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Abstract

In this manuscript, an innovative method for the detection and the estimation of multiple targets in a radar system employing

orthogonal frequency division multiplexing is illustrated. The core of this method is represented by a novel algorithm for the

detection of multiple superimposed two-dimensional complex tones in the presence of noise and the for estimation of their

parameters. This algorithm is based on a maximum likelihood approach and combines a single tone estimator with a serial

cancellation procedure. Our numerical results lead to the conclusion that the developed method can achieve a substantially

better accuracy-complexity trade-off than various related techniques in the presence of closely spaced targets.
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Abstract

In this manuscript, an innovative method for the detection and the estimation of multiple targets in a radar system employing
orthogonal frequency division multiplexing is illustrated. The core of this method is represented by a novel algorithm for the
detection of multiple superimposed two-dimensional complex tones in the presence of noise and the for estimation of their
parameters. This algorithm is based on a maximum likelihood approach and combines a single tone estimator with a serial
cancellation procedure. Our numerical results lead to the conclusion that the developed method can achieve a substantially better
accuracy-complexity trade-off than various related techniques in the presence of closely spaced targets.

Index terms— Maximum likelihood estimation, frequency estimation, dual-function radar-communication, spectral analysis,
radar processing, orthogonal frequency division multiplexing, joint communication and sensing, harmonic retrieval.

I. INTRODUCTION

Wireless communication and radar sensing have been advancing independently for many years, even though they share
various similarities in terms of both signal processing and system architecture. During the last few years, substantial research
efforts have been devoted to the design of wireless systems able to perform communication and radar (C&R) functions jointly.
The interest in this class of systems, collectively known as joint communication and sensing (JCAS or JC&S), integrated
sensing and communication (ISAC) or dual functional radar communication (DFRC), has been motivated by the advantages
they offer in term of device size, power consumption, cost and efficiency radio spectrum usage with respect to traditional
wireless systems. The initial studies in this field date back to the sixties, when the development of multi-function military
radars was investigated [1]. More recently, substantial attention to JCAS has been paid by both academia and industry, thanks
to its great potential in emerging defence applications, smart cities, as well as in intelligent vehicular networks [2].

Communication-centric, radar centric joint design and optimization approaches to JCAS design are currently being in-
vestigated in the technical literature [1], [3], [4]. On the one hand, in communication-centric design, radar sensing can be
considered as an add-on to a given communication system, since priority is given to the communication function; for this
reason, communication waveforms are exploited to extract radar information from target echoes. On the other hand, the radar
centric approach aims at modulating (or incorporating information signalling in) a known radar waveform, thus leaving radar
capability largely unaltered; its main drawback is represented by the fact that limited data rates are achievable. The third
approach, namely joint design and optimization, offers a tunable trade-off between communication and sensing.

In the remaining part of this manuscript we focus on a communication-centric approach. More specifically, we take into
consideration a JCAS system employing a single transmit and a single receive antenna, and a multicarrier modulation format
known as ortogonal frequency division multiplexing (OFDM); this format has been adopted in various wireless communication
standards, thanks to its robustness to multipath fading and its relatively simple synchronization [4]. In the technical literature,
direct and indirect sensing methods for target detection and estimation are available for OFDM-based JCAS systems. In
general, direct sensing methods extract target information from the received signal without compensating for the effect of
the data payload it conveys [1] and typically exploit computationally intensive compressed sensing (CS) techniques. Indirect
estimation methods, instead, require estimating the communication channel and, consequently, compensating for the contribution
due to channel symbols (e.g., see [5, eq. (8)]).

Various direct methods can be found in [6]–[8] and in [9], where on-grid and off-grid CS techniques, and an atomic norm
minimization method, respectively, have been investigated. A wider literature is available on indirect methods, that can be
divided in: a) discrete Fourier transform (DFT)-based or correlation-based methods (i.e., methods based on the matched
filter, MF, concept); b) subspace methods; c) maximum likelihood (ML) based methods. Moreover, subspace methods can be
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further divided in statistical algorithms, like the Multiple Signal Classification (MUSIC) algorithm and the estimation of signal
parameters via rotational invariant techniques (ESPRIT), and deterministic estimators, such as the Capon beamformer method
[10], the amplitude and phase estimation of a sinusoid (APES) [11]–[13] and the iterative adaptive approach for amplitude
and phase estimation (IAA-APES) [14].

Correlation-based and DFT-based methods have been proposed in [15]–[24]. More specifically, different MF-based techniques
for estimating range and Doppler in a single or multi-target scenario have been devised in [15], [24]. These techniques exploit
the prior knowledge of the received signal and, even if conceptually simple, are not computationally efficient; in addition, they
may generate poor radar images because of the presence of high sidelobes and leakage, especially in the presence of strong
clutter around real targets [25]. Methods for mitigating the last problem have been illustrated in [18] and [26]. Moreover, a
reduced complexity method, based on the idea of splitting a two-dimensional (2D) estimation problem (involving target range
and Doppler) into a couple of one-dimensional (1D) simpler sub-problems has been illustrated in [21].

