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Abstract

Achieving genuine (human-level) artificial general intelligence (AGI) is one of the major goals of computer science, engineering,

psychology, and mathematics. In this article, we critically reexamine the relation between natural intelligence and artificial

intelligence at a fairly general theoretical level. After identifying four major structural themes in natural intelligence, we move

to the issue of AGI implementation through physical computing machines. Motivated by Penrose’s G¨ddelian argument refuting

the thesis of AGI realizability via Turing machines, we formulate several theses on the noncomputable essence of AGI systems

and suggest that infinitary noncomputability might constitute a viable path toward future AGI implementations, especially

if coupled with nonlocality and a non-classical probabilistic structure such as the quantum case. A theoretical mathematical

framework for non-Markovian stochastic dynamic systems is then presented and illustrated by describing multiagent AGI

assemblages comprised of interconnected dynamic agents. We envision that such networked dynamical assemblages might be

powered by noncomputable physics or arranged in an infinitary structure.
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Artificial General Intelligence, Noncomputability,
and Dynamical Systems: A Critical Reexamination

Said Mikki

Abstract—Achieving genuine (human-level) artificial general
intelligence (AGI) is one of the major goals of computer science,
engineering, psychology, and mathematics. In this article, we
critically reexamine the relation between natural intelligence and
artificial intelligence at a fairly general theoretical level. After
identifying four major structural themes in natural intelligence,
we move to the issue of AGI implementation through physical
computing machines. Motivated by Penrose’s Gd̈delian argument
refuting the thesis of AGI realizability via Turing machines,
we formulate several theses on the noncomputable essence of
AGI systems and suggest that infinitary noncomputability might
constitute a viable path toward future AGI implementations,
especially if coupled with nonlocality and a non-classical prob-
abilistic structure such as the quantum case. A theoretical
mathematical framework for non-Markovian stochastic dynamic
systems is then presented and illustrated by describing multi-
agent AGI assemblages comprised of interconnected dynamic
agents. We envision that such networked dynamical assemblages
might be powered by noncomputable physics or arranged in an
infinitary structure.1

Index Terms—Artificial General intelligence, natural intelli-
gence, noncomputability, dynamical system theory.

I. INTRODUCTION

Within the last ten years or so, a major shift in artificial
intelligence (AI) research had taken place: bottom-up con-
nectionism [1]–[3], most notably machine learning (ML) [4]
and artificial neural networks (ANN) [5], have become the
forerunners in the quest for building various core and multi-
functional AI systems [6]. Initially at its inception moment in
1950 [7], it was believed that AI should be approached through
a symbolic top-down strategy, i.e., a combination of cognitive
psychology and some proper logical calculus were conjec-
tured to be sufficient for constructing intelligent behaviour
or generating suitable action using machines preprogrammed
to perform well with varying environmental conditions [8].
But regardless to whether AI is seen as a strong/symbolic
AI (top-down) or weak/connectionist AI (bottom-up), such
terminological differences are now beginning to give away
to a newer framework where ANNs and ML dominate low-
level implementations of the system’s core, while higher-level
methods, e.g., pretraining, hyperparameter optimization, model
selection, etc, are incorporated through some proper top-down-
like strategy [9].2 There is then a contemporary tendency to
move toward increasingly data/environment-centered frame-
works where ideas such as connectionism [5], emergent data-

1The author is with Zhejiang University/University of Illinois at Urbana-
Champaign (ZJU-UIUC) Institute, Zhejiang University, Haining, Zhejiang,
China. He can be reached at said.m.mikki@gmail.com

2In fact, unsupervised learning methods such as clustering and dimension-
ality reduction are hard to classify from the philosophical viewpoint: are they
top-down or bottom-up? Clearly both.

driven solutions, training, supervising, risk assessment, and
reinforcement [4], [9], [10], all become the main key players,
while trying to avoid paying too much attention to whether
the core AI system is actually controlled in a strictly top-down
manner or vice versa.

Motivated by this recent convergence of strong AI3 and
weak AI into a hybrid schema, namely learning-based-data-
driven AI, an obvious question to pose at this stage is
the following: How do traditional and current AI paradigms
compare with generic intelligence? or to rephrase the same
question in the old terminology, How does AI measure up
against natural intelligence? The latter includes the subjects
treated by cognitive psychology [11], philosophy of mind
[12], logic [13], [14], mathematics [15], and linguistics [16],
[17]. More specifically, we focus here on a recently proposed
synthesis of all these domains known as artificial general
intelligence (AGI) [18]–[21]. In the still relatively limited
but growing recent literature on AGI, the latter is often
defined as an AI system capable of “achieving human level
intelligence.”4 Could AGI be achieved by mere intensification
of one already known computing strategy or a combination
of some of the currently used AI paradigms? It seems that
AGI represents a singular form of AI research that may face
some fundamental obstacles due to insurrmontable limitations
inherent in the nature of mind, consciousness, and the laws
of physics as such. There have been already some recent
doubts about whether AGI is achievable using algorithms
or standard computing machines [21]. Several fundamental
investigations that started to appear from the late 1970s argued
that Gödel’s incompleteness theorems set some strict limits
on the mechanization of thought, understanding, awareness,
consciousnesses, though opinions vary widely regarding what
it is exactly about natural intelligence that cannot be emulated
via pure computational procedures [15], [22]–[24].

In our opinion, however, this subject was considered in
a very comprehensive and definitive manner only by Roger
Penrose, especially during the period 1989-1994, where he
developed an ingenious Gödelian argument to show that no
Turing machine or algorithm can in principle simulate the

3The historically earlier term strong AI is sometimes used in a manner
similar to AGI. However, here strong AI means fully symbolic or top-down
AI approach. The terms strong AI and AGI have different semantics in this
article.

4In this article we prefer the term natural intelligence since its scope is
broader and less restrictive. For example, the biological world already exhibits
high degrees of intelligent behaviour that even the most advanced current
AI chips cannot emulate. Nevertheless, most of the main features of natural
intelligence to be reviewed in Sec. II are fully developed only in humans. So
in a first approximation, it is still possible to use the terms natural intelligence
and human intelligence interchangeably here.
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self-awareness aspect of thought essential to the process of
conscious understanding as experienced by human minds,
especially in the field of mathematical productivity [25]–[29].

