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Abstract

We present a direct solution to the problem of constructing a stochastic matrix with prescribed eigenspectrum, widely referred

to as the stochastic inverse eigenvalue problem. The solution uses Markov state disaggregation to construct a Markov chain

with stochastic transition matrix possessing the required eigenspectrum. Existing solutions that follow the same approach

are limited to constructing matrices with real-valued eigenspectra only. The novel solution directly constructs matrices with

complex-valued eigenspectra by applying a new disaggregation technique in tandem with a technique from a previous solution.

Due to this generalization, the novel solution is able to successfully model physical systems from a larger family. Furthermore, the

novel solution constructs the matrix in a finite and predetermined number of iterations, and without numerical approximation.

The solution is demonstrated by deriving an expression for a set of 4 x 4 stochastic matrices sharing the same prescribed

complex-valued eigenspectrum and indexed by a real parameter.
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Abstract

We present a direct solution to the problem of constructing a stochastic ma-
trix with prescribed eigenspectrum, widely referred to as the stochastic inverse
eigenvalue problem. The solution uses Markov state disaggregation to con-
struct a Markov chain with stochastic transition matrix possessing the required
eigenspectrum. Existing solutions that follow the same approach are limited
to constructing matrices with real-valued eigenspectra only. The novel solu-
tion directly constructs matrices with complex-valued eigenspectra by applying
a new disaggregation technique in tandem with a technique from a previous
solution. Due to this generalization, the novel solution is able to successfully
model physical systems from a larger family. Furthermore, the novel solution
constructs the matrix in a finite and predetermined number of iterations, and
without numerical approximation. The solution is demonstrated by deriving an
expression for a set of 4 × 4 stochastic matrices sharing the same prescribed
complex-valued eigenspectrum and indexed by a real parameter.
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1. Introduction

The inverse eigenvalue problem (IEP) requires the construction of a matrix
with a prescribed eigenspectrum [1, 2]. Solutions to this problem have important
applications in parameter estimation and the modeling of systems on the basis
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of their observed or expected behavior. In particular, these solutions are utilized
when a matrix is to be constructed as a model of a system from information
regarding the system’s frequency spectrum [3].

In practical applications, constraints regarding the feasibility of a physical
system often dictate a certain structure for the matrix to be constructed [2].
Certain systems encountered in practice require the construction of stochastic
matrices – i.e., matrices with nonnegative entries and with columns1 that sum to
unity. We refer to the IEP with the additional constraint of producing a stochas-
tic matrix as the stochastic IEP, or StIEP. Solutions to this problem are used
to construct Markov chain models when no information is available regarding
the mechanism that drives transitions between states [4, 5], as well as models of
ergodic dynamical systems with prescribed invariant density and spectral char-
acteristics (this is a more general formulation of the inverse Frobenius-Perron
problem [3, 6, 7, 8]).

The StIEP is nonlinear in the sense that the sum of two stochastic matrices
is not stochastic. Furthermore, any nonnegative matrix with positive maximal
eigenvalue and eigenvector can be mapped to a stochastic matrix using a scalar-
weighted similarity transformation [9]. Since similar matrices share the same
eigenspectrum, a generic solution to the IEP for nonnegative matrices, or the
nonnegative IEP (NIEP), also qualifies as a solution to the StIEP [2].

Iterative methods aimed at solving the StIEP and NIEP numerically have
appeared in the literature, with notable examples including [5, 10, 11, 12, 13, 14].
These methods rely on numerical convergence to a matrix with the required
eigenspectrum. However, the StIEP is an ill-posed problem and the performance
of numerical methods that rely on the minimization of a cost function and
numerical convergence depends strongly on the distribution of the eigenvalues
prescribed for the matrix [14]. Solutions that do not rely on such methods are
of interest from both a practical and theoretical perspective. Ciampolini et
al. [4] and Lin [15] proposed solutions to the StIEP that directly construct a
stochastic matrix with prescribed real-valued eigenspectrum. Unlike numerical
methods that minimize a cost function, the matrix is constructed after a finite
and predetermined number of iterations.

The StIEP solution presented in [4] uses Markov state disaggregation to
construct, over a number of rounds, a discrete-time and homogenous Markov
chain with stochastic transition matrix possessing the prescribed real-valued
eigenspectrum. During each round, the Markov chain gains an additional state
and its transition matrix gains an additional row and column. By using the
disaggregation technique specified in [4], one of the prescribed eigenvalues is
inserted into the eigenspectrum of the transition matrix during each round,
while simultaneously leaving its existing eigenvalues unaltered. However, the
practical applicability of this solution is restricted by its inability to construct

1We follow the column-stochastic convention in our work. The column- and row-stochastic
conventions are equivalent, and assuming any particular convention does not affect the in-
tegrity of the theory or results presented.
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stochastic matrices with complex-valued eigenspectra. The same observation
holds for the solution proposed by Lin [15].

In this paper we generalize the StIEP solution proposed by Ciampolini et al.
in [4]. We propose a novel disaggregation technique that causes the transition
matrix to gain two rows and columns during each round. This technique permits
the insertion of a complex conjugate pair of eigenvalues from the set C \R into
the eigenspectrum of the transition matrix during each round. By using this
disaggregation technique in tandem with the technique specified in [4], a solution
to the StIEP for complex -valued eigenspectra is realized.

