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Abstract

Distributed ledger technology (DLT) provides decentralized and tamper-resistant data storage, replicated among mutually
untrusting participants. With the advancement of this technology, different privacy-preserving blockchains have been pro-
posed, such as Corda, Hyperledger Fabric, and Digital Asset’s Canton. These distributed ledgers only provide \emph{partial
consistency}, which implies that participants can view the same ledger differently.

A \emph{view} represents the states of a blockchain available to a particular stakeholder. The combination of views forms an
integrated view that represents a consistent global state shared by all participants.

This paper introduces BUNGEE (Blockchain UNifier view GEnErator), the first DLT view generator, to allow capturing DLT

snapshots, constructing views, and performing arbitrary operations on those, such as integrating views. Creating and integrating

views allows interesting applications, such as stakeholder-centric snapshots for audits, cross-chain analysis, blockchain migration,

and data analytics.
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Abstract

With the evolution of distributed ledger technology (DLT), several blockchains have appeared that provide privacy guarantees,
including Corda, Hyperledger Fabric, and Canton. These distributed ledgers only provide partial consistency, meaning that partici-
pants can observe the same ledger differently, i.e., observe some transactions but not others for privacy reasons. However, this lack
of access to all transactions may hamper the development of applications that depend on reasoning about shared state.

We propose to use the concept of view – an abstraction of the set of transactions a participant can access at a certain point of
time – to systematically reason about the state of blockchains, even if they provide privacy. We introduce BUNGEE (Blockchain
UNifier view GEnErator), the first DLT view generator, to allow capturing snapshots, constructing views from these snapshots, and
merging views, according to a set of rules specified by the view stakeholders. Creating views and operating over views allows new
applications, such as stakeholder-centric snapshots for audits, cross-chain analysis, blockchain migration, and combined on-chain-
off-chain analytics. An important subset of these applications that we cover in the paper is related to blockchain interoperability.

Keywords: Distributed Ledger Technology, Blockchain, Interoperability, Cross-chain, Protocol, Views

1. Introduction

Blockchains or DLT (we use these terms interchangeably)
provide trustworthy and transparent services, leveraging a net-
work of mutually untrusting participants. A highly desirable
property of DLTs is consistency [1]: the guarantee that all hon-
est parties share a common prefix of the blockchain, i.e., see
the same transactions registered in the ledger. Based on this
property (which is also an assumption about how blockchains
operate), each ledger holds a single source of truth for all its
participants1. Consistency is the foundation of the decentral-
ized trust that DLTs offer.

Despite the importance of consistency, some permissioned
DLTs offer only partial consistency, providing a trade-off be-
tween transparency and privacy. Partial consistency is a weaker
notion of consistency that implies that honest parties are able
to read only subsets of the same global transaction graph, i.e.,
of the ledger. For every transaction ID a set of parties share,
they also agree on the contents and dependencies of such trans-
action [4]. Partial consistent blockchains are very useful in the

∗Corresponding Author:
Email address: rafael.belchior@tecnico.ulisboa.pt (Rafael

Belchior)
1A similar assumption could be extended to business processes, where a sin-

gle model can capture simple processes. However, different representations of
the same process are possible as soon as its complexity increases. The concept
of view has its roots in database schema integration and, more recently, busi-
ness process view integration [2]. To account for the multitude of business pro-
cess views, business view process integration (BVPI) studies the consolidation
of different views regarding a business process [3, 2]. Business view process
integration (BPVI) addresses the challenges of processes that involve several
participants with different incentives, alleviating them by merging models that
represent a different view of the same model.

corporate context, where privacy and accountability are easier
to enforce [5].

Organizations working on/with Blockchains providing par-
tial consistency have been putting resources to enable interoper-
ability with other blockchains, following the growing tendency
of the space to accommodate DLTs offering different proper-
ties and features [6]. The situation becomes more complicated
when bridges connect composable smart contracts [7].

A problem naturally emerges from a multi-chain ecosystem:
since participants might have different views of a chain, see dif-
ferent data partitions, how to have a consistent view of it from
the perspective of a third-party blockchain that we want to inter-
operate with? In particular, how do we do so if that blockchain
is private or provides only partial consistency?

All these questions require handling cross-chain state. Our
work bridges the existing gap in making blockchains provide
partial consistency and interoperate with other blockchains. We
believe that the concept of blockchain view is the answer to
this problem. A view offers a stakeholder-centric, generaliz-
able, self-describing commitment to the state of a blockchain,
allowing for representing states from different blockchains in a
standardized way.

In this way, views help an external observer to reason about
partial consistency in DLTs. On the other hand, in public DLTs
with probabilistic consensus, temporary conflicting views on
the same ledger exist (forks), but are resolved by some mecha-
nism (e.g., the longest chain rule), and thus consistency holds.
The notion of view is also beneficial for such blockchains (e.g.,
Bitcoin, Ethereum, NEAR, Polkadot, Cosmos) because it pro-
vides a standardized data format (the view) that can be used for
interoperability purposes.

Preprint submitted to JPDC October 16, 2022



In this context, building and analyzing views is important to
accurately understand each stakeholder’s view of each DLT as a
tool for interoperability, but also for business intelligence (e.g.,
for better understanding a protocol) or auditing (e.g., monitor-
ing a protocol) [8]. Views directly support blockchain interop-
erability since it is easier to share the perspectives of all par-
ticipants across heterogeneous DLTs [6, 9], allowing a better
representation of the business ecosystem. This could enable
complex orchestration of cross-blockchain services and sup-
port the new research areas of DLT interoperability, includ-
ing blockchain gateway-based interoperability [10, 11, 12] and
general-purpose interoperability [13, 14].

This paper proposes the Blockchain UNifier view GEnErator
(BUNGEE), the first system that creates, merges, and processes
DLT views. The views are generated in two major steps: 1) tak-
ing a snapshot of the blockchain states according to a specific
participant, and 2) constructing the view considering the de-
sired time interval. After different view generators create par-
tial views, a merge operation may be applied to the views to
produce an integrated view, according to a merging algorithm.
Since BUNGEE can integrate views, it may be considered a
view integration system [15, 2, 16]. We focus our contributions
on two research questions (RQ):

RQ 1. How to generate blockchain views? Multiple DLT data
formats result from their architecture, consensus, and identity
models. Formalizing the blockchain view and related concepts
is necessary to reason about data representation across chains.
We first present a formalization of concepts surrounding the
view, rooted in the state abstraction and causality relationships
between transactions, states, and views. This formalization is
the foundation to describe BUNGEE’s algorithms to generate a
view. BUNGEE is a flexible, modular middleware that sits be-
tween the data and the semantic layers of a blockchain, allow-
ing data to be abstracted into different data models and formats.
To the best of our knowledge, this is the first time views are
used as a mechanism to take stakeholder-specific snapshots of
the ledger, allowing several applications.