Our main objective in this article is to theoretically investi-
gate potential limitations in nature that may set AGI apart from
conventional AI. Our approach is inspired by and founded
on some of Penrose’s theories, especially his 1994 text [26].
However, in contrast to Penrose, we don’t consider achieving
self-consciousness or self-awareness the main objective of
current and future researches into AGI. For us, AGI needs not
attain self-consciousness for the simple reason that an AGI
system is not necessarily an attempt to replace or copy the
human mind.

This paper is structured as follows. In Sec. II, we outline
some of the essential features of natural intelligence that an
AGI system is projected to reproduce, at least partially. This is
followed in Sec. III by our view on the specifics of that critical
power a future AGI agent is expected to possess, namely the
existence of a noncomputable level and the realizability of
the intelligent function in terms of a nonlocal or memory
dissipative dynamical process involving some sort of infinitary
structure. Sec. IV then provides a high-level theoretical for-
malism for a possible realization of an AGI system comprised
of an assemblage of interacting agents, each modeled as a
non-Markovian dynamical system. Finally, we end up with
conclusion.

II. FUNDAMENTAL STRUCTURES OF NATURAL
INTELLIGENCE

A. The Abstract and the Concrete

In a memorable classic, Claude Levy-Strauss famously
identified the working principles of the “primitive” mind as
“the science of the concrete” [30]. Regardless to the social and
cultural controversy surrounding this anthropological study
itself, we note that an implicit criterion was inserted into
that peculiar position, commonly upheld by Levy-Strauss and
most of his generation, according to which one considers the
defining trait of “non-primitve” minds to be nothing other than
the latter’s mastery of the category of the abstract. We have
then a fundamental bifurcation of thinking into the abstract
and the concrete, somehow mirroring the Spinozist ontological
parallelism of extension and thought as modes of substance
[31]. Natural minds can function in dual modes, moving from
concrete settings to abstract ones, and vice versa. We grasp
objects through a complex cognitive perceptual process that
involves building higher-order representations of sense data
[12], themselves arranged and structured in a hierarchical
fashion, after which we move to an actualization or realization
of top-down categorical directives and concepts by stuffing and
filling up the “empty” abstract schema with various grades of
bottom-up sensual and mental content [32]. Conversely, one
may start with a purely concrete (“filled up container”) then
abstract away the content in order to arrive at the higher-order
form [33]. Therefore, the dynamic duality between the abstract
and the concrete is not far from the traditional dialectical
structure comprised of form and content that so dominated
Greek and western philosophy [34]–[36]. A genuine AGI

capacity must be able to at least reproduce this quite uncanny
non-algorithmic dynamic splitting of the process of objective
cognition into either abstract or concrete modalities, plus the
possibility of some quantum superposition comprising the two.
The difficulty stems from the non-reductive nature of this
division: Neither it is possible to add or combine the abstract
and the concrete into each other, nor to effectively differentiate
or separate them using a computational automatic criterion.
The abstract and the concrete each inhabit its own distinct
ontology, while the relation between the two is too subtle to
be fully captured by existing sophisticated apparatuses such
as the Russell’s ontology of types [37] or the hierarchy of
metalanguages [38].

B. Improvisation vs Algorithms

From another very fundamental perspective, algorithmic
machinic action can never be able to muster the often wild
but spontaneous ability of advanced organisms to respond to
changes in their environments by producing totally new and
unexpected behaviour. Indeed, ML algorithms are inherently
unable to come up with fully novel patterns or behavioural
activities that had not been already written into their internal
states a priori (preferably through a data-driven learning
process.5 This implies that natural intelligence is ontologically
irreducible to all known forms of AI, especially the ML and
ANN paradigms where in the latter algorithmic determinism
rules supreme. Even the incorporation of stochastic fluctu-
ations or randomness in the design of AI algorithms does
not considerably change this conclusion since a probabilistic
machine continues to exhibit most of the essential ontological
and sub-ontological features of a Turing-like computing ma-
chinery. On the other hand, a creative AGI agent, whose frame
of reference should be natural intelligence, not AI, should be
equipped with an intrinsic competence allowing it to produce
novelty, experiment with new approaches, and engage with odd
behavioural possibilities. No known AI core system has ever
successfully demonstrated the ability to perform creative im-
provisatory actions. In fact, detailed documented investigations
into this scenario (human-level AGI) are still consigned to art
and literature, e.g., science fiction and futurological research.
There is then the natural question about whether AI should
or need consider improvisation as a basic long-term objective
for reaching AGI through the pathway of computational intel-
ligence, the only path open to AI practitioners so far. We take
up this question in the next section.

C. Nonlocality vs Locality

An AI “algorithm” may be pictured as “improvising” if
a “novelty cost function” can be assigned to the computing

5For example, consider the formalization of this intuitive insight given in
terms of no-free-lunch theorems in machine intelligence [4]. For binary ML
under generic but reasonable conditions, it can be proved that there exists
no universally good learning machine. In other words, every ML-based AI
system has to be specific (very good at solving specific problems.) For that
reason, it is hard to see how genuine AGI agents can be constructed using
existing methods. Sec. III provides further discussion of this point but see
also [21] for another perspective.
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machinery, in addition to the other risk, loss, cost, etc, per-
formance measures to be mutually integrated into the core
system operation [4]. However, “novelty” should never be
evaluated or assessed immanently, i.e., through means intrinsic
to the AI agent itself and its surrounding environing field.
Instead, accounting for creativity, whether in cognitive psy-
chology, artistic production, or in a potential AI setting, will
fundamentally involve nonlocal processes, whereby potentials
and possibilities, objectives and teleologies, have been forecast
and foreseen in advance; for otherwise it is ontologically
impossible to determine whether what is being produced is
a creative action rather than random or pretrained actions.
Securing the existence of nonlocal predictive processes is
inherently beyond the means of classical computing machines,
which are often based on classical (Kolmogorov) probability
and classical physics [39], [40]. Nonlocality in intelligent
agent networks requires the establishment of regimes of long-
spatiotemporal correlations allowing distinct sub-components
of the system to exchange information among each other
[41]–[44] and, more importantly, to evaluate and assess each
other [45], [46], leading then to at least the possibility of
creating a novel behaviour that surpasses the capacities of
each sub-component when taken on its own [47]. Thus, while
nonlocality and novelty are ontologically distinct concepts,
they are closely related with each other [48].