The proposed solution to the StIEP has broader applicability than previous
solutions limited to constructing matrices with real-valued eigenspectra, and
may be used to successfully model physical systems from a larger family. In
addition, the proposed solution constructs the stochastic matrix directly and in
an explicit fashion. This property accommodates the construction of sets con-
taining stochastic matrices that share the same eigenspectrum; we demonstrate
this in section 5.1 by deriving an expression for a set of 4 × 4 stochastic ma-
trices indexed by a real parameter. The solution also does not suffer from the
slow (and in some cases, problematic) convergence of the numerical methods
described earlier. Instead, a stochastic matrix is constructed after a finite and
predetermined number of iterations, and without numerical approximation.

The remainder of this paper is set out as follows. A brief literature review is
provided in section 2. In section 3, the Markov state disaggregation process is
described, and both the original and novel disaggregation techniques are defined.
Theorems regarding properties of the disaggregation techniques that are relevant
towards solving the StIEP are stated in the same section. An algorithm for
solving the StIEP using the two disaggregation techniques is presented in section
4. The algorithm is demonstrated by solving two examples of the StIEP in
section 5. Several conclusions are drawn in section 6.

2. Literature review

The StIEP and NIEP are associated with work aimed at deriving neces-
sary and sufficient conditions for a specified list of numbers to be realizable
as the eigenvalues of a stochastic or nonnegative matrix. Theorems regarding
necessary and sufficient conditions have appeared in the literature [16, 17], but
the corresponding proofs are generally not constructive in nature [18]. Hence,
these theorems cannot be used to solve the IEP in a direct manner. When used
to solve the IEP, those theorems that were proved in a constructive manner
are generally limited to producing matrices of small dimensions. The work of
Suleimanova [19] and Perfect [20] are exceptions in this regard; however, the
theory presented in these papers is restricted to real-valued eigenspectra.

An alternative approach to solving the StIEP involves the use of numerical
methods to convergence to a matrix with the required eigenspectrum. One class
of method aims to minimize a predefined cost function by using optimization
methods to perform a descent on the underlying matrix manifolds (refer to [14]).
The first method of this class was developed by Chu and Driessel [10] to solve
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the NIEP for symmetric matrices. This method was later generalized by Chu
and Guo [11] to solve the NIEP for matrices that are not necessarily symmet-
ric. Whereas the authors reported promising numerical results, problems with
regards to the methods’ convergence were observed.

More recently, Zhao et al. [5] proposed a numerical method from the same
class as [10] and [11]. This method solves the StIEP using a conjugate gradient
descent algorithm, where minimization is carried out over the product manifold
of the orthogonal matrices and matrices with rows on the unit sphere. Whereas
numerical results presented by the authors demonstrate the method’s effective-
ness, the solution depends on an existence theorem for isospectral stochastic
matrices that has not been proved thus far (as reported in [14]). Steidl and
Winkler [14] extended the method proposed in [5], thereby addressing this short-
coming. Additional methods for solving the NIEP and StIEP and that belong
to the same class appeared in [12] and [13], respectively.

Whereas considerable progress has been made regarding numerical methods
for solving the StIEP, we observe that methods relying on the minimization of
a cost function and numerical convergence depend strongly on the distribution
of the eigenvalues prescribed for the matrix [14].

3. Markov state disaggregation

We refer to the process whereby one or more states of a discrete-time and ho-
mogenous Markov chain are disaggregated (or divided) into multiple new states
as Markov state disaggregation [4]. This process generates a longer Markov
chain with larger transition matrix. The probabilities of transitions to and from
the new states of the Markov chain are selected in a systematic manner, thereby
selecting certain characteristics of the larger transition matrix.

A stochastic matrix may be constructed by disaggregating the states of a
Markov chain over several rounds, starting with the elementary single-state
Markov chain. During each round, a particular disaggregation technique is ap-
plied to divide one of the Markov chain’s states; we use the term disaggregation
technique when referring to a particular method for dividing any single state of
a Markov chain, including the manner in which the relevant transition probabil-
ities are selected. After completing a number of rounds, the transition matrix
of the Markov chain (i.e., a stochastic matrix) is produced as output.

Within the context of the StIEP, we are interested in the family of disaggre-
gation techniques that cause the transition matrix of the Markov chain obtained
after one round of disaggregation to (i) inherit the eigenvalues of the transition
matrix belonging to the Markov chain at the start of the round, and (ii) gain one
or more additional eigenvalues that may be prescribed by appropriately selecting
the transition probabilities associated with the new states. These disaggrega-
tion techniques may be mathematically formulated as mappings between the
transition matrices at the start and end of each round. These mappings have
parameters that are selected to specify the eigenvalue(s) that are inserted into
the eigenspectrum of the transition matrix. Disaggregation techniques from
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this family are used to solve the StIEP by iteratively selecting and inserting the
prescribed eigenvalues into the eigenspectrum of the initial transition matrix.

