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Abstract

The work in this paper is an extended research of our previous work: M. Delianidi, K. Diamantaras, G. Chrysogonidis,

and V. Nikiforidis,“Student performance prediction using dynamic neural models,” in Fourteenth International Conference on

Educational Data Mining (EDM 2021), 2021, pp. 46–54. In both works we study the task of predicting a student’s performance

in a series of questions based, at each step, on the answers he/she has given on the previous questions. We propose a recurrent

neural network approach where the dynamic part of the model is a Bidirectional GRU layer. In this work, we differentiate the

model architecture from the earlier paper by imposing that the dynamic part is based exclusively on the history of previous

question/answers, not including the current question. Then, the subsequent classification part is fed by the output of the

dynamic part and the current question. In this way, the first part estimates the student’s knowledge state and represents it

with a dynamically generated vector considering only the student’s previous questions and responses. We call this part the

“Knowledge State Representation subnet’‘. Using this representation, the following “Tracing subnet’‘ which is a static multi-

layer classifier can predict the correctness of the answer to any following question. Therefore, this architecture is suitable not

only for described prediction task but also for recommendation tasks which were not possible with the previous architecture.

In addition, in this work, we also study the effectiveness of our models against each other, as well as against the previous state-

of-the-art models on seven datasets including a new multi-skills dataset derived from the NeurIPS 2020 education challenge.

Both our models compare favorably against the state-of-the-art methods in almost all datasets, while the newly proposed

architecture achieves very similar results compared to our earlier model in most cases except for two cases, including the

multi-skill “NeurIPS-2020-small” dataset, where it achieves considerably better results.
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Abstract

Student performance is affected by their knowledge which changes dynamically over time. Therefore, employing

recurrent neural networks (RNN), which are known to be very good in dynamic time series prediction, can be a

suitable approach for student performance prediction. We propose such a neural network architecture containing two

modules: (i) a dynamic sub-network including a recurrent Bi-GRU layer used for knowledge state estimation (ii) a

non-dynamic, feed-forward sub-network for predicting answer correctness based on the current question and current

student knowledge state. The model modifies our previously proposed architecture and is different from all other

existing models, because it estimates the student’s knowledge state considering only their previous responses and not

the current question to be answered. The advantage of the new approach is that the knowledge state vector generated

by the dynamic sub-network can be matched against any other question and thus the model could be used for other

purposes as well, such as educational content recommendation. We studied both single-skill and multi-skill question

scenarios and employed embeddings to represent questions and responses. In the multi-skill case the initialization

of the question embedding matrix with pretrained word-embeddings is found to improve model performance. The

experimental results showed that our current KT-Bi-GRU model and the previous one have similar performance while

both surpassed the performance of previous state-of-the-art knowledge tracing models for six out of seven datasets

where in some cases, the difference is quite noticeable.

Index Terms

Knowledge tracing, student performance prediction, dynamic neural networks, knowledge state.
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KT-Bi-GRU: Student Performance Prediction

with a Recurrent Knowledge Tracing Neural

Network

I. INTRODUCTION

Knowledge tends to change with time and this dy-

namic property has been a central subject of study in

the educational data mining field in recent decades.

Practically, the student’s knowledge changes in a positive

way when the student learns a learning object (i.e. a

concept or skill) or in a negative way when the student

forgets. Maintaining, over time, the probability that the

student has mastered various learning objects is called

Knowledge Tracing (KT) [1]. The learning objects in

a specific area, for example, ”Algebra”, ”Geometry”,

”Physics” etc, are called knowledge components (KC)

and compose the picture of the knowledge state (KS)

of the student. The process of estimating students’ per-

formance helps to assess their knowledge state and can

contribute to the future improvement of their learning

performance by tracing the current knowledge. During

the learning process through an electronic Intelligent

Tutoring System (ITS), students’ activities are implicitly

recorded in logs as they interact with the system. These

log files can be used during the knowledge tracing

process in order to assess the evolution of the student

knowledge state over time.

In general, according to [2], knowledge tracing ap-

proaches can be classified into three main categories:

(i) Models based on statistical or probabilistic methods

such as the BKT [1] which is implemented through the

Hidden Markov model; (ii) Logistics models such as

LFA [3] and PFA [4] and (iii) Deep Learning models

such as DKT, DKMVN, Deep-IRT [5], [6], [7]. Recently,

methods from the first two categories were combined

with deep learning methods, for example DBN [8]

and DPFA [9], achieving improved results. Additionally,

convolutional neural networks [10], [11], [12], [13] and

graph neural networks models [14], [15] have been

recently proposed for the KT task. The aim of all the

works is the optimal representation of the knowledge

state and the prediction of student performance so that

the learning process can be improved and adapted to the

student’s learning needs.

