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Abstract

Aiming to bypass the equation of the Lorentz force, this study analyzes Maxwell’s equations from the perspective of a receiver

at rest. This approach is necessary because experimental results suggest that the general validity of the Lorentz force is

questionable in non-stationary cases. Calculations in the receiver’s rest frame are complicated, and thus, rarely performed.

However, after a Lorentz boost, the resulting force should be identical to the force obtained when the problem is considered

in the rest frame of the transmitter with the Lorentz force applied, as is commonly done. Yet, this is not the case. Instead,

Maxwell’s equations lead to Weber electrodynamics. The present article demonstrates this result by deriving and solving the

inhomogeneous wave equation from Maxwell’s equations. Subsequently, it is shown that the resulting force is a relativistic

generalization of the Weber force. Furthermore, the Hertzian dipole, i.e., a simple antenna, is mathematically investigated and

discussed from the viewpoint of Weber electrodynamics for the first time.
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steffen.kuehn@aurinovo.de
July 4, 2022

Abstract—Aiming to bypass the equation of the Lorentz force,
this study analyzes Maxwell’s equations from the perspective of
a receiver at rest. This approach is necessary because experi-
mental results suggest that the general validity of the Lorentz
force is questionable in non-stationary cases. Calculations in
the receiver’s rest frame are complicated, and thus, rarely
performed. However, after a Lorentz boost, the resulting force
should be identical to the force obtained when the problem is
considered in the rest frame of the transmitter with the Lorentz
force applied, as is commonly done. Yet, this is not the case.
Instead, Maxwell’s equations lead to Weber electrodynamics. The
present article demonstrates this result by deriving and solving
the inhomogeneous wave equation from Maxwell’s equations.
Subsequently, it is shown that the resulting force is a relativistic
generalization of the Weber force. Furthermore, the Hertzian
dipole, i.e., a simple antenna, is mathematically investigated and
discussed from the viewpoint of Weber electrodynamics for the
first time.

Index Terms—Maxwell equations, Vector wave equation, Elec-
tromagnetic forces, Electromagnetic propagation

I. Introduction

The four Maxwell equations have been the basis of electro-
dynamics for more than 150 years. In addition to Maxwell’s
equations, however, there is a fifth equation that often receives
far less attention, but is of great importance: the Lorentz force.

In contrast to Maxwell’s equations, the Lorentz force is
not a differential equation. It does not depend on time or
location, which is most likely why it is overshadowed by the
Maxwell equations. The Lorentz force combines the electric
and magnetic field into a total electromagnetic force on a
point-like test charge, which serves as the receiver of the force.
However, because only forces or voltages can be measured,
the Lorentz force is the mediator between the calculated
fields obtained from Maxwell’s equations and the measured
experimental result, highlighting the decisive importance of
the Lorentz force.

Thus, it is surprising that the literature has focused almost
exclusively on electric and magnetic fields and almost never
addresses the field of the force. It is also remarkable that, in
contrast to Maxwell’s equations, the time at which the law of
the Lorentz force was developed is not known. Allegedly, the
formula was used for the first time in 1895 by H. A. Lorentz,
indicating that it must have been developed much later than
Maxwell’s equations. This is surprising because Maxwell’s

equations provide only field strengths and do not describe how
these fields affect electric charges.

It is known, however, that at the time of the origin of
Maxwell’s equations, a number of different formulas for
the force between current elements existed, which are all
equivalent if the current elements are connected to a closed
conductor loop. J. C. Maxwell wrote on this subject in 1873
[1, p. 161], stating that there are considerable degrees of
freedom for these formulas and four parameters can be chosen
independently. His conclusion was that the original formula of
A. M. Ampère from 1822 is the most reasonable formula,
but he also mentioned other formulas, such as that of H.
Graßmann, which is used in contemporary electrodynamics,
because Ampère’s formula is not compatible with the Lorentz
force1.

It is clearly an established fact that the Lorentz force is
correct for electro- and magnetostatic problems under non-
relativistic conditions. Electro- and magnetostatic problems
are problems in which the displacement current in Maxwell’s
equations can be neglected. This case corresponds to closed
circuits with direct current (DC) because open conductors
change their net charge if current flows, which leads to a
time-varying electric field. However, a time-varying electric
field implies the presence of a displacement current, which in
turn means that the full set of Maxwell’s equations is needed.

When the displacement current is not neglected, the com-
plete set of Maxwell’s equations is very powerful because it
describes how electromagnetic fields propagate in space and
time. As one can assert, the addition of the displacement
current by J. C. Maxwell ushered in the age of techno-
logical modernity. However, thought experiments and actual
experiments seem to show that the Lorentz force might be
invalid in the presence of a displacement current [3]. In other
words, by adding the displacement current, degrees of freedom
are lost in the force law, and it is not self-evident that the
Graßmann formula, which is perfectly appropriate for electro-
and magnetostatics, retains its validity.

Fortunately, Maxwell’s equations can also be used without
the Lorentz force because, due to the principle of relativity,
a uniformly moving test charge, i.e., a measuring probe or

1It should be noted that also in Maxwell’s work formulas can be found
which formally correspond to the Lorentz force, but do not refer to point
charges and can be interpreted as a variant of Graßmann’s force (e.g. [2, p.
485] or [1, p. 226]).
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the receiver of a force, can be considered to be at rest, and
instead, the field-generating charge, i.e., the transmitter of the
force, can be interpreted as moving. This is the method applied
in this article. It follows the approach of H. Dodig, who
recently demonstrated that Maxwell’s equations are a direct
consequence of Coulomb’s law and the fact that the force in
the rest frame of the receiver always moves at speed c [4].

The objective of this article is to determine whether solving
Maxwell’s equations in the receiver’s rest frame and then
transforming the force to the transmitter’s rest frame gives
the same result obtained by solving Maxwell’s equations in
the transmitter’s rest frame and then applying the Lorentz
force. For this purpose, the inhomogeneous wave equation is
initially derived and solved in the receiver’s rest frame. On
the basis of this solution, it becomes clear that the Maxwell
equations contain a hidden Galilean transformation. The use
of the Lorentz transformation seems inappropriate in regard to
this finding and leads then actually to contradictory results.

However, using the Galilean transformation, we obtain
the force formula of W. Weber, derived in 1846 from the
force formula of A. M. Ampère, which was preferred by J.
C. Maxwell. This result shows that Weber electrodynamics,
which has received increasing attention in the past decades,
due to the work of A. K. T. Assis and others [5]–[14], are
closely related to Maxwell’s equations and are based on the
inhomogeneous wave equation given by Maxwell’s equations.
The discovery of this relation allows the Weber force to be
generalized relativistically and extended to a fully-fledged field
theory for studying the propagation of electromagnetic waves.
This is demonstrated in this article by means of the Hertzian
dipole.