Ciampolini et al. [4] proposed a disaggregation technique that permits the
insertion of a single real eigenvalue into the eigenspectrum of the transition
matrix during each round. We present this technique in the following subsec-
tion. Thereafter, we present a novel disaggregation technique that permits the
insertion of a complex conjugate pair of eigenvalues from the set C \R (i.e., the
strictly complex eigenvalues) into the eigenspectrum of the transition matrix
during each round. This novel technique complements the technique proposed
in [4]; by using both disaggregation techniques in tandem, the StIEP may be
solved for prescribed complex -valued eigenspectra2.

As a point of departure for defining the disaggregation techniques, let the
sequence X1, X2, . . . of random variables denote a discrete-time and homogenous
Markov chain, referred to as the original Markov chain. Let this Markov chain
have states s1, s2, . . . , sN and transition probabilities defined by

pi,j , Pr(Xt+1 = si|Xt = sj). (1)

We define the transition matrix of the original Markov chain as P , [pi,j ]
N
i,j=1;

this matrix may be expressed as

P =

 P1,1 v1,k P1,2

wT
k,1 pk,k wT

k,2

P2,1 v2,k P2,2

 . (2)

Since the transition matrix has at least one eigenvalue of unity, there exists at
least one stationary probability vector π = [π1, π2, . . . , πN ]T satisfying Pπ = π;
we refer to the elements of any such vector as stationary state probabilities.

3.1. Original disaggregation technique

Ciampolini et al. [4] proposed a disaggregation technique that divides a
particular state of a Markov chain into two states. We refer to this as the orig-
inal disaggregation technique and to its application as original disaggregation.
Suppose that original disaggregation of state sk in the original Markov chain is
to be performed, with the requirement of inserting a real eigenvalue λ into the
eigenspectrum of the transition matrix. This produces a longer Markov chain
with states s′1, s

′
2, . . . , s

′
N+1, where s′k and s′k+1 denote the new states obtained

by dividing state sk, and

s′i =

{
si, if i < k,

si−1, if i > k + 1.
(3)

2This statement follows from the observation that the eigenvalues of any matrix with real
elements are the roots of a characteristic polynomial in one variable and with real coefficients;
thus, the strictly complex eigenvalues of these matrices appear in complex conjugate pairs.
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Original disaggregation is performed by replacing element pk,k > 0 of the orig-
inal Markov chain’s transition matrix in (2) by a matrix T and selecting the
remaining transition matrix elements in a systematic manner, thus obtaining a
larger transition matrix P′. Let PN denote the set of N×N stochastic matrices.
The larger transition matrix is obtained by applying the map T : PN → PN+1

to the original transition matrix, such that

P′ = T (P, λ, α, k) (4)

and

P′ =


P1,1 v1,k v1,k P1,2

αwT
k,1 αwT

k,2

(1− α)wT
k,1

T
(1− α)wT

k,2

P2,1 v2,k v2,k P2,2

 . (5)

In the latter expression, T , T (pk,k, λ, α) is defined according to three real-
valued scalar parameters. Parameter λ denotes the eigenvalue to be inserted
into the eigenspectrum of the transition matrix and α is selected in order to
choose the stationary probabilities of the new states obtained by disaggregating
state sk. The operator T (pk,k, λ, α) is defined as

T (pk,k, λ, α) ,
pk,k
hmax

(
α α− hmin

hmax − α 1− α

)
, (6)

where
hmax ,

pk,k
pk,k + λ

(7)

and

hmin ,
λ

pk,k + λ
. (8)

To maintain a valid (i.e., stochastic) transition matrix, the selected parameters
λ and α must satisfy

|λ| ≤ pk,k (9)

and
max{hmin, 0} ≤ α ≤ min{hmax, 1}. (10)

The original disaggregation technique has the following properties, as proved3

in [4]. We assume in each case that original disaggregation of state sk is carried
out in the original Markov chain, thereby producing the transition matrix P′.

Theorem 3.1. The transition matrix P′ inherits the eigenvalues of P, and
gains the additional real eigenvalue λ.

3Reference [4] follows the row-stochastic convention. By transposing the relevant matrices
in each proof of [4], the corresponding proof is obtained for the column-stochastic convention
followed in this paper.
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Theorem 3.1 implies that original disaggregation successfully inserts the se-
lected real eigenvalue λ into the eigenspectrum of the Markov chain’s transition
matrix during each round of disaggregation, while leaving the existing eigenval-
ues of the matrix unaltered.

Theorem 3.2. The Markov chain obtained after one round of original disaggre-
gation possesses a stationary probability vector π′ = [π′1, π

′
2, . . . , π

′
N+1]T that is

associated with a corresponding stationary probability vector π = [π1, π2, . . . , πN ]T

of the original Markov chain. The elements of these vectors are related according
to

π′i =


πi, if i < k,

βπk, if i = k,

(1− β)πk, if i = k + 1,

πi−1, if i > k + 1,

(11)

where

β ,
α(1 + λ)− λ

1− λ
. (12)

The property described in Theorem 3.2 is particularly useful when attention
is restricted to irreducible and aperiodic Markov chains, which possess a unique
stationary probability vector [21]. In this case, there exists some freedom to
select the stationary probabilities of the new states obtained by disaggregating
state sk. This is achieved by selecting an appropriate value for α, thereby
choosing β according to (12).