In the basic setup, a student interacts with an ITS and

gives answers to questions qi. The variable ri ∈ {0, 1}

indicates the correctness of the answer, where 1 means

correct and 0 means wrong answer. At each time in-

stance, the student’s KS is formed in relation to the skill

that is examined based on the correct or incorrect answer.

The questions are related to one or more skills taken

from some skill set S = {s1, s2, . . . , sn}. Our prediction

task is formalized as follows: given the student’s past

interaction sequence X = (x1, x2, . . . , xi, . . . , xt−1),

where xi = {qi, ri} is the interaction pair at the i-th time

instance, we must accurately predict the correctness rt

of the answer to the current question qt. An example

of the prediction task based on students’ interactions

May 26, 2022 DRAFT
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Fig. 1. Prediction task: based on the history window with length L of the previous interactions, the response correctness rt to the question qt

at the current time instance t must be predicted for every student.

can be seen in Figure 1. A more accurate prediction

r̂t corresponds to a better assessment of the student’s

knowledge level in different skills at the time when the

question qt will be asked.

The student knowledge state at time t can be de-

termined by the correctness ri of the responses to the

previous questions qi, i = 1, . . . , t − 1, and should not

be a function of qt since we typically do not know the

response to this question. However, in prior works [1],

[4], [5], [6], [7], [16] employing neural networks for

student performance prediction, the current question qt

is not separated from the previous ones. Even though,

using this approach, it is still possible to predict rt, it is

difficult to identify a part of the model that represents the

current student knowledge state. In our earlier work [16]

we followed this mainstream approach proposing a deep

neural model based on a Bi-directional Gated Recurrent

Unit layer.

In this work we propose to model rt taking into

account the student’s KS up to the time instance t−1. To

this end, we take two steps: first, we separately estimate

a representation vector vt of the current KS using

a recurrent neural layer using the student interaction

history up to time t − 1 and without knowing qt. Then

we combine vt with the representation of qt and apply

a feed-forward classification neural network to actually

estimate rt. The advantage of this approach is that having

vt we can combine with any question q and predict the

correctness of the student’s answer to q at any time t.

This allows us to monitor the student’s performance in

questions relating to specific skills and identify student’s

weaknesses. Potentially this model could be used for

other important tasks such as building an educational

recommendation system. The proposed model is tested

on seven public datasets with single-skill or multi-skills

questions in the specific area of mathematics.

The contributions of this work can be summarized as

follows:

1) We propose a new neural network architecture KT-

Bi-GRU incorporating a bi-directional recurrent

layer whose output represents the student knowl-

edge state based on his/her previous interactions.

The recurrent layer output is used in combination

with the current question to predict the correctness

of the student response.

2) We studied the initialization of question embed-
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dings by comparing pretrained vs. random vectors.

We found that in the case of multi-skill questions,

the initialization using pretrained Word2Vec em-

beddings taken from the verbal description of the

skills involved in the questions contributes to a

better model performance as opposed to random

initialization. This is not observed in the case of

single-skill questions.

3) We compare the proposed model performance

against earlier, state-of-the art neural networks,

including our own earlier Bi-GRU RNN model.

The experimental evaluation is performed on seven

different datasets.

4) The proposed architecture facilitates the estimation

of the student knowledge state, a feature which

could be potentially useful for tasks such as student

clustering or educational content recommendation.

The rest of this paper is organized as follows. Sec-

tion II provides the literature review of the existing

student performance prediction models using the KT

task specifically based on deep learning techniques. In

Section III, referring to our previous work [16], we

present the new deep learning based knowledge tracing

model with differentiated inputs. The datasets we used

in our experiments are described in Section IV, while

the experimental settings and parameters are presented in

Section V. The experimental results, in comparison to the

deep learning based state-of-art models DTK, DKVMN

and Deep-IRT, are discussed in Section VI. We conclude

the paper and present the future work in Section VII.

II. LITERATURE REVIEW

The tracing of student knowledge using Bayesian

Networks has been introduced by [1] and it is referred

to as Bayesian Knowledge Tracing (BKT). The method

belongs to the probabilistic knowledge modeling tech-

niques. Due to the continuous development and wide use

of e-learning there has been an increasing interest in this

topic which resulted in the development of a variety of

approaches. The so called logistic KT methods including

Learning Factor Analysis (LFA) [3] and Performance

Factor Analysis (PFA) [4] have been shown to achieve

better performance compared to the BKT model. In

logistic KT models the probability of a correct answer is

represented by a logistic function involving student and

knowledge components (KC) parameters.