II. Nomenclature notes
Please note that in this article, electric charges are called

transmitters (of the force) when their property of generating
an electromagnetic field is the focus of attention. Conversely,
electric charges are referred to as receivers (of the force)
when their reaction to an existing electromagnetic field is the
focus. In particular, these terms are used when electric charges
move uniformly with respect to each other and no waves are
present. Furthermore, in this article, standard electrodynamics
is referred to as Lorentz-Einstein electrodynamics in order to
be distinguished from Weber electrodynamics, which, as will
become evident, is also a Maxwellian electrodynamics.

III. The inhomogeneous wave equation
The Maxwell equations in vacuum

∇ · E =
ρ

ε0
(1)

∇ · B = 0 (2)

∇ × E = −
∂B
∂t

(3)

∇ × B = µ0 j +
1
c2

∂E
∂t
. (4)

are the starting point of this article. Together with the Lorentz
force

F = qd E + qd ud × B, (5)

Maxwell’s equations form the basic set of equations and
mathematical framework of what is currently considered valid
electrodynamics, denoted as Lorentz-Einstein electrodynamics
in this article.

This article will demonstrate that Maxwell’s equations also
hold in Weber electrodynamics, provided that one solves the
equations rigorously in the rest frame of the receiver. However,
instead of the Lorentz force (5), the following equation must
be used:

F = qd0 γ(u) E = qd E, (6)

where u is the differential velocity between the transmitter and
receiver, not, as ud is in the Lorentz force (5), the measured
velocity of the receiver in the rest frame of the observer
(laboratory system). qd0 is the rest charge, i.e., the charge
obtained by measuring the force applied to a known resting
charge using Coulomb’s law.

It should be noted that the rest charge is introduced only
for convenience, ensuring that the subsequent calculations for
Lorentz-Einstein electrodynamics and Weber electrodynamics
are identical. The charge does not change its value when in
motion; rather, the force depends on the differential velocity.
As usual, γ is the Lorentz factor, which is defined by

γ(u) :=
1√

1 − ‖u‖2/c2
. (7)

The Maxwell equations and the force equations (5) and (6)
can be combined to a single partial differential equation – the
inhomogeneous wave equation – which reveals the essence of
Maxwell’s equations in a particularly clear form. To obtain
this equation, we exploit the fact that the laboratory system
is allowed to move at the same velocity ud as the receiver
in Lorentz-Einstein electrodynamics, due to the principle of
relativity. In this case, the Lorentz force simplifies to

F = qd E, (8)

and the term with the cross product is omitted. Thus, in
Lorentz-Einstein electrodynamics, one does not actually need
formula (5). Instead, one uses this equation only because it is
convenient.

However, this approach does not apply for equation (6)
because if the laboratory system moves synchronously with
the receiver, the differential velocity between the transmitter
and receiver remains unaffected. Thus, the force laws (6) and
(8) are now formally equivalent. As will be shown below, this
equivalency makes the subsequent calculations valid for Weber
electrodynamics as well.

The next step is to calculate the derivative of the fourth
Maxwell equation (4) with respect to time t. One obtains

∇ ×
∂B
∂t

= µ0
∂ j
∂t

+
1
c2

∂2E
∂t2 . (9)

By inserting the third Maxwell equation (3) and equation (6)
or (8), one obtains

1
c2

∂2F
∂t2 + ∇ × (∇ × F) = −qd µ0

∂ j
∂t
, (10)
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which, because of ∇× (∇ × F) = ∇ (∇ · F)−∇2F, corresponds
to

� F + ∇ (∇ · F) = −qd µ0
∂ j
∂t
. (11)

The operator � denotes the d’Alembert operator:

� :=
1
c2

∂2

∂t2 − ∇
2. (12)

Please note that the sign of the d’Alembert operator is not
used uniformly in the literature.

Substituting equation (8) into the first Maxwell equation (1)
gives

∇ · F =
qd ρ

ε0
. (13)

Substituting this into equation (11), one finally arrives at the
inhomogeneous wave equation [15, p. 246, eq. (6.49)]:

� F = −
qd

ε0

(
1
c2

∂ j
∂t

+ ∇ ρ

)
. (14)

This wave equation is valid in Lorentz-Einstein electrody-
namics only for receivers at rest because the additional cross
product term must be considered due to the Lorentz force for
moving receivers, which takes the magnetic field into account.
However, as previously explained, this is not a restriction of
generality: because of the principle of relativity, a uniformly
moving receiver may be viewed as being at rest if instead the
transmitter is considered to be moving.

Equation (14) is valid for arbitrary charge and current
distributions, as long as they satisfy the continuity equation.
Particularly important, however, are those cases in which the
field-generating charge distribution is point-like. Here, the
charge density is given by

ρ = qs δ(rr) (15)

with
rr := r − rs, (16)

where rs represents the trajectory of the charge qs and r is the
location of the receiver at rest qd. The corresponding current
density is

j = us ρ, (17)

where
us := ṙs (18)

is the velocity of the charge qs from the perspective of the
charge qd at rest.

Thus, the wave equation

� F = −
qd qs

ε0

(
1
c2

∂

∂t
us δ(rr) + ∇ δ(rr)

)
(19)

follows from equation (14). This equation represents the force
exerted by the transmitter qs with trajectory rs on a receiver qd

at rest at location r in Lorentz-Einstein electrodynamics. As
mentioned above, calculating the force in the receiver’s frame
of rest does not lead to a restriction of generality, as it should
always be possible to perform a Lorentz boost into the rest
frame of the transmitter.

To calculate the acceleration r̈ for a receiver of force F in
classical mechanics, one needs only Newton’s second law:

F = m r̈. (20)

In Lorentz-Einstein electrodynamics, however, equation (20)
does not apply. Instead, one needs the following equation:

F = γ(ṙ) m r̈ +
m
c2 γ(ṙ)3 (ṙ · r̈) ṙ, (21)

which gives

r̈ =
1

γ(ṙ) m

(
F −

1
c2 ṙ (F · ṙ)

)
(22)

when solved for the acceleration.
For Weber electrodynamics, this approach is not necessary.

As will be shown below, Newton’s second law continues to
be valid in the original form (20). It is remarkable that this
results in an electrodynamics that can describe the propagation
of electromagnetic waves and satisfy Einstein’s postulates
without requiring a Lorentz transformation. At the same time,
magnetism as a dual force of electromagnetism disappears
and becomes a residual effect, due to the inability to shield
the electric force in all reference frames simultaneously for a
multi-particle system with varying differential velocities.