The original disaggregation technique only permits insertion of a real eigen-
value into the eigenspectrum of the Markov chain’s transition matrix during
each round. Hence, the practical applicability of solutions to the StIEP that
rely solely on this disaggregation technique is limited. A complementary dis-
aggregation technique that permits insertion of strictly complex eigenvalues is
proposed next.

3.2. Novel disaggregation technique

The new disaggregation technique proposed in this subsection divides a par-
ticular state of a Markov chain into three states. We refer to this as the novel
disaggregation technique and to its application as novel disaggregation. Suppose
that novel disaggregation of state sk in the original Markov chain is to be per-
formed, with the requirement of inserting a pair of strictly complex eigenvalues
λ and λ∗ into the eigenspectrum of the transition matrix. This produces a longer
Markov chain with states s′1, s

′
2, . . . , s

′
N+2, where s′k, s′k+1 and s′k+2 denote the

new states obtained by dividing state sk, and

s′i =

{
si, if i < k,

si−2, if i > k + 2.
(13)

Novel disaggregation is performed by replacing element pk,k > 0 of the original
Markov chain’s transition matrix in (2) by a matrix U and selecting the remain-
ing transition matrix elements in a systematic manner, thus obtaining a larger
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transition matrix P′. The larger transition matrix is obtained by applying the
map U : PN → PN+2 to the original transition matrix, such that

P′ = U(P, r, θ, k) (14)

and

P′ =


P1,1 v1,k v1,k v1,k P1,2

wT
k,1/3 wT

k,2/3

wT
k,1/3 U wT

k,2/3

wT
k,1/3 wT

k,2/3

P2,1 v2,k v2,k v2,k P2,2

 . (15)

In the latter expression, U , U(pk,k, r, θ) is defined according to three real-

valued scalar parameters, where λ , reiθ denotes one of the eigenvalues of the
complex conjugate pair to be inserted into the eigenspectrum of the transition
matrix. The operator U(pk,k, r, θ) was derived by generalizing the approach
followed in [22], and is defined as

U(pk,k, r, θ) ,

 η1 η2 η3
η3 η1 η2
η2 η3 η1

 , (16)

where

η1 , η1(pk,k, r, θ) =
pk,k

3
+

2r

3
cos θ, (17)

η2 , η2(pk,k, r, θ) =
pk,k

3
− r

3
(cos θ −

√
3 sin θ), (18)

η3 , η3(pk,k, r, θ) =
pk,k

3
− r

3
(cos θ +

√
3 sin θ). (19)

The region of permissible values for λ is determined by first observing that (15) is
required to be a valid transition matrix (i.e., stochastic). Since η1+η2+η3 = pk,k
by definition, each column of P′ sums to unity. Thus, to ensure a stochastic
matrix P′, the elements of U(pk,k, r, θ) are required to be nonnegative. This
holds if

Re(λ) ≥ −pk,k
2

(20)

and
1√
3

(Re(λ)− pk,k) ≤ Im(λ) ≤ − 1√
3

(Re(λ)− pk,k). (21)

Second, we require that λ must be strictly complex (i.e., not real-valued); this
implies that

θ 6= kπ, k ∈ Z. (22)

The preceding expressions define the region of permissible values for λ = reiθ

when applying the novel disaggregation technique. This region coincides with
the shaded triangle in the complex plane of Fig. 1, with the real line excluded.

The following theorems describe two properties of the novel disaggregation
technique. We assume in each case that novel disaggregation of state sk is carried
out in the original Markov chain, thereby producing the transition matrix P′.

8



Figure 1: Complex plane with shaded region representing the permissible values for eigenvalue
λ = reiθ when applying the novel disaggregation technique.

Theorem 3.3. The transition matrix P′ inherits the eigenvalues of P, and
gains the complex conjugate pair of eigenvalues λ , reiθ and λ∗ , re−iθ.

Proof. The theorem is proved in Appendix A.

Theorem 3.3 implies that novel disaggregation successfully inserts a selected
pair of strictly complex eigenvalues (i.e., a complex conjugate pair) into the
eigenspectrum of the Markov chain’s transition matrix during each round of
disaggregation, while leaving the existing eigenvalues of the matrix unaltered.
In particular, by selecting parameters r and θ, both λ = reiθ and its complex
conjugate λ∗ = re−iθ are inserted as eigenvalues (provided λ is within the region
of permissible values illustrated in Fig. 1).

Theorem 3.4. The Markov chain obtained after one round of novel disaggrega-
tion possesses a stationary probability vector π′ = [π′1, π

′
2, . . . , π

′
N+2]T that is as-

sociated with a corresponding stationary probability vector π = [π1, π2, . . . , πN ]T

of the original Markov chain. The elements of these vectors are related according
to

π′i =


πi, if i < k,

πk/3, if i = k, k + 1, k + 2,

πi−2, if i > k + 2.

(23)

Proof. The theorem is proved in Appendix B.
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Whereas original disaggregation affords a measure of freedom to select the
stationary probabilities of the new states obtained by disaggregating state sk,
Theorem 3.4 implies that novel disaggregation affords no such freedom. The
new states are always equiprobable.