Deep Neural Networks (DNN) and, especially, Recur-

rent Neural Networks (RNN) have contributed to the

development of the most efficient knowledge tracing

models to date. The first knowledge tracing model uti-

lizing RNNs, and specifically the LSTM model, was

DKT [5] introduced in 2015. Having as input the one-

hot encoded skill tags and the associated responses, the

neural network is trained to predict the correctness of the

next student’s response. The hidden state of LSTM can

be considered as the latent state of a student knowledge

and can transfer the information of previous interactions

to the output level. The output level of DKT, (depending

on the question or the skill), estimates the probability of

answering the question related to a specific knowledge

component correctly.

The Dynamic Key Value Memory Network (DKVMN)

[6], is another approach that uses a modified memory

augmented neural network (MANN) [17] for knowledge

tracing, attempting to capture the relationship between

different concepts. The DKVMN model outperforms

the DKT model. To encode students’ knowledge state,

DKVMN uses memory slots as key-value pairs in which

learning or forgetting a particular skill are controlled

through read and write operations. The concepts are

stored in the key component which is fixed during

testing, while the value component is updated when a

concept state changes. This means that when a student

masters a concept in a test, the value component is up-
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dated based on the correlation between the corresponding

concept and the exercises.

Recently the DKVMN model has been extended by

the Deep-IRT model [7]. In Deep-IRT the capabilities

of the DKVMN are combined with the Item Response

Theory in order to measure both student ability and

question difficulty. Another model, named Sequential

Key-Value Memory Networks (SKVMN) [18], combines

DKVMN with Hop-LSTM, a variation of the LSTM

architecture. SKVMN utilizes the Hop-LSTM ability to

discover sequential dependencies between exercises but

it skips some LSTM cells to approach previous concepts

that are considered relevant. In this way, SKVMN tried

to overcome the problem of DKVMN to capture long

term dependencies on the sequences of exercises and

generally on sequential data. The attention mechanism

[19] has been also used in other KT models. One of such

model is the Self Attentive Knowledge Tracing (SAKT)

[20]. SAKT consists of three layers: an embedding

layer for interactions and questions followed by a self-

attention mechanism layer and a feed-forward layer for

student response prediction.

Other KT approaches combine earlier proposed mod-

els with deep learning techniques to enhance them

with the ability to dynamic knowledge modeling. For

example, the Dynamic BKT (DBKT) [8], introduced

in 2017, models knowledge by taking into account

the correlations between KCs and predicting students’

performance based on performance in previous relevant

KCs. Similarly, the Deep Performance Factors Analysis

(DPFA) [9] model published in 2021, combines the PFA

with deep learning models in order to improve it and is

summarized as a logistic regression model based on the

affinity of previous and future items.

Recent research has presented knowledge tracing

models using convolutional neural networks (CNN) [10],

[11], [12], [13] and graph neural networks (GNN) [14],

[15]. Other works [21], [22] employ CNN and GNN

models incorporating recurrent neural layers, such as

LSTM, in order to achieve better performance.

In our previous work [16] we proposed a dynamic

KT model is using a special type of Recurrent Neural

Network called Bidirectional Gated Recurrent Unit (Bi-

GRU). Comparing the GRU network [23] with the LSTM

network, the GRU has fewer parameters although it

typically has similar performance. Bidirectional RNNs

[24], such as the Bi-GRU, connect two hidden layers

of opposite directions at the same output. This struc-

ture provides information to the output layer from the

future states (backward direction) and from the past

state (forward directions) at the same time. The output

of the Bi-GRU network combines and normalizes the

outputs of the forward and backward hidden layers at

each instant. In this paper we give a short description

of our previous work and present a new dynamic KT

model named KT-Bi-GRU. The Bi-GRU neural network

is a basic component of our both models architecture.

III. DYNAMIC NEURAL NETWORK ARCHITECTURE

As mentioned earlier, knowledge is formed dynam-

ically over time. Recurrent neural networks have been

known to be very good at modeling and predicting

dynamic processes and so they can be used to model

the students’ knowledge state. Student response predic-

tion should take into account information regarding the

estimated student knowledge state. Since responses can

be either correct (1) or wrong (0) we approach the task

of predicting them as a binary classification problem.

Our model architecture consists of the following parts:

• the input sequences {qt−L, . . . , qt} and

{rt−L, . . . , rt−1} where qi denotes the question

id at time i and ri denotes the correctness of the

response at i. The hyper-parameter L indicates

May 26, 2022 DRAFT
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(a) The early Bi-GRU model architecture [16]

(b) The KT-Bi-GRU model architecture.

Fig. 2. The Bi-GRU models’ general architectures. The vector vt represents the student’s Knowledge State at the current time instance.

the length of the time window used to predict the

response rt.

• an Encoding component incorporating two embed-

ding layers which produce vector representations

q̄i, r̄i for qi and ri, respectively.

• a Dynamic component which traces the student’s

knowledge state using the time sequences {q̄} and

{r̄}

• a Classification component which predicts the stu-

dent response based on the output of the dynamic

component.