RQ 2. How can one merge views and create an integrated
view? Creating views allows one to see the perspective of a
stakeholder over the entire ledger. However, how do we ob-
tain a holistic view of a DLT providing partial consistency, i.e.,
combined perspectives of all participants? We ensure that the
view’s creation, merging, and processing come with integrity
and accountability guarantees. As a core contribution of this
paper, we present the algorithms to merge and process a view,
providing a comprehensive discussion of decentralization, effi-
ciency, and privacy trade-offs.

By answering the proposed research questions, we expect to
analyze, model, design, and provide implementation guidelines
for systems generating views, so that it becomes easier to reason
about systems interacting with several blockchains.

Paper Outline
This document is organized as follows: In Section 2 we intro-

duce a collection of concepts around BUNGEE. Next, Section 3
presents BUNGEE, including the system model (Section 3.1),
the snapshotting phase (Section 3.2), the view building phase

(Section 3.3), the view processing phase (Section 3.4). After
that, we present the discussion (Section 4). Next, we present
the related work, in Section 5. Finally, we conclude the paper
(Section 6).

2. Blockchain Views

This section introduces a running example that applies view
integration to the supply chain industry. After that, we present a
formalization of concepts related to the view, such as the access
point, blockchain view, and view generator.

2.1. Motivation Case Study

We present a typical use case on private blockchains, supply
chain [17], that benefits from representing the various internal
views to an external observer.

3

Supplier
Produces goods

Shipper
Delivers goods 
abroad

Selling goods 
to the end-user

Retailer
Selling goods 
to businesses

Wholesaler

Moves goods
locally

Distributer

Figure 1: Supply chain scenario with five participants engaging in asset trading.

A supply chain transfers value between parties, from the raw
product (physical or intellectual) to its finalized version. Man-
aging a supply chain is complex because it includes many non-
trusting participants (e.g., enterprises and regulators). As many
markets are open and fluid, companies do not take the time to
build trust and, instead, rely on a paper trail that logs the state of
an object in the supply chain. This paper trail is necessary for
auditability and can typically be tampered with, leading to the
suitability of blockchain to address these problems by monitor-
ing the execution of the collaborative process, ensuring that the
execution of the process complies with business rules [18, 19].
Audits inspect the trail of transactions referring to a product’s
lifecycle. Therefore, different perspectives might need to be
analyzed. A challenge naturally emerges: balancing the nec-
essary transparency for audits while maintaining privacy about
the transactions across other business partner groups is not triv-
ial. By selectively sharing a common domain, parties can have
more efficient processes while performing data-sensitive opera-
tions within the same supply chain. A domain is the state shared
by parties enrolled in a private relationship. Views can then be
merged according to custom rules (respecting privacy needs)
for auditing purposes.
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Let us consider a group of five organizations on a Hyper-
ledger Fabric blockchain that produce, transport, and trade, as
illustrated by Figure 1:

• A Supplier, producing goods.

• A Shipper, moving goods between parties.

• A Distributor, moving goods abroad. Buys goods from
Suppliers and sells them to Wholesalers.

• A Wholesaler, acquiring goods from the Distributor.

• A Retailer, acquiring goods from shippers and whole-
salers.

The Distributor may prefer to make private transactions with
the Supplier and the Shipper to keep confidentiality towards
the Wholesaler and Retailer (hiding their profit margins). Con-
versely, the Distributor may want a different relationship with
the Wholesaler. It charges them a lower price than it does with
the Retailer (as it sells assets in bulk). The Wholesaler may
want to share the same data with the Retailer and the Shipper
(because the Wholesaler may charge Retailers a higher price
than the Shipper). These private relationships are our use case’s
domains.

Supplier

Shipper

RetailerWholesaler

Distributer

AuditorDomain 3

Domain 1

Domain 2

Figure 2: Different domains on the blockchain supporting the supply chain
scenario. For instance, the Supplier has access to domain 1, while the Shipper
acesses domains 1 and 2. Access to different domains leads to the creation of
different views.

Domains hold a subset of the ledger that is only accessible
by authorized parties. By sectioning the shared ledger, differ-
ent views on the same blockchain are possible, depending on a
stakeholder’s participation in a given domain, as shown in Table
1. In this table, the asset ID is one across all domains. However,
its price differs across domains, translating into different views.
For instance, the Supplier has access to the asset’s price on d1,
but only access to its price’s hash on d2 and d3 (i.e., does not
have access to the price on d2 and d3. This three-dimensional

tuple access-deny-deny corresponds to v1. Retailers’ view, v5
can see the price of the asset only in d2 . The three existing
domains (see Figure 2, translate into three different price val-
ues for the same item – five participants originate five different
views.

Let us now assume that we identify each asset tracked in a
supply chain by an ID and a price. For the same asset (and
thus the same state on the blockchain, as it is uniquely identi-
fiable by its ID), the Distributor-Supplier-Shipper (Domain 1,
d1) has the same view of the price, but the Wholesaler-Retailer-
Shipper (Domain 2, d2) and Distributor-Wholesaler (Domain 3,
d3) and have different views. As every stakeholder has a dif-
ferent combination of the domains that are accessible, the DLT
infrastructure yields five different views.

Participant\Domain d1 d2 d3

Supplier
ID: 1
Price: 1

ID: 1
Price: hidden

ID: 1
Price: hidden v1

Shipper
ID: 1
Price: 1

ID: 1
Price: 2

ID: 1
Price: hidden v2

Distributor
ID: 1
Price: 1

ID: 1
Price: hidden

ID: 1
Price: 3 v3

Wholesaler
ID: 1
Price: hidden

ID: 1
Price: 2

ID: 1
Price: 3 v4

Retailer
ID: 1
Price: hidden

ID: 1
Price: 2

ID: 1
Price: hidden v5

Table 1: Participant views on the supply-chain blockchain regarding an asset
with ID = 1.

Let us now imagine that an auditor wants to inspect the Dis-
tributor’s operations regarding a good. The auditor would re-
trieve snapshots of the blockchain in light of each participant’s
view. After that, the auditor can analyze each view from the
perspective of each participant. If a general picture is needed,
all views can be merged into an integrated one and jointly an-
alyzed. Since there are different viewpoints, there are differ-
ent prices for the same object and different merge procedures
are possible. The first would be to reveal only one price cor-
responding to one of the views; a second option would be to
show all prices corresponding to all views (better suited for an
audit); a third option would be to hide all prices (so the only
information that the auditor sees is that prices are different). In
particular, the different views are translated into an integrated
view that only refers to a consolidated price as a summary of
the prices of the different views. The processing and merging
of the views are the consortium’s responsibility for managing
the blockchain, and thus several options are possible. We will
address this point later in this paper.

2.2. Formalizing Views
This section formally defines the necessary terms for

blockchain view integration. We provide the conceptual frame-
work to build programs that can merge blockchain views. The
first concept of our framework is the ledger. A ledger is a simple
key-value database with two functionalities: read and store.
It supports a state machine that implements a DLT. We define
ledger as follows:

Definition 1. Ledger. A ledger L is a tuple (D,A) such that:

3



• D is a database, specifically a key-value store. Each entry
in the database is a key-value tuple, i.e., d ∈ D : (k, v),
where k stands for key and v for value.