4. Solution to the stochastic inverse eigenvalue problem

The disaggregation techniques defined in the previous section may be applied
in tandem to solve the StIEP. Starting with the elementary single-state Markov
chain4, the techniques are used to insert the prescribed eigenvalues into the
eigenspectrum of the Markov chain’s transition matrix over several rounds. We
proceed by developing an algorithm for solving the StIEP in this fashion.

There exist multiple degrees of freedom when applying the two disaggrega-
tion techniques to solve the StIEP. These are (i) the order in which the pre-
scribed eigenvalues are inserted into the eigenspectrum of the transition matrix,
(ii) the state selected for disaggregation during each round, and (iii) during
those rounds where original disaggregation is performed, a measure of freedom
to select the stationary probabilities of the two new states obtained through
disaggregation. Simultaneously, there exist multiple constraints with regards to
the parameter values that may be selected during each round of disaggregation.
The parameters of the original disaggregation technique are constrained accord-
ing to (9) and (10), and the parameters of the novel disaggregation technique
are constrained according to (20), (21) and (22) (the region of permissible values
is plotted in Fig. 1).

Equations (9), (20) and (21) imply that the disaggregation of a state with
a larger self-transition probability during any round permits the insertion of a
real eigenvalue with larger modulus or a pair of complex conjugate eigenvalues
with larger modulus into the eigenspectrum of the transition matrix. This
property, together with the observation that the self-transition probabilities of
the Markov chain’s states become smaller as disaggregation proceeds, motivates
the following guideline: Eigenvalues are to be inserted into the eigenspectrum
of the Markov chain’s transition matrix in nonincreasing order of their modulus
when solving the StIEP. The intention behind this guideline is to reduce the
likelihood of a scenario where the prescribed eigenspectrum cannot be realized
due to incompatible values selected for parameter α during earlier rounds where
original disaggregation is performed (this parameter determines, in part, the new
states’ self-transition probabilities).

The guideline presented above does not determine which state to select for
disaggregation during each round. Whereas one may select any state with self-
transition probability large enough to accommodate the eigenvalue(s) to be in-
serted during each round, in the proposed algorithm we select the state with the
largest self-transition probability for disaggregation. In addition, the guideline

4This Markov chain has a transition matrix P = [1] with single eigenvalue equal to unity.
Also, any stochastic matrix has at least one unity eigenvalue due to it being stochastic.
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does not determine how the stationary probabilities of the new states obtained
during each round of original disaggregation are to be selected (i.e., the selection
of a value for parameter α). Selecting a value of α = 1/2 is permissible in any
round, regardless of the eigenvalue λ selected for insertion. However, the values
chosen for α during earlier rounds may affect whether certain of the prescribed
eigenvalues can be successfully inserted into the eigenspectrum of the transi-
tion matrix during future rounds. If required, parameter α may be selected to
preserve states with larger self-transition probabilities, thereby accommodating
the insertion of eigenvalues with large modulus during subsequent rounds. Al-
ternatively, α may be considered a free parameter and remain unspecified. By
following this approach, an expression may be derived for a set of stochastic ma-
trices that share the same eigenspectrum, provided that (10) is satisfied during
each round. We illustrate this approach in the example of section 5.1.

We develop Algorithm 1 for solving the StIEP according to the above obser-
vations. Let λ1, λ2, . . . , λM denote the eigenspectrum prescribed for the stochas-
tic matrix; we assume that one of the eigenvalues equals unity, and that the
prescription of a strictly complex eigenvalue implies the prescription of its com-
plex conjugate. To simplify the presentation of the algorithm, let λ̃1, λ̃2, . . . , λ̃M̃
denote the eigenvalues that remain after removing one of the unity eigenvalues
from the prescribed eigenspectrum, and removing one of the strictly complex
eigenvalues from each of the complex conjugate eigenvalue pairs prescribed.
These remaining eigenvalues are indexed in nonincreasing order of their modu-
lus; i.e., i < j =⇒ |λ̃i| ≥ |λ̃j |. In addition, the notation P(m) is used to denote
the Markov chain’s transition matrix at the end of round m, where m ≥ 0.

5. Examples

We apply Algorithm 1 to solve two examples of the StIEP. Both examples
prescribe complex-valued eigenspectra.

5.1. Example 1

We solve the StIEP of deriving an expression for a set of 4×4 stochastic ma-
trices with eigenspectrum λ1 = 1, λ2 = 0.6, λ3 = 0.5ei2π/3 and λ4 = 0.5e−i2π/3.
After removing the unity eigenvalue λ1 and eigenvalue λ4 from the prescribed
complex conjugate pair (λ3, λ4), the eigenvalues λ̃1 = 0.6 and λ̃2 = 0.5ei2π/3

remain.
The elementary single-state Markov chain, which possesses the transition

matrix P(0) = [1] with unity eigenvalue, is used as the starting point. Orig-
inal disaggregation of state s1 is performed during the first round to insert
the real eigenvalue λ̃1 = 0.6 into the eigenspectrum of the transition matrix.
The parameter α is not specified during this round. The transition matrix
P(1) = T (P(0), λ̃1, α, k) is produced at the end of the first round, where k = 1,

P(1) =
1

10

(
16α 16α− 6

10− 16α 16− 16α

)
(24)
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Algorithm 1 Solution of the StIEP using Markov state disaggregation.