Subspace methods for target range and Doppler estimation have been developed in [9], [27], [28] and [29]. In particular,
MUSIC-based algorithms have been proposed in [9], [27] and [28], whereas the use of the ESPRIT technique for the estimation
of the delay and Doppler of multiple targets has been investigated in [29]. Research work in this area has led to the conclusion
that estimation techniques based on the 2D-MUSIC algorithm can outperform 2D fast Fourier transform (FFT)-based methods
for joint range-velocity estimation at the price, however, of a significantly larger computational complexity [27]. A lower
complexity version of the MUSIC technique, called auto-paired method, has been developed in [28]; it exploits the translational
invariance structure of the underlying signal model in both frequency and time domains to reduce the size of the search space.
Moreover, an iterative method able to improve the robustness of the MUSIC algorithm has been proposed in [9]; in this case,
the channel frequency response is estimated through a standard method, known as alternating direction of multipliers, and a
conventional 2D-MUSIC algorithm is employed for the estimation of target delays and Doppler frequencies.

A resolution comparable to that of subspace methods can be achieved through various ML-based algorithms at the price of
an increase in computational complexity [30]–[34]. Research work in this field concerns: a) the use of the amplitude weighted
linearly constrained minimum variance (AW-LCMV) method for estimating the parameters of multiple targets [30]; b) the
adoption of an alternating maximization (AM) approach to mitigate the computational complexity of ML estimation [31]; c)
the development of an iterative non-linear kernel least mean square (KLMS) based estimation technique for the estimation
of target range [32]; d) the derivation of a ML method, based on a kinematic model of detected targets, for estimating target
speed [34].

In this manuscript, a novel approximate ML-based algorithm for detecting multiple targets and jointly estimating their range
and Doppler in an OFDM-based radar system is derived. This algorithm, called complex single frequency-delay estimation and
cancellation (CSFDEC), combines an iterative DFT-based algorithm, developed for the ML estimation of a single 2D complex
tone and called complex single frequency-delay estimation (CSFDE), with a serial cancellation & refinement procedure.

The relevant features of the CSFDEC algorithm originate from the fact that: a) the CSFDE algorithm, through the evaluation
of multiple symplectic Fourier transforms (SFTs), is able to detect and accurately estimate the parameters of single complex
2D tones even in the presence of the leakage due to nearby tones; b) the adopted serial cancellation & refinement procedure is
accurate and mathematically simple (in particular, unlike ML-based and subspace methods, does not require matrix inversions
and eigendecompositions). In fact, for these reasons, the CSFDEC requires a limited computational effort, achieves good
accuracy, and is able to detect and estimate closely spaced targets in scenarios in which DFT-based methods, subspace methods
and other ML-based methods fail.

The remaining part of this manuscript is organized as follows. In Section II, the processing accomplished in an OFDM-
based radar system is summarised and the model of the signal feeding the CSFDEC algorithm is briefly derived. Section III
is devoted to the derivation of the CSFDE and CSFDEC algorithms, and to the assessment of their computational complexity.
Other estimators available in the technical literature are described in Section IV. All the considered estimation algorithms are
compared in terms of accuracy and complexity in Section V. Finally, some conclusions are offered in Section VI.

II. SYSTEM AND SIGNAL MODELS

This section focuses on the processing accomplished at the receive side of a single-input single output (SISO) OFDM-based
radar system; our main objectives are deriving the mathematical model of the received signal in the presence of multiple targets
and illustrating some essential assumptions on which it relies. In the following, we take into consideration the transmission of
a single frame, consisting of M consecutive OFDM symbols. The complex envelope of the transmitted signal conveying the
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m-th OFDM symbol (with m = 0, 1, . . ., M − 1) of the considered frame can be expressed as (e.g., see [31, eq. (3)])

xm(t) ≜ x(t−mTs) = q(t−mTs)

·
N−1∑
n=0

sm(n) exp(j2πn∆f (t−mTs)), (1)

where q(t) is a windowing function, sm(n) is the channel symbol carried by the n-th subcarrier of the m-th OFDM symbol
(with n = 0, 1, . . ., N − 1), N is the overall number of subcarriers, ∆f = 1/T is the subcarrier spacing, T is the OFDM
symbol interval,

Ts ≜ T + TG (2)

is the overall duration of the OFDM symbol and TG is the cyclic prefix duration (also known as guard time [3]); following
[31], the rectangular windowing function

q(t) ≜

{
1 for t ∈ [−TG, T ]
0 elsewhere (3)

is assumed in this manuscript. Given the complex envelope (1), the radio frequency (RF) waveform radiated by the radar
transmitter can be expressed as

xRF (t) = ℜ

{
exp(j2πfct)

M−1∑
m=0

x(t−mTs)

}
, (4)

where fc denotes the frequency of the local oscillator employed in the up-conversion at the transmit side. Let assume now that
the last waveform is reflected by a single point target, located at the (initial) distance R from the transmitter and moving at the
radial velocity1 v with respect to it. It is not difficult to show that, in this case, the complex envelope of the signal received
by the JCAS system is (e.g., see [31, eq. (6)])

r(t) = exp(−j2πfcτ) exp(j2πfDt)

·
M−1∑
m=0

x

(
t−mTs − τ +

fD
fc

t

)
+ w(t), (5)

where
τ ≜

2R

c
(6)

is the overall propagation delay,
fD = 2

v

λ
(7)

is the Doppler shift due to target motion, λ = c/fc is the wavelength of the radiated signal and w(t) is the complex additive
Gaussian noise (AGN) process affecting r(t).