IV. Solution of the wave equation

A. General solution in the rest frame of the receiver

Because of its importance, this section demonstrates how
the inhomogeneous wave equation (19) can be solved. For the
inhomogeneous wave equation

� F(r, t) = f (r, t), (23)

the solution is [15, p. 243-245]

F(r, t) =

$
V

f
(
r′, t − 1

c ‖r − r′‖
)

4 π ‖r − r′‖
dr′. (24)

It is noted that solutions of the homogeneous wave equation
� F(r, t) = 0 can be added to equation (24). However, these
solutions are not related to the cause f (r, t) of the field F(r, t)
and therefore are of no relevance.

In equation (19), we have

f (r, t) = −
qd qs

ε0

(
1
c2

∂

∂t
us δ(rr) + ∇ δ(rr)

)
. (25)

Therefore, using the definitions (16) and

t′ := t −
1
c
‖r − rs(t′)‖, (26)

we obtain

F(r, t) =

−
∂

∂t

$
V

qd qs us(t′) δ(r′ − rs(t′))
4 π ε0 c2 ‖r − r′‖

dr′−

∇

$
V

qd qs δ(r′ − rs(t′))
4 π ε0 ‖r − r′‖

dr′.

(27)

Despite the Dirac function, the integrals cannot be solved
directly, because t′ is a function of r′ according to formula
(26). However, by using the Jacobian determinant D, this
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equation can be converted into a formally solvable form [16,
p. 616-617]:

F(r, t) = −
∂

∂t

$
V

qd qs us(t′) δ(s)
4 π ε0 c2 ‖r − r′‖

1
D

ds−

∇

$
V

qd qs δ(s)
4 π ε0 ‖r − r′‖

1
D

ds,
(28)

by using the definitions

s := r′ − rs

(
t −

1
c
‖r − r′‖

)
(29)

and

D := det

∣∣∣∣∣∣∣∣∣∣∣
∂sx
∂r′x

∂sx
∂r′y

∂sx
∂r′z

∂sy
∂r′x

∂sy
∂r′y

∂sy
∂r′z

∂sz
∂r′x

∂sz
∂r′y

∂sz
∂r′z

∣∣∣∣∣∣∣∣∣∣∣ . (30)

The integrations in equation (28) can now be performed, and
one obtains

F(r, t) = −
∂

∂t
qd qs us(t′)

4 π ε0 c2 ‖r − r′‖
1
D
−

∇
qd qs

4 π ε0 ‖r − r′‖
1
D

(31)

under the constraint s = 0. This result can be further simplified,
as the calculation of the Jacobian determinant yields

D = 1 −
us (t′) (r − r′)

c ‖r − r′‖
. (32)

Substituting this into equation (31) gives

F(r, t) = −qd

(
∂

∂t
A + ∇Φ

)
(33)

with scalar potential

Φ :=
qs

4 π ε0 ‖r − r′‖
(
1 − us(t

′)(r−r′)
c ‖r−r′‖

) (34)

and vector potential

A :=
1
c2 us(t

′) Φ. (35)

Equation (29) must be zero because of the constraint; hence,
it follows that r′ = rs(t′). Moreover, because of equation (26),

‖r − r′‖ = c (t − t′) (36)

holds. If we insert both relations into the scalar potential and
rearrange slightly, we finally obtain

Φ =
qs c

4 π ε0
(
c2 (t − t′) − us(t′) · rr(t′)

) . (37)

Clearly, this potential depends only on the retarded distance
vector

rr(t′) = r − rs(t′) (38)

and the retarded velocity

us(t′) = ṙs(t′). (39)

Here,

t′ := t −
‖r − rs(t′)‖

c
(40)

is the time at which the force has left the transmitter qs at
location rs(t′) to meet the receiver qd at location r at time t.

As previously mentioned, the scalar potential (37) and the
vector potential (35) are valid in both electrodynamics, i.e.,
Lorentz-Einstein electrodynamics and Weber electrodynamics.
However, Weber electrodynamics is unique in that a Lorentz
transformation is not required to give relativistically correct
results. Instead, a Galilean transformation can be used. Never-
theless, the force in the rest frame of each receiver propagates
at the speed of light c, even if the receivers themselves move
with respect to each other.

This sounds like a logical fallacy, because it seems impos-
sible for a physical entity such as a force field to move at
the same speed c for two receivers moving at different speeds.
Expressed another way: how is the transmitter supposed to
know the speed at which it must emit the wave so that it has
speed c in the receiver’s rest frame? What if there are two
or more receivers moving at different speeds? Would not the
transmitter then have to send out a suitable and different wave
for each receiver?

However, there is no contradiction because this phenomenon
is most likely caused by a very simple physical mechanism that
does not require any concepts beyond Newtonian mechanics,
such as the spacetime continuum or luminiferous ether, for
its explanation. Further details can be found in [17]. At this
point, we simply describe the basic idea: a transmitter emits a
field of electromagnetic force carriers with random emission
velocities. The paradox is resolved because each receiver
can perceive only those force carriers whose propagation
velocities in its own rest frame are not faster than c. One
can then show that, although the waves propagate at all wave
velocities, only the portion with a speed of exactly c remains
in each rest frame. All other wave components either interfere
destructively or are not perceptible, because they are too fast.

B. Uniformly moving point charges

With the potential (37), it is now possible to calculate
retarded electromagnetic forces between arbitrarily moving
point charges. In this section, we discuss the simplest case
and assume that there is no acceleration or that the acceleration
can be neglected. For this purpose, we consider a uniformly
moving point charge qs with the trajectory rs(t) = u t, which
exerts a force on a stationary point charge at location r.

To calculate the force according to equation (33), the
potential (37) must be known. Thus, one must solve equation
(40), which has two solutions in this particular case, with only
one solution satisfying causality t ≥ t′:

t′ =
c2 t − r · u −

√
c2 ‖r − u t‖2 − ‖r × u‖2

c2 − v2 . (41)

This solution can be substituted into equation (37) to obtain

Φ =
qs c

4 π ε0

√
‖r − u t‖2 (c2 − v2) + ((r − u t) · u)2

, (42)

using the relations rr(t′) = r− u t′ and us(t′) = u. The potential
can then be inserted into equation (35) and thereafter into
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equation (33). After calculating the derivatives and summing
up all terms, we obtain

F(r, t) =
c3 qs qd (r − u t) γ(u)−2

4 π ε0

(
‖r − u t‖2 (c2 − v2) + ((r − u t) · u)2

)3/2 . (43)

Formula (43) gives us the force from the perspective of
an observer at rest together with the receiver at location r.
In equation (43) it is remarkable that the term r − u t occurs
several times. This term corresponds to the location of the
receiver at time t from the perspective of the transmitter. This
means consequently, (i) the center of the force is moving in
conjunction with the transmitter, and (ii) the wave equation
(19), which follows from Maxwell’s equations, seems to
contain a hidden Galilean transformation.