Of course one may also argue that neuroscience is still op-
erating with classical probability and classical physics. Indeed,
this field continues to actively promote the idea that cognition
and intelligence will be eventually accounted for using the
computational paradigm of neural circuits trained through past
experiences [49]–[51]. More interestingly, such classical neu-
roscience already admits the fundamental importance played
by nonlocality in understanding and explicating brain and
cognitive structures [52]. Nevertheless, it aspires to do so while
using mainly classical probability and classical field theories,
possibly with the inclusion of stochastic elements [51], [53].
But it is questionable whether non-classical structures can be
kept outside the cognitive neuro-scientific framework, at least
not for a long time. Several nonlocal approaches, including
quantum formalisms, have been already advanced to explain
the action of the brain and its relation to memory, cognition,
consciousness, e.g., see [28], [52], [54]–[58]. While these
scattered investigations (and several others not cited here)
have not been fully successful in unequivocally changing the
direction of brain science research per se, one may say that at
least when viewed collectively they have opened a traceable
pathway leading toward understanding or even constructing
natural intelligence systems, hence building possible AGI in
the future.

D. Classical vs Quantum Probability

We have seen then that injecting an element of improvi-
sation into an AGI system requires introducing nonlocality,
despite the fact that a nonlocal action is hard to account for
using only classical physics. This is why quantum effects in
neuroscience had been proposed [59]. Yet the most direct and
straightforward path toward setting up nonlocal brain correla-

tions would be through the hypothesis of macroscopic quan-
tum coherence extending along macroscopic scales [26], [54],
[60]. But it should be noted that strictly speaking nonlocality
can exist as a classical phenomenon [61], e.g., in nanoscale
problems [62], [63], via strong near-field coupling [64] or,
even more fundamentally, as an expression of the existence of
a superspace structure transcending classical spacetime though
indexed by the latter [44]. Nevertheless, it is still true that the
most prominent source of nonlocality in nature is quantum
processes, whether at the microscopic structure of matter-field
interactions [43], [65], long-distance correlation via entangle-
ment [66], or quantum memory effects [54], [60]. For that
reason, a very promising alternative to classical computational
AI might be in moving directly toward using non-classical
computational procedures borrowed from quantum physics in
order to realize cognitive and natural intelligent functions such
as memory and decision making [54], [57], [67]. In a more
ontologically relaxed approach, a “quantum-like” information
processing paradigm was proposed in which quantum theory
is used as a tool to perform AI-like computations without com-
mitting to a view on whether the underlying physico-chemical
structure of the brain is quantum or classical [68]. In some of
these approaches, the very structure of classical probability,
so fundamental in mainstream AI and ML methods, is to be
questioned. For instance, we now know that the formula of
total probability (FTP) does not hold in quantum superposition
regimes [69]. Since classical probability models, essentially
the Kolmogorovian formalism, are all based on FTP, this
has led to the suggestion that the very popular measure-
theoretic probability theory [70] due to Kolmogorov is not
the only possible probability theory that may be deployed in
applications to physics, social science, and computing [58].

The collapse of the FTP in computing paradigms based on
the alternative worldview offered by quantum probability is
particularly worrying for conventional AI. Moreover, this is
also relevant to the potential of a successful realization of
AGI agents in the future. Indeed, in a quantum framework,
the following changes to the classical AI and ML paradigms
are expected:

1) The Boolean structure of classical logic, already in-
tegrated into the σ-algebraic set-theoretic structure of
Kolmogorovian probability [70], should be revised in
order to account for non-classical logical operations
such as those entailed by quantum superposition and
entanglement [71]. This has strong implications for top-
down AI in particular since the latter is based on first-
order logic [72].

2) A multi-functional AGI system is expected to be ex-
haustive and complete in the sense that it can produce
all required actions when facing a generic situation.
However, the total probability law’s expression in terms
of the FTP is the only mathematical framework available
to classical AI in order to formally exhaust all possible
events in a given probability space. Therefore, a non-
classical AGI, e.g., quantum AGI or an artificial brain,
may need to be designed with a completely different
set of rules and options to account for the strictly
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non-classical interference effects due, for example, to
quantum superposition and long-distance correlations
induced by quantum entanglement.

3) Non-Kolmogorovian probability models [58] might be
incorporated into AI and AGI in order to explore – or
even possibly create artificial – scenarios of universes
of actions where classical probability rules such as the
FTP are not available. These need not necessarily be
quantum probability theories. There might be paradigms
not based on the set-theoretic universe of measure the-
ory, e.g., category theory [73], frequentist theories [74],
contexualist formalisms [58], and others.

4) Closely related to the FTP is the Bayesian rule, which
is not expected to survive unchanged in non-classical AI
such as quantum AI and AGI. However, context-based
paradigms of probabilistic thinking can be developed
to expand the reach of probability theory beyond the
traditional domain, e.g., see [58] and references cited
therein.

5) Embedding multiple probability spaces into a larger
non-Kolmogorovian probability superspace. This “trick”
might be needed in order to still use classical Kol-
mogorovian probability theory but only “locally,” i.e.,
in co-existence with other possibly incompatible proba-
bility models, but while all are embeddable into a larger
abstract superspace. One of the advantages of such non-
Kolmogorovian probability superspace is its ability to
deal with contextuality and possibly improvisation in
AGI systems.