The signal r(t) (5) undergoes analog-to-digital conversion followed by DFT processing. A simple mathematical model
describing the sequence generated by the sampling of r(t) can be derived as follows. Substituting the right-hand side (RHS)
of (1) in that of (5) and extracting the portion associated with the m-th OFDM symbol from the resulting expression yields

rm(t′) = A(τ) exp(j2πfDt′) exp(j2πfDmTs)

·
N−1∑
n=0

sm(n) γn(τ) ξn(fD, t′)

·ζm,n(fD) exp(j2πn∆f t
′) + w(t′), (8)

where
t′ ≜ t−mTs, (9)

A(τ) ≜ exp(−j2πfcτ), (10)

γn(τ) ≜ exp(−j2πn∆fτ), (11)

ξn(fD, t′) ≜ exp

(
j2πn∆f

fD
fc

t′
)

(12)

and
ζm,n(fD) ≜ exp

(
j2πn∆f

fD
fc

mTs

)
. (13)

1This velocity is positive (negative) if the target approaches (moves away from) the considered radar system.
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Note that: a) the phase of A(τ) (10) depends on the target delay τ only, whereas that of γn(τ) (11) is proportional to both τ
and the subcarrier index n; c) ξn(fD, t′) (12) produces a time-dependent phase rotation depending on both the target speed v
and the subcarrier index n; d) ζm,n(fD) (13) generates a phase rotation depending on both the OFDM symbol index m and
the subcarrier index n, and accounts for the so called intersubcarrier Doppler effect (see [31, Sec. II, p. 3]).

Based on (8), it is not difficult to show that, if |fDTG| ≪ 1 and |fDτ | ≪ 1, sampling rm(t′) (8) at the instant

t′m,l = τ + TG +
T

N
l, (14)

with l = 0, 1, ..., N − 1, yields

rm(l) ≜ rm
(
t′m,l

)
= A(τ) exp

(
j2π

l

N

fD
∆f

)
exp(j2πfDmTs)

·
N−1∑
n=0

sm(n) γn(τ) ξn,l(fD) ζm,n(fD)

· exp
(
j2πn

l

N

)
+ wm(l), (15)

where ξn,l(fD) ≜ ξn(fD, T l/N) and wm(l) ≜ w(t′m,l) is the Gaussian noise affecting rm(l). In the following, we also assume
that: a) the sequence {wm(l); l = 0, 1, ..., N − 1} can be modelled as additive white Gaussian noise (AWGN); b) the target
speed is limited, so that ∣∣∣∣2vc

∣∣∣∣ ≪ 1

MN
(16)

and
|fD|
∆f

= |fDT | ≪ 1. (17)

Consequently, the factors exp(j2π(lfD)/(N∆f )), ξn,l(fD), ζm,n(fD) appearing in the RHS of (15) can be neglected; this
leads to the simplified signal model

rm(l) = A(τ) exp(j2πfDmTs)

N−1∑
n=0

sm(n) γn(τ)

· exp
(
j2πn

l

N

)
+ wm(l), (18)

that represents our reference model.
The N signal samples acquired in the m-th OFDM symbol interval are collected in the vector

rm ≜ [rm(0), rm(1), ..., rm(N − 1)]
T , (19)

that undergoes order N DFT processing. The n-th element of the resulting DFT output vector

Rm ≜ [Rm(0), Rm(1), ..., Rm(N − 1)]T (20)

is

Rm(n) ≜
1

N

N−1∑
l=0

rm(l) exp

(
−j2π

nl

N

)
= A(τ) exp(j2πfDmTs) sm(n)

· exp(−j2πn∆fτ) +Wm(n), (21)

where Wm(n) is the Gaussian noise affecting the n-th subcarrier of m-th OFDM symbol. Since the channel symbol sm(n) is
known at the receive side for any n and m, the estimate

Ĥm,n ≜
Rm(n)

sm(n)
= A(τ)Mm,n(FD, Fr) + W̄m(n) (22)

of the channel frequency response Hm,n at the n-th subcarrier frequency in the m-th OFDM symbol interval can be computed;
here,

Fr ≜ ∆f τ (23)

is the normalised target delay,
FD ≜ fDTs (24)
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is the normalised Doppler frequency2,
Mm,n(FD, Fr) ≜ am(FD) bn(Fr), (25)

am(FD) ≜ exp(j2πmFD), (26)

bn(Fr) ≜ exp(−j2πnFr) (27)

and
W̄m(n) ≜

Wm(n)

sm(n)
(28)

is the noise sample affecting Ĥm,n (22).
It is worth noting that:

1) The parameter Fr (23) (FD (24)) satisfies the inequalities Fr,min ⩽ Fr ⩽ Fr,max, (FD,min ⩽ FD ⩽ FD,max), with
Fr,min = 0 and Fr,max = 1 (FD,min = −1/2 and FD,max = 1/2).