D has two functions: read and writes (storing). read

returns the value associated with a key, the empty set ∅ (if
there is no value for that key) or an error ⊥ (if the user
does not have access permissions), i.e., read → {v, ∅,⊥}.
The store primitive saves the (k, v) pair in the database,
indexed by k, returning 1 if the operation was successful
and 0 otherwise, i.e., store : k × v→ {0, 1}.

The read and store primitives support the representation
of simple UTXO blockchains (e.g., Bitcoin) [20] or more
complex ones, an account model (e.g., Ethereum) [21], or
others by combining the operations mentioned above (e.g.,
Hyperledger Fabric [22]).

• A is an access control list that specifies access rights to
read entries from the database. Each entry of the list has
the form (p, k). Each entry indicates that participant p can
read the state with key k. A participant p can access a
key k when the primitive access(A, p, k) returns 1, or 0
otherwise.

The simple functionality of the notion of ledger given in Def-
inition 1 allows us to represent Bitcoin [23] as follows: the
database (collection of all states) is a list of UTXO entries
(states). A UTXO has a unique identifier, the transaction hash,
and the state key (we present a simplified version of UTXO).
Its value is in the form (input, output, metadata). The input cor-
responds to a reference to the previous transaction and a key
to unlock the previous output to the current input. The output
consists of a cryptographic lock and time. Metadata is any other
relevant information for a transaction using that UTXO (for ex-
ample, the timestamp and the fees). Hyperledger Fabric’s state
is more straightforward to map since it is a key-value store.

We define the entities that can read or write on the ledger by
participants:

Definition 2. Participant. A participant p ∈ Υ is an entity (Kid
k ,

Kid
P , id), capable of reading and writing to a ledger L, where:

• Kid
k is a private key. The private key is used as the signing

key.

• Kid
P is a public key. The public key is used as the verifying

key.

• id is the unique identifier of the participant. It is the output
of a function over the participant’s public key2.

Participants interact with the ledger via nodes. Nodes are
software systems that participate in the ledger consensus by ag-
gregating and executing transactions and sending them to other
peers (for example, miners in proof-of-work blockchains or

2For instance, Bitcoin addresses are used to uniquely identify Bitcoin ac-
counts and are formed by double-hashing the public key associated with that
account.

peer nodes in Hyperledger Fabric). Participants need a node
client (or simply a node) to read data or transact on DLTs (by
redirecting signed transactions to them). We introduce the con-
cept of Access Point to formalize the relationship between par-
ticipants and nodes as follows:

Definition 3. Access Point (AP). An AP ω maps a node n con-
nected to ledgerL to a set of participants pn, i.e., ω(n) −→ pn ⊆

ΥL. Conversely, ω−1 returns the node set np that a participant
can access, i.e., ω−1(υ)→ np.

An access point tells us which participants can access the
ledger via a specific node. Nodes can access a DLT via a primi-
tive obtainDLT. The result of obtainDLT(np) = Lv, where Lv

is a virtual ledger. A virtual ledger only allows the participants
to read and write in the ledger according to their permissions
(namely, the defined access control list). In more detail, a vir-
tual ledger:

Definition 4. Virtual ledgers. A virtual ledger Lv is a projec-
tion of a ledger L(D,A) in the form (L,Fπ) such that:

• L is the ledger that provides the database where projec-
tions are made.

• FΠ, a set of projection functions {Fπ1 ,Fπ2 , ...,Fπn } that re-
turns a subset dπ of the database D from L, i.e., Fπ ∈ FΠ:
LD × LA × p → {∅, dπ}, according to the participant’s
access control list entries defined byA (or ∅, if the partic-
ipant is not authorized to access the ledger). This corre-
sponds to “what the participant can see”.

Let us recall that the database or a subset is a collection of
keys and their values. We can simplify its representation by
referring to the projection of ledger l against participant p (this
is, the projection function Fπ that is chosen projects the states
of the virtual ledger that are accessible by p). The projection on
ledger L using the projection function Fp outputs a set of states
{s1, ..., sn} that participant p can access:

dL,Fp = {s1, ..., sn}

We use the notation s to represent the absence of a state in
a projection. Consider the following projections, illustrated by
Table 2:

• dL,Fp1
= { s1, s2 , s3 } = s1

• dL,Fp2
= { s1, s2, s3 } = s1, s2

• dL,Fp3
= { s1, s2 , s3 } = s1, s3

• dL,Fp4
= { s1 , s2, s3 } = s2, s3

• dL,Fp5
= { s1 , s2, s3 } = s2

• dL,Fp6
= { s1 , s2, s3 } = s2

4



dπl,pn
d1 d2 d3

p1 = Supplier s1 s2 s3

p2 = Shipper s1 s2 s3

p3 = Distributor s1 s2 s3

p4 =Wholesaler s1 s2 s3

p5 = Retailer s1 s2 s3

p6 = Retailer s1 s2 s3

Table 2: Ledger l projections onto all the participants from the use case depicted
in Section 2.1. The projection function is a simple read of the database. A
state si in the green background is a state that can be accessed by a participant,
whereas a state si is a state that is not accessible for a given participant.

We can retrieve a projection dL,Fp (or the empty set) with the
primitive obtainVirtualLedger. This primitive receives as
input a ledger L and a projection function Fp. Some projec-
tions are not unique (e.g., dL,Fp5

and dL,Fp6
). The concept of

projection is the basis for the DLT view, which we will define
later in this section.

Both ledgers and virtual ledgers are abstractions to access a
state, represented by a key-value store. Participants issue trans-
actions to change the state. A transaction is defined as follows:

Definition 5. Transaction. A transaction t is a tuple
(tid, t, payload, σK p

s
(message), S tid, target), where:

• tid is a unique increasing sequence identifier for a transac-
tion. This identifier allows one to construct a transaction
ID, a unique identifier for a transaction. Transaction ti pre-
cedes t j ,i.e., ti ⋞ t j if and only if j > i.

• t is the transaction timestamp

• payload is the transaction payload. The payload can carry
arbitrary information (smart contract parameters, UTXO
input value).

• a signature on the transaction σK p
s
(message), where

message .= (tid, t, target, payload).

• S tid, a set of input states given as input to the transaction
with transaction ID sid.

• target is the state id to which the transaction refers.

A transaction takes as input a S tid and outputs S ′tid. We define
a primitive VerifyTx(.) that takes a set of initial states, a
transaction, and a set of output states, and outputs 1 if and only
if the state transition is valid according to some algorithm ρ,
i.e., VerifyTx(S tid, tid, S ′tid, ρ = 1). Checking the validity of a
transaction w.r.t. the states it changes implies re-running the
transaction on its run environment. Transactions produce state
changes. We define the state as:

Definition 6. State. A state s is a tuple (sk, sk,v,T , πk), where

• sk is a unique identifier (the state’s key).