Because of such possible fundamental changes in the math-
ematical structure inside where AI research can be conducted,
it is reasonable to expect that emulating natural intelligent
and AGI agents may eventually involve introducing some non-
classical alterations in the basic fabric of all researches into
intelligence as such. For example, could the incorporation of
quantum probability help solving the problem of the dynamic
splitting or bifurcation into abstract and concrete so essential
for natural intelligence referred to above? Regardless to the
eventual answer to such open questions whose complete
or even partially complete answers are still awaiting us in
the future, we believe that projected domains such as AGI,
artificial brains, and strong AI will eventually involve a major
departure from the classical mathematical and logical models
that have governed the progress of the field since the 1930s.
In the next section, we provide a more formal outline of some
of these new structural changes expected to play a role in such
a departure from the common approach.

III. NONCOMPUTABILITY AND DYNAMICAL SYSTEMS IN
ARTIFICIAL GENERAL INTELLIGENCE

A. Infinitary and infinitary noncomputability

In this article, a computable procedure is defined as any
algorithm implementable on a standard or stochastic Turing
machine [75]. This definition is popular and is thought to
encompass both classical and quantum computing [39], [76].
However, it should be noted that it is not the only possible
one. Indeed, a noncomputable procedure need not be a method

that cannot be implemented on a Turing machine. Noncom-
putablity (NC) as such may involve non-Turing machine,
for example machines that use an infinite set of rules or
even a completely different computing structure. A recent
comprehensive reexamination of this subject may be found
in [77], where numerous additional references on computing
and the relation with fundamental physics can be found.

The Church-Turing thesis is the common belief that all
important computational problems are precisely those im-
plementable on either a deterministic or stochastic Turing
machine [76], [78]–[80].6 Motivated by this perspective, we
distinguish two types of noncomputability (NC), infinitary NC
and finitary NC, defined as follows:

Definition 1. (Infinitary and finitary noncomputability) An
infinitary noncomputable (INC) procedure is one that cannot
be implemented on a Turing machine yet may be realized by
a method utilizing infinitary, e.g., ordinal, formal structures.
On the other hand, a finitary noncomputable (FNC) algorithm
is one where there is a strictly finitary proof that a Turing
machine cannot implement its basic computation.

Examples of FNC procedures are those famous open prob-
lems in mathematics where it has been effectively proved that
no ordinary (hence finitary) Turing machine can be constructed
such that it serves as an effective solution procedure [79],
e.g., Hilbert’s Tenth Problem [80], the plane tiling problem
[26], and the word problem [81]. An FNC algorithm may
or may not be also an INC one. However, INC methods
seem to encompass a distinct set of problems since it is often
easier to prove that a problem can be solved using infinitary
method [38]. For example, the existence of nonmeasurable
sets can be proved using the axiom of choice [82], which
is an infinitary rule par excellence [70]. At the same time,
producing a proof that a given computational problem is
NC using only finitary methods is often very difficult and
takes considerable time to achieve. Note that the significance
of FNC stems from the Church-Turing thesis: since most
important computable problems are thought to be those that are
Turing-computable, then only FNC problems are significant
as outstanding undecidable problems in computing. This may
explain why in literature there has been more emphasis on
FNC than INC, though in recent years this appears to have
started to change, e.g., see the survey [77] and the literature
on analog computing for example cited therein.

Curiously, Turing himself appears to have considered non-
Turing machines as fundamental. Indeed, shortly after his
famous 1937 paper on conventional Turing machines [79],
he introduced ordinal and oracle machines [83]. The oracle
machine paper [83] sharply contrasts with his more famous
other articles such as the founding AI document [7] or the
main connectionist paradigm text [3]. More recently, there
is an interest in exploring Turing’s nonstandard ideas on the
role of noncomputability in both computer science and AI
[77], [78]. In general, while this may not be really Turing’s
final theory, there is a growing evidence that true natural

6In this article, we often refer to both deterministic and stochastic Turing
machines using the same name, simply as Turing machines when the distinc-
tion between the two is not conceptually important and based on the context.
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intelligence may require introducing non-Turing-like types of
machines (see [24]–[26] and more on this below). We are
interested in defending the following thesis:

Thesis A. Genuine AGI systems, with capabilities
approaching natural intelligence, may require the use
of infinitary noncomputable (INC) procedures.

Thesis A is similar to several other theoretical frameworks
proposed in literature proposing a departure from the Church-
Turin thesis. However, such a departure is not as radical as it
may appear at first sight. In fact, a recent analysis and survey
[77] has shown that there is no wide agreement on whether
the universe itself is Turing-computable, although, at least in
our opinion, the latter view continues to be the mainstream’s
position: many researchers in fundamental physics, informa-
tion theory, and AI firmly believe that NC is equivalent to
not being Turing-computable. But admitting infinitary methods
was already considered by Turing himself [83] as a game
changer, though, curiously enough, he did not change the game
in his later better known paper on the foundations of AI [7].
Indeed, in the latter work, the imitation game was presented
in terms of standard computing machinery of the Turing type,
finite state machines, von Neumann computers, and so on.
Intelligence has been presumed to be outcome of performing
computations. We propose to entitle this pervasive intellectual
orientation attitude the fundamental thesis of machine intelli-
gence (FTMI), defined as follows:

FTMI. Intelligence is essentially generated by
computations. Computational intelligence exhausts
what constitutes intelligence as such.

By combining FTMI with the Church-Turing thesis, the fol-
lowing more familiar version of FTMI can be deduced:

FTMI∗. Intelligence is essentially generated by
Turing-computable methods.

It is particularly the FTMI∗ version of the fundamental thesis
of machine intelligence what appears to be extremely popular
in researches conducted within both physics and AI.