2) An AWGN model is usually adopted for the noise samples {Wm(n)} (see (21)); however, in principle, this model does
not hold for the noise samples {W̄m(n)} (see (28)), unless the channel symbols {sm(n)} belong to a phase shift keying
(PSK) constellation, as pointed out in [27, Sec. IV A]. In our computer simulations, a PSK constellation has been always
used and each element of the set {W̄m(n)} has been assumed to have zero mean and variance σ2

W .
3) Without any loss of generality, the term A(τ) appearing in the RHS of (22) can be replaced by the complex gain

A ≜ a exp(jϕ), (29)

that accounts for: 1) the phase rotation due to τ ; 2) the path loss; 3) the gain (attenuation) introduced by the target.

The model (22) has been derived for a single target, but can be easily generalised to the case of K point targets. In fact, in
the last case, we have that

Ĥm,n ≜
K−1∑
k=0

Ak Mm,n(FDk
, Frk) + W̄m(n), (30)

where Frk , FDk
and Ak represent the normalised delay, the normalised Doppler frequency and the complex gain, respectively,

characterising the k-th target.
From (30) it can be easily inferred that: a) the noisy samples {Ĥm,n} of the 2D channel response acquired over a single frame

can be modelled as the superposition of multiple 2D complex exponentials with AWGN; b) target detection and estimation is
tantamount to identifying the K complex exponentials forming the useful component of the sequence {Ĥm,n} and estimating
their parameters.

III. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION OF TWO-DIMENSIONAL COMPLEX TONES

In this section, we first derive a novel algorithm for jointly estimating the parameters of a single 2D complex tone. Then,
we show how this algorithm can be exploited to detect multiple superimposed tones and estimate their parameters through a
procedure based on successive cancellations and refinements. Finally, we analyse the computational complexity of the developed
algorithms.

A. Joint estimation of the parameters of a single two-dimensional complex tone

Let us focus on the problem of estimating the parameters of a single 2D complex tone affected by AGN on the basis of the
noisy observations {Ĥm,n}, where (e.g., see (22) or (30) with K = 1)

Ĥm,n = A exp(j2πmFD) exp(−j2πnFr) + W̄m(n), (31)

with m = 0, 1, ..., M − 1 and n = 0, 1, ..., N − 1; here, the parameters A, FD, Fr and W̄m(n) represent the complex
amplitude, the normalized Doppler frequency, the normalized delay and the noise affecting the n-th subcarrier of the m-th
OFDM symbol, respectively. If we assume that the noise samples {W̄m(n)} have the same variance, the ML estimates FD,ML,
Fr,ML and AML of FD, Fr and A, respectively, can be evaluated as

(FD,ML, Fr,ML, AML) ≜ arg min
F̃D,F̃r,Ã

ε
(
F̃D, F̃r, Ã

)
, (32)

where F̃D, F̃r and Ã are the trial values of FD, Fr and A, respectively,

ε
(
F̃D, F̃r, Ã

)
≜

1

M

1

N

M−1∑
m=0

N−1∑
n=0

εm,n

(
F̃D, F̃r, Ã

)
(33)

2Note that Fr is always a positive quantity, whereas FD is positive (negative) if the considered target is approaching (moving away from) the radar.
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is the mean square error (MSE) computed over the whole set {Ĥm,n},

εm,n

(
F̃D, F̃r, Ã

)
≜

∣∣∣Ĥm,n −Hm,n

(
F̃D, F̃r, Ã

)∣∣∣2 (34)

is the square error between the noisy sample Ĥm,n (31) and its useful component

Hm,n

(
F̃D, F̃r, Ã

)
≜ Ã exp

(
j2πmF̃D

)
exp(−j2πnF̃r) (35)

evaluated under the assumption that FD = F̃D, Fr = F̃r and A = Ã. Substituting the RHS of the last equation in that of (34)
yields

εm,n

(
F̃D, F̃r, Ã

)
=

∣∣Ĥm,n

∣∣2 + ∣∣Ã∣∣2
−2ℜ

{
Ĥm,n Ã∗ exp

(
−j

(
φ̃m − ϕ̃n

))}
, (36)

where
φ̃m ≜ 2πmF̃D (37)

and
ϕ̃n ≜ 2πnF̃r. (38)

Then, substituting the RHS of (36) in that of (33) yields, after some manipulation,