• a transaction list T , referring to that state, i.e., ∀t ∈ T :
t.target = sk

• the value it holds sk,v. The value of a state can be calcu-
lated using the set of transactions ∀i,TS = {ti ⊂ T , s ∈ S :
ti.target = sk}, i.e., the transactions referring to that state,
in the following manner:

sk,v =

{
∅ i = 0
apply(ti, sk,i−1) i ≤ |TS |

where apply is a function that executes the payload of the
transaction ti over the state sk. The data is the most re-
cent state value, the result of the successive transforma-
tions (over the previous versions of the same state). Func-
tion apply is blockchain-dependent.

• a proof of state validity πk = σKP
s
(sk, sk,v, v), where sk,v

is the value of state sk at version v, and σm is the set of
signatures of the participants P ⊂ Υ that creates the proof,
over a payload m.

A state has a unique reference (or key) sk, and a version v
such that when v is updated, it yields v′ > v. We denote the
value pointed by that reference by sk,v. If we omit the version,
then we refer sk as the latest value on a certain state. Thus,
for all k , k′, sk and s′k represent the latest value of different
states. In practice, the value of a state is the result of succes-
sively executing transactions over the same object. The value
for sk,v or (sn) can be calculated as follows, where transaction
set {t1, ...tk−1} ∈ TS are the transactions referring specifically to
sk:

sk,0
t1
−→ sk,1

t2
−→ . . .

tk−1
−−→ sk,v

Each ledger database stores states in its key-value store. The
state identifier, sk is the key, while the tuple (sk,v, t, πk) is the
value. Each proof π ∈ Π is an object accounting for the validity
of the item it describes (transaction, state, view)3.

Having introduced all the basilar concepts, we can define a
DLT view:

Definition 7. View. A viewV is a projection of a virtual ledger
L, in the form of (vk, ti, t f , p, dπl,p , S ,Π), where

• its key vk, is a unique ID

• an initial time ti and a final time t f that restrict the states
belonging to that view. A view may have no restriction
on the temporal interval, i.e., all states that a participant p
accesses through dπl,p are included in the view.

• p ⊆ Υ is the participant set associated with the view.

• a projection function dπL,p used to build the view.

• S corresponds to the set of versioned states that the partici-
pant on the view has access to (via the projection function).

3In Bitcoin, for instance, the proof of validity for a transaction is the issuer’s
signature, along with a nonce whereby its hash begins with a certain number of
zeroes and is smaller than a certain threshold (valid transaction within a valid
block). In Hyperledger Fabric, the proof is a collection of signatures from the
endorsing peer nodes that achieved consensus on the transaction’s validity.
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• Π is a set of proofs accounting for the validity of a view
(e.g., accumulator value for over states ordered by last up-
date).

The consolidated view, or the global view V, is the set of
all participant views, i.e., V = ∪i

i=0 pi, that captures the whole
ledger L.

3. BUNGEE, a Multi-Purpose View Generator

In this section, we present BUNGEE. First, we present the
system, key management processes, and adversary models. Af-
ter that, we present the snapshot process. Next, we present how
views are built and then merged. The section finishes by dis-
cussing the processes around creating snapshots, views, and
merging views.

3.1. System Model

We consider an asynchronous distributed system, the DLT,
hosting a ledger L. Three types of participants interact with the
ledger: i) participants Υ: entities that transact on the network
(can use read and write operations) via the nodes that their AP
exposes; ii) nodes N , who hold the full state of the DLT, and
contribute to the consensus of the later; and iii) view generators
G, programs that build views, via node that has access to the
target participant of the view. This implies that a view generator
trusts the node that is the access point to the DLT.

In public DLTs, participants can generally assume that the
information retrieved by nodes is accurate and cannot be tam-
pered with, as it is easy to verify it against other nodes. How-
ever, in private blockchains, the verification is not as straight-
forward, as participants may not have visibility of the internal
state of the ledger via other nodes. Each party manages its keys.

Key management
Each participant p ∈ Υ, node n ∈ N , and view generator G

is identified by a pair of keys (K p
p , K p

k ), (Kn
p, Kn

k ), and (KG
p , KG

k )
respectively. The private key is the signing key, while the pub-
lic key is the verifying key. The generated keys are independent
of all other keys, implying that no adversary with limited com-
putational resources can distinguish the key from one selected
randomly. We assume keys are generated and distributed in an
authenticated channel, preserving integrity; digital signatures
cannot be forged. We say an entity x signs a message m with
its private key with the following notation: signx(m). Verify-
ing a message m with the public key from x can be done with a
verify primitive, which outputs 1 if the message was correctly
signed by m i.e., verify(m, x,K p

x ) = 1, and 0 otherwise.
The DLT is assumed to be able to preserve its safety and live-

ness abilities despite the possible existence of malicious nodes.
This implies that building and operating views based on net-
works that cannot guarantee safety properties (e.g., DLT forks
due to attack) are invalid.

Adversary Model
The DLT where view generators operate is trusted, meaning

that most internal nodes are honest, and thus the network is
trusted. Given this assumption, there can be different adversary
models for nodes, generators, and view generators. Nodes can
be honest by following the DLT protocol, establishing consen-
sus with other honest nodes, and reporting the actual status of
the DLT to participants who request it. Nodes can, instead, be
malicious, i.e., Byzantine, being able to deviate from the pro-
tocol and falsely report the DLT status to participants (endan-
gering the creation of truthful views). Nodes can be malicious
but cautious, meaning they are only malicious if there are no
accountability checks that can penalize them (i.e., if they know
that they cannot get caught).

View generators constitute a trusted group with the partici-
pant that is the target of the view because the generator needs
the participant’s credentials to access a (private) subset of the
ledger. We then assume that each participant runs its view gen-
erator. View generators can only build views for participants
whose keys they do not control if the ledger does not have
any partition (i.e., it is public). Since participants might access
DLT partitions from different nodes, the trust group (partici-
pant, view generator) does not include a node or set of nodes,
i.e., view generators and DLT participants are independent of
the nodes that sustain the DLT.

View Generation Process Overview
BUNGEE constructs views from a set of states from an un-

derlying DLT called a snapshot. This is done by obtaining a
virtual ledger, on behalf of a certain participant, with a projec-
tion function. Then, each state accessible by the participant is
collected in the snapshotting phase. States are processed, and a
representation of the ledger that the participant has access to is
built. We can think of the snapshot as capturing available trans-
actions from the perspective of participant in a table (c.f Figure
3, step 1 ), upon having the necessary permissions from the
ledger ( 2 ). Right after that, in the view building phase, a view
is built from the virtual ledger that the view generator has access
to by temporarily limiting the states one can see ( 3 ). Views
can be stored in a local database, providing relational semantics
and rich queries. Views are assured to provide provenance, i.e.,
BUNGEE can trace each component constituting a view down
to the transaction.

