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Abstract

This paper addresses multiple-transmitter/receiver passive coherent location (PCL) system observing a single target with

possible bistatic range mismeasurements (outliers) caused by non-line-of-sight effects. It proposes a unified mathematical

framework for target location algorithms including spherical interpolation (SI), spherical intersection (SX), and nonlinearly

constrained least squares (NLCLS), generalizing them for scenarios with multiple transmitters and receivers. While algorithms

SI and SX employ closed-form expressions without considering all nonlinear relationships among the optimization variables,

the NLCLS takes these nonlinearities into account via constraints; its simplified and faster version, with promising results

and reduced computational burden, is also proposed. The Cramer-Rao lower bound is derived for this application. To handle

outliers in a 3D PCL system, the paper proposes a volumetric search method that divides the search region into cuboids to

select consistent bistatic range measurements, enabling accurate target location estimation. Additionally, the centroid of the

selected cuboid provides an alternative location estimate. Another consistent approach to measurement selection is introduced

for benchmarking, involving iterative removal of outliers based on comparisons of cost functions. Numerical experiments

demonstrate the robustness of the proposed cuboid-based methods, particularly in scenarios with increased bistatic range

mismeasurements.
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narios with multiple transmitters and receivers. While algorithms
SI and SX employ closed-form expressions without considering
all nonlinear relationships among the optimization variables, the
NLCLS takes these nonlinearities into account via constraints; its
simplified and faster version, with promising results and reduced
computational burden, is also proposed. The Cramer-Rao lower
bound is derived for this application. To handle outliers in a 3D
PCL system, the paper proposes a volumetric search method that
divides the search region into cuboids to select consistent bistatic
range measurements, enabling accurate target location estima-
tion. Additionally, the centroid of the selected cuboid provides
an alternative location estimate. Another consistent approach to
measurement selection is introduced for benchmarking, involving
iterative removal of outliers based on comparisons of cost
functions. Numerical experiments demonstrate the robustness
of the proposed cuboid-based methods, particularly in scenarios
with increased bistatic range mismeasurements.
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I. INTRODUCTION

PASSIVE coherent location systems, also known as passive

radars, have attracted great interest, for they do not

need exclusive transmitters (TXs) to detect, track, and locate

targets of interest [1], [2]. Using sensors under the designer’s

control, also referred to herein as receivers (RXs), to acquire

signals already available from TX systems, passive radar

systems do not generate spectral congestion. Examples of these

noncooperative illuminators of opportunity (IoO) signals are

analog frequency modulation audio broadcaster (FM), digital

audio broadcasting (DAB), digital video broadcaster-terrestrial

(DVB-T), automatic identification system satellite (AIS-S),

global positioning system (GPS), and mobile communication

system (2G, 3G, 4G, 5G and beyond) [3]–[7].

PCL algorithms usually rely on accurate estimates of the

bistatic range associated with each TX-RX pair. The bistatic
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range measurement can be obtained by multiplying the bistatic

target delay measurement by the propagation speed [1], [8].

In a simple bistatic scenario (one TX, one RX, and one

target), the bistatic target delay (the literature also refers to this

delay as time-difference-of-arrival (TDoA), propagation delay,

bistatic delay, time delay, etc.) represents the time difference

between the IoO signal, emitted by TX and collected by the

reference channel (RC) in the RX, and the target-reflected

signal acquired by the surveillance channel (SC) in the same

RX.

The authors in [1], [9]–[12] showed that bistatic range

measurements in a multistatic (i.e., with multiple TXs/RXs)

PCL scenario lead to accurate location estimations. In fact,

many different PCL investigations have been conducted based

on bistatic range measurements [10]–[21]. The literature, how-

ever, mainly deals with passive radar location solutions based

on bistatic ranges for multiple TXs and one RX or multiple

RXs and one TX. On the other hand, the work in [22] describes

a least square (LS) solution of a passive location system based

on time-sum-of-arrival (TSoA) measurements in a scenario of

multiple TXs and multiple RXs. TSoA represents the travel

time of the IoO signal emitted by the TX reflected in the

target and collected by the SC in the RX. Nevertheless, a

PCL formulation consisting of bistatic range measurements

associated with multiple TXs and RXs remains unexplored.

This work extends the formulation of PCL algorithms

using spherical interpolation (SI) and spherical intersection

(SX), previously derived with multiple TXs and one RX sce-

nario [12] as well as multiple RXs and one TX scenario [11],

to the general case of a multistatic geometry with multiple

TXs/RXs. We also propose the multiple TXs/RXs formula-

tion of the nonlinearly constrained least squares algorithm,

designed initially for multiple RXs and one TX [11], where

we use all constraints to improve the accuracy of the original

SI technique. In addition, the paper proposes a fast and sim-

plified scheme (S-NLCLS) with a single constraint. S-NLCLS

significantly reduces the computational load compared with

the original NLCLS algorithm, while achieving similar results

in terms of location accuracy. We also derive the Crámer-Rao

lower bound (CRLB) for benchmarking the multistatic PCL

location algorithms investigated herein.

Before obtaining bistatic measurements, one first needs

to detect the target, usually using thresholds in the cross-

correlation (CC) between the received RC and SC signals [1],

[23]. These detectors perform well when the RC has low

background noise and no external interference in the SC. More

advanced target detection procedures in [24]–[27] overcome



2

adverse effects like noisy RC and direct path interference

(DPI) in the SC. In a bistatic PCL scenario, the target echo

in the SC can also be masked by clutter echoes generated by

IoO signal reflections in dominated stationary objects (multi-

path zero-Doppler interference). Spatial and temporal adaptive

filtering algorithms can be used to reduce such clutter and

DPI interference [1], [28]–[33]. By using bistatic parameter-

based expectation–maximization (EM) algorithms [19], one

can jointly estimate target and clutter delays as well as

Doppler frequencies of the targets while also eliminating DPI

effects. We address herein the necessary modifications for the

formulation of location algorithms when one or more delay

measurements have not been detected.

However, we commonly find unreliable measurements, i.e.,

mismeasurements or outliers, among the bistatic range mea-

surements due to non-line-of-sight (NLoS) between the TX

and target or target and RX, or the presence of another target.

Outliers generated by the existence of another target are out

of the scope of this paper. Unlike clutter interference (zero-

Doppler detectable interference), the NLoS effect is inevitable

and could be masked in bistatic target measurements. NLoS

interference creates biased measurements due to the affected

blocked signal path, which becomes longer than usual [28].

Recent works [22], [34]–[36] have tackled mismeasure-

ments produced by NLoS effect in 2D passive elliptic location

systems with one target. The work in [22] proposes two LS

data-selective techniques. The first technique uses different

combinations of measurements to compare cost functions

and select consistent measurements. The second technique

follows ellipsoid parameterization to select data. The authors

in [34] used an augmented Lagrange programming neural

network (ALPNN) to balance the parameters in the traditional

LS formulation. The proposal in [35] suggests completing a

resistant outlier matrix that contains measurements rather than

using consistent data, using a constrained minimization loss

function. The authors in [36] proposed a robust estimator that

uses a differentiable error measure that overcomes the presence

of outliers. This paper proposes two techniques to overcome

outliers in 3D PCL systems.

Our first proposal is a region-based search algorithm that

selects consistent bistatic measurements and offers a direct

target location estimate. Our proposed technique splits the

location region into cuboids. The cuboid associated with most

measurements is considered to be the one that potentially con-

tains the target location and is therefore employed to separate

consistent data from mismeasurements. Moreover, the centroid

of the referred cuboid can be considered a new target estimate.

As seen in Section V, this proposed target location estimation

shows promising results in terms of accuracy. Our proposal

was motivated by the works in [37] and [38] that suggest

cuboid-based search algorithms that select consistent time-

difference-of-flight (TDoF)/time-of-flight (ToF) measurements

for acoustic sensor location. Considering that a region of

constant TDoF is a hyperboloid of two sheets with foci located

at two loudspeakers, the problem could be seen as selecting

the cuboid that intersects most hyperboloids associated with

the different pairs of loudspeakers. We extend this criterion

to PCL, where the selected cuboid intersects most ellipsoids
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Fig. 1. Geometry of a passive coherent location system.

associated with most target delay measurements collected from

the different TX/RX pairs.

