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Abstract

Recently, a necessary and sufficient condition for multivaluedness to be implicitly exhibited by counter-cascaded systems was

presented. Subsequently, several systems that exhibit multivaluedness were reported. This brief interprets a general information

transmission system as a counter-cascaded system with Shannon’s noisy-channel coding theorem providing the necessary and

sufficient conditions for multivaluedness and is therefore a particular instance of the counter-cascaded network framework.
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Abstract—Recently, a necessary and sufficient condition for
multivaluedness to be implicitly exhibited by counter-cascaded
systems was presented. Subsequently, several systems that exhibit
multivaluedness were reported. This brief interprets a general
information transmission system as a counter-cascaded system
with Shannon’s noisy-channel coding theorem providing the
necessary and sufficient conditions for multivaluedness.

Index Terms—Counter-cascaded systems, immanence, multi-
valuedness, Shannon’s noisy-channel coding theorem, transcen-
dence.

I. INTRODUCTION

In networks, multivaluedness refers to situations where a
single stimulus (cause) is associated with multiple distinct
responses (effects), resulting in cause-effect relations that
cannot be analyzed using existing network theories. Surpris-
ingly, multivaluedness appears to have been confronted for
the first time only recently in [1], where inverse modeling
in microwave filters using neural networks was studied. Sub-
sequently, [2] proposed a counter-cascaded systems analysis
framework, which led to a necessary and sufficient condition
for the manifestation of multivaluedness. Further analytical
results were also presented there for the characterization of
multivaluedness.

Several examples of counter-cascaded systems configu-
rations were presented in [3] where it was demonstrated
that the manifestation of multivaluedness could be either
adverse, benign or even essential for a system to function,
depending on the particular system considered. Importantly,
it was emphasized there that multivaluedness could easily
be misdiagnosed as modeling errors, exogeneous disturbances
entering the system or as apparent inherent uncertainty in
the system’s behavior. Lastly, [3] showed that even though
a multivalued relation can never be reduced to a mapping, it
could be approximated (with nonzero error) by one but that
this might not be particularly useful. However, for such cases,
probabilistic methods offer alternatives.
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Fig. 1. Two counter-cascaded paths N ◦ T and M with the common cause,
u ∈ U . The implicit relation S (in gray) takes M ’s output as its input and
produces N ’s output as its output.

This brief interprets Shannon’s noisy-channel coding theo-
rem [4] [5] from the perspective of counter-cascaded systems
and multivaluedness.

II. COUNTER-CASCADED SYSTEMS

Figure 1 depicts what [2] refers to as the counter-cascaded
configuration of the systems M and N ◦ T . The symbols
M , T and N serve the dual purpose of representing the
nonlinear systems shown as well as their respective mathe-
matical descriptions as nonlinear operators [6] M : U → W ,
T : U → V and N : V → X that map from and into the
signal spaces indicated. The symbol S ⊂ W × X represents
an implicit relation, S := N ◦ T ◦M−1 , where M−1 denotes
the preimage [7] of M .

If the image under T of every equivalence class [8] induced
on U by the preimage of M , is contained in an equivalence
class induced on V by the preimage of N , then T is said to be
immanent with respect to the ordered pair (M,N) or simply
(M,N)-immanent. If T is not (M,N)-immanent, then T is
said to be transcendent with respect to the ordered pair (M,N)
or simply (M,N)-transcendent.

A necessary and sufficient condition for the relation S to
be multivalued, now follows [2]:

Theorem II.1. (Multivaluedness) In Fig. 1, the relation S
is multivalued if and only if the mapping T is transcendent
relative to (M,N).

An equivalent interpretation of this result is that S is
multivalued if and only if T is (M,N)-transcendent.

III. SHANNON’S THEOREM AND MULTIVALUEDNESS

A. Shannon’s Noisy-Channel Coding Theorem

First, we introduce the system setup, necessary terminology
and present a brief overview of Shannon’s noisy-channel
coding theorem. Following this, we show that the setup for
this theorem can be interpreted as a counter-cascaded systems
configuration introduced in the previous section.
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For this purpose, u ∈ U is an information carrying signal
(message) that is transmitted over the channel T to arrive at
the decoder N in Fig. 1. The decoder then decodes the channel
output signal v ∈ V to produce a signal (message) x ∈ X that
approximates the originally transmitted signal u. This means
that the encoder together with the channel input processing,
the physical channel and the channel output processing, up
to but not including the decoder, form the channel T . Since
encoders and decoders do not satisfy the linear superposition
principle, they are necessarily nonlinear and hence T and N
are both nonlinear operators. Here, M represents the identity
operator I (i.e. in Fig. 1, W = U ) which is a linear operator.