After that, the view merging phase (optional) comprises
merging views into an integrated one (see Section 3.5). For
that, an extended state is created from the states present in each
view that share the same key. Following that step, a merging
algorithm is applied to the extended state. Finally, each view
generator signs the integrated view, which can optionally be
published in a public forum. The publication in a public forum
can be decided by the participants that generate views (social
consensus).

Let us focus on the high-level snapshot generation and view
generation processes, as exemplified by Figure 3. In this exam-
ple, we are building two viewsV1 andV2 (from participant p1
and p2, that capture states whose projection functions are dπL,2022
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Figure 3: View generation process for participant p1, ledger L, using projection functions dπL,2021 (yellow rows) and dπL,2022 (white rows)

and dπL,2021 , respectively. The semantics for the projection func-
tions are simple: dπL,2022 refers to transactions timestamped as of
2022, and dπL,2021 refers to transactions timestamped as of 2021.
In the Figure, we focus on buildingV1 - the white rows. Thus,
the transactions timestamped 2021 (in the yellow rows) are not
captured on view V1. Transactions t1, t2 and t3 alter state s1,
but t2 belongs to view V2, so its not included. Transaction t4
changes stores B as the value of s3, while transaction t5 sets s3
as C.

Once the three steps are completed, BUNGEE returns the
views (the generated and the integrated views) to the client ap-
plication (for example, a blockchain migration application). For
example, the client application might use BUNGEE to retrieve
snapshots that refer to a period relevant to an audit. Due to
BUNGEE’s modularity, adding support for different applica-
tions is facilitated. Next, we present each phase depicted in this
overview in finer detail.

3.2. Snapshot

A snapshot is a set of states that a certain stakeholder can
access, plus proof of the validity of that state. We view each
state as a versioned (key, value) store. A snapshot has a snap-
shot identifier id, a version v, a participant p, a set of states
bins, sb, an initial time ti that refers to the timestamp of the first
transaction of any of the states belonging to sb, a final time t f

that refers to the timestamp of the last transaction of any of the
states belonging to sb, i.e., snapshot .= {id, v, sb, ti, t f }. Each
state bin is indexed by a state id sk, the latest value to that key,
sk,−→v , a version v that refers to the number of transactions applied
on state key sk to yield the latest value sk,−→v and a list of trans-
actions T referring to that state (as in Definition 7). Versioning
snapshots allows for efficiently building snapshots from older
snapshots (this is, building snapshots from incremental changes
from older snapshots).

Algorithm 1 depicts the snapshotting process. The snapshot
phase occurs when the BUNGEE client requests the beginning
of the view integration process to a node n on behalf of partici-
pant p (line 8). After that, the node connects to the DLT. Upon a
successful connection, n retrieves the ledger (line 9). Obtaining
a list of states from a ledger requires checking all transactions
that performed state updates. For each transaction, a BUNGEE
has to check its target. BUNGEE creates a new state if there
is no state key with a target equal to the current transaction.
The version of the new state is one. Then, BUNGEE runs the
transaction’s payload against the current state value (empty at
initialization). Otherwise, if the transaction target refers to an
existing state key, run the transaction payload against the state’s
current value, yielding the new value and incrementing the ver-
sion by one. This process outputs a list of states. According
to the participants’ perspective, the process is abstracted by the
ledger’s projection (according to the participants’ perspective)
that the algorithm uses (line 11).

The snapshot maps each state to a state bin. For each state,
we collect its key (line 15), version (line 16), latest value (line
17), the auxiliary first timestamp (line 18), and auxiliary latest
timestamp (line 19). After that, the first and last timestamps are
updated (lines 28 and 29), and, at last, the algorithm returns a
snapshot.

3.3. View Building

This section explains how views are built, answering the re-
search question How to generate blockchain views?. A view
generator can generate a set of views depending on the input p.
The following steps occur for each view to be built: first, the
view generator generates a snapshot. After that, the snapshot is
limited to a time interval and signed by the view generator.

Algorithm 2 shows the process of building a view from a
snapshot. First, the view generator temporarily limits each
included state, proceeding to abort if no states are within its
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Algorithm 1: Snapshotting of ledger L through node n
and participant p, via projection function Fp

Input: Access point AP, participant p, projection
function Fp, snapshot identifier snapshotid

Output: Snapshot from participant p through node n,
snapshot

1 snapshot.id← snapshotid
2 snapshot.v← 1
3 snapshot.sb← ∅

4 snapshot.ti ←⊥
5 snapshot.t f ←⊥

6 tit ← ∞ ▷ temporary variable to hold minimum state
timestamp to date

7 t f t ← 0 ▷ temporary variable to hold maximum state
timestamp to date

8 n = ω−1(p) ▷ choose any available node
9 L = obtainDLT(n) ▷ depends on the DLT client

implementation
10 dL,Fp = obtainVirtualLedger(L,Fp) ▷ obtain

projection of L according to p
11 foreach sk ∈ dL,Fp do
12 sk,it ← ∅ ▷ the timestamp of the first transaction

applied to state sk

13 sk,lt ← ∅ ▷ the timestamp of the last transaction
applied to state sk

14 snapshot.sb[sk].sk = sk

15 snapshot.sb[sk].version = dL,Fp [sk].T.length
16 snapshot.sb[sk].latestValue = dL,Fp [sk].sk,v

17 snapshot.sb[sk].T = dL,Fp [sk].T ▷ save list of
transactions referring to each state key

18 sk,it = dL,Fp [sk].T [0] ▷ transaction list is ordered
chronologically

19 sk,lt = dL,Fp [sk].T.length
20 if sk,it < tit then
21 tit = sk,it ▷ update the auxiliary first timestamp
22 end if
23 if sk,lt > t f t then
24 t f t = sk,lt ▷ update the auxiliary last timestamp
25 end if
26 end foreach
27 snapshot.ti = tit
28 snapshot.t f = t f t

29 return snapshot

boundaries (line 8). If there are, each state in the snapshot is in-
cluded if it belongs to the temporal limit (line 18) and removed
otherwise (line 15). Finally, the view generator signs the view
(line 20) and returns it to the client application (line 21).

3.4. Merging views
In this section, we describe how to merge views. The merg-

ing of views creates an integrated view I from a set V of input
views. The idea is to compare the state keys indexed by every
view and their value according to a merging algorithmM that is

Algorithm 2: Constructing a view V of ledger L with
snapshot snapshot, from the perspective of participant
p.
Input: Snapshot snapshot, view id id, initial time ti,

final time t f

Output: ViewV
1 V.k ← id
2 V.ti ← ti
3 V.t f ← t f

4 V.dπl,p ← snapshot.Fp

5 V.p← snapshot.p
6 V.Π←⊥
7 V.S k,v ←⊥

8 if ti < snapshot.t f OR t f > snapshot.ti then
9 return; ▷ there are no intersecting states that we want

to capture, on the snapshot
10 end if
11 ▷ each sb = {sk, sk,−→v , v}
12 foreach sk ∈ snapshot.sb do
13 foreach t ∈ sk do
14 if t.timestamp < ti OR t.timestamp > t. f then
15 snapshot.sb[sk]← snapshot.sb[sk].T \ t

▷ removes transaction that is not within the
specified time frame

16 end if
17 end foreach
18 V.S k,v ← snapshot.sb[sk]
19 end foreach
20 V.Π← signG(V)
21 returnV

given as input. This merging algorithm controls how the merge
is performed.