Therefore, it is reasonable to transform the force into the rest
frame of the transmitter by means of a Galilean transformation,
rather than a Lorentz boost. For this purpose, we apply the
substitution r→ r + u t in equation (43), resulting in

F =
c3 qs qd r γ(u)−2

4 π ε0

(
r2 (c2 − v2) + (r · u)2

)3/2 , (44)

which has no time dependence and describes a force exerted by
a stationary transmitter qs on a moving receiver qd at location
r.

We note that this force does not correspond to the force we
would obtain in Lorentz-Einstein electrodynamics in the rest
frame of the transmitter, because a point charge at rest does
not have a magnetic field, but only an electric field, namely the
Coulomb field. Moreover, one must calculate the acceleration
effect on a receiver with the dynamics of special relativity by
using equation (22), in which we substitute the Coulomb force
for F. Thus, the acceleration depends not only on the force,
but also on the velocity of the receiver.

However, it is remarkable that the Lorentz-Einstein elec-
trodynamics do not generally yield the Coulomb force if one
performs the following substitutions2:

r→ r + (γ(v) − 1) r · u
u

v2 + γ(v) u t

t → γ(v)
(
t +

1
c2 r · u

) (45)

in function (43), i.e., if one applies the (inverse) Lorentz
transformation [16, p. 635]. Instead, one obtains the Coulomb
force only if the condition r ‖ u is satisfied. Otherwise, the
expression after the Lorentz boost still depends on the velocity.
For the special case r · u = 0, one obtains the Coulomb
force multiplied by a Lorentz factor, which is incorrect.
Unfortunately, the cause of this discrepancy is unclear because
equation (43) describes the force generated by a uniformly
moving transmitter on a receiver at rest in Lorentz-Einstein
electrodynamics, and a different but correct calculation ap-
proach should not lead to a different result.

However, because we want to assume that Maxwell’s equa-
tions (1)-(4) and the wave equation (19) are correct, we return

2For the Lorentz transformation, (45) maintains ‖r‖2 = c2 t2 before and
after the substitution.

to equation (44) and apply the equation qd = qd0 γ(u). Then, we
expand the equation into a Taylor series and obtain a second-
order approximation:

F ≈
qs qd0

4 π ε0

(
1 +

v2

c2 −
3
2

( r
r
·
u

c

)2
)

r
r3 . (46)

This formula was first documented in 1846 by W. Weber.
Obviously, the Weber formula is an approximation of the
solution of Maxwell’s equations and the inhomogeneous wave
equation (19). Thus, the Weber force is closely connected to
Maxwell’s equations and represents more than just a lucky fit
to empirical data [18].

It should be mentioned that formula (44) can be brought
into a form that is more geometrically readable [16, p. 619]
by applying the angle α between r and u. For this angle,

(r · u)2 = r2 v2 cos (α)2 (47)

holds. Substituting this expression into formula (44), we obtain

F =
qs qd r

4 π ε0 r3

1 − v2

c2(
1 − v2

c2 sin (α)2
)3/2 (48)

after some rearrangement of the terms. Clearly, the force (44)
and thus the Weber force (46) are central forces because the
field lines are always straight lines starting at the transmitter
qs. The strength of the force, however, depends on the angle.

If the charge qs is moving directly toward or away from
the charge qd, sin(α) = 0 and the force is weaker than the
Coulomb force by a factor of 1/γ(v)2. However, if the charges
are moving exactly sideways past each other, then sin(α) = 1
and the force is stronger than the Coulomb force by a factor
of γ(v). This angular dependence becomes more pronounced
for high velocities. For very high speeds v → c, the force is
eventually nonzero only when α has a value of 90◦.

Clearly, the force (44) is symmetrical, similar to the Weber
force (46), because the transmitter exerts a force on the
receiver that is equal in magnitude and opposite in direc-
tion to the force produced by the receiver on the transmit-
ter. Therefore, Newton’s third law is satisfied for charges
with uniform motion. Consequently, all conservation laws for
uniformly moving charges and charge distributions are also
fulfilled. However, this is not the case in Lorentz-Einstein
electrodynamics. Obviously, the reason for this difference does
not lie in the Maxwell equations, but in the Lorentz force.

Another point should also be addressed: as shown by
equation (44), the force between the two point charges appears
to act directly and without a loss of time, indicating that the
force propagates instantaneously. This apparent paradox has
repeatedly raised questions in Lorentz-Einstein electrodynam-
ics [18], [19]. However, there is no paradox, because equation
(44) results from the wave equation (14), which has a wave
velocity of c. The best way to understand this result is by
considering the force-carrier mechanism, which seems to be
the cause of the relativistic effects [17].

C. General solution for arbitrary inertial frames
As can be seen from equation (44), the force of a resting

point charge on other uniformly moving charges is indepen-
dent of time. Therefore, one might assume that it would have



6

been mathematically simpler to calculate the force directly in
the rest frame of the transmitter right from the start. However,
equations (33) and (37) apply explicitly only to the force in
the rest frame of the receiver. Yet, one can generalize these
equations so that they hold for a uniformly moving observer
with velocity u relative to the receiver at rest. For uniformly
moving transmitters, one can then choose u = u to set the
velocity of the observer such that the transmitter is resting
and the receiver is moving.

To apply this approach, we must first consider that the po-
tential (37) is ultimately a function of t and r. In section IV-B,
the derivatives of the potential Φ(r, t) were first determined
according to equation (33) to obtain the force (43) in the rest
frame of the receiver. Subsequently, a Galilean transformation
r → r + u t was performed, i.e., all occurrences of r were
replaced with r + u t, and for the special case u = u, the force
(44) was obtained.