However, Roger Penrose had set out to produce a series
of powerful arguments aiming at refuting FTMI∗, utilizing
methods borrowed from Gödel’s [84] and Turing’s works [85],
though arriving at final conclusions not necessarily held by
them [25], [26]. But Penrose’s position with regard to what
we collected under Thesis A is less clear. In general, his
emphasis had been laid mainly on an FNC approach based
on Gödel’s incompleteness theorems [86], framed in terms of
Turing’s approach, which can be completed with a formal-
ization utilizing only finitary means [26]. The noncomputable
oracle machine [83] was briefly considered in [26], but only
to be dismissed as non-threatening to his main objective in
that book (refuting FTMI∗). He later came back to the topic
of oracle machines, producing a more detailed and positive
theory, but this time with the aim to to shed more light on the
structure of the human mind [29]. In any case, there is still
no universal agreement on whether Penrose’s argument had
effectively demolished FTMI∗, and the debate still continues.
From our own perspective in this article, we wish to point out
the plausibility of Thesis A in light of Penrose’s work and
other related subsequent developments.

We begin by noting that Penrose’s Gödelian argument
aiming at a refutation of FTMI∗ does not logically entail
Thesis A since the latter is focused not only on NC as
such but more on INC, where in the latter case computations
that might eventually generate intelligence are expected to
ultimately rely on infinitary means. It is not clear at this
stage whether or not one should consider Penrose’s view as
supporting either an FNC or INC version of the thesis that
noncomputability is at the core of true intelligence.7 In order
to gain a better understanding of the problem, we need to
consider how computation relates to physics, a large topic
with complex history. Here, our approach will depend on
the fundamental role played by dynamical system theory in
computing and intelligence.

B. Dynamical Systems and Intelligence

In Sec. II, we listed some of those fundamental struc-
tural themes characteristic of natural intelligence that are not
easily realizable using present-day AI technology, especially
the data-driven ML paradigm. Some of these features, like
the dynamic splitting into abstract and concrete ontological
categories, may be taken as suggesting the need to establish
a noncomputational procedure surpassing the limitations of a
traditional Turing machine (Sec. III). The important question
we now turn to is how to realize a given AGI core system,
whether computable or not. The answer is critical for under-
standing some of the limitations of conventional AI and the
demand for exploring alternative ideas for future AGI research.

We embrace below the now well-established trend of treat-
ing AI systems as essentially dynamic agents [72]. This view
is fundamental for future realizations of AGI using networks
or assemblages of multiple interacting agents [45], [46], [87]–
[89].

Definition 2. (Intelligent dynamic agents) An intelligent
dynamic agent (IDA) is a process in spacetime capable of
performing decisions and outputting actions in real-time sce-
narios. The IDA is a continuous- or discrete-time dynamical
process that can be embedded into higher-dimensional state
spaces, possibly infinite-dimensional, but must involve local
time as independent variables. The dynamics may be determin-
istic or stochastic, and in the latter it can be either Markovian
or non-Markovian.

For both natural and artificial intelligence, the IDA is
most commonly modeled as a stochastic (usually Markovian)
dynamic system [51], [90], [91]. Note that non-Markovianity
is closely related to nonlocality so non-Markovian systems
are projected to play a prominent role in future dynamical
realizations of AGI agents (cf. Sec. II-C). For a comprehensive
and rigorous account of the dynamic approach to nature
(biology, psychology) that also pays special attention to the
role played by memory (non-Markovianity), see [92]. The
IDA paradigm has become quite influential in AI teaching
and research even while not always couched in the language
of rigorous dynamic system theory [72]. IDAs include not

7However, the author’s feeling is that Penrose’s theory fits more with the
finitary approach.
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only single agents interacting with their environments using
sensor arrays [93], [94], but also swarms or assemblages of
interacting agents where intelligent behaviour can be seen to
emerge out of the nexus of collective interactions [45], whether
classical or quantum [91].

This dynamic view of intelligence was not well developed
during the time of the founding fathers of computer science.
Up to the early 1950s, figures like Gödel, Turing, Church,
Post, and Chomsky worked with essentially a Hilbert-like
formal system approach [95], where the principal content of
the theory, whether applied to logic, foundations of mathe-
matics, computing, AI, linguistics, cognition, is generated by
executing a set of “static” or fixed rules whereby computations
or derivations are logically performed in some ambient abstract
mental space [16], [84], [96]–[98]. On the other hand, the rise
of dynamic system theory in scientific studies of intelligence
started to really take shape after the end of World War II. In
general, the dynamical concept itself comes from both biol-
ogy and mathematics. The evolutionary history of organisms
inspires the idea that, similar to the situation with species in
macroevolution [99], the intelligence of the individual, not the
species – viewed as a creative reaction to nature – could be
construed as a dynamic response to environmental pressure
[100], [101]. According to this view, basic cognitive com-
petences emerge from developmental equilibration processes
responding to changes in the surrounding milieu but aiming
at preserving formal invariants [102], [103] that provide the
basis for the functional performance of the individual as an
intelligent agent [104], [105]. In more recent years, influential
theories of dissipative dynamical systems [47], [106], [107]
also started to attract attention and are currently being actively
deployed for conducting investigations into problems related
to natural intelligence and cognition [108].

For the purpose of the specific discussion in this article,
we would like to advance a second thesis, to be appended
to A, where we view the realization of advanced intelligent
functions as essentially tied up to the evolutionary history of
complex (most likely dissipative [42]) dynamical systems:

Thesis B. A genuine AGI system, with capabilities
approaching natural intelligence, can be realized as a
special complex dynamical system. Moreover, it is
expected that such systems will be dissipative and
non-Markovian.

Note that here we view B as independent of A although
this cannot be proved without a complete theory combining
physics, information, and computing, a topic outside the scope
of this article.8

Much of the recent literature of neuroscience and theoretical
brain studies appear to be already embracing the dynamical
system doctrine of explaining intelligence, e.g., see [50], [51].
In AI research proper, there is already a trend to integrate
the science of complexity with studies of cognition and
intelligence [110], [111]. However, a majority of these studies
does not emphasize or presuppose a noncomputable core in the
dynamical system. In fact, the standard dynamical systems of

8However, on this multidisciplinary general framework of a physics-based
information theory of computing, see [23], [26], [39], [76]–[78], [109].

both classical and quantum physical theories can be simulated
using Turing-computable machines [26], [76], [77]. We then
need to look more closely at how physics relates to computing
and AGI.