Algorithm 3 shows the procedure for merging views. The
algorithm receives the views to be merged and returns an inte-
grated (or consolidated) view as input. We initialize an auxil-
iary list SV1,...,Vn (on line 1) that holds all the values (coming
from different views) for each state key. We propose a construct
called an extended state. An extended state is a state where each
state key maps to a set of values. Additionally, an extended state
has a metadata field holding a list of operations applied to that
extended state.

Definition 8. An Extended State −→s is a tuple
−→sk,
−−→sk,v, t, πk,metadata, version), where

• −→sk is a unique identifier (the state’s key);

• −−→sk,v is a list of values;

• a transaction list T ;

• a proof of state validity πk;

• metadata, which holds a list of operations that have been
applied to the extended state;
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Algorithm 3: Merging a set of views V =

V1,V2, ...,Vn, where each view was built referring to
participant p1, p2, ...pn respectively by a set of view gen-
erators G = G1,G2, ...,Gn

Input: Views to be mergedV = V1,V2, ...,Vn,
merging algorithmM

Output: Integrated view I
1 S ← [] ▷ state list SV1,...,Vn (S for simplicity) where each

index (representing a state key) maps to tuple of values
from referring to that key, from each view to be merged

2 I.ti ← ∅
3 I.t f ← ∅

4 I.dπl,p ←
⋃n

i=0Vn.dπl,p

5 I.p←
⋃n

i=0Vn.p
6 I.Π←⊥
7 I.S k,v ←⊥

8 foreach v ∈ V do
9 foreach s ∈ v.S k,v do

10 if s ∈ S then
11 S[

−→
s.k] = S[

−→
s.k] ∪ −−→sk,v ▷ if state exists, add

value referring to that state, from current
view

12 S[
−→
s.k].version← S[

−→
s.k].version + 1

13 end if
14 else
15 S[

−→
s.k] = −−→sk,v ▷ otherwise, initialize state key

list
16 S[

−→
s.k].version← 0

17 S[
−→
s.k].metadata← {MERGE − INIT }

18 end if
19 end foreach
20 end foreach
21 I.S k,v = callalgorithmM(S) ▷ OPTIONAL. Computes

the state list of the integrated view according toM (see
for example algorithm 5)

22 I.dπl,p ← I.dπl,p ∪ {M} ▷ add reference to the merging
algorithm

23 I.ti = min{I.S k,v.ti} ▷ initial timestamp correspond to
the initial timestamp of the processed states

24 I.t f = min{I.S k,v.t f }

25 I.Π← signG(I) ▷ signed collectively by G
26 return I

• version, a monotonically increasing integer. The counter
increases when an update is done to the extended state (the
number of elements in the metadata field is the same as the
version).

Thus, each index of the set of extended states S will index all
different values for each key for all the views to be merged, i.e.,

SV1,...,Vn = {∀si ∈ S : ∃ki ∈ si : ki =⇒ (sV1 (ki,v), ..., sVn (ki,v))}

After we initialize the list of extended states, in Algorithm 3,
we initialize the integrated view properties: its initial timestamp
(line 2), final timestamp (line 3), projection functions (taken as
the union of the projection functions of all the views, on line 4),
participants (the participants from each view, on line 5), a set
of proofs (line 6) and a set of states (line 7). The set of states
to be assigned as the set of states of the integrated view is a
function of the processed auxiliary set of states S. After all, we
check each state key to merge each view. If the tested state is
already on the auxiliary state set (line 10), then we add its value
−−→sk,v as a value for the current extended state key (line 11). This
outputs a list of values (between one and the number of views
to be merged) for each extended state key. Otherwise, we set a
new extended state, adding the current state value (as the first
value for that key, on line 15).

On line 21, we apply an optional view processing phase by
giving our list of states S to an arbitrary algorithm that needs to
respect a simple interface and functionality (later defined). Af-
ter that, we add algorithmM as a projection function for I for
future traceability and auditing. Next, we adjust the initial and
final timestamps (lines 23 and 24) because the merging algo-
rithm might have changed the time boundaries of the included
states (for example, the state corresponding to the lowest times-
tamp might have been removed). All the view generators must
sign I (line 25) to promote accountability. Signing the inte-
grated view can be distributed using a multi-signature algorithm
(for example, BLS Multi-Signatures [24]).

Each merging phase has an optional application of a merg-
ing algorithm M, which dictates how the merge is conducted
(otherwise, all states are included without any further process-
ing). We define a simple interface for merging algorithms: a
merging algorithm receives a set of extended states as input and
outputs a set of extended states. The functionality of the merg-
ing functions should be: 1) apply arbitrary operations on the
set of extended states, 2) add a reference to the current merging
algorithm to the metadata field of each extended state key that
is altered, 3) increase the version of each extended state key
that is altered. Each merging algorithm should be public and
well-known to the parties involved.

Examples of merging algorithms are:

• Selective Join: keeps certain values from an extended
view.

Algorithm 4 presents the selective join algorithm. This al-
gorithm selects the value by the first view of the view list
that is being integrated. In practice, the value for each key
that view 1 holds overrides the other values. That state is
removed if there is no value for the first view. Applications
are similar to join operations in relational databases; selec-
tive join allows the view to focus primarily on the ledger
state from a perspective of a particular participant while
considering others.

• Pruning: removes the values coming from a particular
view.

Algorithm 5 prunes the values belonging to a particular
view from a set of extended states. Note that times do

9



NOT need to be updated because those are re-calculated
in steps 23 and 24 of Algorithm 3. Applications include
removing sensitive information in the context of existing
regulations and laws.