However, it would be mathematically convenient if the
Galilean transformation of the potentials could be calculated
first and the derivatives calculated afterwards. In equation (33),
two differential operators occur. For the gradient,(

∇Φ(r, t)
)∣∣∣∣

r→r+u t
= ∇Φ(r + u t, t) (49)

is valid, i.e., in this case, the order in which one performs
the Galilean transformation and calculates the derivative is
irrelevant. For the time derivative, however, this does not apply.
Here, we have( ∂

∂t
A(r, t)

)∣∣∣∣∣
r→r+u t

=

(
∂

∂t
− (u · ∇)

)
A(r + u t, t), (50)

where the differential operator u · ∇ is defined by

u · ∇ := ux
∂

∂ x
+ uy

∂

∂ y
+ uz

∂

∂ z
. (51)

By applying this result to equation (33), we obtain

F
∣∣∣∣
r→r+u t

= − qd

(
∂

∂t
− (u · ∇)

)
A(r + u t, t)−

qd∇Φ(r + u t, t),
(52)

where Φ(r, t) and A(r, t) are the potentials in the rest frame
of the receiver. Thus, when calculating the force, it is now
possible to choose the inertial frame that is most convenient
for the calculation.

To demonstrate the advantage of this formula by an exam-
ple, the calculation performed in section IV-B is repeated in the
rest frame of the transmitter, i.e., for u = u. First, the potential
(42) is translated into the rest frame of the transmitter using
the Galilean transformation r→ r + u t, which gives

Φ =
qs c

4 π ε0

√
r2 (c2 − v2) + (r · u)2

, (53)

i.e., the true scalar potential of a point charge at rest, which
corresponds to the Coulomb potential only for u = 0. The
vector potential is calculated from the scalar potential (53)
using equation (35) as

A =
u

c2 Φ. (54)

We note that the differential velocity u between the transmit-
ter and receiver does not depend on the reference frame in a
Galilean transformation and therefore is not transformed. Both
potentials (53) and (54) can now be substituted into equation
(52). The time derivative is now zero because of the time
independence of the potentials, and thus, it follows that

F = qd (u · ∇)
u

c2 Φ − qd ∇Φ

= qd
u

c2 (u · ∇) Φ − qd ∇Φ

= qd
u

c2 (u · ∇Φ) − qd ∇Φ

(55)

because u = u. Now, only the gradient of the scalar potential
must be calculated and inserted. After combining all terms,
one obtains the force (44), which represents the relativistic
generalized Weber force.

D. The Hertzian dipole

Another important special case is a bound particle that os-
cillates within itself. Such a bound particle may be electrically
neutral, but inside, it consists of two charge quantities, +qs and
−qs. These charge quantities can oscillate with respect to each
other so that the point charge +qs moves upward while the
other point charge −qs moves downward. Of course, the strong
attractive electric force between the two charge quantities
prevents them from separating too far and causes the direction
of motion to periodically reverse. Finally, an oscillation of the
form p0 sin(ω t) arises. Here, p0 is the polarization vector,
which specifies the spatial direction of the oscillation and the
maximum distance between the two charge quantities that we
want to model as point charges. ω is the angular frequency of
the oscillation.

In electrodynamics, such an object is called a Hertzian
dipole. This dipole is a standard study object for understanding
electromagnetic waves and has the same importance in classi-
cal electrodynamics as the hydrogen atom in atomic physics,
as it represents the simplest possible antenna. Hence, corre-
sponding calculations can be found in numerous textbooks of
classical electrodynamics.

The solutions found in textbooks always assume that the
center of the bound particle does not move and is located at
the coordinate origin. The solution then consists of two fields
E and B, which clearly indicate that the waves move at speed
c for a resting receiver.

To calculate the force on a moving receiver, one applies
the same fields E and B with the same time dependencies and
wave velocities by substituting them into the Lorentz force (5).
However, the Lorentz force is a very simple formula, and the
time dependencies are not affected in E and B. For example, if
the receiver is moving away from the transmitter on a straight
line with velocity v, it would observe a wave velocity of c− v
in its own rest frame. Because this contradicts experimental
findings, it seemed necessary to H. A. Lorentz to introduce
the Lorentz transformation.

In Weber electrodynamics, however, this problem does not
arise because every moving receiver always perceives the same
field as if it were moving in its own rest frame with c.
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Although there are clear physical and logical reasons for this
interpretation, these reasons were never recognized or correctly
interpreted by physicists. The reason for this is that the
Graßmann force was implicitly but unjustifiably generalized
during the transition from electrostatics and magnetostatics to
electrodynamics. Later one thought that the resulting problems
were solved with Lorentz force, Lorentz transformation and
special theory of relativity.

To obtain the field of the Hertzian dipole, we consider a
point charge qs = +q moving along the following trajectory:

rs(t) = u t + s(t), (56)

where s(t) is any arbitrary but small spatial oscillation. The
solution of the Hertzian dipole is obtained by considering
a second point charge −q following the trajectory u t − s(t).
For s(t) = p0 sin(ω t), the sum of the forces of the two
charges gives the field of the Hertzian dipole, with its center
moving along trajectory u t. Hence, to calculate the force of
the Hertzian dipole, it is sufficient to initially calculate only
the force exerted by a transmitter +q with trajectory (56) on
a receiver resting at location r.

We obtain this force by first calculating the potential (37).
For this step, we need the retarded distance vector (38) and
the retarded velocity (39). In this case, we obtain

rr(t′) = r −
(
u t′ + s(t′)

)
≈ r − u t′ (57)

and
us(t′) = u + ṡ(t′), (58)

where the approximation in equation (57) is valid only if the
spatial displacement of the oscillation s(t) is small enough for
all times t to be negligible. Equations (57) and (58) can now be
substituted into the potential (37), and we arrive at the scalar
potential

Φ+ =
q c

4 π ε0
(
c2 (t − t′) − (u + ṡ(t′)) · (r − u t′)

) , (59)

which is caused by the positive charge. The vector potential is
obtained by substituting the scalar potential (59) into equation
(35). In this case, we obtain

A+ =
q (u + ṡ(t′))

4 π ε0 c
(
c2 (t − t′) − (u + ṡ(t′)) · (r − u t′)

) . (60)

To further simplify the calculation, we can again exploit the
fact that the displacement caused by the oscillation s(t) is small
and that therefore the scalar potential and vector potential can
be approximated with respect to amplitude via a Taylor series.
For the scalar potential, the first-order approximation is

Φ+ ≈
q c

4 π ε0
(
c2 (t − t′) − r · u + t′ v2)+

q c ((r − u t′) · ṡ(t′))

4 π ε0
(
c2 (t − t′) − r · u + t′ v2)2 .