1: Input: Remaining eigenvalues λ̃1, λ̃2, . . . , λ̃M̃ . Refer to section 4.
2: P(0) ← [1]; . Transition matrix of single-state chain.

3: for m← 1, 2, . . . , M̃ do . Perform M̃ disaggregation rounds.
4: k ← arg max(diag(P(m−1))); . Index of state to disaggregate.

5: if λ̃m ∈ R then . Original disaggregation to be performed?
6: if |λ̃m| > pk,k then
7: return; . Eigenspectrum cannot be realized.
8: end if
9: Select value for α satisfying (10). . Refer to section 4.

10: P(m) ← T (P(m−1), λ̃m, α, k); . Apply original disaggregation.
11: end if
12: if λ̃m ∈ C \ R then . Novel disaggregation to be performed?
13: if λ , λ̃m does not satisfy (20) and (21) then
14: return; . Eigenspectrum cannot be realized.
15: end if
16: r ← |λ̃m|;
17: θ ← arg(λ̃m);
18: P(m) ← U(P(m−1), r, θ, k); . Apply novel disaggregation.
19: end if
20: end for
21: return P(M̃) . Column stochastic matrix with prescribed eigenspectrum.

12



and
6

16
≤ α ≤ 10

16
. (25)

During second round, the eigenvalue λ̃2 = 0.5ei2π/3 and its complex conjugate
are inserted into the eigenspectrum of the transition matrix using the novel dis-
aggregation technique. State s′2 is selected5 for disaggregation with parameters
r = 0.5 and θ = 2π/3. The transition matrix P(2) = U(P(1), r, θ, k) is produced
at the end of the second round, where k = 2 and

P(2) =
1

30


48α 48α− 18 48α− 18 48α− 18

10− 16α 11− 16α 26− 16α 11− 16α
10− 16α 11− 16α 11− 16α 26− 16α
10− 16α 26− 16α 11− 16α 11− 16α

 . (26)

Equations (25) and (26) define a set of stochastic matrices with the prescribed
eigenspectrum.

5.2. Example 2

We solve the StIEP of constructing a 5×5 stochastic matrix with eigenspec-
trum λ1 = 1, λ2 = 0.8, λ3 = 0.3i, λ4 = −0.3i and λ5 = 0.1. After removing the
unity eigenvalue λ1 and eigenvalue λ4 from the prescribed complex conjugate
pair (λ3, λ4), the eigenvalues λ̃1 = 0.8, λ̃2 = 0.3i and λ̃3 = 0.1 remain.

The elementary single-state Markov chain with transition matrix P(0) =
[1] is again used as the starting point. Original disaggregation of state s1 is
performed during the first round to insert the real eigenvalue λ̃1 = 0.8 into
the eigenspectrum of the transition matrix. The parameter α = 0.5 is selected
during this round. The transition matrix P(1) = T (P(0), λ̃1, α, k) is produced
at the end of the first round, where k = 1 and

P(1) =
1

10

(
9 1
1 9

)
. (27)

During the second round, the eigenvalue λ̃2 = 0.3i and its complex conjugate
are inserted into the eigenspectrum of the transition matrix using the novel
disaggregation technique. State s′2 is selected for disaggregation with parameters
r = 0.3 and θ = π/2. The transition matrix P(2) = U(P(1), r, θ, k) is produced
at the end of the second round, where k = 2 and

P(2) =
1

30


27 3 3 3

1 9 9 +
√

27 9−
√

27

1 9−
√

27 9 9 +
√

27

1 9 +
√

27 9−
√

27 9

 . (28)

5Strict application of Algorithm 1 will result in state s′2 being selected for disaggregation
only if 6/16 ≤ α < 8/16; however, the final solution remains valid over the original range of
parameter values specified in (25).
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During the third round, the eigenvalue λ̃3 = 0.1 is inserted into the eigenspec-
trum of the transition matrix using the original disaggregation technique. State
s′′1 is selected for disaggregation with parameter α = 0.6. The transition matrix
P(3) = T (P(2), λ̃3, α, k) is produced at the end of the third round, where k = 1
and

P(3) =
1

300


180 150 18 18 18
90 120 12 12 12

10 10 90 90 + 10
√

27 90− 10
√

27

10 10 90− 10
√

27 90 90 + 10
√

27

10 10 90 + 10
√

27 90− 10
√

27 90

 . (29)

Matrix P(3) is stochastic and possesses the prescribed eigenspectrum.

6. Conclusions

The novel disaggregation technique proposed in this paper generalizes the
original technique of Ciampolini et al. [4] for inserting real eigenvalues into
the eigenspectrum of a Markov chain’s transition matrix. Specifically, it per-
mits the insertion of complex conjugate pairs of eigenvalues from the set C \ R
into the eigenspectrum of the transition matrix while leaving its existing eigen-
values unaltered. An algorithm that uses these techniques in tandem to solve
the StIEP for complex-valued eigenspectra was proposed. This algorithm was
demonstrated by solving two examples of the StIEP that prescribe complex-
valued eigenspectra.