ε
(
F̃D, F̃r, Ã

)
= εH +

∣∣Ã∣∣2 − 2ℜ
{
Ã∗Ȳ

(
F̃D, F̃r

)}
, (39)

where

εH ≜
1

M N

M−1∑
m=0

N−1∑
n=0

∣∣Ĥm,n

∣∣2 (40)

and

Ȳ
(
F̃D, F̃r

)
≜

1

M N
SFT

[
Ĥm,n

]
≜

1

M N

M−1∑
m=0

N−1∑
n=0

Ĥm,n exp
(
j2πnF̃r

)
· exp

(
−j2πmF̃D

)
(41)

is, up to a scale factor, the so called symplectic Fourier transform (SFT) of the sequence {Ĥm,n}.
From (39) it can be easily inferred that the optimization problem (32) does not admit a closed form solution because of the

nonlinear dependence of ε(F̃D, F̃r, Ã) (39) on F̃D and F̃r. However, an approximate solution to this problem can be derived
by:

a) Expressing the dependence of the function ε(F̃D, F̃r, Ã) on the variables F̃D and F̃r through the couples (FD,c , δ̃D) and
(Fr,c , δ̃r) such that

F̃D = FD,c + δ̃D F̄D (42)

and
F̃r = Fr,c + δ̃r F̄r. (43)

Here, FD,c (Fr,c) represents a coarse estimate of FD (Fr), δ̃D and δ̃r are real variables called residuals, and

F̄D ≜ 1/M0 (44)

and
F̄r ≜ 1/N0 (45)

are the normalised fundamental Doppler frequency and the normalised fundamental delay, respectively, characterising the order
(M0, N0) discrete SFT (DSFT)

Ȳ0,0 ≜
[
Ȳ0,0[l, p]

]
(46)

of the zero padded version

Ĥ
(ZP)
0,0 ≜

[
Ĥ0,0 0M,(LD−1)N

0(Lr−1)M,N 0(Lr−1)M,(LD−1)N

]
(47)

of the M ×N matrix
Ĥ0,0 ≜

[
Ĥm,n

]
, (48)
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that collects all the elements of the sequence {Ĥm,n}; moreover, in the last equations, LD and Lr are positive integers (dubbed
oversampling factors), 0D1,D2 is the D1 ×D2 null matrix,

M0 ≜ LD M (49)

and
N0 ≜ Lr N. (50)

Note that the element (l, p) of Ȳ0,0 (46) is defined as

Ȳ0,0[l, p] ≜
1

M0N0

M−1∑
m=0

N−1∑
n=0

Ĥm,n exp
(
j2πnpF̄r

)
· exp

(
−j2πm

(
lF̄D − 1/2

))
, (51)

with l = 0, 1, . . .M0 − 1 and p = 0, 1, . . . N0 − 1.
b) Assuming that the residuals δ̃D and δ̃r (appearing in the RHS of (42) and (43), respectively) are small, so that the

truncated Taylor series

exp
(
jX̃

)
≃

3∑
k=0

jkX̃k

k!
, (52)

can be employed to approximate the dependence of the function ε(F̃D, F̃r, Ã) on these variables.
c) Exploiting an iterative method, known as alternating minimization (AM; e.g., see [35]) to minimise the approximate

expression derived for ε(F̃D, F̃r, Ã); this allows us to transform the three-dimensional (3D) optimization (32) into a triplet of
interconnected one-dimensional (1D) problems, each referring to a single parameter.

Let us show now how these principles can be put into practice. First of all, the exploitation of AM requires solving the
following three sub-problems: P1) minimizing ε(F̃D, F̃r, Ã) with respect to Ã, given F̃D = F̂D and F̃r = F̂r; P2) minimizing
ε(F̃D, F̃r, Ã) with respect to F̃D, given Ã = Â and F̃r = F̂r; P3) minimizing ε(F̃D, F̃r, Ã) with respect to F̃r, given Ã = Â
and F̃D = F̂D.

The first sub-problem can be solved exactly thanks to the polynomial dependence of the cost function ε(F̃D, F̃r, Ã) (39) on
the variable Ã. In fact, the function ε(F̂D, F̂r, Ã) is minimized with respect to Ã if3

Ã = Â = Ȳ
(
F̂D, F̂r

)
, (53)

where Ȳ (F̂D, F̂r) can be computed exactly through its expression (41) or, in an approximate fashion, through a computationally
efficient procedure based on the fact that the matrix

Ȳs ≜ LD Lr Ȳ0,0 (54)

collects M0 ×N0 uniformly spaced samples of the function Ȳ (F̃D, F̃r), since (see (41), (51), (49) and (50))

Ȳ0,0[l, p] =
1

LD Lr
Ȳ
(
lF̄D, pF̄r

)
. (55)

For this reason, if both the normalised frequencies F̂D and F̂r are different from a multiple of F̄D (44) and F̄r (45), respectively,
an approximate evaluation of Ȳ (F̂D, F̂r) can be accomplished by interpolating4 the elements of the matrix Ȳs (54). Note also
that the last matrix can be efficiently computed by performing an order N0 inverse FFT (IFFT) along the rows of Ĥ(ZP)

0,0 (47),
followed an order M0 FFT along the columns of the resulting matrix.