For benchmarking, we also propose a selection method for

PCL that iteratively discards mismeasurements (one by one)

of a candidate list. A cost function determines the bistatic

measurement that must be discarded at each iteration. The

iterative process stops automatically when all the selected

bistatic measurement errors are below a predefined threshold.

We find similar approaches in [22], [39]–[41]. The works

in [39] and [22] select TDoAs in an emitting source and TSoAs

in a passive location system, respectively. They define a fixed

number of selected data, and the data set that obtains the least

cost is employed to compute the final location. On the other

hand, an iterative procedure in [40], [41] removes one-by-one

time delay estimates (TDEs) associated with a pair of acoustic

sensors in a scenario that detects the direction-of-arrival (DoA)

of gunshots. The algorithm’s stopping criterion also depends

on a fixed number of selected data.

The organization of this paper is as follows. Section II

describes the mathematical formulation of PCL algorithms (SI,

SX, and NLCLS/S-NLCLS) in a multiple TXs/RXs scenario.

Section III addresses the proposed techniques to overcome

outliers. Section IV details the adaptation that must be carried

out in the location algorithm when applying data selection.

Section V presents the experimental results obtained from

simulations. Finally, conclusions are stated in Section VI.

II. LOCATION ALGORITHMS

We assume a multistatic PCL geometry with M RXs

and L noncooperative TXs that illuminate the target region,

denoted as RXm, m ∈ M , {1, 2, . . . ,M}, and TXℓ,
ℓ ∈ L , {1, 2, . . . , L}, respectively. Fig. 1 sketches the bistatic

PCL geometry of the pair RXm-TXℓ. Vectors pRXm and pTXℓ

represent the known positions of RXm and TXℓ, respectively.

The unknown location of the target is represented by vector

pT in an N -dimension problem, N ∈ {2, 3}.1
As shown in Fig. 1, the distances of interest in the PCL

scenario are defined as: rTXℓ-T , ‖pTXℓ − pT‖ (TXℓ–target

range), rRXm-T , ‖pRXm − pT‖ (RXm–target range), and

rRXm-TXℓ , ‖pRXm − pTXℓ‖ (RXm–TXℓ range).

The bistatic range rBmℓ associated with each TXℓ-RXm
pair represents the difference between the path length of the

1For the forthcoming explanations, we consider here the more general case
where N = 3.
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reflected signal in the target (rRXm-T + rTXℓ-T) and the line-

of-sight path length (rRXm-TXℓ) [1], [8], i.e.

rBmℓ , rRXm-T + rTXℓ-T − rRXm-TXℓ. (1)

The reflected path length associated with each TXℓ-RXm pair,

known as range difference rmℓ, is defined as

rmℓ , rRXm-T + rTXℓ-T, (2)

which can also be expressed as rmℓ = rBmℓ + rRXm-TXℓ.

Eq. (2) is the basis of the PCL approach for multiple TXs/RXs,

and from it, we write

(rmℓ − rTXℓ-T)
2
= r2RXm-T, (3)

which is the second-degree equation used to formulate the PCL

problem when the number of RXs is larger than the number

of TXs, i.e., when M ≥ L. In case L ≥ M , one can use

(rmℓ − rRXm-T)
2
= r2TXℓ-T instead. We assume M ≥ L in

the forthcoming derivations for conciseness.

Eq. (3) can be rewritten as

p̄
⊺

RXm-TXℓp̄T-TXℓ − rmℓrTXℓ-T =
1

2
(r2RXm-TXℓ − r2mℓ), (4)

in which p̄RXm-TXℓ , pRXm − pTXℓ and p̄T-TXℓ , pT −
pTXℓ. The unknown variables p̄T-TXℓ and rTXℓ-T must be

computed to estimate the target location.

For our PCL system with M RXs, L TXs, and one

target, we define the ML × NL block-diagonal matrix

PRX-TX , diag
{
P̄RX-TXℓ

}

ℓ∈L
, where the m-th row of

the M × N matrix P̄RX-TXℓ is p̄
⊺

RXm-TXℓ. The ML × L
block-diagonal matrix R , diag {rℓ}ℓ∈L is also defined,

where the m-th entry of the M × 1 vector rℓ is rmℓ.

Moreover, we define p̄T-TX ,
[
p̄
⊺

T-TX1 . . . p̄
⊺

T-TXL

]
⊺, rTX-T ,

[
rTX1-T . . .rTXL-T

]⊺
, and z ,

[
z
⊺

1 . . .z
⊺

L

]⊺
, where zℓ =

[
z1ℓ . . . zMℓ

]⊺
, and zmℓ =

1
2

(
r2RXm-TXℓ − r2mℓ

)
.

Expanding Eq. (4) for M RXs and L TXs, we have

PRX-TXp̄T-TX −RrTX-T = z. (5)

Associating the known matrix A,
[
PRX-TX −R

]
and the

unknown vector x ,
[
p̄
⊺

T-TX r
⊺

TX-T

]⊺
, Eq. (5) leads to

Ax = z. (6)

The entries of x are nonlinearly related since rTX-T is a

(known) nonlinear function of p̄T-TX, which makes Eq. (6)

a nonlinear equation on p̄T-TX. In order to estimate x, x̂,

we employ practical bistatic measurements to obtain estimated

versions of matrix A and vector z; formally, Â and vector ẑ.

Â and ẑ are not necessarily related as in Eq. (6). To simplify

our notation, we use the original notation, A and z, for the

forthcoming mathematical formulations.

To estimate the target location, one usually searches for

the x vector (ˆ̄pT-TX and r̂TX-T), that minimizes some model

mismatch metric (e.g., the squared norm of the error vector

e , Ax− z).

Following [12], two classical methods approximate the

solution p̄T-TX that minimizes the squared norm of e, namely:

SI and SX. The application of the two methods to the case of

multiple TXs and one RX is addressed in [12], and to the

scenario of multiple RXs and one TX is addressed in [11]. In

the following, we extend the mathematical formulations of the

two methods to the generic case of multiple TXs and RXs.

A. Spherical Interpolation

The model mismatch in Eq. (6) when employing bistatic

measurements can be approached using the unconstrained LS

solution, which is obtained by equating the gradient of the LS

cost function ξ(x) to the null vector, i.e., ∇xξ(x) = 0, where

ξ(x) , e⊺e. (7)

Thus, knowing that A is ML×(N+1)L, a necessary condition

for A⊺A to be invertible is M ≥ N + 1, i.e., the number of

receivers must be larger than the problem dimension (2D or

3D); in that case, the unconstrained LS solution becomes

x̂ = (A⊺A)
−1

A⊺z =
[
ˆ̄p⊺

T-TX r̂
⊺

TX-T

]⊺
. (8)

Note that ˆ̄pT-TX corresponds to the first NL elements of x̂.

Since we can express p̄T-TX as





pT − pTX1

...

pT − pTXL






︸ ︷︷ ︸

p̄T-TX

=






IN×N

...

IN×N






︸ ︷︷ ︸

Ia

pT −






pTX1

...

pTXL






︸ ︷︷ ︸

pTX

, (9)

we expect to have ˆ̄pT-TX ≈ IapT − pTX, and therefore the

final estimate of pT is computed as

p̂T = (Ia
⊺Ia)

−1
Ia

⊺
(
ˆ̄pT-TX + pTX

)
, (10)

which represents the mean of L individual estimates for each

case of 1 TX and M RXs: p̂T = 1
L

∑L
ℓ=1

(
ˆ̄pT-TXℓ + pTXℓ

)
.

B. Spherical Intersection

From Eq. (5), we can estimate p̄T-TX as

ˆ̄pT-TX = P† (z+RrTX-T), (11)

where P† = (P⊺

RX-TXPRX-TX)
−1

P
⊺

RX-TX and, in this case,

a necessary condition for P
⊺

RX-TXPRX-TX to be invertible is

M ≥ N . Eq. (11) can be compactly expressed as

ˆ̄pT-TX = a+BrTX-T, (12)

where a , P†z and B , P†R. Considering the block-

diagonal structure of matrix PRX-TX, we can write P† =

diag
{

P
†
ℓ

}

ℓ∈L
, thus allowing us to rewrite the LN ×1 vector

a in Eq. (12) as a =
[
a
⊺

1 . . .a
⊺

L

]⊺
, and the NL × L block-

diagonal matrix B = diag {bℓ}ℓ∈L, where aℓ = P
†
ℓzℓ and

bℓ = P
†
ℓrℓ (N × 1 vectors). Expanding Eq. (12), one has L

relations as follows: ˆ̄pT-TXℓ = aℓ + bℓrTXℓ-T, ∀ℓ ∈ L.