The above architecture does not specify an important

detail: whether the current question, qt, should partic-

ipate in the sequence that feeds the dynamic tracing

component. In our earlier work [16] we followed the

above design philosophy with qt actually feeding the

dynamic component (Fig. 2a). However, in this case

it is difficult to associate the output of the dynamic

component with the student’s knowledge state at time

t since the current KS should not depend on the current

question qt which is not answered yet.

For this reason we propose here an alternative archi-

tecture depicted in Figure 2b where the current question

does not feed the dynamic tracing component but is only

used as input for the classification component in order

to predict rt. The architectures of the two models are

described in detail below.

A. Early Dynamic Bi-GRU Model

The architecture of our earlier proposed recurrent

model Bi-GRU1 [16] is shown in Figure 2a. The correct-

ness rt of the answer at time t is defined as a function of

1https://github.com/delmarin35/Dynamic-Neural-Models-for-

Knowledge-Tracing
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the student’s previous interactions (qi, ri), i = t− 1, t−

2, . . . , and the current question qt:

rt = φ(qt, qt−1, qt−2, . . . , rt−1, rt−2, . . . ) + εt (1)

where εt is the prediction error.

In order for the model to remember arbitrarily long

sequences the Dynamic component of the architecture

incorporates a recurrent Bidirectional GRU (Bi-GRU)

layer. A Bi-GRU layer consists of two Gated Recurrent

Unit (GRU) layers, one for the forward time direction

and another for the backward time direction (Fig. 3).

Fig. 3. A Bidirectional GRU layer.

The forward GRU layer is described by the following

equations:

→
y t = (1− zt)◦

→
y t−1 +zt ◦ ht (2)

ht = tanh(Whxt + Uh[rt◦
→
y t−1] + bh) (3)

zt = σ(Wzxt + Uz

→
y t−1 +bz) (4)

rt = σ(Wrxt + Ur

→
y t−1 +br) (5)

where z is the update gate vector, r is the reset gate

vector, Wh,z,r, Uh,z,r are weight matrices, bh,z,r are

bias vectors, ◦ denotes element-wise vector multipli-

cation and σ is the logistic sigmoid function. Similar

equations hold for the backward GRU layer except that

the t− 1 index is replaced by t+ 1. The final output of

the Bi-GRU layer is

yt =
→
y t +

←
y t (6)

The BiGRU layer in this architecture contains 32 units.

Fig. 4. The originally proposed Bi-GRU Model [16]

In our case, the input vector is the concatenation of

the question and response embeddings filtered using 1-D

convolutional operations:

xt = [FQ ∗ q̄t−L:t]⊕ [FR ∗ r̄t−L:t−1] (7)

where the operation ∗ denotes 1-D convolution and

⊕ denotes concatenation. Regarding the experiments

demonstrated in [16] the combination of an embeddings

layer followed by a 1-D convolutional layer increases

performance, presumably because it captures meaningful
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local interactions in the input sequences. The Convolu-

tional layer consists of 100 filters, with kernel size 3,

stride 1, and ReLU activation function. Spatial dropout

is used on the embedding prior to filtering in order to

reduce overfitting. The value of the dropout percentage

depends on the size of the examined dataset. The smaller

the dataset size, the bigger the dropout percentage pa-

rameter value.

Depending on the values of the update and reset gates

the Bi-GRU layer can have arbitrarily long memory.

Therefore the output of the layer is a function of a

potentially very long sequence of previous questions and

responses:

ut = f(q̄t, q̄t−1, q̄t−2, . . . , r̄t−1, r̄t−2, . . . ) (8)

The prediction of the correctness of the current answer

rt is a function of the current output of the dynamic unit:

r̂t = g(ut) (9)

Since the target value rt is binary, the function g corre-

sponds to a classifier. This is implemented by a fully

connected network which includes three dense layers

with 50, 25 units with ReLU activation function and

one output unit with sigmoid activation which used to

make the final prediction r̂t ∈ (0, 1). Note that Gaussian

dropout [25] is applied to the output of the Bi-GRU layer

before feeding the classification sub-network.

The overall layer structure of this early Bi-GRU model

is depicted in Fig. 4.

B. Modified Dynamic KT-Bi-GRU Model

A drawback of the previous model is that the output ut

of the dynamic component cannot be easily associated

with the knowledge state of the student at time t since it

depends on the current question qt for which we have no

answer yet. Motivated by this observation, we propose an

alternative KT-Bi-GRU model2 depicted in Fig. 2b where

the output of the dynamic component vt is defined as

a function of the previous student interactions (qi, ri),

i = t− 1, t− 2, . . . excluding the current question qt.