Let us take into consideration now the other two sub-problems. Such sub-problems, unlike the previous one, do not admit
closed form solutions. However, approximate solutions can be developed by: a) representing the parameters FD and Fr in
the same form as F̃D (42) and F̃r (43), respectively, i.e. as FD = FD,c + δD F̄D and Fr = Fr,c + δr F̄r; b) using the 2D
periodogram method to estimate FD,c and Fr,c; c) devising a novel algorithm for estimating the residuals δD and δr, i.e. for
accomplishing the fine estimation of FD and Fr, respectively. The fine estimation algorithm is derived as follows. Based on the
representations (42) and (43) of the trial variables F̃D and F̃r, respectively, the variables φ̃m (37) and ϕ̃n (38) are expressed
as

φ̃m = 2πmFD,c +mΩ̃ (56)

and
ϕ̃n = 2πnFr,c + n∆̃, (57)

3This is a generalisation of a well known result in the 1D case (e.g., see [36, Sec. IV]).
4See [37] for polynomial interpolation techniques or [38] for barycentric interpolation method.
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respectively; here,
Ω̃ ≜ 2πδ̃D F̄D (58)

and
∆̃ ≜ 2πδ̃r F̄r. (59)

Then, the following steps are accomplished: a) the RHSs of (56) and (57) are substituted in that of (36); b) the resulting
expression is substituted in the RHS of (33) and the approximation (52) is adopted for exp(jmΩ̃) and exp(jn∆̃) under the
assumption that both Ω̃ and ∆̃ are small enough5. This yields, after some manipulation, the approximate expression

εCSFDE

(
Ω̃, ∆̃, Â

)
≜ εH +

∣∣Â∣∣2 − 2ξ
(
Ω̃, ∆̃, Â

)
(60)

for the function ε(F̃D, F̃r, Ã) (33); here,

ξ
(
Ω̃, ∆̃, Â

)
=

3∑
p=0

3∑
q=0

(−1)
(p+q) Ω̃

p ∆̃q

p!q!
ℜ
{
j(p−q)Â∗ Ȳp,q

}
, (61)

Ȳk1,k2(ρD, ρr) ≜
1

MN

M−1∑
m=0

N−1∑
n=0

Ĥ(k1,k2)
m,n exp

(
j
2πnρr
N0

)
· exp

(
−j

2πmρD
M0

)
, (62)

ρD ≜ FD,c/F̄D, (63)

ρr ≜ Fr,c/F̄r, (64)

and
Ĥ(k1,k2)

m,n ≜ mk1nk2Ĥm,n, (65)

with m = 0, 1, . . .M − 1 and n = 0, 1, . . . N − 1. It is important to point out that: a) if both ρD (63) and ρr (64) are integers,
the quantity Ȳk1,k2(ρD, ρr) (62) represents the element (ρD, ρr) of the M0 ×N0 matrix

Ȳk1,k2 ≜ DSFT
[
Ĥ

(ZP)
k1,k2

]
(66)

generated by the order (M0, N0) DSFT of the zero padded version

Ĥ
(ZP)
k1,k2

≜

[
Ĥk1,k2

0M,(LD−1)N

0(Lr−1)M,N 0(Lr−1)M,(LD−1)N

]
; (67)

of the M × N matrix Ĥk1,k2
≜ [Ĥ

(k1,k2)
m,n ]; b) if the previous condition is not met, the quantity Ȳk1,k2

(ρD, ρr) can be
evaluated exactly on the basis of (62) or, in an approximate fashion, by interpolating multiple adjacent elements of the matrix
LD Lr Ȳk1,k2 (see (66)).

Minimising εCSFDE(Ω̃, ∆̃, Â) (60) is equivalent to maximising the function ξ(Ω̃, ∆̃, Â) (61). The last function can be easily
minimised with respect to the variable Ω̃ (∆̃) if ∆̃ (Ω̃) is known. Therefore, given ∆̃ = ∆̂, the estimate

δ̂D =
Ω̂

2πF̄D
(68)

of δD can be evaluated by taking the derivative of ξ(Ω̃, ∆̂, Â) with respect to Ω̃ and setting it to zero. In fact, this leads to
the estimate6

X̂ =
−bX +

√
b2X − 4 aX cX
2 aX

, (69)

that represents one of the two solutions of the quadratic equation

aX X̃2 + bX X̃ + cX = 0, (70)

with X = Ω; here,

aΩ = −∆̂3

6
ℜ
{
Â∗Ȳ3,3

}
− ∆̂2

2
ℑ
{
Â∗Ȳ3,2

}
+∆̂ℜ

{
Â∗Ȳ3,1

}
+ ℑ

{
Â∗Ȳ3,0

}
, (71)

5This is equivalent to assuming that F̄D (44) and F̄r (45) are small enough (i.e., M0 and N0 are large enough).
6In the following equations, the dependence of the function Ȳk1,k2