We expect to have r2TXℓ-T ≈ ‖ˆ̄pT-TXℓ‖2, such that r2TXℓ-T ≈
(aℓ + bℓrTXℓ-T)

⊺
(aℓ + bℓrTXℓ-T) . Therefore, the estimate of

rTXℓ-T can be seen as the solution of a simple quadratic

equation: r̂TXℓ-T =
−2a⊺

ℓ
bℓ±
√

4(a⊺

ℓ
bℓ)2−4(b⊺

ℓ
bℓ−1)a⊺

ℓ
aℓ

2(b⊺

ℓ
bℓ−1)

. Thus,

there are two options for each r̂TXℓ-T, ℓ ∈ L; therefore, we

have 2L possible estimates of vector rTX-T in total. All those

estimates are evaluated in Eq. (11) to obtain the possible



4

vectors of ˆ̄pT-TX. Those vectors are used to compute the

cost function ξ(x) in Eq. (7). The vector ˆ̄pT-TX that obtains

the lowest value of ξ(x) is used to compute the final target

estimate using Eq. (10).

C. Nonlinearly Constrained Least Square Algorithms

The error minimizations of SI and SX algorithms do not

view the problem as a whole. The SI algorithm disregards the

nonlinear relationship of the entries of x (‖ˆ̄pT-TXℓ‖ should

correspond precisely to r̂TXℓ-T). On the other hand, although

the SX algorithm guarantees that ‖ˆ̄pT-TXℓ‖ = r̂TXℓ-T, it does

not necessarily satisfy the identity in Eq. (6).

In [11], the NLCLS algorithm, defined for a scenario with

M RXs and 1 TX, was proposed considering the complete

mathematical problem in Eq. (6). By assuming all the con-

straints of the original nonlinear problem in Eq. (6), the result-

ing method enjoys some regularization effects that implicitly

compensate target delay estimation errors. This section extends

the NLCLS mathematical formulations to the generic case of

M RXs and L TXs.

1) The NLCLS Method: We have L nonlinear constraint

functions to satisfy the interdependence of the entries of x

defined as

fℓ(x) = x⊺Īℓx = 0, ℓ ∈ L, (13)

where the L(N+1)×L(N+1) matrix Īℓ,

[
Ī
top
ℓ 0LN×L

0L×LN Ībottomℓ

]

,

Ī
top
ℓ =





0(ℓ−1)N×(ℓ−1)N 0(ℓ−1)N×N 0(ℓ−1)N×(L−ℓ)N

0N×(ℓ−1)N IN×N 0N×(L−ℓ)N

0(L−ℓ)N×(ℓ−1)N 0(L−ℓ)N×N 0(L−ℓ)N×(L−ℓ)N



, and

the L×L matrix Ībottomℓ has all entries equal to zero, but

the entry in row ℓ and column ℓ, which is equal to −1.

With the L constraints in Eq. (13), we can use L Lagrange

multipliers λℓ, ℓ ∈ L, and write ∇xξ(x) =
∑L

ℓ=1 λℓ∇xfℓ(x),
which can be simplified to:

2 (A⊺Ax−A⊺z) = 2

(
L∑

ℓ=1

λℓĪℓ

)

x. (14)

As in [11] and [42], we use the Newton–Raphson method

to solve Eq. (14). We define the unknown vector v =
[

x̂⊺
λ̂
⊺
]⊺

, where λ̂ =
[

λ̂1. . .λ̂L

]⊺

. We then define vector

f(v)=
[(

∇xξ(x̂)−
∑L

ℓ=1λ̂ℓ∇xfℓ(x̂)
)⊺

f1 (x̂) . . . fL (x̂)
]⊺

,

which, after some manipulation, leads to

f(v)=

[

2

(

A⊺Ax̂−A⊺z−
L∑

ℓ=1

λ̂ℓĪℓx̂

)⊺

x̂⊺Ī1x̂ . . . x̂⊺ĪLx̂

]⊺

. (15)

The iterative process minimizes ‖f(vk)‖ updating vk at each

iteration k:

vk+1 = vk − J−1(vk)f(vk), (16)

where J(vk) is the Jacobian of f evaluated at vk:

J(vk)=











2(A⊺A−
L∑

ℓ=1

[λ̂ℓ]k Īℓ) −2Ī1x̂k . . . −2ĪLx̂k

2x̂⊺

k Ī1 0 . . . 0
...

...
...

...

2x̂⊺

k ĪL 0 . . . 0











. (17)

The initial value v0 can be set to vector x̂ of the unconstrained

LS solution as x̂0, as defined in Eq. (8), and [λ̂]0 = 0L×1:

v0 =
[(

(A⊺A)
−1

A⊺z
)⊺

0
⊺

L×1

]⊺

.2 The iterative procedure

stops when ‖fk‖ < ǫ, where ǫ represents the algorithm’s

tolerance.

2) Simplified Method: We propose here a faster and simpli-

fied version of the NLCLS (S-NLCLS). We start by observing

that if Eq. (13) holds for all ℓ ∈ L (i.e., ‖p̄T-TXℓ‖ corresponds

exactly to rTXℓ-T for all ℓ ∈ L), then it follows that

L∑

ℓ=1

‖p̄T-TXℓ‖2 −
L∑

ℓ=1

r2TXℓ-T = 0. (18)

The simplified algorithm is obtained by replacing the L con-

straints in Eq. (13) with a single nonlinear constraint function

f (x) that guarantees that Eq. (18) holds, i.e., f(x)=x⊺Īcx=

0, where Īc =

[
INL×NL 0NL×L

0L×NL −IL×L

]

.

To use this simplified scheme to minimize the model

mismatch due to bistatic measurements in Eq. (6), we have

∇xξ(x) = λ∇xf(x), where λ is the Lagrange multiplier, that

after some manipulation, leads to 2(A⊺Ax−A⊺z) = 2λĪcx;

which is solved, as in Section II-C1, iteratively using the

Newton–Raphson method.

Similarly, we define vector v=
[

x̂⊺ λ̂
]⊺

, vector

f(v)=

[

∇xξ(x̂)−λ̂∇xf(x̂)
f (x̂)

]

=

[

2(A⊺Ax̂−A⊺z)− 2λ̂Īcx̂
x̂⊺Īcx̂

]

,

(19)

and matrix J(vk)=

[

2(A⊺A− [λ̂]k Īc) −2Īcx̂
2x̂⊺Īc 0

]

. (20)

The initial value v0 can be set to x̂0 as defined in Eq. (8), and

[λ]0 = 0: v0 =
[(

(A⊺A)
−1

A⊺z
)⊺

0
]⊺

.3

The NLCLS and S-NLCLS methods are summarized in

Algorithm 1.

D. Computational Complexity

This work uses the Big O notation to tackle the compu-

tational complexity of algorithms [43]. Note that the product

of an nr×nc matrix M1 and an nc×nc1 matrix M2 has a

complexity of O(nrncnc1). Additionally, the inverse of nr×nr

matrix M3 has a complexity of O(n3
r ).

For the SI algorithm, the dominant operation corresponds

to the matrix multiplication in Eq. (8), whose computational

complexity is O((N + 1)2L3M).
As for the SX algorithm, and assuming we know the fixed

positions of transmitters and receivers in the PCL system, we

precompute P† = (P⊺

RX-TXPRX-TX)
−1

P
⊺

RX-TX offline. Con-

sequently, the computational complexity for the SX method

involves the following dominant operations:

• Computing Eq. (11) 2L + 2 times. Considering the final

matrix-vector product as the dominant operation, the

computational complexity is O((2L + 2)NL2M).