This is described by equation (10) where qi and

ri are involved through their embeddings q̄i and r̄i,

respectively:

vt = f ′(q̄t−1, q̄t−2, . . . , r̄t−1, r̄t−2, . . . ) (10)

In order to predict the correctness rt of the student

response to qt, a new classifier function is required which

combines vt and q̄t

r̂t = g′(vt, q̄t) (11)

Fig. 5. The KT-Bi-GRU Model

Similar to our previous model, the KT-Bi-GRU model

consists of three components: the Encoding, the Dy-

2GitHub KT-Bi-GRUlink will be provided in case the paper will be

accepted
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namic (BiGRU) component and the Classification com-

ponent (Fig. 5b). The three components create two sub-

networks: the Knowledge State Representation sub-net

and Tracing sub-net for the student performance predic-

tion. The common component of the both sub-nets is the

Dynamic model. The Bi-GRU layer contains either 32 or

64 units. Batch normalization and the ReLU activation

function are applied to the output of the Bi-GRU layer

before generating vt. The classification component takes

the input from two branches: the vector vt with estimates

the student’s knowledge state and the representation

vector q̄t of the current question. As with the previous

model, the classifier contains three dense layers. The first

two layers contain 50 and 25 units, respectively, with the

ReLU activation function, while the final layer has 1 unit

with the sigmoid function which predicts the student’s

response.

IV. DATASETS

To evaluate the models we used six publicly available

benchmark datasets for the knowledge tracing task and

generated a seventh one using the data of task 1 of

the NeurIPS 2020 Educational Challenge [26]. All the

datasets are related to the examination of mathemat-

ical problems. Three of the datasets were provided

by the ASSISTments platform [27]. These are, the

ASSISTment09, the ASSISTment09 corrected3 and the

ASSISTment124. The fourth Assistements dataset, named

ASSISTment17, was obtained from 2017 Data Mining

competition page5. The fifth dataset, FSAI-F1toF3 is

provided by Find Solution Ai Limited and is collected

3https://sites.google.com/site/assistmentsdata/home/

assistment-2009-2010-data/skill-builder-data-2009-2010
4https://sites.google.com/site/assistmentsdata/home/

2012-13-school-data-with-affect
5https://sites.google.com/view/assistmentsdatamining/

data-mining-competition-2017

using data from the 4LittleTrees6 adaptive learning appli-

cation. The sixth dataset STATICS20117 [28], is provided

by a college-level engineering statics course. The seventh

dataset called NeurIPS-2020-small was generated from

the NeurIPS 2020 educational challenge8 data provided

by Eedi9 team platform10. For each student in the

original NeurIPS 2020 dataset a percentage of his/her

interactions appear in the train set while the remaining

interactions appear in the test set. However, in all other

datasets the interactions of any student appear either in

the train set or in the test set, but not in both. In order to

comply with this paradigm, we created NeurIPS-2020-

small as follows: (i) we combined the train and the test

sets into a single dataset (ii) for practical reasons, due

to the very large size of the original dataset, we kept

only about 10% of the original data and removed the

rows with missing values (iii) we split the dataset into

train and test sets at a 70% / 30% ratio, in such a way

that all student interactions appears exclusively either in

the train set or in the test set. The description of all the

datasets used in our experiments is shown in Table I.

In order to compare with previous works in the

ASSISTment datasets we followed the common protocol

where skill ids are used as inputs instead of questions

in order to predict the student response. For the rest

of the datasets we use question ids as inputs. Those

questions, of course, are associated with one or more

skills as explained above.

All of the above datasets, except for NeurIPS-2020-

small, have been used to evaluate previous state-of-

art knowledge tracing models including DKT, DKVMN

and Deep-IRT. The datasets differ from each other in

6https://www.4littletrees.com
7https://pslcdatashop.web.cmu.edu
8https://eedi.com/projects/neurips-education-challenge
9https://eedi.com/
10https://diagnosticquestions.com/
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TABLE I

DATASETS OVERVIEW.

Dataset Skills Questions Students Responses

ASSISTment09 110 110* 4,151 325,637

ASSISTment09 corrected 101 101* 4,151 274,590

ASSISTment12 196 196* 28,834 2,036,080

ASSISTment17 101 101* 1,709 864,713

FSAI-F1toF3 99 2266+ 310 51,283

STATICS2011 98 1223+ 333 189,297

NeurIPS-2020-small 388 27570+ 7,733 1,696,690

*skills used as inputs to the prediction model.
+questions used as inputs to the prediction model.

the number of participating students, responses, skills,

questions, and the number of records. We also used

those benchmark datasets to evaluate the performance

of all models in comparison to each other. In the first

seven of the above data sets, there is a one-to-many

relationship between skills and questions. In other words,

each question corresponds to a single skill but the same

skill may be associated with many questions. We refer

to those datasets as the single-skill datasets.