(ρD, ρr) (62) and of the coefficients {aX , bX , cX} on (ρD, ρr) is not explicitly
specified to ease reading.
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bΩ =
∆̂3

3
ℑ
{
Â∗Ȳ2,3

}
− ∆̂2 ℜ

{
Â∗Ȳ2,2

}
−2∆̂ℑ

{
Â∗Ȳ2,1

}
+ 2ℜ

{
Â∗Ȳ2,0

}
(72)

and

cΩ =
∆̂3

3
ℜ
{
Â∗Ȳ1,3

}
+ ∆̂2 ℑ

{
Â∗Ȳ1,2

}
−2∆̂ℜ

{
Â∗Ȳ1,1

}
− 2ℑ

{
Â∗Ȳ1,0

}
. (73)

A simpler estimate (denoted Ω̂′) of Ω is obtained neglecting the contribution of the quadratic term in the left-hand side (LHS)
of (70), i.e. setting aΩ = 0. This leads to a first-degree equation, whose solution is

X̂ ′ = −cX/bX , (74)

with X = Ω.
Dually, given Ω̃ = Ω̂, the estimate

δ̂r ≜
∆̂

2πF̄r
(75)

of δ̃r is computed by taking the derivative of ξ(Ω̂, ∆̃, Â) with respect to ∆̃ and setting it to zero. This leads to a quadratic
equation in the variable ∆̃ whose structure is still expressed by (70) (with X = ∆); however, its coefficients are

a∆ = − Ω̂3

6
ℜ
{
Â∗Ȳ3,3

}
+

Ω̂2

2
ℑ
{
Â∗Ȳ2,3

}
+Ω̂ ℜ

{
Â∗Ȳ1,3

}
−ℑ

{
Â∗Ȳ0,3

}
, (76)

b∆ = − Ω̂3

3
ℑ
{
Â∗Ȳ3,2

}
− Ω̂2 ℜ

{
Â∗Ȳ2,2

}
+2Ω̂ ℑ

{
Â∗Ȳ1,2

}
+ 2ℜ

{
Â∗Ȳ0,2

}
(77)

and

c∆ =
Ω̂3

3
ℜ
{
Â∗Ȳ3,1

}
− Ω̂2 ℑ

{
Â∗Ȳ2,1

}
−2Ω̂ℜ

{
Â∗Ȳ1,1

}
+ 2ℑ

{
Â∗Ȳ0,1

}
. (78)

For this reason, the estimates ∆̂ and ∆̂′ of ∆ can be computed according to (69) and (74), respectively.
Given the estimates δ̂D (68) and δ̂r (75) (resulting from Ω̂ and ∆̂, or Ω̂′ and ∆̂′), a fine estimate F̂D of FD (F̂r of Fr) can

be evaluated on the basis of (42) ((43)).
The previous mathematical results allow us to easily develop an AM-based procedure for estimating the parameters FD,

Fr and A in an iterative fashion. This procedure, dubbed CSFDE, is initialised by computing: a) the M0 × N0 matrices7

{Ȳk1,k2
; k1, k2 = 0, 1, 2, 3} (see (66)); b) the coarse estimates

F̂
(0)
D,c = l̂ F̄D − 1/2 (79)

and
F̂ (0)
r,c = p̂F̄r (80)

of FD and Fr, respectively, where (
l̂, p̂

)
= arg max

l̃∈SM0
,p̃∈SN0

∥∥∥Ȳ0,0

[
l̃, p̃

]∥∥∥2 (81)

and SX ≜ {0, 1, ..., X − 1} for any positive integer X; c) the initial estimate Â(0) of Ã on the basis of (53), with (F̂D, F̂r) =

(F̂
(0)
D,c, F̂

(0)
r,c ); d) the coefficients {aΩ , bΩ , cΩ} ({a∆, b∆, c∆}) for (ρD, ρr) = (l̂(0), p̂(0))) according to (72)-(73) ((76)-(78));

e) the initial estimate Ω̂(0)(∆̂(0)) of Ω (∆) on the basis of (69) or (74) with X = Ω (with X = ∆); f) the initial fine estimates
(see (42) and (43))

F̂
(0)
D = F̂

(0)
D,c +

Ω̂(0)

2π
(82)

7Note that the matrices {Ȳk1,k2
} corresponding to (k1, k2) = (0, 3), (3, 0) and (3, 3) are not required if the simpler estimates Ω̂′ and ∆̂′ are evaluated.
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and

F̂ (0)
r = F̂ (0)

r,c +
∆̂(0)

2π
(83)

of FD and Fr, respectively. Finally, we set the iteration index i to 1 and start an iterative procedure. The i-th iteration is fed
by the estimates F̂

(i−1)
D , F̂ (i−1)

r and Â(i−1) of FD, Fr and A, respectively, and produces the new estimates F̂
(i)
D , F̂ (i)

r and
Â(i) of the same quantities (with i = 1, 2, ..., Nit, where Nit is the overall number of iterations). The procedure adopted for
the evaluation of F̂ (i)

D , F̂ (i)
r and Â(i) consists of the two steps described below.