2We use [λ̂]k to denote the estimated λ, the Lagrange multiplier vector of

the NLCLS algorithm, at iteration k, Moreover, we use [λ̂ℓ]k to represent the

estimated λℓ, the ℓ-th element of λ̂, at iteration k.
3We use [λ̂]k to represent the estimated λ, the Lagrange multiplier of the

S-NLCLS algorithm, at iteration k.
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Algorithm 1: Nonlinearly constrained least square

methods (NLCLS and S-NLCLS)

Result: Estimated target position: p̂T

1 k ← 0 and x̂0 ← (A⊺A)
−1

A⊺z

2 ; [λ̂]0 ← 0L×1 for NLCLS or [λ̂]0 ← 0 for S-NLCLS;

3 v0←
[
x̂0

[λ̂]0

]

for NLCLS or v0←
[
x̂0

[λ̂]0

]

for S-NLCLS;

4 do

5 k = k + 1;

6 Update J(vk) using Eq. (17)
︸ ︷︷ ︸

NLCLS

or Eq. (20)
︸ ︷︷ ︸

S-NLCLS

;

7 Update f(vk) using Eq. (15)
︸ ︷︷ ︸

NLCLS

or Eq. (19)
︸ ︷︷ ︸

S-NLCLS

;

8 Update vk+1 using Eq. (16);

9 x̂k+1 ← first (N + 1)L entries of vk+1;

10 [λ̂]k+1 ← last L entries of vk+1 for NLCLS or

[λ̂]k+1 ← last entry of vk+1 for S-NLCLS;

11 while ‖fk‖ > ǫ;
12 ˆ̄pT-TX ← first NL entries of vk+1;

13 p̂T = (Ia
⊺Ia)

−1
Ia

⊺
(
ˆ̄pT-TX + pTX

)
;

• Computing Eq. (7) 2L times. The dominant operation in

each computation is the matrix-vector product Ax such

that the final complexity in the computational complexity

corresponds to O(2LML2(N + 1)).

The overall computational cost of the SX algorithm, consid-

ering the most significant operations, can be approximated as

O((2L + 2)NL2M + 2LML2(N + 1)).
In both NLCLS and S-NLCLS algorithms, a numerical

process iteratively compensates for measurement impairments

to obtain a more accurate result. The dominant operation in

each iteration involves the inversion of J(vk) in Eq. (17)

for the NLCLS algorithm and Eq. (20) for the S-NLCLS

algorithm. With K iterations taken into account, the most

significant complexities of the numerical methods in NL-

CLS and S-NLCLS are, respectively, O(K(ML + L)3) and

O(K(ML+ 1)3).

E. The Cramér-Rao Lower Bound

We consider a 3D PCL system whose positions of TXℓ,
pTXℓ =

[
xTXℓ yTXℓ zTXℓ

]⊺
, ℓ ∈ L, and RXm, pRXm =

[
xRXm yRXm zRXm

]⊺
, m ∈ M, are known and fixed. The

unknown target location is pT=
[
xT yT zT

]⊺
.

One way to benchmark the estimation results is by em-

ploying the CRLB, which represents the lowest possible mean

square error (MSE) of the optimal unbiased estimator. In our

related PCL location problem, with multiple TXs, multiple

RXs, and one target, the CRLB is a function of error variances

of all bistatic range measurements, r̂Bmℓ, m ∈ M, ℓ ∈ L.

By applying Slepian-Bangs formula [44] and using all the

available measurements in our target location problem, the

N ×N Fisher information matrix (FIM) can be expressed

as F = G⊺Q−1
B G, where QB is the ML ×ML covariance

matrix of the measurement errors impairing the M×L bistatic

ranges, rBmℓ. G =
[
∂rB
∂xT

∂rB
∂yT

∂rB
∂zT

]

contains the partial

derivatives with respect to the theoretical target position, where

rB =
[
r
⊺

B1 . . . r
⊺

BL

]⊺
is the vector containing the theoretical

(nominal) bistatic ranges, with rBℓ =
[
rB1ℓ . . . rBmL

]⊺
. The

appendix shows the mathematical formulations of the partial

derivatives in matrix G.

The CRLB is represented by the diagonal elements of the

inverse of matrix F. The MSE associated with the theoretical

target location pT, MSET, with Nr runs of the location

algorithm, is defined as MSET = 1
Nr

∑Nr

k=1

∥
∥
∥pT − p̂

(k)
T

∥
∥
∥

2

,

where p̂
(k)
T is the k-th estimate of pT. MSET for an unbiased

estimator is limited by CRLB as MSET ≥ tr
(
F−1

)
. Conse-

quently, the root MSE (RMSE) associated with the theoretical

target location,

RMSET =
√

MSET, (21)

is limited by CRLB as RMSET ≥
√

tr (F−1).

III. DEALING WITH OUTLIERS

The aforementioned location methods assume the knowl-

edge of the bistatic range rBmℓ. In practice, this parameter

is estimated, for instance, by using delay measurements, τ̂mℓ,

from the signals of each pair RXm–TXℓ: r̂Bmℓ , cτ̂mℓ, where

c = 3× 108 m/s represents the speed of light.

Line-of-sight blocking effect between the TX and target,

or between target and RX, affects bistatic range estimations,

creating much higher errors. Those abnormal values (i.e.

mismeasurements) are considered outliers that must be tackled.

It is worth mentioning that we do not consider detectable zero-

Doppler clutter interference as outlier generators.

A. Cuboid-based Search Method

We propose a volumetric search method that can detect and

remove outliers. In this case, eliminating mismeasurements

and adapting the location algorithm to estimate the target

position is necessary. This volumetric method also offers a

direct target location estimate, which is particularly suitable

when removing many outliers, and a valid location algorithm

is not applicable due to a lack of data.

The proposed solution, cuboid-based search (CS) method,

starts by partitioning the location region, V ⊂ R
3, into C1

cuboids with dimensions d
(1)
x , d

(1)
y , and d

(1)
z .4 The cuboids

c
(1)
i , i ∈ C , {1, . . . , C1}, form a partition of V .

Each cuboid c
(1)
i in V has a specific bistatic

range interval associated with each RXm–TXℓ pair:

Bi(1)mℓ ,

[

min rBmℓ

(

c
(1)
i

)

,max rBmℓ

(

c
(1)
i

)]

⊂ R, where

rBmℓ

(

c
(1)
i

)

⊂ R is the set of all RXm–TXℓ bistatic range

nominal values for target locations in the cuboid c
(1)
i ⊂ V .

Geometrically, min rBmℓ

(

c
(1)
i

)

is related to the minimum

bistatic range of the cuboid vertexes and max rBmℓ

(

c
(1)
i

)

is related to its maximum value. For each RXm–TXℓ pair,

m ∈ M and ℓ ∈ L, a bistatic range rBmℓ, associated with

a specific target location, pT, belongs to a group of cuboids

4In this method, we use a superscript ∈ {1, 2} in parenthesis to denote the
first or second search.



6

that intersect the surface of an ellipsoid with foci associated

with RXm and TXℓ and constant range difference rmℓ.

The main principle underlying the CS method is to select

the cuboid(s) that is intersected more times by the ellipsoids

corresponding to the bistatic range measurements r̂Bmℓ, for all

m ∈ M and ℓ ∈ L. The winner cuboid(s) represents the new

search volume, which will be further split into smaller cuboids

of dimensions d
(2)
x , d

(2)
y , and d

(2)
z , for which another cuboid

selection is performed. This second search goes through a fine

adjustment in the final process. The cuboid selected in this

second search is called final cuboid. In case we have more than

one winner cuboid as a result of the second search, we propose

taking each cuboid’s centroid as a possible target location to

compute the cost function ξ(x) in (7). The cuboid associated

with the smallest cost is the final cuboid.

In any case, the final cuboid can classify consistent data as

the bistatic measurements inside and outliers as the bistatic

measurements outside the cuboid. On the other hand, the

centroid of the selected cuboid gives us another target lo-

cation estimate that does not depend on discarding outliers.

Therefore, we name this direct estimate as CENTROID-CS.

Algorithm 2 summarizes the CS method.

In terms of computational complexity, the dominant opera-

tion of the CS method is the initial exhaustive search within V .

The dominant operation is checking whether a bistatic range

measurement falls within a predefined interval of a cuboid with

complexityO(1). Considering the C1 cuboids and ML bistatic

measurements, we characterize the dominant computational

complexity of the CS method as O(MLC1).

B. Closest Neighbor Method

The proposed closest neighbor (CN) method discards out-

liers originated by target-RX NLoS and/or TX-target NLoS

effects. This method detects and removes outliers in an itera-

tive process where one outlier is detected in each iteration.