(61)

For the vector potential, we obtain

A+ ≈
u

c2 Φ+ +
q ṡ(t′)

4 π ε0 c
(
c2 (t − t′) − r · u + t′ v2) . (62)

Now, the potentials generated by the positive charge are
known. However, the Hertzian dipole consists of two charges,

where the oscillation of the negative charge is exactly inverse
to that of the positive charge. The potentials Φ− and A− are
obtained by substituting q → −q, s(t′) → −s(t′) and ṡ(t′) →
−ṡ(t′) in equations (61) and (62). Therefore, the total potentials
are the sums of the partial potentials, i.e., Φ = Φ++Φ− and A =

A+ + A−. Consequently, the scalar potential of the Hertzian
dipole is

Φ =
q c ((r − u t′) · ṡ(t′))

2 π ε0
(
c2 (t − t′) − r · u + t′ v2)2 . (63)

For the vector potential, we find

A =
u

c2 Φ +
q ṡ(t′)

2 π ε0 c
(
c2 (t − t′) − r · u + t′ v2) . (64)

To use the potentials (63) and (64), we still need the retarded
time t′ as a function of r and t. This term can be obtained by
solving equation (40) and by assuming that the amplitude of
the oscillation s(t′) is very small compared with the distance
r and thus can be neglected. Therefore, the solution t′ for the
Hertzian dipole is given by equation (41).

Now, to determine the force in the receiver’s rest frame, we
could substitute the retarded time (41) into the potentials (63)
and (64) and then apply equation (33). However, it is easier to
make use of equation (52) with u = u. For this step, we need
to transform the potentials (63) and (64) into the rest frame of
the transmitter by replacing all occurrences of r in equation
(41), (63), and (64) with r + u t. Equation (41) then becomes

t′ = t − τ (65)

with

τ :=
r · u +

√
c2 r2 − ‖r × u‖2

c2 − v2 . (66)

For the potentials (63) and (64), we obtain

Φ =
q c (r + u τ) · ṡ(t − τ)

2 π ε0
(
c2 r2 − ‖r × u‖2

) (67)

and

A =
u

c2 Φ +
q ṡ(t − τ)

2 π ε0 c
√

c2 r2 − ‖r × u‖2
(68)

by applying the Galilean transformation r→ r + u t and using
equations (65) and (66).

The potentials (67) and (68) can now be substituted into
equation (52) to obtain the force on a receiver qd moving in
the rest frame of the transmitter with velocity −u. First, from
equation (52), we obtain

F = −qd
∂

∂t
A + qd (u · ∇) A − qd ∇Φ (69)

because u = u.
The calculations of the spatial derivatives can be greatly

simplified by considering that the oscillation s(t) is a generic
function without a given direction of oscillation. For this
reason, r = rx ex with rx > 0 can be assumed without a loss
of generality. This assumption simplifies equation (69) to

F = −qd
∂

∂t
A + qd vx

∂

∂rx
A − qd ex

∂

∂rx
Φ. (70)
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For equation (66), we have

τ =
rx

vτ
(71)

with
vτ := −vx +

√
c2 −

(
v2 − v2

x
)

(72)

as the velocity, which is independent of rx. The potentials
become significantly simpler as well, and we obtain

Φ =
q c

(
ex + u

vτ

)
· ṡ

(
t − rx

vτ

)
2 π ε0

(
c2 − (v2 − v2

x)
)

rx
(73)

for the scalar potential (67) by using equation (71). For the
vector potential (68), we find

A =
u

c2 Φ +
q ṡ

(
t − rx

vτ

)
2 π ε0 c rx

√
c2 − (v2 − v2

x)
. (74)

As can be seen, the spatial derivatives of the potentials
are now as simple to calculate as the temporal derivatives.
In particular, we obtain the following equations:

∂

∂rx
A = −

(
A
rx

+
1
vτ

∂

∂t
A
)

(75)

and
∂

∂rx
Φ = −

(
Φ

rx
+

1
vτ

∂

∂t
Φ

)
. (76)

Equations (75) and (76) can be further simplified if one is
interested only in the far-field. The terms A/rx and Φ/rx

decrease with 1/r2
x and therefore do not affect the far-field.

Thus, the following approximations apply:

∂

∂rx
A ≈ −

1
vτ

∂

∂t
A (77)

and
∂

∂rx
Φ ≈ −

1
vτ

∂

∂t
Φ. (78)

The far-field approximations (77) and (78) can now be substi-
tuted into equation (70), which gives

F = −qd

((
1 +

vx

vτ

)
∂A
∂t
−

ex

vτ

∂Φ

∂t

)
. (79)

This equation contains only time derivatives, which are easy
to calculate.

Remarkably, with the result (79), it becomes apparent that
the restriction to r = rx ex is actually not necessary. This
conclusion results from the fact that equation (79) depends
only on the direction-independent quantity v, the direction
vector ex = r/rx, and the projection vx = u · r/rx. At the same
time, however, the oscillation s(t) is generic and consequently
independent of direction. For this reason, rx can be replaced
by the distance r, and we obtain

F = −qd

((
1 + τ

u · r
r2

)
∂A
∂t
− τ

r
r2

∂Φ

∂t

)
(80)

because vτ = r/τ. For the potentials, we can apply the general
functions (67) and (68), and for the time τ, we can apply
equation (66). We again note that formula (80) is the force of
the dipole in the rest frame of the transmitter and that, because

of the approximations used, the wave of the electromagnetic
force is only correctly represented in the far-field.

Formula (80) now needs to be analyzed. In the simplest
case, u = 0. Because τ = r/c, Equation (80) becomes

F = −qd

(
∂A
∂t
−

r
r c

∂Φ

∂t

)
. (81)

For v = 0, equations (67) and (68) simplify to

Φ =
q r · ṡ

(
t − r

c

)
2 π ε0 c r2 (82)

and

A =
q ṡ

(
t − r

c

)
2 π ε0 c2 r

. (83)

Substituting the potentials (82) and (83) into equation (81)
gives

F = −
qd q

2 π ε0 c2 r

(
s̈ (t − τ) −

r
r
· s̈ (t − τ)

r
r

)
=

qd q
2 π ε0 c2 r

( r
r
×

( r
r
× s̈ (t − τ)

))
.

(84)

A reader familiar with electrodynamics will certainly recog-
nize that this is the type of field one would expect for a
Hertzian dipole. For s(t) = ez p0/(2 q) sin(ω t), this expression
corresponds exactly to the field one can usually find in
textbooks (e.g., [16, p. 470]).

Equation (84) gives a good insight into the essential proper-
ties of a point-like transmitter. In particular, the force vanishes
for r ‖ s(t), indicating that there is no radiation perpendicular
to the direction of oscillation. Furthermore, it becomes obvious
that the field in the far-field is always aligned parallel to the
direction of the dipole oscillation and propagates in the shape
of a ring perpendicular to the axis of oscillation. This ring-
wave propagation explains why the amplitude of the wave
decreases with 1/r and not with 1/r2, as would be the case
for a spherical wave. Interestingly, the term s̈ (t − τ) shows that
the information contained in the oscillation s(t) propagates at
the speed of light c.