Algorithm 4: Merging algorithm example – SELEC-
TIVE JOIN (by viewV1)

Input: The set of states to be processed S
Output: A processed set of states S′

1 S′ ← ∅ ▷
2 foreach s ∈ S do
3 if |sk | = 1 then
4 ▷ if the state key for every view only points to

one value, then it means that state is the same
for each view

5 continue
6 end if
7 if ∄s[0] then
8 continue ▷ if there is no value for the first view,

do not capture this state
9 end if

10 else
11 S′[sk]← s[0] ▷ otherwise, the value for sk is the

first value indexed (belonging toV1)
12 S′[sk].metadata← JOIN-VIEW-1

13 S′[sk].version← S′[sk].version + 1
14 end if
15 end foreach
16 return S′

Algorithm 5: Merging algorithm example – PRUNE
(byV1)

Input: The set of states to be processed S
Output: A processed set of states S′

1 S′ ← ∅ ▷
2 foreach s ∈ S do
3 if sk[0] then
4 S′[sk] = S′[sk] \ s[0] ▷ if there exists a value for

viewV1, then remove that value from the state
list

5 S′[sk].metadata← PRUNE-VIEW-1

6 S′[sk].version← S′[sk].version + 1
7 end if
8 end foreach
9 return S′

3.5. Example: merging two views
In this section, we graphically show an example of a merge

view, by applying algorithms 3 (merge view) and MERGE-ALL.
Informally speaking, MERGE-ALL works by keeping the values
from both views included in the final view (a rather simple

merge algorithm). Let us consider two viewsV1 andV2 (create
from the table of Figure 3), and its merging into a consolidated
view VI, c.f. Figure 4. View V1 and V2 differ on the value
for s1, A and C, respectively. The integrated view will hold
an extended state with 1) a timestamp including both views, 2)
references to the participants generating each view, 3) the joint
projection function, 4) a set of proofs, and 5) a set of extended
states. For s1, we have included the different values from the
different views.

p = 2

Vk = 2

tk = 2021

Π =

S (States)

d  = π
L,2

s1 = C

s2 = B

s3 = C

p = 1

Vk = 1

tk = 2022

Π = 

S (States)

d  = π
L,1

s1 = A

s2 = B

s3 = C

p = 1,2

Vk = 3

tk = 2021,2022

Π = 

S (States)

I

d  = ... π
L1,2

s1 = A,C

s2 = B

s3 = C

sk = 1
sk,v = A,C
T = ...
Π = 
metadata = MERGE-ALL

Extended state

Figure 4: Merging of viewsV1 andV2 into a consolidated viewVI according
to merging algorithm MERGE-ALL.

4. Discussion

In this section, we discuss BUNGEE. The proliferation of
blockchain interoperability solutions is increasing interest in
exploring cross-chain logic and the need to model and analyze
it [8]. Our proposal constitutes the foundation to make sense of
that diversity by allowing to systematically create and integrate
views from different blockchains. In this section, we discuss the
studied research questions, with considerations on the integrity,
accountability, and privacy of views.

4.1. RQ 1. How to generate blockchain views?

Views can be generated from different sources as long as they
are accompanied by a valid proof. The existence of proofs on
states is proof of creation by the set of entities that created or
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executed the transactions referring to that state. For example, a
signed transaction hash qualifies as proof of a transaction that
makes part of the state proof (as many proofs as signed transac-
tions referring to a certain state). On the other hand, views are
also signed by the view generator that either generates, merges
views, applies a merging algorithm, or notarizes the view as
true. This set of proofs allows independent parties to validate
the truthfulness of the view (by verifying each state) and hold
view generators accountable. In a permissioned environment,
an auditor can confirm that the views are valid and complete.
The metadata fields on each extended state and the views al-
low one to understand who, when, and how a view generator
changes a certain view. However, more accountability mea-
sures can be implemented. In particular, if a view is only shared
across the view generators that endorsed it, there might be lim-
ited exposure and, therefore, limited transparency. To enhance
transparency, our key insight is to store a view in a public forum
such as the InterPlanetary File System [25] (a distributed peer-
to-peer file system maintained by a network of public nodes) or
a public blockchain, similarly to some related work [11, 26]. If
a view is deemed false, automatic view conflict detection and
resolution can occur.

Besides the integrity availabilities an auditor could impose,
the own network could enforce that. For this, we need two con-
ditions to hold. First, each group of nodes that accesses a subset
of a ledger (and thus creates a view) must have at least two el-
ements. Second, at least there is one honest element for every
group. Thus, an honest view generator connected to an hon-
est node holds knowledge of the view v, and publishes it. If a
malicious node broadcasts a false view v′, an honest node can
dispute it. Disputes can be calculated by calculating the dif-
ference between views and checking the proofs that constitute
each view. In particular, if an instance of BUNGEE, on be-
half of participant A, holds the knowledge of a pair of different
views v, v′ referring to the same participant at the same time
frame, then one of the views is false. Thus, the creator of one
of the views is malicious. An honest view generator can recon-
struct the disputed view and compare it to the view publicized
by the malicious participant.

It is unlikely that all participants are colluding to change the
perception of the inner state because, in principle, participants
have different interests; however, there might be several situ-
ations in which the whole network gains if it colludes (i.e.,
blockchain with financial information). The ledger is unreli-
able if all internal nodes collude because the safety properties
cannot be guaranteed. We hypothesize that using a view sim-
ilarity metric could be a good tool to assess the quality of the
view merging process. In other words, one could systemati-
cally compare how the final integrated view is different from
each view that composes it.

4.2. RQ 2. How can one merge views and create an integrated
view?

In this paper, we have introduced how to create, merge, and
process views. However, a challenge remains unsolved: how
to share views in a decentralized way? How does one manage
the lifecycle of a view, including its creation, endorsement, and

dispute? Although the work by Abebe et al. [26] sheds some
light on this, how can one verify that a view is false? The solu-
tion offered by Abebe et al. includes parties voting on an invalid
view, but this does not solve the problem per se because if the
source blockchain is private, there is no canonical answer. Sup-
pose that at least one view from the integrated view comes from
a private blockchain, the signatures of the view guarantee that
a certain participant has voted on the validity of that view. This
could introduce problems if all participants collude to show a
false view. However, assuming that at least one view generator
is honest, the view generator could initiate a dispute with the
suspect of a false view.

A view generator could use fraud proofs [27] to create dis-
putes about the validity of views, allowing an efficient and de-
centralized view management protocol. Application clients can
then use the proof field from views, states, and transactions to
validate a certain fact on a ledger. However, when BUNGEE
merges views, completeness may not be guaranteed because the
merged view depends on each input view, and processing might
be applied (including pruning), possibly leading to information
being excluded. A case to apply pruning might be when sen-
sitive data is recorded on a ledger and later removed from the
processing stage or even to remove “obsolete” data from the
blockchain and therefore contribute to efficient bootstrapping
of light clients [28]. An interesting detail is that each view only
includes the state and respective proofs on timeframe tk. How-
ever, to ensure that it is possible to validate the view, a pointer
to the validity of the latest state before tk should be available.

Our integration process follows a semantic approach to in-
formation based on a conceptual standard data model that we
define as a view. Thus, for each practical implementation
of BUNGEE, there needs to be a mapping between the data
model of the underlying blockchain and the view concept. Be-
ing all views uniform, we can not only represent data in all
blockchains, but we can merge views belonging to different
blockchains. The applicability is building a complete picture
of the activity of a participant in each network but can also be
used to disclose information according to an access control pol-
icy [29]. While selective access control to views has been ex-
plored, there is space to explore decentralized identity access
control mechanisms to provide fine-grain access over views,
leveraging the need to unify the different notions of identity
that emerge from different blockchains.