We start with an empty outlier index set IO = ∅, and the

non-outlier index set INO =M×L corresponding to all the

available bistatic range measurements. Subsequently, the CN

method establishes a list of candidates for most likely outliers

in each iteration. To do that, we first define the normalized

error of bistatic range, ηmℓ, for each RXm–TXℓ pair as

ηmℓ ,
r̂Bmℓ

− r̄Bmℓ

r̄Bmℓ

, (22)

in which r̄Bmℓ is obtained from Eq. (1) by considering an

estimated target location using all the measurements r̂Bmℓ

associated with indexes (m, ℓ) ∈ INO. In case we have a

mismeasurement due to the NLoS effect, r̂Bmℓ
will likely be

much greater than r̄Bmℓ
. Motivated by this fact, the candidates

for outliers are then selected from the bistatic measurements

r̂Bmℓ associated with the index set (m, ℓ) ∈ INO, when

the normalized error ηmℓ associated with the RXm–TXℓ pair

follows the rule ηmℓ > mean(ηmℓ). This mean value is

computed across the measurements with indexes (m, ℓ) in the

set INO.

For each candidate bistatic range measurement, we estimate

the target position discarding all measurements associated with

Algorithm 2: Cuboid-based search (CS)

Result: outlier index pairs (m, ℓ) ∈ IO, non-outlier

index pairs (m, ℓ) ∈ INO, and centroid of final

cuboid pccw̄ .

1 Q ← V ⊲ initialize the search volume;

2 for all s ∈ S , {1, 2} do

3 Split Q into cuboids of sizes
(

d
(s)
x ,d

(s)
y , d

(s)
z

)

;

4 i ∈Cs,{1, . . ., Cs} ⊲ indexes of new cuboids c
(s)
i ;

5 for all i ∈ Cs do

6 P
(s)
i ←0 ⊲ initialize the counter per c

(s)
i ;

7 end

8 for all m ∈M do

9 for all ℓ ∈ L do

10 for all i ∈ Cs do

11 Bi(s)mℓ =
[

min rBmℓ

(

c
(s)
i

)

,max rBmℓ

(

c
(s)
i

)]

;

12 if r̂Bmℓ ∈ Bi(s)mℓ then

13 P
(s)
i ←P

(s)
i +1 ⊲ add the counter;

14 end

15 end

16 end

17 end

18 Ws←
{

argmax
i∈Cs

P
(s)
i

}

⊲ winner cuboid(s)’ index;

19 Q←c
(s)
w , w∈Ws ⊲ new search volume;

20 end

21 pccw ← center(s) of cuboid(s) of c
(2)
w , w ∈ W2;

22 ξ(w)(x)← cost(s) associated with pccw , w ∈ W2;

23 w̄←
{

argmin
w∈W2

ξ(w)(x)

}

;

24 c
(2)
w̄ ← final winner cuboid;

25 pccw̄ ← centroid of c
(2)
w̄ (CENTROID-CS estimate);

26 IO ←
{

(m, ℓ) ∈M×L | r̂Bmℓ /∈Bw̄(2)
mℓ

}

⊲ outliers;

27 INO ←
{

(m, ℓ) ∈M×L | r̂Bmℓ∈Bw̄(2)
mℓ

}

⊲

non-outliers.

index pairs (m, ℓ) ∈ IO and the candidate itself. This target

position calculates the cost function ξ(x) in (7). The candidate

associated with the maximum cost is classified as an outlier;

consequently, its index pair is included in the set IO and

removed from the set INO.

The iterative process automatically stops when max |ηmℓ| <
αCN, (m, ℓ) ∈ INO, with αCN being the threshold of the CN

method that ensures that there is not a considerable difference

between the bistatic ranges r̄Bmℓ
, computed employing the

estimated target position, and consistent measurements r̂Bmℓ
.

Algorithm 3 summarizes the CN method.

Regarding complexity, this method has to compute the

cost function ξ(x) and the target location estimate p̂T many

times. Moreover, for the SX algorithm, matrix P† cannot be

precomputed offline due to its dynamic nature at each CN

iteration and its computational load must be considered. The

overall CS computational workload depends on the number of

iterations and the quantity of candidate outliers per iteration.
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Algorithm 3: Closest neighbor (CN)

Result: outlier index pairs (m, ℓ) ∈ IO, and

non-outlier index pairs (m, ℓ) ∈ INO.

1 IO ← ∅, and INO ← index pairs (m, ℓ) of all

available r̂Bmℓ,m∈M, ℓ∈L;

2 Estimate p̂T using r̂Bmℓ, ∀(m, ℓ) pair ∈ INO;

3 Compute ηmℓ as in Eq. (22) for all

r̂Bmℓ|(m, ℓ) pairs ∈ INO;

4 while any |ηmℓ| > αCN do

5 IC← {(m, ℓ) pairs|ηmℓ > mean(ηmℓ)} ⊲ candidate

outlier index pairs;

6 for all r̂Bmℓ|(m, ℓ)pair ∈ IC do

7 p̂
(mℓ)
T ← estimated p̂T discarding measurements

with index pairs in IO and r̂Bmℓ;

8 ξ(mℓ)(x)← cost associated with p̂
(mℓ)
T ;

9 end

10 Add (m, ℓ) pair associated with max
[
ξ(mℓ)(x)

]
to

IO;

11 Exclude τ̂mℓ pair associated with max
[
ξ(mℓ)(x)

]

from INO;

12 Compute ηmℓ as in Eq. (22) for all

r̂Bmℓ|(m, ℓ) pairs ∈ INO;

13 Estimate p̂T discarding measurements with index

pair in IO;

14 end

IV. TARGET LOCATION WITH MISSING MEASUREMENTS

The CS method offers a direct target location estimate (CS-

CENTROID) that does not depend on outlier removal nor

any special regard to missing measurements. However, when

applying the CS/CN methods as selection techniques to discard

outliers and/or a target not detected by one or more TX-

RX pairs, PCL algorithms must be adapted to take missing

measurements into account.

Let IM be the set of measurement index pairs (m, ℓ)
associated with undetected measurements and IO be the set

of measurement index pairs (m, ℓ) associated with outliers.

We set the range differences associated with undetected mea-

surements as zero to avoid unnecessary computation, rmℓ =
0, ∀ (m, ℓ) ∈ IM.

The location algorithms do not use the data associated

with measurements, r̂Bmℓ whose index pairs (m, ℓ) belong

to the sets IM and IO. Consequently, we have the following

modifications:

1) In each matrix P̄RX-TXℓ, ℓ ∈ L, which is part of matrix

PRX-TX, remove the rows p̄
⊺

RXm-TXℓ whose TX/RX pairs

are associated with index pairs (m, ℓ) ∈ IM ∪ IO.

2) In each vector rℓ, which is part of matrix R, remove the

rows rmℓ associated with index pairs (m, ℓ) ∈ IM ∪ IO.

3) In each vector zℓ, ℓ ∈ L, which is part of vector z, remove

the rows associated with index pairs (m, ℓ) ∈ IM ∪ IO.

4) In the set of selected pairs, IS , (M×L) \ (IM ∪ IO),
define the number of pairs with index ℓ as M̄ℓ. In other

words, M̄ℓ represents the number of selected consistent

measurements per TXℓ.

5) In case M̄ℓ < N + 1 for SI, NLCLS and S-NLCLS, or

M̄ℓ < N for SX, ℓ ∈ L, remove the columns associated

with matrix P̄RX-TXℓ in PRX-TX, remove the column

ℓ in matrix R and remove the rows associated with zℓ
in z. In other words, in case we do not have enough

measurements per TXℓ for a valid target location solution,

remove all data associated with TXℓ.

In order to have a valid target location solution, we need

at least one TXℓ, ℓ ∈ L, with enough selected consistent

measurements. Formally, a valid target location solution may

exist when there is at least one index ℓ ∈ L for which

M̄ℓ ≥ N + 1 for SI, NLCLS and S-NLCLS, or M̄ℓ ≥ N
for SX. Otherwise, the location methods fail.

V. EXPERIMENTAL RESULTS

This section begins by detailing the simulated multistatic

PCL scenarios used in our experiments. Secondly, the section

reports on the corresponding CRLB assessment. Then, the

performance of the proposed location algorithms is described

considering that all target delay measurements have been

detected. Subsequently, we evaluate the effect of undetected

measurements. Finally, the techniques to overcome mismea-

surements (outliers) are evaluated.