By generalizing the StIEP solution of [4] to complex-valued eigenspectra, the
solution proposed in this paper achieves broader applicability. The proposed so-
lution may be used to successfully model physical systems from a larger family.
An example of such an application is the modeling of ergodic one-dimensional
dynamical systems with multimodal power spectra [3, 6, 7, 8]. In this appli-
cation, the arguments of the eigenvalues belonging to the stochastic matrix
coincide with the angular center frequencies (in radians per sample) of the sys-
tem’s spectral modes. Using the proposed solution, a system with one or more
spectral modes having center frequencies in the interval 0 < |ωc| < π can be suc-
cessfully modeled. In contrast, previous StIEP solutions limited to constructing
matrices with real-valued eigenspectra can only be used to model those systems
having all spectral modes restricted to center frequencies satisfying ωc ∈ {0, π}.

The proposed solution solves the StIEP directly and explicitly. This property
accommodates the construction of sets containing stochastic matrices that share
the same eigenspectrum. In section 5.1, this was demonstrated by deriving an
expression for a set of 4×4 stochastic matrices sharing the same complex-valued
eigenspectrum and indexed by a real parameter. Furthermore, the solution does
not rely on numerical methods for minimizing a cost function. Due to the ill-
posed nature of the StIEP, these numerical methods generally suffer from slow
(and in some cases, problematic) convergence; refer to [14]. By constructing
the stochastic matrix in a finite and predetermined number of iterations, and
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without numerical approximation, the proposed method exhibits none of these
deficiencies.

Appendix A. Proof of Theorem 3.3

We first prove the theorem for novel disaggregation of the elementary single-
state Markov chain with transition matrix P = [1]. Thereafter, we complete the
proof by addressing novel disaggregation of the original Markov chain possessing
an N ×N transition matrix, where N > 1.

Appendix A.1. Elementary single-state Markov chain

Let P′ denote the transition matrix obtained after novel disaggregation of
the single-state Markov chain with parameters r and θ satisfying (20) to (22).
We prove that P′ inherits the unity eigenvalue λ1 from the original transition
matrix P and gains the additional eigenvalues λ2 = reiθ and λ3 = re−iθ.

Suppose that disaggregation is carried out as stated above. Equations 14 to
16 imply that P′ = U(1, r, θ), where

P′ =

 η1 η2 η3
η3 η1 η2
η2 η3 η1

 (A.1)

and ηq , ηq(1, r, θ) is defined for q ∈ {1, 2, 3} by (17) to (19). The eigenvalues of
P′ are the roots of its characteristic polynomial det(P′−µI). Let the second and
third rows of P′ − µI both be added to its first row, thereby yielding W1 − µI.
Equations (17) to (19) imply that η1 + η2 + η3 = 1; hence,

W1 =

 1 1− µ 1− µ
η3 η1 η2
η2 η3 η1

 . (A.2)

Next, let the first column of W1 − µI be subtracted from its second and third
columns, thereby yielding W2 − µI. It follows that

W2 =

 1 0 0
η3 η1 − η3 η2 − η3
η2 η3 − η2 η1 − η2

 . (A.3)

The determinant of P′−µI remains unchanged if a scalar multiple of any matrix
column (row) is added to any other column (row) [23]. This implies that

det(P′ − µI) = det(W2 − µI)

= (1− µ)((η1 − η3 − µ)(η1 − η2 − µ) + (η2 − η3)2). (A.4)

Substitution of (17) to (19) into the latter equation yields

det(P′ − µI) = (1− µ)(µ2 − 2rµ cos θ + r2)

= −(µ− λ1)(µ− λ2)(µ− λ3), (A.5)

where λ1 = 1 and λ2 = λ∗3 = reiθ.
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Appendix A.2. Markov chain with N ×N transition matrix, where N > 1

Let P = [pi,j ]
N
i,j=1 denote the transition matrix of the original Markov chain

prior to disaggregation. Without loss of generality6, let state sN be disaggre-
gated using the novel technique with parameters r and θ satisfying (20) to (22).
We prove that the transition matrix P′ obtained after disaggregation inher-
its the eigenspectrum λ1, λ2, . . . , λN of P, and gains the additional eigenvalues
λN+1 = reiθ and λN+2 = re−iθ.

Equations 14 to 16 imply that P′ = U(P, r, θ, k), where

P′ =



p1,1 . . . p1,N−1 p1,N p1,N p1,N
p2,1 . . . p2,N−1 p2,N p2,N p2,N

...
. . .

...
...

...
...

pN−1,1 . . . pN−1,N−1 pN−1,N pN−1,N pN−1,N
pN,1/3 . . . pN,N−1/3 η1 η2 η3
pN,1/3 . . . pN,N−1/3 η3 η1 η2
pN,1/3 . . . pN,N−1/3 η2 η3 η1


(A.6)

and ηq , ηq(pN,N , r, θ) is defined for q ∈ {1, 2, 3} by (17) to (19). The eigenval-
ues of P′ are the roots of its characteristic polynomial det(P′ − µI). Let rows
N+1 and N+2 of P′−µI both be added to row N of the same matrix, thereby
yielding W1−µI. Equations (17) to (19) imply that η1+η2+η3 = pN,N ; hence,

W1 =



p1,1 . . . p1,N−1 p1,N p1,N p1,N
p2,1 . . . p2,N−1 p2,N p2,N p2,N

...
. . .

...
...