C. The Role of Physics in Artificial General Intelligence

So far in this article, intelligence has been presented and
analyzed from an abstract general perspective. Historically
speaking, this is how the field stared. Indeed, since the early
decades of AI research, it was believed that the core objective
of achieving human-level intelligence could be attained by
mere increase of computational power and the use of increas-
ingly sophisticated algorithms. Strong AI for instance was
treated as essentially a “programming problem” that requires
only a substantial input from mathematical logic. We now
know this is not the case. AI and AGI are unlikely to progress
in the future without considering highly specialized physical
and possibly biological systems that will either perform Turing
computations or execute noncomputable actions that cannot
be even modeled using a Turing or other equivalent machines
[24], [26], [28], [77]. Let us see how our discussion so far may
help shedding some light on this scenario. If we combine A
with B, the following corollary is obtained:

Principle of Dynamic Realization. A genuine
AGI system is an infinitary noncomputable dynam-
ical system. In other words, we have

INC + IDA AGI
Realization

Analysis
(1)

The movement from left to right represents the
physical realization of a designed AGI agent via
a physical process (dynamics in spacetime). Move-
ment from right to left is the analysis of a given AGI
function into two sublayers, a core INC algorithm
and a model in terms of dynamic systems.

Additional remarks on the above principle will be given in the
remaining parts of this paper. For now, it should be noted that
this is not a theorem or an established law, but a formalization
of a possible direction that a crossdisciplinary examination
of AGI conducted within computer science, engineering, and
physics, may take.

First, we clarify the issue of the possible existence of
deterministic or stochastic noncomputable systems. An explicit
NC system is exhibited in Appendix A, where the well
known fact of the existence of several undecidable problems
in mathematics [79]–[81] is exploited for the purpose of con-
structing a noncomputable (NC) discrete dynamical system.
Since continuous-time systems can often (but not always) be
effectively approximated by discrete dynamics, this serves as a
demonstration of the essential distinction between the concepts
of NC and deterministic systems: the existence of one does
not exclude the other [25], [26]. Since physical processes,
whether classical or quantum, are modeled by continuous-time
dynamical systems, the conclusion is that even while these
systems in their standard form are thought to be computable
[39], [76], it is still possible in principle to discover or realize
NC in future physical systems or theories [26], [77].
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This issue is critical for our purposes here. Indeed, ob-
jections against propositions such as Theses A and B often
claim that AGI, science, and engineering should only be con-
cerned with computable systems since only the latter contain
finite resources, while engineering systems utilizing infinite
resources cannot be constructed in the laboratory. At first this
appears to be certainly true, but it is advisable to be more
careful when the expression “finite resources” is used. If I
have access to a given number of ASICs, cables, wires, PCBs,
and an artificial brain (regardless now to what this engineered
brain is), then indeed I do have a “finite” list of resources.
Nevertheless, the artificial brain “item” in this list may itself
rely on a special internal physical infinitary process that can
perform an NC operation. This is one of the key points of
this article: new physics or novel discoveries in the natural
world may bring into the AGI field unique dynamical systems
capable of performing NC operations.

D. Comparison with Penrose’s Position

While Penrose’s main arguments were that only NC pro-
cesses may explain or realize human consciousness, our goal is
to highlight the importance of NC systems in providing some
of the natural intelligence operations and themes discussed in
Sec. II which are difficult to realize with classical AI methods
but could become crucial for future AGI. As stated in Sec.
III-C, The Principle of Dynamic Realization partially agrees
with the main spirit of Penrose’s arguments (Thesis B), but
also differs from his position in some important aspects:

1) In contrast to Penrose, we are not interested here in
the problem of how to explain consciousness, where
the latter is defined as self-awareness. Self-reflection,
the fundamental ontological structure of consciousness
[112], was not listed in the main themes of natural
intelligence summarized in Sec. II.

2) Penrose does not focus on infinitary resources such as
the axiom of choice, the well-ordering principle, trans-
finite induction, which are essential known infinitary
principles used in higher mathematics [24], [38], [82].

3) Penrose’s formulation highlights the importance of Ob-
jective Reduction (OR) [28], i.e., the process of reducing
the quantum state to one of its eigenstates (wavefunction
collapse, quantum measurement, etc.) On the other hand,
proposals such as OR are outside our scope. Instead, we
focus on the abstract and formal theoretical structure of
the physics involved, here delimited in terms of an INC
core integrated into the IDA as per the formula (1), Sec.
III-C.

We further note that while Penrose’s justification of Thesis
B is very convincing, the status of his proposal that some sort
of a quantum-gravitational noncomputable physics is involved
in the OR process is still not fully clear or conclusive, but
see [28], [55]. For these reasons, in Sec. IV we propose a
theoretical model to explain how we envision INC components
injected into an IDA framework for the purpose of building fu-
ture AGI agents utilizing some future (still unknown) physics.
The specific noncomputable OR process proposed by Penrose
is not considered as essential for our presentation of AGI

systems in this article, but if proved true, it can be incorporated
into our general abstract theoretical framework.

IV. A THEORETICAL FORMALISM FOR GENERIC AGI
SYSTEM ASSEMBLAGES

A formal model of an extremely general network or as-
semblage of interacting IDAs realizing an AGI framework is
outlined next. Our objective here is to introduce the minimal
theoretical structure needed to mathematically describe infor-
mation processing and flow in generalized neural networks
defined as assemblage of coupled or interacting subsystems
dynamically exchanging information, energy, and matter with
each other. For AGI assemblages, we are often mainly inter-
ested in information processing. Spiking neural networks [113]
might be considered a current forerunner to the generalized
AGI agent assemblage we envision here. We allow the AGI
assemblage and each of its subsystems to be either classical
or quantum. To work with both types of systems using a
single mode, we utilize the stochastic dynamic methods of
Prigogine [114] and Sudarshan [115], which provide a physical
description of the same system using a master equation in
statistical densities living in either function or operator spaces
but be extended to superspaces going beyond Hilbert space
such as rigged Hilbert spaces [107], [116], [117].