A. Simulation Scenario

In [19], as mentioned in Section I, the authors proposed

the EM-AR algorithm that models an unknown IoO signal

as an autoregressive (AR) process to jointly estimate its

temporal correlations and the passive radar parameters (delay

and Doppler). They considered a bistatic PCL system whose

SC in the receiver is contaminated by non-negligible noise,

clutter, and DPI. In our experiments, we used as a reference

the EM-AR MSEs of the target delay estimations reported

in [19], Fig. 2a.

More specifically, given the sampling frequency fs and the

sampling interval Ts = 1
fs

, the nominal PCL normalized

parameters were as in [19], viz.: target delay τ = 28.89Ts,

Doppler frequency fD = 25.12fs
No

, with No representing the

number of samples collected during the observation window,

and clutter delay τc = 10.24Ts. The sampling frequency in SC

and RC was such that fs ≥ 2
(

BIoO + f
(max)
D

)

, with BIoO

corresponding to the incoming signal bandwidth and f
(max)
D

being the maximum detectable target Doppler.

Table I summarizes the experimental results (normalized

target delay MSE) from [19] for the EM-AR algorithm.5 This

experiment assumed an SNRr = 5 dB in the RC , a DPI-to-

noise ratio DNRs = 10 dB in the SC, a clutter-to-noise ratio

CNRs = 10 dB in the SC, and varied the SNRs in SC from

-15 to 10 dB.

Our simulations considered 3D PCL scenarios with M =
6 RXs and L ∈ {1, 2, 3} TXs. Each RX had one dedicated RC

per TX with a directional antenna that received the IoO signals

from each TX, and one dedicated SC antenna per TX pointing

toward the surveyed area where the target was to be located.

5In [19], the sampling interval was set to Ts = 1 s. In our experiment, we
used Ts = 0.25 µs.
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(a) 1 TX (b) 2 TXs (c) 3 TXs

Fig. 2. CRLB maps for PCL systems with 6 RXs and L ∈ {1, 2, 3} TX(s).

TABLE I
NORMALIZED MSE MEASUREMENTS FROM [19]

SNRS -15 dB -10 dB -5 dB 0 dB 5 dB 10 dB

Normalized delay MSE 5.0 3.0 0.13 0.002 0.0006 0.0002

Delay RMSE [µs] 0.55902 0.43301 0.09014 0.01118 0.00612 0.00354

Bistatic RMSE [m] 167.71 129.90 27.04 3.35 1.84 1.06

TABLE II
POSITIONS (IN m) OF TXS AND RXS OF THE SIMULATED PCL SYSTEM

RX1 RX2 RX3 RX4 RX5 RX6 TX1 TX2 TX3
x -7112.11 -914.04 -5219.49 -1796.97 -756.53 -790.68 4000.00 3236.07 700.00

y -1138.73 -8601.80 -1427.86 -2837.70 -5762.75 -4617.26 0.00 2351.14 -1100.00

z 61.12 78.13 70.60 31.80 48.24 88.39 176.72 111.71 143.50

The IoO signals of the different TXs covered the surveillance

area but did not interfere with each other (e.g., FM signals of

different radio stations). We assumed fs = 4 MHz in SC and

RC.

To be consistent with the MSEs obtained in [19], we used

in our simulations a PCL geometry that guaranteed that the

theoretical target delays were between 73% and 129% of the

nominal target delay therein, τ = 28.89Ts, that is 5.33 ≤
τmℓ ≤ 9.32 µs. The theoretical target location was pT1 =
[
−2500 −3700 421

]⊺
m. The positions of TXs and RXs

were as in Table II.

B. CRLB Assessment

Fig. 2 shows the CRLB (
√

tr (F−1)) maps for three mul-

tistatic PCL systems, whose positions of TXs and RXs are in

Table II, in a square of 20 × 20 km2 in the xy-coordinate

plane at 421 m in the z-axis. The square is centered in

(x, y) = (−2,−2) km. We considered an additive impairment

of the delay measurements, modeled as zero-mean Gaussian

noise with standard deviation στ = 0.020726733 µs, or,

equivalently, a standard deviation of the bistatic range noise,

σB = 6.218 m, which corresponds to the CRLB
√

tr (F−1) =
100 m, for the PCL system of 2 TXs (TX1 and TX2), 6 RXs

(positions in Table II) and the target located at pT1. Therefore,

QB = σ2
BI.

The PCL system with one TX and 3 RXs (Fig. 2a) presents

some target locations (high CRLB) with poor estimation preci-

sion, particularly behind TX1 and the RXs. When increasing

the number of TXs (Fig. 2b and Fig. 2c), the precision in

these locations improves, and the CRLB results of the PCL

system with 3 TXs and 6 RXs are the best. The mean values

of the CRLB results in Fig. 2a, Fig. 2b, and Fig. 2c were,

respectively, 328.43, 143.11, and 95.12 m. A PCL system

with more TXs and RXs tends to increase diversity and can

exploit more measurements to achieve better target location

estimations. We observed similar maps when experimenting

with different altitudes.

C. Evaluation of Location Algorithms

A target of interest yields up to ML associated bistatic delay

measurements τ̂mℓ, m∈M and ℓ ∈ L. In this first experiment,

we considered a target detection with probability of 1 for all

TX-RX pairs and no outliers.

We assessed the PCL algorithms, described in Section II,

in a multistatic PCL system with 2 TXs (TX1 and TX2) and

6 RXs. We used Nr=500 independent runs of the algorithms

to obtain the RMSE of the target location estimation pT1,

RMSET, as defined in Eq. (21). Firstly, we disturbed each

theoretical τmℓ associated with pT1 by adding zero-mean

Gaussian noise with variances consistent with the MSE EM-

AR results in [19]. The minimum variance of all τmℓ errors

considered the minimum EM-AR MSE value of Table I

(SNRS = 10 dB) at fs=4 MHz, and the maximum variance

was chosen taking as reference a CRLB value of 200 m at

pT1 (approximately SNRS ≈ -3 dB).

Fig. 3 shows the RMSE results for pT1. The S-NLCLS

and NLCLS estimates outperformed the results of algorithms

SI and SX. They approximated better the CRLB reference,

especially in the z-axes, where the lack of diversity affected

the location estimations. Moreover, we verified that the bias,

E{p̂T1} − pT1, was not significant in both x- and y-axes,

considering distances in km. But in the z-axis, pT1 estimates

presented a considerable bias (the bias decreases rapidly from

−40 m) above στ = 1.9× 10−2µs for the NLCLS and above

στ = 2.24× 10−2µs for the S-NLCLS.

Table III shows the computational complexity results of the

location algorithms (Section II-D). This table also contains the

mean runtime (in µs) when running the algorithms in an Apple

MacBook Pro M1 with RAM of 16 GB. SI and SX algorithms

are the least computationally demanding, although both S-

NLCLS and NLCLS obtained good estimates in reasonable

runtimes.

Fig. 4 shows the histograms of the Euclidean distance

error of pT1 and pT2 =
[
−2500 −3700 1192

]⊺
m location
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Fig. 3. RMSE of location estimates of pT1 vs. standard deviation of delay measurement errors, στ .
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Fig. 4. Histogram of location estimation errors.

TABLE III
BIG O AND MEAN RUNTIME

Location algorithm Complexity mean runtime (ms)

SI O(768) 0.0138

SX O(816) 0.0470

S-NLCLS O(21970) 0.1684

NLCLS O(27440) 0.3326

estimates when disturbing the theoretical target delays with

zero-mean Gaussian error with a variance that corresponds to

a CRLB = 30 m at pT1. The variance was σ2
τ = 3.8664 ×

10−17 s2 (σB = 1.865 m and SNRS = 4 dB). The associated

RMSET values for pT1 were 61.13, 53.59, 29.65, and 29.30 m

for SI, SX, S-NLCLS, and NLCLS algorithms. Moreover, The

associated RMSET values for pT2 were 51.87, 116.17, 26.39,

and 25.87 m for SI, SX, S-NLCLS, and NLCLS algorithms.

S-NLCLS and NLCLS obtained lower Euclidean errors.

D. Undetected Measurements

In a multistatic PCL scenario, some target delay measure-

ments may not be detected – the IoO signal reflected by the

target exists in the SC, but it is not identified. We evaluated

here the effect of undetected measurements to estimate two

distinct target positions (pT1 and pT2) considering 2 TXs

(TX1 and TX2) and 6 RXs.