In contrast, each question in NeurIPS-2020-small cor-

responds to a list of skills. At the same time, one skill is

part of the list of skills in many questions. Thus NeurIPS-

2020-small is referred to as a multi-skill dataset.

A. Data Pre-processing

Before proceeding with our evaluation experiments,

we corrected grammatical errors in the skill names and

replaced mathematical symbols with the corresponding

words. For example, the word “Polnomial” in the skill

name “Parts of a Polnomial Terms Coefficient Mono-

mial Exponent Variable” was corrected to “Polynomial”.

Furthermore, the math symbols found in the skill names

were converted to the corresponding words. For example,

the symbols “+,-,/,* ()” in the skill name “Order of

Operations +,-,/,*() positive reals” have been replaced

with the words that express these symbols, ie. “ad-

dition subtraction division multiplication parentheses”.

This preprocessing action was preferred over the total

removal of the math symbols since the skills refer to

mathematical operations and deleting them, would have a

destructive impact on the meaning of the skill. Moreover,

the “ASSISTments09 corrected” and “ASSISTments12”

datasets contained skills of the form of “skill1 skill2”

and “skill1 skill2 skill3” which actually correspond to

the same skill names. In this case we merged them into

the first skill id, found before the first underscore symbol.

V. EXPERIMENTS

We experimentally compare the performance of our

dynamic Bi-GRU models against the performance of

the state-of-art knowledge tracing models DKT [5],

DKVMN [6] and Deep-IRT [7] on the seven described

datasets. Note that the python code 11 used for the DKT

model experiments requires that the train/test split is

performed during code execution, thus the data files have

been converted to the appropriate format required for the

experimentation process.

11https://github.com/lccasagrande/Deep-Knowledge-Tracing
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A. Embedding vector initialization

The initialization of the response embeddings in our

both Bi-GRU models, is done exclusively using random

vectors. However, the questions are represented using

embedding vectors which are initialized either randomly,

or using pretrained vectors, based on the verbal de-

scription of the skill(s) corresponding to the questions.

In our earlier model [16], for the pretrained initializa-

tion of the question embeddings we used the text files

from Wikipedia2Vec12 [29] that is based on Word2Vec

method [30] and contains pretrainable embeddings for

the word representation vectors in English language in

100 and 300 dimensions. For the same model we also

used pretrained embeddings based on FastText [31] in

300 dimensions using the “SISTER” (SImple SenTence

EmbeddeR)13 library. In all the datasets each skill name

consists of one or more words. Thus, the skill name

embedding vector is created by adding the separate word

embeddings in the skill name.

For the KT-Bi-GRU model, introduced in this work,

we only apply the W2V method for skill names with

initialization of vectors in 100 dimensions. We used the

size of 100 dimensions based on the conclusion from

the research on the our previous Bi-GRU model where

we observed that the model performed better with this

dimension size. The dimension 100 was used for the

random initialization as well.

The pre-trained embedding vectors for each examined

question in the NeurIPS-2020-small multi-skill dataset

are generated based on the list of skills corresponding to

the question. The process is completed in two steps:

• the representation vector of each skill is calculated

by the W2V method as in the single skills data

described above

12https://wikipedia2vec.github.io/wikipedia2vec/
13https://pypi.org/project/sister/

• the question embedding vector representation is

generated based on the average of the skills em-

bedding vectors related to the question.

B. Experimental Settings

We performed experiments with the aim to con-

struct models with similar parameter settings for all the

datasets we used. The hyperparameters that contribute to

the best performance of KT-Bi-GRU model architecture

are:

• L - window length of the student’s interaction

history. It is one of the main hyper-parameters that

affects the inputs. We set L = 50 in for both

Bi-GRU models since this value achieved the best

results

• batch size: batches of data inputs, affects the speed

of training

• embeddings initialization method: either random

vectors or pre-trained embeddings

• question embeddings dimension and response em-

beddings dimension

• learning rate

• number and size of hidden layers: determines the

complexity of the classification subnet

• recurrent units: concerns the number of training

units of the Bi-GRU layer

• dropout rate

• epochs

During the experimental process, in addition to achiev-

ing the best performance, our goal was to adjust the

hyperparameters with the greatest possible similarity for

each data set in order to achieve the construction of

a general model, suitable for data sets with different

characteristics. The best parameter settings for the earlier

Bi-GRU and the KT-Bi-GRU model are shown in Table

II.
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TABLE II

THE PARAMETER SETTINGS OF THE BOTH MODELS

Parameter Early Bi-GRU KT-Bi-GRU

L 50 50

batch size 50 100 or 300 (NeurIPS-2020-small)

skill/question embeddings initializing random, W2V, FastText random, W2V

responses initializing random random

embeddings vector dimension 100 & 300 100

learning rate 0.001 0.001 & 0.0001 (NeurIPS-2020-small)

