generating a
view can be a time-consuming, storage-intensive process. Thus, generating a
new view accounting for only one transaction would be resource-consuming. To
account for temporal differences across the same view, we can create a new view
and then use a cryptographic accumulator to represent the state of a view (a
sort of second-order view). This accumulator value (present of the proof field
of a view) could represent incremental changes to the view and be managed
according to a specific view management protocol.

5 Related Work

View-based data integration techniques have been summarized by Katsis al. [34].
Global as View, Local as View, and Global and Local as View are introduced
as mechanisms to create an integrated view from local views. Global as View
constructs a global view from each local view. Local as view constructs local
views from a global view. Finally, Global and Local as View is a hybrid approach
that generalizes previous techniques. Our approach follows a Global and Local
as View because views are created from a subset of the global state, but then
can be merged and processed. We call the reader’s attention to the survey on
view integration techniques, mostly used in the database and business process
management research areas [8]. Next, we present how views can be used to
enable blockchain interoperability.

The view as a standard data model for blockchain interoperability

Blockchain views are tools to enable blockchain interoperability because they
promote data portability: a view is an intermediary standardized data format
not dependent on a specific blockchain (agnostic) that can be translated across
blockchains.

Abebe et al. [1] have proposed the concept of external view, a construct to
prove the internal state of permissioned blockchains. In this paper, the authors
show how views can be managed in a decentralized way while allowing one to
prove facts about a private blockchain. Our concept of view draws inspiration
from this concept and generalizes it, providing algorithms for creating, merging,
and processing views.

In [50], the authors also use the concept of view as a standardized way
to access blockchain data under certain conditions (which we encode in the
projection functions), reiterating the need for managing blockchain views in the
context of blockchains providing partial consistency. The authors further define
the concept of access control view, a list of keys used to decrypt part of a private
subset. Our work subsumes this work, as it generalizes it to a wider range of
applications.

In [40], the authors propose a unified programming model that abstracts
concepts on ledgers (for example, payments, accounts, and conditions). The au-
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thors propose a programming language that compiles declarations (written in
a domain-specific language) to operations in specific blockchains. With this
model, the programmer can obtain standardized information from different
blockchains. However, one cannot directly manipulate views, including creating
or merging them.

There are some proposals on the industry and academia that propose gen-
eral data models for cross-chain interaction, namely the Rosetta API, Quant
Overledger’s gateways [13, 54], Blockdaemon’s Ubiquity API [15], Polkadot’s
XCMP [56, 46], Cosmos’s IBC [36]. The Rosetta API and Blockdaemon’s Ubiq-
uity API only support public blockchains. Quant Overledger supports public
and private blockchains but does not allow them to realize complex operations
such as merging views. Polkadot and Cosmos also have the previous limita-
tion and can only support blockchains created with Substrate and Tendermint,
respectively. On the other hand, BUNGEE aims to create views that are inde-
pendent of the underlying blockchains.

View as an abstraction to data isolation

Blockchain channels allow limiting the information available to each participant
of the network, i.e., channels allow participants accessing a subset of the global
ledger. One can consider the following as channels: shards, Hyperledger Fabric
channels, Polkadot parachains, and others. The notion of view builds on top of
channels to add selective access control (via the projection function).

Sharding is a technique to improve throughput, typically in public blockchains.
A sharding scheme offloads the transaction processing to several groups of nodes
called shards [58]. As a result, parallelisation is possible, improving throughput
and cutting communication overhead between nodes [35, 59]. Those nodes are
thus only responsible for processing those transactions on their shard. Nodes
have different views on the transactions to be processed at the initial stage of
the sharding protocol. A shard is thus a logical entity that guarantees the in-
tegrity and correctness of states regarding the participants that can access those
states. Like a shard, a view is a logical separation of the ledger according to
each participant.

Some permissioned blockchains contain privacy-enhancing features, typically
using a form of sharding [2], that, as a consequence, can be reasoned about using
the view. Hyperledger Fabric’s supports both channels and private data. Still,
on Fabric, Androulaki et al. propose multi-shard private transactions as a cross-
shard privacy-preserving mechanism [3]. Hyperleger Besu [28] supports private
transactions via groups – groups of participants entitled to see a subset of the
global state – a specific view. Similarly, Canton and Corda also partition the
global state according to permissions, creating views. In Polkadot, forks can
exist due to the probabilistic nature of the block creation engine, BABE [45].
Thus, several temporary views may exist. In [50], views were used to provide
fine-grain dynamic access control over private data in Hyperledger Fabric.
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View applications

Besides the applications referred to in Section 1, we identify some studies using
the concept of view for different purposes. Some authors use views to perform
audits of participants over different blockchains [49, 32]. In particular, a view is
created and then possibly merged with other views from the same participant
on different blockchains to create a global view of the participant’s activity.
Applications are, for instance, cross-chain tax audit [39], or cross-chain portfolio
tracking [16], and even cross-chain security, by representing and monitoring
cross-chain state [42], all applications that could benefit from a more formal
treatment that BUNGEE can provide.

In conclusion, BUNGEE offers three advantages compared to the related
work: it is built on a theoretical basis that formally defines a blockchain view, the
BVI framework; it provides a way to build participant-centric views composed
of proofs that provide provenance-evidence; it defines algorithms for merging
and processing views, allowing for a wide range of applications.

6 Conclusion

In this paper, we formally present the concept of blockchain view, a foundational
concept to understand partial consistency in blockchains. Views represent dif-
ferent blockchain participants’ points of view, allowing reasoning about their
different incentives and goals. We propose BUNGEE as a system that can cre-
ate views from a set of states according to a projection function, yielding a
collection of states accessible by a certain participant.

BUNGEE can then take the retrieved states and create extended states,
the basis for merging blockchain views. Different views (possibly from different
blockchains) can be merged into a consolidated view. Finally, we discuss differ-
ent aspects of BUNGEE, including decentralization, security, privacy, and its
applications.
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