We assumed that each RX individually detects the target

per SC and RC pair (individual detection per bistatic system).

Some detection techniques that can be applied are in [1], [23]–

[25]. Thus, our experiments considered no mismeasurements

and a probability of detection, PD, that varied from 0.8 to 1
in intervals of 0.5. For each PD, Nr = 1000 independent runs

0.8 0.85 0.9 0.95 1
101

102

103

Probability of detection

R
M

S
E

[m
]

SI SX S-NLCLS NLCLS CRLB

(a) pT1

0.8 0.85 0.9 0.95 1
101

102

103

Probability of detection

(b) pT2

Fig. 5. RMSE vs. probability of target detection for 2 TXs and 6 RXs.

of the location algorithms were used to compute the RMSE as

in Eq. (21). All theoretical τmℓ were disturbed with an error

similar to the one used in the experiment of Section V-C.

For the location algorithms, we did the necessary modifica-

tions due to undetected measurements, and only valid modified

solutions were used to compute the RMSE (Section IV). Our

experiments had more than 98.9% of valid solutions in all PD

cases. Fig. 5 shows the RMSE results considering different

probabilities of detection. Again, algorithms S-NLCLS and

NLCLS attained better results, compensating for undetected

measurements.

E. Mismeasurements

We emulated here outliers, usually present in bistatic range

measurements due to NLoS (TX-target and/or target-RX)

effects. This phenomenon is, in general, unavoidable in a

practical passive radar system.

We assessed the proposed techniques to deal with outliers

(Section III) in a simulated scenario with 3 TXs and 6 RXs

(positions in Table II). In this experiment, we considered Np =
27 theoretical target locations, pTnp

=
[
xTnp

yTnp
xTnp

]⊺
,

np ∈ {1, . . ., Np}. It was supposed that the SC antennas

(one per TX) in the RXs point toward the surveyed region

where a target of interest can be located. The 27 locations

corresponded to all combinations of xTnp
, yTnp

, and zTnp

taken from: xTnp
∈ {−8180,−2500, 3180} m, yTnp

∈
{−9380,−3700, 2980} m, and zTnp

∈ {421, 1192, 1693} m.
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Fig. 6. S-NLCLS-CS estimates of a target that can be located in 27 positions
in a PCL system of 3 TXs and 6 RXs. TXs in blue, RXs in black, theoretical
target positions in red, and estimates in grey. The axes of both plots follow
the same scales and share the same labels.

TABLE IV
PCL LOCATION ALGORITHMS WHEN APPLYING DATA SELECTION

Location algorithm
SI SX NLCLS S-NLCLS

CS SI-CS SX-CS NLCLS-CS S-NLCLS-CSSelection
techniques CN SI-CN SX-CN NLCLS-CN S-NLCLS-CN

We executed Nr = 100 independent runs on each of

the 27 positions to calculate the RMSE, RMSETnp
, np ∈

{1, . . ., Np}. To evaluate the location estimates in all possible

theoretical positions where a target could be located, the global

RMSE is defined as RMSEG =
√

1
Np

∑Np

np=1

[
RMSETnp

]2
.

In our experiments, we applied the bistatic range measurement

selection techniques (for the SI, SX, S-NLCLS, and NLCLS),

as seen in Table IV. We also computed direct CENTROID-CS

estimates.

We again simulated target delay impairments perturbing

all τmℓ with a similar zero-mean Gaussian error used in

Section V-C (results in Fig. 4) and Section V-D. To simulate

the NLoS effect between a randomly selected TXℓ, ℓ ∈ L, and

the target, we added a uniform random variable, distributed

between 20% and 100% of the theoretical TXℓ-target range

rTXℓ-T, to the bistatic range measurements r̂Bmℓ, m ∈ M.

Similarly, to simulate the NLoS effect between the target

and a randomly selected RXm, a uniform random variable,

distributed between 20% and 100% of the RXm-target range

rRXm-T, was added to r̂Bmℓ, ℓ ∈ L. Any bistatic range

measurement r̂Bmℓ perturbed by TXℓ-target NLoS or/and

target-RXm NLoS effects was considered a mismeasurement.

We considered different levels of NLoS, (number of target-

RX NLoS, number of TX-target NLoS): (0,0), (1,0), (2,0),

(0,1), (1,1), (3,0), and (2,1). The mentioned NLoS levels

generated, respectively, 0, 3, 6, 6, 8, 9, and 10 outliers, out of

a total of 18 bistatic range measurements.

When applying the CS method, the location region V had

a volume (20× 20× 2.4) km3 = 960 km3 and was limited in

axes x, y, and z, respectively, by −12≤x≤ 8, −12≤ y≤ 8,

and 0≤ z ≤ 2.4 km. This volume contained the 27 possible

TABLE V
GLOBAL RMSE IN METERS FOR THE CS METHOD

(Target-RX NLoS(s), TX-Target NLoS(s))

Number of mismeasurements

(0,0)

0

(1,0)

3

(2,0)

6

(0,1)

6

(1,1)

8

(3,0)

9

(2,1)

10

SI-CN 166.3 229.1 3776.8 238.7 311.5 – 14834.9

SX-CN 92.4 146.9 460.0 240.9 227.8 1499.5 526.7

S-NLCLS-CN 69.8 116.4 441.4 155.5 184.7 – 752.4

NLCLS-CN 77.2 129.7 463.0 139.7 184.3 – 756.2

Case

1

CENTROID-CS 288.7 304.2 319.4 320.0 322.2 359.9 354.6

SI-CN 166.2 226.6 3909.6 231.7 473.9 – 13231.9

SX-CN 92.5 157.3 474.3 164.1 255.6 1500.6 646.8

S-NLCLS-CN 65.9 122.6 447.6 134.7 230.6 – 859.5

NLCLS-CN 73.8 144.9 471.4 135.4 226.8 – 845.1

Case

2

CENTROID-CS 268.7 275.6 327.5 302.7 330.9 407.7 500.6

SI-CN 166.3 232.4 6078.3 224.5 3518.5 – 20843.5

SX-CN 92.4 158.8 517.9 171.5 277.5 1670.9 833.9

S-NLCLS-CN 69.8 126.5 515.7 127.7 398.2 – 1282.9

NLCLS-CN 77.2 142.8 524.6 133.0 364.6 – 1232.5

Case

3

CENTROID-CS 201.2 230.8 292.7 267.8 317.3 445.3 580.1

locations where the target could be located.

In our CS simulations, we tested cuboids of different sizes.

Table V shows the global RMSE results, RMSEG, for CS

methods when using the following sizes for bigger and smaller

cuboids, (d
(1)
x , d

(1)
y , d

(1)
z ) and (d

(2)
x , d

(2)
y , d

(2)
z ):

• case 1: (150, 150, 150) m and (75, 75, 75) m,

• case 2: (200, 200, 200) m and (100, 100, 100) m,

• case 3: (300, 300, 200) m and (150, 150, 100) m,

The above CS cases obtained better results, respectively, when

d
(1)
x = d

(1)
y =150, 200, and 300. When a location estimate

was not possible to be obtained due to lack of consistent

measurements, the corresponding entry in Table V contains

the symbol “–”. Highlighted RMSE results represent suitable

location results (RMSEG) considering the low diversity in the

z-axis. For example, Fig. 6 shows S-NLCLS-CS estimates

of a target that can be located in the previously mentioned

27 positions using the cuboid sizes of the case 3. Fig. 6a

considers no target-RX and no TX-target NLoS (no outliers).

Fig. 6b considers one target-RX NLoS and no TX-target NLoS

(3 outliers).

For the CN method, we found the best threshold values

by carrying out individual experiments, varying the thresholds

between 0 and 0.7, and looking at the minimum global RMSE.

The selected thresholds, αCN, for SI-CN, SX-CN, S-NLCLS-

CN, and NLCLS-CN were, respectively, 0.1, 0.075, 0.075, and

0.075. Table VI shows RMSEG results considering the selected

thresholds for CN methods. Highlighted entries show suitable

location results.

In the results of Fig. 6 and in all the highlighted results

of Table V and Table VI, one finds accurate target location

estimates in the x- and y-axes (no bias in practice); however,

due to the lack of diversity, typical inpractical PCL systems,

the location estimates in z are more affected.