hidden layers 2 layers with 50 and 25 units 2 layers with 50 and 25 units

recurrent units 32 64 & 32 (NeurIPS-2020-small)

dropout rate 0.2 or 0.9 due to the dataset 0.5-0.9 due to the dataset

training epochs 30 30

Both models have been trained using the cross-entropy

loss and the Adam [32] optimization algorithm. Addi-

tionally, the learning rate was scheduled to begin from

a starting value and decrease according to the epoch

number n:

lr =

 rinit if n < 15

rinit × e(0.5·(15−n)) otherwise

The parameter values in the new proposed model

vary according to the data sets. The differences concern

the parameters learning rate and recurrent units. For all

the single-skill datasets the value of learning rate is

0.001 and the value of recurrent units is 64, while in

”NeurIPS2020 small” multi-skill dataset the correspond-

ing values of the parameters are 0.0001 and 32. Most

variations concern dropout parameters values according

to the number of skills or questions embeddings vectors

and the size of database. In the case of ASSISTment

datasets, the number of parameters to be trained by

the neural network is less compared to other datasets.

We consider this to be due to a combination of two

characteristics, the input to the model during training

is the representation of the skills and not the questions

and the number of records in each dataset. To avoid

overfitting, we regulated the values of the dropout hyper-

parameters. So, after a thorough experimental procedure,

depending on the input characteristics and the size of the

datasets the dropout values for all the datasets were set

as follows:

• ASSISTment 2009: spatial dropout = 0.6, gaussian

dropout = 0.6,

• ASSISTment 2009 corrected: spatial dropout = 0.6,

gaussian dropout = 0.6,

• ASSISTment 2012: spatial dropout = 0.5, gaussian

dropout = 0.5,

• ASSISTment 2017: spatial dropout = 0.5, gaussian

dropout = 0.5,

• FSAI-F1toF3: spatial dropout = 0.9, gaussian

dropout = 0.8,

• STATICS 2011: spatial dropout = 0.8, gaussian

dropout = 0.8,

• NeurIPS-2020-small: spatial dropout = 0.5, gaus-

sian dropout = 0.5.

The evaluation metric that is used for the prediction

of the probability correctness of student’s response is

Area Under the ROC Curve (AUC) [33]. This metric was

used for the evaluation of all the state-of-art knowledge

tracing models for the student performance prediction

task.
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VI. RESULTS AND DISCUSSION

The experimental results are shown in Table III. As

can be seen, the two dynamic Bi-GRU models, in

general, outperform the previous state-of-art models in

almost all datasets. One of the points we observed from

the experimentation process is that the initialization of

the skill embeddings, either randomly or by pretrained

vectors representing the textual descriptions of the skills,

does not significantly affect model performance. The

addition of the spatial dropout layer between the em-

beddings and the convolutional layers helped achieve

better performance. More details can be found at [16],

the results of model performance on datasets are shown

in Table III.

Comparing the recurrent Bi-GRU models with each

other, we see that in the single-skill datasets the KT-

Bi-GRU model performance is not far from our earlier

model, while it is noticeably better in the case of the

FSAIF-F1toF3 –the smaller of all the datasets– as well as

in the case of NeurIPS-2020-small which is a multi-skill

dataset. Moreover, we should note that the KT-Bi-GRU

model has an advantage for tasks that require student

knowledge estimation. For example, an important task

is clustering students based on their knowledge state

similarity [34], [35]. Our early Bi-GRU model is not

suitable for this task since the internal representation

vector ut is not unique for a student with a specific

history of question/response pairs since it also depends

on the current question qt. On the contrary, the output

vt of the recurrent layer in the KT-Bi-GRU model, is

unique for a specific interaction sequence and therefore

it can be used to represent the student knowledge state

after he/she has completed this sequence. This is a key

difference between the KT-Bi-GRU model compared to

the other state-of-the-art models, as well. The exploita-

tion of this novel feature of the proposed model is

beyond the scope of the present paper which focuses

on student performance prediction, however it deserves

further investigation in the future.

The results also showed that in all single-skills

datasets, the random question embeddings initialization

method offers slightly better results. Therefore, the initial

representation of the skills embeddings with the cor-

responding pretrained vectors did not contribute much

to the model’s performance. On the other hand, in the

case of the NeurIPS-2020-small multi-skills dataset, the

random question embedding initialization led to poor

model training, with the test performance decreasing and

after a few epochs stabilizing at a relatively low value

(Figure 6a). Using the W2V question embedding initial-

ization method, the model achieved an AUC value equal

to 78.48 presented in Table III with the performance

smoothly increasing in every epoch until convergence

(Figure 6b). Thus, the questions were initially placed in

the vector space in relation to the skills that concern

them. According to the dataset’s metadata, the skills

are organized in a tree structure. There are skills that

are branches of another skill, while a parent-skill can

have more than one branch. Thus, the placement of the

questions in the space based on the tree structure of

the included skills contributed to the achievement of the

model’s better performance results.