A. The Single Agent System Level Description

Let ρt be a either a quantum density operator [118] or dis-
tribution function [107] characterizing the state of a physical
dynamical system defined on a state space X . The system
possesses an internal state Xt ∈ X and input Ut ∈ U
at time t, where U is the space of input excitation fields
(collection of physical inputs carrying information from the
environment and possibly other interacting agents represented
by other dynamical processes.) Note that the internal state Xt

is different from the physical state captured by ρt; the latter
is a statistical density defined on the state space X 3 Xt.
Note that while the evolution equations in terms of the density
operator ρt (the quantum case) are linear [119], the underlying
dynamics when expressed in terms of the internal states Xt

can be highly nonlinear.
In order to take memory effects into account, hence gen-

erating nonlocal behaviour, we also introduce a history oper-
ator H such that H Vt becomes the past temporal history
or time-slice of past instantiations of the quantity Vt. We
introduce three distinct history operators: Hs,Hi,Hp for
updating past time-slices of the physical state, internal states,
and the presynaptic input excitations, respectively. A generic
memory operator is nonlocal-in-time. Through the evolution
of various coupled degrees of freedom in complex systems,
this nonlocality-in-time is transformed into nonlocality-in-
spacetime, making the resulting dynamical system effectively
nonlocal.

The general dynamical law of the process may be stated
in the form of first-order differential equation of the density
operator/distribution ρt, i.e., the generalized master equation
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(motivated by the Markovian treatments in [114], [115], [118],
[119]):

d

dt
ρt = L{Hsρt,HiXt,HpUt, t}, (2)

where t is a local time variable and L is the dynamical
evolution superoperator.9 The solution of (2) provides the
history of the evolution of the physical state (density ρt).
Information processing is achieved by accessing either the
internal states directly or using Hidden Markovian Network
estimation [90]. However, note that due to the existence of
three memory operators the agent governed by (2) exhibits a
complex nonlocal behaviour and the equation is difficult to
solve in this extremely general form (approximations require
introducing additional restrictive assumptions which we would
like to avoid in a very general treatment like ours.)

The system (2) applies only locally by representing one
IDA. Other IDAs also exist, with possible mutual interactions.
To simplify the presentation, we only state the rules for one
agent. However, as in other population-based AI methods,
assemblages of interacting agents can be set to evolve in
time, with engineered or programmed interaction Hamiltonian
such that their global behaviour may lead to a solution to
a problem, hence exhibiting intelligent behaviour [45], [87]–
[89], [91], [100]. Moreover, each subsystem described by a
law like (2) can be non-Markovian due to the existence of
nontrivial history operator L [118], [120]. When interpreted
as a stochastic dynamic system, it also becomes dissipative or
irreversible flow [107], [121].

B. The AGI Dynamical Assemblage

A generalized neural network can be expressed as a set
of coupled processes where each sub-system is realized by a
process of the form (2). Every process (generalized neuron
or just neuron for simplicity) will have its own (locally
accessible) state space Xm, where m is discrete or continuous
index of the mth neuronal process and M 3 m is the index
space. The reduced physical state of the mth generalized
neuron is ρmtm , where tm is the local time of the mth neuron.
A global time operator τ with the form

(t, T ) = τ(tm, X
m
tm ,m ∈M) (3)

such that τ acts on the local time array [tm]m∈M of all IDAs’
local time variables, eventually outputting a single global time
t to describe the entire (global assemblage) time dynamics. In
addition, side data stored in a proper mathematical object T
are generated for use in temporal scheduling of information
transfer and flow through the networked assemblage, e.g., via
frameworks like the event-driven information flow paradigm,
dataflow graphs, neurodynamics, spiking neural networks,
neuromorphic computing [5], [89], [122], [123].

The global density operator (or distribution function) of the
assemblage (the global state) will be denoted by Rτ . The
dynamical law may be written as

Rτ = Φτ
{
ρmtm , U

m
t , X

m
t ,m ∈M

}
, (4)

9Because in the quantum case ρt is already an operator, we prefer to use
the term superoperator [107], which transforms operators to operators.

where Φτ is the collective (global) dynamical evolution op-
erator of the entire assemblage. Note that due to the demand
to account for nonlocality through non-Markovianity, the op-
erator Φ need neither be a semigroup [119] nor analyzable
to products of semigroups. The complete dynamics of a
networked assemblage of dissipative non-Markovian networks
is not as well understood as the Markovian case.

C. Incorporating Machine Intelligence into the Dynamic
Multi-Agent Assemblage

Using the methods of machine learning [6] and reinforce-
ment learning [10], various risk, reward, and policy functionals
[4] can be constructed on the assemblage R [9]. For example,
let E be the environment, A a proper mathematical object con-
taining the learning/reward/policy parameters, and Ct the value
of the cost function at the global time instant t corresponding
to a learning a task T . Then we may write

Ct = YRτ {E ,A, T }, (5)

where YRτ is the global AGI operator of the assemblage R
evaluated with the help of the time operator τ . The operator
YRτ contains enough information about all the internal states,
presynaptic excitation fields, temporal scheduling data T , local
time variables, global time, and so on. All real-time data
flow are contained in the environment object E , which also
has access to the local and global time parameters of the
assemblage R. For an AGI system, the cost C and task T
are expected to be rather complex multidimensional objects in
order to incorporate all possible interaction scenarios with the
environment E .

The assemblage R can be programmed in conjunction with
the above described learning process through the adjustment of
the details in which the various dynamical processes (agents)
composing the networked assemblage R (4) are coupled to
each other. This can be achieved in myriad ways, but our
goal here is only to provide the high-level view. For this
model, it is enough to modify the three history operators
Hs,Hi,Hp, which are now to be continued beyond the
single agent/process picture (2) by connecting with every other
agent (generalized neuron sub-system with form similar to
(2)), eventually extending to the full assemblage (4). The
modifications of these history operators under the learning
algorithm cost (5) can be compared with how the synaptic
connections are adjusted in present-day neural networks [5].