To verify the accuracy of the proposed selection techniques

(Table IV), we also evaluated two crucial indicators: true

positive rate (TPR) and false positive rate (FPR). TPR rep-

resents the probability that the bistatic range measurement is

considered as an outlier when it indeed is an outlier. FPR
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TABLE VI
BEST GLOBAL RMSE IN METERS FOR THE CN METHOD

(Target-RX NLoS(s), TX-Target NLoS(s))

Number of mismeasurements

(0,0)

0

(1,0)

3

(2,0)

6

(0,1)

6

(1,1)

8

(3,0)

9

(2,1)

10

SI-CN 164.4 125463.3 428349.5 231.0 151098.2 – 435849.5

SX-CN 97.0 439.3 2450.6 240.3 469.6 11302.8 3239.9

S-NLCLS-CN 74.5 968.5 2677.8 77.6 1157.5 – 3101.1

NLCLS-CN 82.6 1335.3 2592.6 89.8 1772.3 – 3367.0

constitutes the probability that the bistatic range measurement

is considered an outlier when it is not an outlier.

Fig. 7 shows TPR vs. number of Target-RX NLoS and Fig. 8

shows FPR vs. number of Target-RX NLoS. Comparing the

RMSE results of Table V and Table VI with the TPR and FPR

plots in Fig. 7 and Fig. 8, we see that, in general, the selection

algorithms attain good RMSEG results when TPR is high

and FPR is low, as expected. However, in the simulated PCL

system, we see that FPR has more influence on the accuracy

of the final target location estimate (the presence of an outlier

affects more than the absence of a consistent measurement).

We can see this phenomenon comparing measurement selec-

tion for the case of one Target-RX NLoS and one TX-Target

NLoS. SX-CN obtained RMSEG = 469.60 m with TPR =

0.994 and FPR = 0.093, and SX-CS method (case 2) obtained

RMSEG = 255.64 m with TPR = 0.973 and FPR = 0.013.

Based on our numerical results, the proposed CS selection

method overcame the outlier effects better than the CN meth-

ods. The effectiveness was demonstrated with lower RMSEG

values, higher TPR rates, and lower FPR rates. Outlier selec-

tion in CS does not depend on the location algorithm. The

applied location methods helped us obtain better accuracy in

the final location estimation. NLCLS-CS, S-NLCLS-CS and

SX-CS (case 1, case 2 and case 3) obtained good estimates

when overcoming up to 8 outliers out of a total of 18

measurements (one Target-RX NLoS and one TX-Target NLoS

case).

On the other hand, CENTROID-CS, the selected cuboid’s

centroid, directly obtained reasonable estimates. This centroid

estimates better the target location when increasing the number

of outliers. CENTROID-CS does not depend on bistatic range

measurement selection. Instead, it directly estimates the target

location considering the volumetric location of the cuboid that

intersects most of ellipsoids associated with most bistatic range

measurements. CENTROID-CS cases 1 and 2 obtained good

estimates when getting over up to 10 outliers out of a total of

18, and CENTROID-CS case 3 up to 9 outliers.

Regarding the computational load, in our PCL scenario, the

CS method presented complexities ofO(5.1×106),O(2.2×106)
and O(9.6×105), respectively, for cuboid sizes of case 1, case

2, and case 3. Moreover, the corresponding mean processing

times were 241.91, 98.57, and 55.24 ms for CS cases 1, 2, and

3. The CN method presented complexities ofO(7.14),O(7.8×
105), O(5.6×105), and O(8.3×105), respectively, for SI-CN,

SX-CN, S-NLCLS-CN, and NLCLS-CN. The corresponding

mean processing times were 38.71, 95.89, 64.19, and 84.75 ms
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Fig. 7. TPR vs. number of target-RX NLoS.
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for SI-CN, SX-CN, S-NLCLS-CN, and NLCLS-CN.6

VI. CONCLUSION

This paper started by formulating the SI, SX, NLCLS and,

S-NLCLS algorithms for PCL systems with multiple TXs/RXs

systems and one target of interest. The NLCLS algorithm

compensates bistatic measurement impairments with the help

of constraints that take into account all the nonlinearities in

the actual PCL problem. The proposed S-NLCLS algorithm is

a faster version of the NLCLS algorithm that obtains accurate

estimates using a single constraint.

This research work also contemplates mismeasurements

generated by NLoS effect between target-RX and TX-target.

We showed that applying the proposed measurement selection

techniques (CS and CN) improves the accuracy of the target

location. Numerical experiments also corroborated that high

TPR and low FPR rates in the outliers’ detection task lead to

reasonable accuracy in the final estimation.

The best-performing proposed selection technique (CS)

divides the location region into cuboids and discards the

measurements outside the cuboids that most likely contain

6Big O complexity values are approximations regarding the actual com-
putational complexity. We consider comparisons and products as dominant
operations for CS and CN methods, respectively.
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consistent measurements. CS outperforms CN, which itera-

tively removes outliers based on cost function comparisons.

The center of the selected cuboid in the CS method is con-

sidered another location estimation (CENTROID-CS). Hence,

a significant contribution is that CENTROID-CS is a direct

estimate that does not add computational load and does not

depend on the outlier detection results. This estimate performs

better than competing methods when increasing the number of

outliers.

APPENDIX

PARTIAL DERIVATIVES IN CRLB

The partial derivative vectors of G are defined as follows

∂rB
∂xT

=
[(

∂rB1

∂xT

)⊺

...
(

∂rBl

∂xT

)⊺

...
(

∂rBL

∂xT

)⊺]⊺

, (A.1)

∂rB
∂yT

=
[(

∂rB1

∂yT

)⊺

...
(

∂rBl

∂yT

)⊺

...
(

∂rBL

∂yT

)⊺]⊺

, and (A.2)

∂rB
∂zT

=
[(

∂rB1

∂zT

)⊺

...
(

∂rBl

∂zT

)⊺

...
(

∂rBL

∂zT

)⊺]⊺

; (A.3)

where

∂rBl

∂xT
=
[
∂rB1ℓ

∂xT
. . . ∂rBmℓ

∂xT
. . . ∂rBmℓ

∂xT

]⊺

, (A.4)

∂rBl

∂yT
=
[
∂rB1ℓ

∂yT
. . . ∂rBmℓ

∂yT
. . . ∂rBmℓ

∂yT

]⊺

, and (A.5)

∂rBl

∂zT
=
[
∂rB1ℓ

∂zT
. . . ∂rBmℓ

∂zT
. . . ∂rBmℓ

∂zT

]⊺

. (A.6)

The bistatic target delay rBmℓ can be expressed as rBmℓ =
rTXℓ-T+ rRXm-T− rRXm-TXℓ, m ∈M and ℓ ∈ L. Therefore,

its partial derivatives with respect to xT, yT and zT, respec-

tively, could be defined as

∂rBmℓ

∂xT
=

xT − xTXℓ

rTXℓ-T
+

xT − xRXm

rRXm-T
, (A.7)

∂rBmℓ

∂yT
=

yT − yTXℓ

rTXℓ-T
+

yT − yRXm

rRXm-T
, and (A.8)

∂rBmℓ

∂zT
=

zT − zTXℓ

rTXℓ-T
+

zT − zRXm

rRXm-T
. (A.9)

ACKNOWLEDGMENT

This study was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES),

Brazil – Finance code 001.

REFERENCES

[1] M. Malanowski, Signal Processing for Passive Bistatic Radar, 1st ed.
Artech House, 2019.

[2] H. Griffiths and C. Baker, An Introduction to Passive Radar. Artech
House, 2017.

[3] H. Griffiths and C. Baker, “Passive coherent location radar systems.
Part 1: Performance prediction,” IEE Proceedings - Radar, Sonar and
Navigation, vol. 152, no. 3, pp. 153–159, Jun. 2005.

[4] P. Lingadevaru, B. Pardhasaradhi, and P. Srihari, “Feasibility of adopting
6g frequencies for transmitter of opportunity by passive radar,” in 2022
IEEE International Symposium on Smart Electronic Systems (iSES),
2022, pp. 326–330.

[5] C. Oestges and F. Quitin, Inclusive Radio Communications for 5G and
Beyond, 1st ed. Elsevier, 2021.
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