Moreover, in order to have comparable results, we ran

the codes of the previous models for all the datasets and

found that only in the ASSISTment 2012 dataset, out of

the seven data sets we used, we had lower results. The

difference of the best performance of the known models

in relation to the proposed knowledge tracing models is

shown in Table IV. Also in the same table is shown the

model that achieved better AUC results per dataset.

The performance of the DKT model could not be

tested for NeurIPS data due to insufficient computing

resources. While all the experiments for all the models
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TABLE III

THE BEST RESULTS OF AUC METRIC PER DATASET AND PER MODEL (IN PERCENTS)

Models

Dataset DKT DKVMN Deep-IRT Bi-GRU KT-Bi-GRU

ASSISTment 2009 81,56 81,61 81,65 82,55 82,15

ASSISTment 2009 corrected 74,27 74,06 73,41 75,27 74,90

ASSISTment 2012 69,40 69,26 69,73 68,40 68,27

ASSISTment 2017 66,85 70,25 70,54 73,76 72,71

FSAI-F1toF3 69,42 68,40 68,69 70,47 72,90

STATICS 2011 82,71 83,17 83,09 83,23 82,88

NeurIPS 2020 small - 75,14 74,78 77,85 78,48

TABLE IV

COMPARISON OF THE RANGE OF AUC RESULTS OF OUR AND PREVIOUS MODELS (IN PERCENTS)

Dataset KT-Bi-GRU vs Bi-GRU KT-Bi-GRU vs Other previous models The best model

ASSISTment09 -0,40 +0,50 Bi-GRU

ASSISTment09 corrected -0,37 +0,63 Bi-GRU

ASSISTment12 -0,13 -1,46 Deep-IRT

ASSISTment17 -1,05 +2,17 Bi-GRU

FSAI-F1toF3 +2,37 +3,48 KT-Bi-GRU

STATICS2011 -0,35 -0,29 Bi-GRU

NeurIPS 2020 small +0,63 +3,34 KT-Bi-GRU

and all the datasets were performed normally, in the DKT

model with the NerIPS2020 small dataset there was a

memory overload and inability to complete even the first

training epoch of the model using the same code as in

the rest of the datasets. One possible explanation for the

lack of resources lies in the nature of the dataset itself.

In contrast to all of the above datasets, NeurIPS records

numerous responses per student and a very large number

of different questions. Another possible explanation is

that there is a bug in the code or that the model is not

expected to support data with NeurIPS characteristics (a

large number of different questions or a large number of

answers from each user). Probably this volume of data

can not be managed easily and we considered that there

should be no intervention in the code of the DKT model

that we borrowed for the research purpose.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a new recurrent Bidirec-

tional GRU (KT-Bi-GRU) model for knowledge tracing

and student performance prediction. The reference point

of the proposed model is our earlier recurrent neural

model, which surpassed the performance of the state-

of-the-art models in most of the tested data sets. The

KT-Bi-GRU model introduces a modified architecture

with two sub-network parts. The first sub-network is for

estimating the student knowledge state based on his/her

interaction history using a recurrent neural network and

the second sub-network predicts the student performance

using multi-layer neural network.

The input data, ie. the student’s interaction history,

are encoded using embedding layers followed by 1-D

convolutional layers. This layer combination was found
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(a) Random question embeddings initialization

(b) W2V question embeddings initialization.

Fig. 6. Training/testing AUC and accuracy curves of the multi-skill NeurIPS2020-small dataset.

to improve performance. We also investigated different

methods for initializing the question embedding layer

with random vectors or pretrained embeddings. Our

experiments showed that in the single-skill questions

datasets there is no noticeable difference with respect

to the initialization method used. On the contrary, in

the NeurIPS dataset where a question involves multi-

ple skills, the initialization using pretrained Word2Vec

embeddings obtained from the verbal description of

the skills contributed significantly to the performance

improvement of the model.

Both of the Bi-GRU models are suitable either for

single- or multi-skills datasets with the prospect of taking

advantage of the fact that there is an assessment of the

student’s knowledge state. This information can play a

key role in expanding our research to the production of

personalized educational recommendations. In particular,

in the KT-Bi-GRU model, where the estimation of the

student knowledge state is based solely on the previous

interaction history, the production of recommendations

would not be affected by the current subject to be tested,

which we consider more appropriate.

In the future we plan to exploit the proposed ar-

chitecture by extending it to tasks that require student

knowledge representation such as recommendation of

educational content and student clustering. We also in-

tend to investigate the effect of pretrained vector rep-

resentations on data sets with different themes (other
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than mathematics) and explore different initialization

methods.
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