The above setup amounts to S (in Fig. 1) representing the
implicit relation that relates the original unencoded signal u
to the decoded signal x.

In the context of Shannon’s work [4], let 0 < Pe < 1
represent the channel probability of error, i.e. the probability
that bit errors occur during the transmission of the signal u.
By reliable transmission is meant that, for an arbitrary value
of Pe specified, there exists an encoding scheme E which
guarantees that the decoded signal x recovers the transmitted
u to within an arbitrarily small end-to-end probability of error.
Finally, channel capacity refers to the maximum information
transmission rate at which reliable transmission of information
can be achieved over the channel T , while the entropy rate
of a signal source refers to its mean information transmission
rate and we can now state Shannon’s theorem [4]:

Theorem III.1. (Shannon Noisy-Channel Coding Theorem)
Consider a noisy channel T with capacity C and a fixed
channel signal-to-noise ratio. In Fig. 1, let U be a signal
space consisting of signals generated by a source that has
an entropy rate of H .

For an arbitrary but fixed channel probability of error Pe,
if H < C then reliable transmission is achieved.

Conversely, if H > C then reliable transmission is un-
achievable.

Consequently, at least theoretically, it is possible to transmit
information over a channel almost without error at any entropy
rate H strictly less than C. Typically, encoders that yield lower
end-to-end error probabilities operate on longer sequences of
signal samples. Furthermore, in order to maintain a specified
end-to-end error probability, a decrease in signal-to-noise ratio
necessarily requires an encoder that operates on even longer
sequences of signal samples, increasing end-to-end latency.

On the other hand, for entropy rates H strictly greater than
C the end-to-end error probability cannot be made arbitrarily
small, irrespective of the encoding scheme that is used. Fur-
thermore, the strictly positive lower bound on the achievable
end-to-end error probability increases as the violation H −C
increases or the channel signal-to-noise ratio decreases.

B. Multivaluedness Interpretation of Shannon’s Theorem

For the case H < C, Theorem III.1 implies that there exists
an encoding scheme such that the output of the source can be
transmitted over the channel T with an arbitrary small error
probability by selecting the appropriate encoder E. In fact, for
a fixed source entropy rate and signal-to-noise ratio, reliable

transmission guarantees that there always exists a sequence
(En)

∞
n=1 of encoding schemes with encoder En operating on

a sequence of Nn consecutive signal samples. Furthermore,
their associated error probabilities Pe,n := Pe(En) form a
monotonically decreasing sequence that converges to zero.
Consequently, for the asymptotic encoder limn→∞En , the
associated relation S (in Fig. 1) is single-valued. Then, from
Theorem II.1, it immediately follows that the channel T is
(I,N)-immanent.

For the case H > C, discounting the statistically in-
significant event of immanence resulting as a consequence of
the channel-decoder combination N ◦ T forming some fixed
permutation, the occurrence of an error means that two or
more decoded signals are associated with some input signal
u. It follows immediately that the relation S is multivalued and
therefore Theorem II.1 yields the (I,N)-transcendence of T .

The preceding reasoning leads to the conclusion that the
systems setup for studying information transmission is an
instance of the counter-cascaded systems framework where
multivaluedness adversely affects system performance [3].
Furthermore, for this class of systems, perfect data recovery
after transmission is synonymous with single-valuedness of
S. It is important to point out that, as a particular instance of
this framework, the rigorous proof of Shannon’s noisy-channel
theorem’s first performed in [5], is an indication of the inherent
complexity of the analysis of counter-cascaded systems.

IV. CONCLUSION

In this brief, we showed that Shannon’s noisy-channel
coding theorem describes conditions for an information trans-
mission system, viewed as a counter-cascaded system config-
uration, which is single-valued for sub-capacity transmission
rates and multivalued for super-capacity transmission rates.
The class of systems and problems considered in Shannon’s
work, is of an ever increasing importance as emphasized by
the Industrial Revolution 4.0.

Currently, work is in progress to extend the results of [2] to
scenarios where both measurement noise and exogenous noise
propagating through the system will be accounted for. Once
this undertaking has been completed, this would enable one
to also consider the individual encoders En as well.
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