However, this is only true if the receiver is at rest relative to
the center of gravity of the transmitter. For u , 0 and v � c,
one obtains the first-order approximations as

τ ≈
r
c

+
r · u
c2 , (85)

Φ ≈
q

2 π ε0 c r

( r
r

+
u

c

)
· ṡ (t − τ) , (86)

and
A ≈

q
2 π ε0 c2 r

(
ṡ (t − τ) +

r
r
· ṡ (t − τ)

u

c

)
(87)

by performing a Taylor series expansion of equations (66),
(67), and (68). Substituting equation (85) into equation (80)
yields the relation

F = −qd

(
∂A
∂t
−

r
r c

∂Φ

∂t

) (
1 +

r · u
r c

)
− qd

( r · u
r c

)2 ∂A
∂t
. (88)

The quadratic term ((r · u)/(r c))2 can be neglected for very
small relative speeds v, and we arrive at

F ≈ −qd

(
∂A
∂t
−

r
r c

∂Φ

∂t

) (
1 +

r · u
r c

)
. (89)
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Now, the two potentials (86) and (87) can be substituted, and
we obtain

F = −
qd q

(
1 + r·u

r c

)
2 π ε0 c2 r

(
s̈ (t − τ) −

r
r
· s̈ (t − τ)

r
r

)
−

qd q
(
1 + r·u

r c

)
2 π ε0 c2 r

( r
r
· s̈ (t − τ)

u

c
−
u

c
· s̈ (t − τ)

r
r

)
.

(90)

This expression can be simplified by using Graßmann’s iden-
tity, and we finally obtain

F =
qd q

(
1 + r·u

r c

)
2 π ε0 c2 r

( r
r
×

( r
r
× s̈ (t − τ)

))
+

qd q
(
1 + r·u

r c

)
2 π ε0 c2 r

(( u
c
×

r
r

)
× s̈ (t − τ)

)
.

(91)

This equation describes the force perceived by the receiver
in the rest frame of the transmitter. It does not describe the
force perceived by the transmitter itself! The transmitter does
not move in relation to itself. Therefore, the second term is
zero for the transmitter. The same conclusion applies to every
observer moving synchronously with the transmitter, because
an observer in the rest frame of the transmitter is nothing
more than a receiver resting in relation to the transmitter. This
interpretation clarifies that the wave velocity needs to be c only
in the reference frame of a receiver, because only receivers are
able to measure the speed of light.

We now return to Lorentz-Einstein electrodynamics. Here,
one uses usually the rest frame potentials (82) and (83), which
are only valid for a receiver at rest with respect to the center of
gravity of the transmitter. One then applies these potentials in
the formula of the Lorentz force (5), which – using potentials
instead of fields – reads

F = −qd
∂

∂t
A + qd u × (∇ × A) − qd ∇Φ. (92)

It is pointed out that this equation is almost equal to equation
(69), because it holds u× (∇ × A) = ∇ (u · A)− (u · ∇) A. If we
further use relation (54), we get

u × (∇ × A) =
v2

c2 ∇Φ − (u · ∇) A. (93)

Substituting this into equation (92), after adjusting the sign
of u, we find that equation (69) and Lorentz force (92) are
identical for v2/c2 ≈ 0.

Clearly, the insertion of the simplified rest potentials (82)
and (83) into equation (69) or the Lorentz force (92) is incor-
rect, because the potentials (67) and (68) are Liénard-Wiechert
potentials, i.e., solutions of the inhomogeneous wave equation
that consider the transit time of the force from the transmitter
to the receiver due to the trajectory of the transmitter. However,
in the simplified form (82) and (83), these potentials apply
only when the differential velocity between the center of mass
of the transmitter and the receiver is zero. And this is usually
not the case.

From this follows a very important conclusion: The differ-
ential velocity in the current density term in the wave equation
(19) must not be ignored, no matter in which frame of reference
we solve Maxwell’s equations! For the case in which the

differential velocity is not zero, the wave equation (19), which
follows directly from the full set of Maxwell’s equations,
provides many additional effects, but these are usually elimi-
nated by using a wrong current density in Lorentz-Einstein
electrodynamics. For example, using rest frame potentials
removes the Doppler effect, the trajectory, and the correct
time characteristic. Additionally, attenuation and amplification
effects of the electromagnetic force due to the differential
velocity are not properly reproduced. Even the force directions
are not completely correct. This can be seen from equation
(91), which after performing substitution r → r − u t is the
correct solution in Lorentz-Einstein electrodynamics in the
rest frame of the receiver for the far-field and for v � c.
In particular, there are force components that are parallel and
proportional to u [3].

Now the force field of the oscillating dipole is solved
once again as it is usually presented incorrectly in textbooks.
This calculation is not very difficult because, as previously
mentioned, we need only the simple rest frame potentials (82)
and (83). We insert these potentials into the Lorentz force (92),
and for the far-field, i.e., by neglecting all terms of order 1/r2,
we obtain the following approximation3:

F ≈
qd q

2 π ε0 c2 r

(( r
r
−
u

c

)
×

( r
r
× s̈

(
t −

r
c

)))
. (94)

The result (94) can now be compared with the force (91).
As can be seen, the two forces are identical only for v = 0.
Notably, the meaning of u in the two formulas differs in its
sign. In the Lorentz force, u is the velocity of the receiver
from the perspective of the transmitter; in contrast, in formula
(91), u is the velocity of the transmitter from the perspective
of the receiver. However, even when the sign is adjusted, the
two equations differ significantly for v , 0.

The most essential difference between equations (91) and
(94) is not the structure of the terms with the cross products,
but the argument of the function s̈(.). In Lorentz-Einstein
electrodynamics, the argument is t − r/c. In equation (91),
however, the argument is t − τ, where τ has a value such that
the wave has speed c in the reference frame of the receiver.

Thus, when we solve Maxwell’s equations in the rest frame
of the transmitter and use the Lorentz force afterwards, the
problem arises that the wave moves at c for a resting receiver,
but not for a moving receiver. Indeed, if one were to perform
a Galilean transformation into the receiver’s rest frame, the
wave would generally have a propagation velocity different
from c. For this reason, the Lorentz transformation is neces-
sary in Lorentz-Einstein electrodynamics. In contrast, if one
applies Maxwell’s equations rigorously in the rest frame of the
receiver without the Lorentz force, as described in this article,
the velocity of the wave is always exactly c, independent of
its velocity relative to the transmitter. This result has also been
recently shown by H. Dodig [4].