The reader might inquire how BUNGEE would ensure the
privacy that partial consistent blockchains attempt to enforce
when views are unified and then shared. To address this prob-
lem, we envision two solutions: first, merging views requires
tacit consent from all parties sharing the input views. If there
is sensitive data, the data is removed apriori or removed in the
snapshotting phase. This is essentially encoded by the projec-
tion function Fp used to obtain the virtual ledger. The second
solution is to encrypt the data (or hash the data) [29], so the re-
sulting view contains obfuscated information or a notarization
proof [30], respectively. However, the scientific community
agrees that storing sensitive data on-chain, even if encrypted,
is a bad security practice due to the menace of cryptographic
algorithms being broken in the future [31, 32, 33, 34]. Zero-

11



knowledge proofs can also be explored as a vehicle to prove
facts on a ledger by disclosing limited information about such
facts [35, 36]. We leave those interesting research paths for fu-
ture work.

Use cases benefiting from blockchain views
In this section, we introduce considerations about use cases

that can utilize the views we described in our paper. The first
use case is cross-chain state creation, management, and visual-
ization. Although some preparatory work has been done [37, 8],
it is difficult to visualize and reason about private data partitions
(different views), not only in the cross-chain setting but also in a
single blockchain setting. Blockchain platforms could leverage
views to improve view analysis for auditors, cybersecurity ex-
perts, and developers. Auditors and cybersecurity professionals
can facilitate audits [38] because different data partitions can be
analyzed from a specific perspective. Developers can gain in-
sight into their applications and processes. The representation
of on-chain data through a DLT view in multiple chains allows
for a visualization of the cross-chain state, making it easier to
manage and reason. A specific application could be having one
view across multiple Cosmos zones, Polkadot parachains, or
Layer 2 solutions (Polygon, Arbitrum, and others, for example)
[39].

The second use case is decentralized application migration.
Migration of blockchain-based applications is not only neces-
sary, but increasingly common [40, 39, 2]. Migration allows
enterprises to experiment with other DLT infrastructures with-
out the risk of vendor lock-in. The key idea behind application
migration is to capture the DLT state relevant to that application
(data and functionality) and move it to a different DLT infras-
tructure. We leave the further exploration of this use case for
future work.

5. Related Work

In this section, we present the related work.

Partial Consistency
Blockchain channels limit the information available to each

network participant, i.e., channels allow participants to access
a subset of the global ledger. Graf et al. propose the concept of
partial consistency [4]. While blockchains providing this prop-
erty have existed for several years, such as Quorum [41], IOTA
[42], Corda [43], Hyperledger Fabric, Hyperledger Besu [44],
Ripple [45], to the best of our knowledge, this is the first formal-
ization of the concept. Some solutions build partial consistency
realizations on top of blockchains [46], such as Digital Asset’s
Canton [47].

A related concept is sharding. Sharding is a technique to im-
prove throughput, typically in public blockchains. A sharding
scheme offloads the transaction processing to several groups of
nodes called shards [48]. As a result, parallelization is possi-
ble, improving throughput and reducing communication over-
head between nodes [49, 50]. Therefore, those nodes are only
responsible for processing those transactions on their shard.

Nodes have different views on the transactions to be processed
at the initial stage of the sharding protocol. A shard is thus a
logical entity that guarantees the integrity and correctness of
states regarding the participants that can access those states.
Like a shard, a view is a logical separation of the ledger ac-
cording to each participant. Our concept of view brings another
way to reason about shards, where each validator that is part of
a shard runs a view generator and can communicate the shard
state to different blockchains.

Generating views
Katsis al. [16] has summarized view-based data integration

techniques. Our approach follows a Global and Local as View
[51] because views are created from a subset of the global state,
but then can be merged and processed. We call the reader’s
attention to the survey on view integration techniques, mostly
used in the database and business process management research
areas [2]. Abebe et al. [26] have proposed the concept of exter-
nal view, a construct to prove the internal state of permissioned
blockchains. In this paper, the authors show how views can be
managed and decentralized while allowing one to prove facts
about a private blockchain. We extend and generalize the con-
cept of view so that it can be used for interoperability purposes
(by allowing the integration and merging of views). In [29], the
authors also use the concept of view as a standardized way to
access blockchain data under certain conditions (which we en-
code in the projection functions), reiterating the need to man-
age blockchain views in the context of blockchains that provide
partial consistency. However, this article does not explain how
to use views to share a common perspective across different
chains. In [20], the authors propose a general framework for
blockchain analytics on the Bitcoin and Ethereum blockchains.
However, this work focuses on public blockchains, so the need
to merge views is not taken into account.

There are some proposals in industry and academia that pro-
pose general data models for cross-chain interaction, namely
the Rosetta API, Quant Overledger’s gateways [39, 52], Block-
daemon’s Ubiquity API [53], Polkadot’s XCMP [54, 55], Cos-
mos’s IBC [56]. The Rosetta API and Blockdaemon’s Ubiquity
API only support public blockchains. Quant Overledger sup-
ports public and private blockchains but does not allow them
to realize complex operations such as merging views. Polka-
dot and Cosmos have the previous limitation and can only sup-
port blockchains created with Substrate and Tendermint, re-
spectively. On the other hand, BUNGEE aims to create views
independent of the underlying blockchains.

View applications
In [29], views were used to provide fine-grain dynamic ac-

cess control over private data in Hyperledger Fabric. In addition
to the applications referred to in Section 1, we identify some
studies using the concept of view for different purposes. Some
authors use views to perform audits of participants on different
blockchains [57, 58]. In particular, a view is created and then
merged with other views from the same participant on different
blockchains to create a global view of the participant’s activ-
ity. Applications are, for instance, cross-chain tax audit [59],
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or cross-chain portfolio tracking [60], and even cross-chain se-
curity, by representing and monitoring cross-chain state [37],
all applications that could benefit from a more formal treatment
that BUNGEE can provide.

In conclusion, BUNGEE offers three advantages compared
to the related work: it is built on a theoretical basis that formally
defines a blockchain view, the BVI framework; it provides a
way to build participant-centric views composed of proofs that
provide provenance-evidence; it defines algorithms for merging
and processing views, allowing for a wide range of applications.

6. Conclusion

In this paper, we introduce the concept of blockchain view,
a foundational concept for handling cross-chain state. Views
represent different perspectives of blockchain participants, al-
lowing one to reason about their different incentives and goals.

We present BUNGEE, a system that can create views from a
set of states according to a projection function, yielding a col-
lection of states accessible by a certain participant. BUNGEE
can create a snapshot by retrieving the state of a blockchain, and
based on participants’ permissions, build a view of the global
state. After that, BUNGEE creates extended states, the basis
for merging blockchain views. Different views (possibly from
different blockchains) can be merged into a consolidated view,
enabling applications such as cross-chain audits and analytics.
Finally, we discuss different aspects of BUNGEE, including de-
centralization, security, privacy, and its applications.

An important area for future work is on using zero-
knowledge proofs to enhance view privacy. We would also
like to empirically validate our work by providing an imple-
mentation of BUNGEE4 that can provide support for building
blockchain migrator applications.
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