D. Noncomputability in the AGI Assemblage

There are various modes by which an INC level of struc-
turation can be inserted into this generalized neuromorphic
assemblage of dynamically interacting AGI agents:

1) The index space M could become infinite (a set with
infinite cardinality) instead of being a finite grid, e.g.,
when M is countable, R becomes an infinite lattice, i.e.,
effectively moving beyond ANNs and graph theory.

2) If the assemblage’s base space M becomes continuous,
then R can be mathematically modeled as a continuous
random field [124]. The construction and analysis of
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continuous random fields is one of the most challenging
problems in mathematics [125]. Furthermore, with non-
Markovianity in the underlying “nodes” or agents of the
form (2) in the continuous assemblage, the associated
random field becomes nonlocal.

3) We may also require that the state space Xm is infi-
nite dimensional, effectively moving beyond computable
systems in finite number of dimensions. If the infinite-
dimensionl space can never be effectively approximated
by a finite grid or graph, then an encounter with the
“actual infinite” [24] can be realized by tapping into the
physics of the infinite dimensional space [77].

4) We may incorporate nonlocality into the structure of
the assemblage by requiring that all systems be non-
Markovian. This provides intrinsic resources in the in-
telligent assemblage allowing it to harness long-distance
information exchange and correlations.

5) Infinitary arrangements might be inserted into the struc-
ture of the intelligent neural assemblage R’s dynamical
physical process. For instance, one may use infinitary
principles such as the axiom of choice or the well-
ordering principle, powered by a noncomputable phys-
ical process, in order to arrange an infinite number of
IDAs in a “very large” superspace (the position space
of a continuous assemblage for instance, see above),
making the resulting global system fundamentally non-
computable by a Turing machine even if, locally speak-
ing, each individual agent of the form (2) is Turing
computable.

Finding a proper specific physical mechanism, such as
Penrose’s OR process, capable of realizing some or all of these
INC-level structures and operations can be very challenging
but so is achieving AGI supremacy. In recent years, several
proposals for going beyond the finitary Turing paradigm were
proposed, see [77]. Our goal in this section has been develop
some of the initial structures of the problem using a rigorous
theoretical framework.

V. CONCLUSION

The main objective of this work was suggesting that cur-
rent AI paradigms, especially dominant bottom-up approaches
such as neural networks and machine leaning, might face
insuperable barriers blocking or slowing progress toward
building genuine (human-level) AGI agents, possibly due to
the existence of a set of fundamental inherent limitations in
AI as such when it comes to demonstrating AGI capacities.
We suggested injecting new structural dimensions such as
nonlocality, non-classical probability, and noncomputability
into the basic fabric of dynamics-based implementable AGI
platforms. We hope that achieving genuine AGI performance
such as improvisation and mastering the abstract/concrete
switch might be attained by future generalized neural-like
generations of intelligent machinery taking into account such
new structural dimensions.

Abbreviation Meaning

AGI Artificial General Intelligence
ANN Artificial Neural Network
NC Noncomputability/Noncomputable
INC Infinitary Noncomputability/Noncomputable
FNC Finitary Noncomputability/Noncomputable
OR Objective Reduction
ML Machine Learning
IDA Intelligent Dynamical Agent
FTP Formula of Total Probability

TABLE I: List of the main abbreviations used in this paper.

APPENDIX A
AN EXPLICIT CONSTRUCTION OF A NONCOMPUTABLE

DYNAMICAL SYSTEM

To simplify the discussion, let us ignore for a while the
difference between INC and FNC introduced earlier and
consider merely a generic NC system, i.e., a dynamical system
that cannot be simulated by a Turing machine. It is not
difficult to exhibit such a scenario. The idea is to exploit the
already established fact that some problems are non-Turing
solvable, for example the tiling problem [26] and Hilbert’s
Tenth Problem [80]. Let ai ∈ N be a sequence of integers
indexed by i ∈ N. We will work with discrete dynamical
systems, where the evolution of the process is described by
specifying how the state Xn at time step n ∈ N evolves.
Assume that a generic undecidable problem P takes as an
input a finite number of integers and the purpose is to decide
whether its solution can be implemented on a Turing machine.
(From [79], we already know that the set of such problems is
nonempty.) This can be represented by a binary function F
defined as follows:

F (a1, a2, . . . , an) =

{
1, if P is decidable
0, if P is undecidable

(6)

Here decidable (undecidable) means a solution exists (does
not exists) such that it can be effectively implemented on a
Turing machine [79]. It is assumed above that a computational
procedure is established to generate a sequence of n integers
ai for any given n ∈ N; i.e., we assume the existence of a
function f : N → N∞ such that at each n, only the first n
slots in the infinite-dimensional vector f(n) are nonzero. (The
function f can be either deterministic or random.) Now let the
nth state of a discrete dynamical system be defined as

Xn :=
(
a1 a2 . . . an 0 . . .

)
∈ N∞. (7)

The dynamical evolution is governed by the following update
rule:

Xn+1 =

{
f(n+ 1), if F (a1, a2, . . . , an) = 1,
f(n+ 2), if F (a1, a2, . . . , an) = 0.

(8)

It is clear that (8) effectively sets up a well-defined discrete
dynamical system evolving the state Xn in the state space
N∞ 3 Xn. This system is well-defined but NC, i.e., can
neither be realized with a Turing machine when f(n) is
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deterministic, nor using a stochastic Turing machine if f(n)
is probabilistic.10

APPENDIX B
BIBLIOGRAPHICAL REMARKS

Gödel’s incompleteness theorem [86] was mentioned several
times but not explained. The interested reader may consult
the excellent expositions given in [23]–[26]. On the infinitary
in mathematics, the fundamental text is Cantor’s [126] and
Russell’s [127], [128], where the latter also discuss applica-
tions to physics and geometry. The text [24] combines ideas
about the infinitary mode of expression with computing and
Gödel’s theorems. The comprehensive and detailed review
[77] is very helpful in terms of gathering numerous resources
about noncomputability and infinity in the interaction between
computer science and physics (though it does not discuss AGI
as such). We recommend that the reader consult the work
[77] while reading this article for additional references not
mentioned here, e.g., oracle machines, analog computing, and
noncomputable physics.
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