It is important to realize that these findings are perfectly
sufficient to satisfy Einstein’s two postulates:

1) There is no absolute velocity, only relative velocities. A
velocity, like a voltage, always needs a reference point.

3This expression is in textbooks usually split into magnetic and electric
fields and is often given in spherical coordinates.
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2) The propagation velocity of an electromagnetic wave is
equal to c for every observer in vacuum.

The principle of relativity is clearly satisfied in Weber
electrodynamics because, in this case, u is the differential
velocity between the transmitter and receiver and does not
depend on any uninvolved observer. The second point is
satisfied as well without the Lorentz transformation because
an observer can principally measure the wave velocity only in
his own rest frame. Thus, the observer is a receiver himself. If
the observer moves with respect to the transmitter, this motion
is explicitly considered in the wave equation (19), and the
calculated force propagates for the receiver with speed c. If
the receiver does not move with respect to the transmitter,
then this lack of motion is also taken into account by the
wave equation (19), and the propagation speed of the wave is
again exactly c. Thus, it does not matter how fast the receiver
is moving with respect to the transmitter because, after the
wave equation is solved, the force travels for him and for any
other receiver or observer at speed c.

The above explanation is the mathematical point of view.
Logically, however, this explanation seems deeply contradic-
tory. Yet, this contradiction is only present at first sight. In fact,
the phenomenon could be explained physically by assuming
that the electric force is mediated by force carriers emitted
by the transmitter with stochastic velocities. A sparkler can
serve as an illustrative analogy: the force carriers correspond
to the radiated sparks and have no uniform emission velocity,
but are radially symmetric with respect to the transmitter.
If one moves the sparkler, the center of radiation moves as
well. Obviously, the wave equation (19), which follows from
Maxwell’s equations, describes exactly such a phenomenon.

However, here we must assume a special feature: For each
receiver, only such force carriers have an effect that do not
move faster than c relative to the receiver. If an observer
is moving away from the transmitter, he can perceive force
carriers that are faster than c relative to the transmitter. Yet,
for the receiver, the carriers move at exactly c. If the observer
or receiver moves toward the source, the opposite effect occurs.

This force-carrier model is able to explain the effects of spe-
cial relativity, but offers also new opportunities for interpreting
quantum effects due to its field quantization. Unfortunately,
little investigation has been conducted on the consequences
of the mechanism postulated here for phenomena outside of
classical electrodynamics. However, it is known that one can
derive from this model and from Weber electrodynamics not
only magnetism, but most likely gravitation and inertial effects
as well.

Here, we include a brief discussion on magnetism, as this
topic cannot be fully treated due to length constraints. It is
worth noting that the magnetic field was originally introduced
to describe force effects on permanent magnets. This origi-
nal meaning has no relation to the Lorentz force. In 1820,
A. M. Ampère recognized that permanent magnets and DC
conductor loops are equivalent. From this realization followed
the Lorentz force, which is completely correct for electro- and
magnetostatic scenarios.

For electrodynamic situations, however, permanent mag-
nets and DC conductor loops are not equivalent in Lorentz-

Einstein electrodynamics. This conclusion can be verified by
(i) calculating the force on a permanent magnet using the B
field and (ii) calculating the force on a current in a small
conductor loop using the Lorentz force. However, because
Weber electrodynamics does not use the Lorentz force, the
magnetic field can be defined again in its original form, namely
as the field of the force that would act on imaginary magnetic
monopoles caused by the DC current in a very small conductor
loop. If one were to follow this approach, one would most
likely find that permanent magnets and DC conducting loops
act in the same way, especially in the electrodynamic context.
Further explorations of this aspect will be conducted as future
work.

V. Summary and conclusions

This article showed that the inhomogeneous wave equa-
tion (19), which follows from Maxwell’s equations for the
rest frame of a receiver, is valid for both Lorentz-Einstein
electrodynamics and Weber electrodynamics. This finding is
evidenced by the fact that the solution of the wave equation
for transmitters and receivers moving uniformly with respect to
each other corresponds to the Weber force (46) for differential
velocities that are not too high, if one uses equation (6) instead
of the Lorentz force (5).

Until now, this result was unknown, and the Weber force
seemed to be detached from modern electrodynamics. How-
ever, this article shows that Weber electrodynamics has a close
connection to Maxwell’s equations and that the difference be-
tween Lorentz-Einstein and Weber electrodynamics primarily
lies in how one interprets and applies the field equations and
the resulting wave equation.

In Lorentz-Einstein electrodynamics, one usually solves the
wave equation in the reference frame of the transmitter, as this
seems to correspond to the natural viewpoint and allows one to
apply the established methods of electro- and magnetostatics.
However, this approach implies that the wave generated by
the transmitter moves at velocity c only with respect to the
transmitter. However, numerous experiments have shown that
the wave velocity is c in the reference frame of any receiver.
This contradiction finally led to the development of the Lorentz
transformation.

However, if one solves the wave equation rigorously in the
rest frame of the receiver, this contradiction does not exist and
one obtains solutions showing that the wave indeed propagates
at velocity c for any receiver. In particular, for the simple case
of a uniformly moving transmitter and receiver, one obtains
the force formula (44), which agrees with the Weber force for
the limit of small relative velocities. Furthermore, the force
formula in the receiver’s frame of reference (43) indicates that
this solution and thus the wave equation itself is based on a
Galilean transformation, even at relativistic velocities. If one
nevertheless applies the Lorentz transformation, one obtains
inconsistencies in Lorentz-Einstein electrodynamics, i.e. one
finds that the results are different depending on the calculation
method.

Finally, the far-field approximation (91) of a Hertzian dipole
was calculated from the viewpoint of Weber electrodynamics.
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This approximation was analyzed and compared with the
known solution (94) for Lorentz-Einstein electrodynamics.
This comparison clarified that there is no need for a Lorentz
transformation and that the solution for Weber electrodynamics
is physically more reasonable and in full agreement with the
wave equation that follows from Maxwell’s equations.

The main conclusion of this article is that Weber electro-
dynamics is also a Maxwellian electrodynamics, as it can be
derived from Maxwell’s equations and the corresponding wave
equation. The difference to Lorentz-Einstein electrodynamics
lies in the fact that the solution of Maxwell’s equations must
always be obtained in the rest frame of the receiver in Weber
electrodynamics. However, as the article has shown, this seems
to be the only generally valid approach anyway.
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