...
pN−1,1 . . . pN−1,N−1 pN−1,N pN−1,N pN−1,N
pN,1 . . . pN,N−1 pN,N pN,N − µ pN,N − µ
pN,1/3 . . . pN,N−1/3 η3 η1 η2
pN,1/3 . . . pN,N−1/3 η2 η3 η1


. (A.7)

Next, let column N of W1 − µI be subtracted from columns N + 1 and N + 2
of the same matrix, thereby yielding W2 − µI. It follows that

W2 =

(
P 0
M N

)
, (A.8)

M =

(
pN,1/3 . . . pN,N−1/3 η3
pN,1/3 . . . pN,N−1/3 η2

)
(A.9)

and

N =

(
η1 − η3 η2 − η3
η3 − η2 η1 − η2

)
. (A.10)

6We motivate this claim by observing that the numbering of the Markov chain’s states are
arbitrary, and that the columns above and below matrix U (as well as the rows to the left
and right of matrix U) in (15) are modified in an identical fashion during disaggregation.
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The determinant of P′ − µI remains unchanged if a scalar multiple of any ma-
trix column (row) is added to any other column (row). Furthermore, since
the determinant of the block triangular matrix W2 − µI is the product of the
determinants of its diagonal blocks [23], it follows that

det(P′ − µI) = det(W2 − µI) = det(P− µI)det(N− µI). (A.11)

This expression implies that P′ inherits the eigenspectrum λ1, λ2, . . . , λN of P
and gains additional eigenvalues equal to the roots of det(N−µI). Substitution
of (17) to (19) into (A.10) yields

det(N− µI) = µ2 − 2rµ cos θ + r2

= (µ− λN+1)(µ− λN+2), (A.12)

where λN+1 = λ∗N+2 = reiθ.

Appendix B. Proof of Theorem 3.4

We first prove the theorem for novel disaggregation of the elementary single-
state Markov chain with transition matrix P = [1]. Thereafter, we complete the
proof by addressing novel disaggregation of the original Markov chain possessing
an N ×N transition matrix, where N > 1.

Appendix B.1. Elementary single-state Markov chain

The single-state Markov chain possesses the stationary probability vector
π = [1]. We prove that novel disaggregation of this Markov chain, with param-
eters r and θ satisfying (20) to (22), produces a Markov chain with transition
matrix P′ and corresponding stationary probability vector π′ = [1/3, 1/3, 1/3]T .

Suppose that disaggregation is carried out as stated above. Equations 14 and
(15) imply that P′ = U(1, r, θ), where P′ is given by (A.1) and ηq , ηq(1, r, θ)
is defined for q ∈ {1, 2, 3} by (17) to (19). By observing that η1 +η2 +η3 = 1, it
is directly verified that P′π′ = π′. Hence, π′ is a stationary probability vector
of the Markov chain obtained after disaggregation.

Appendix B.2. Markov chain with N ×N transition matrix, where N > 1

Let P = [pi,j ]
N
i,j=1 denote the transition matrix of the original Markov chain

prior to disaggregation. This matrix may be expressed as

P =

(
P1,1 v1,N

wT
N,1 pN,N

)
. (B.1)

Furthermore, let π = [π1, π2, . . . , πN ]T denote any stationary probability vector
of the original Markov chain, such that Pπ = π. Without loss of generality7,

7We motivate this claim using the same argument presented in Appendix A.2.
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let state sN be disaggregated using the novel technique with parameters r and
θ satisfying (20) to (22), and let P′ denote the transition matrix of the Markov
chain obtained after disaggregation. Equation (15) implies that

P′ =


P1,1 v1,N v1,N v1,N

wT
N,1/3

wT
N,1/3 U

wT
N,1/3

 , (B.2)

where U , U(pN,N , r, θ) is given by (16).
We prove that

π′ , [π̃T , πN/3, πN/3, πN/3]T (B.3)

is a stationary probability vector of the Markov chain obtained after disaggre-
gation, where π̃ , [π1, π2, . . . , πN−1]T . Specifically, we prove that P′π′ = π′ by
showing that

[P1,1,v1,N ,v1,N ,v1,N ]π′ = π̃ (B.4)

and

[A,U]π′ =
1

3
[πN , πN , πN ]T , (B.5)

where A , [wN,1,wN,1,wN,1]T /3.
Since Pπ = π, (B.1) implies that [P1,1,v1,N ]π = P1,1π̃ + πNv1,N = π̃. It

follows that

[P1,1,v1,N ,v1,N ,v1,N ]π′ = P1,1π̃ + v1,N (πN/3 + πN/3 + πN/3)

= π̃, (B.6)

thereby yielding (B.4).
Next, we find that Pπ = π and (B.1) imply

wT
N,1π̃ + pN,NπN = πN , (B.7)

or wT
N,1π̃ = πN (1− pN,N ). Furthermore, (17) to (19) imply that the rows of U

sum to pN,N . It follows that

[A,U]π′ = Aπ̃ +
1

3
U[πN , πN , πN ]T

=
1− pN,N

3
[πN , πN , πN ]T +

pN,N
3

[πN , πN , πN ]T

=
1

3
[πN , πN , πN ]T , (B.8)

thereby yielding (B.5).
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