1) Estimation of the normalised Doppler and the normalised delay - The new estimates Ω̂(i) and ∆̂(i) of Ω̃ and ∆̃, respectively,
are computed according to (69) or (74). In the evaluation of the coefficients of these equations, Â = Â(i−1),

ρD = ρ̂
(i−1)
D = F̂

(i−1)
D /F̄D (84)

and
ρr = ρ̂(i−1)

r = F̂ (i−1)
r /F̄r (85)

are assumed. Then,

F̂
(i)
D = F̂

(i−1)
D +

Ω̂(i)

2π
(86)

and

F̂ (i)
r = F̂ (i−1)

r +
∆̂(i)

2π
(87)

are computed.
2) Estimation of the complex amplitude - The new estimate Â(i) of Â is evaluated by means of (53); in doing so, F̂D = F̂

(i)
D

and F̂r = F̂
(i)
r are assumed.

The index i is incremented by one before starting the next iteration. At the end of the last (i.e. of the Nit-th) iteration,
the fine estimates F̂D = F̂

(Nit)
D , F̂r = F̂

(Nit)
r and Â = Â(Nit) of FD, Fr and A, respectively, become available. The CSFDE

algorithm is summarized in Algorithm 1.

Algorithm 1: Complex single frequency-delay estimator (CSFDE)
Input: The matrices {Yk1,k2

; k1 = 0, 1, 2 and 3; k2 = 0, 1, 2 and 3} (see (66)) and the parameter Nit.
1 Initialisation:

a- Evaluate Ȳ0,0 (46), l̂ and p̂ (see (81)); then, compute the initial estimate Â(0) of A according to (53) and set
(ρ

(0)
D , ρ

(0)
r ) = (l̂, p̂) (see (84)-(85)).

b- Compute the coefficients aΩ, bΩ and cΩ according to (71)-(73); then, evaluate Ω̂(0) according to (69) or (74).
c- Evaluate the coefficients a∆, b∆ and c∆ according to (76)-(78); then, compute ∆̂(0) according to (69) or (74).
d- Compute F̂

(0)
D and F̂

(0)
r according to (82) and (83), respectively.

2 Refinement: for i = 1 to Nit do
e- Estimation of A:
Set F̂D = F̂

(i−1)
D and F̂r = F̂

(i−1)
r ; then, evaluate Ȳ (F̂D, F̂r) using (41) or by interpolating a few adjacent

elements of the matrix Ȳs (54). Finally, compute Â(i), ρ̂(i−1)
D and ρ̂

(i−1)
r according to (53), (84) and (85),

respectively.
f- Estimation of FD:
Set Â = Â(i) and compute Ȳk1,k2(ρ̂

(i−1)
D , ρ̂

(i−1)
r ) according to (62) or by interpolating a few adjacent elements of

Ȳk1,k2
(66); then, compute aΩ, bΩ and cΩ according to (71)-(73) assuming (ρD, ρr) = (ρ̂

(i−1)
D , ρ̂

(i−1)
r ). Finally,

compute Ω̂(i) and F̂
(i)
D according to (69) or (74) and (86), respectively.

g- Estimation of Fr:
Compute a∆̃, b∆̃ and c∆̃ according to (76)-(78) assuming (ρ̂

(i−1)
D , ρ̂

(i−1)
r ); then, evaluate ∆̂(i) and F̂

(i)
r on the

basis of (69) or (74) and (87), respectively.
end
Output: The estimates F̂

(Nit)
D , F̂ (Nit)

r and Â(Nit) of FD, Fr and A, respectively.

It is worth pointing out that: a) the initial coarse estimates F̂
(0)
D,c (82) and F̂

(0)
r,c (83) are computed by resorting to the 2D

periodogram method (see (81)); b) unlike traditional DFT-based methods, the CSFDE algorithm requires the evaluation of
multiple DSFTs and, more precisely, of 16 (13) DSFTs {Ȳk1,k2

} if (69) ((74)) is employed in the evaluation of the estimates
of Ω and ∆; c) the approximate ML metric εCSFDE(Ω̃, ∆̃, Â) (60) on which the CSFDE algorithm is based is new; d) the
estimates δ̂

(i)
D (δ̂(i)r ) of δD (δr) computed by the CSFDE algorithm in its i-th iteration are expected to become smaller as i

increases, since F̂
(i)
D (F̂ (i)

r ) should progressively approach FD (Fr) if this algorithm converges.
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B. Estimation of multiple two-dimensional tones

Let us show now how the CSFDE algorithm can be exploited to recursively estimate the multiple tones forming the useful
component of the complex sequence {Ĥm,n}, whose (m,n)-th element is expressed by (30), where K is assumed to be greater
than unity and unknown. The method we develop to achieve this objective is called complex single frequency-delay estimation
and cancellation (CSFDEC) and is based on the following principles: a) tones are sequentially detected and estimated; b) the
detection of a new tone and the estimation of its parameters are accomplished by the CSFDE algorithm; c) after detecting a
new tone and estimating its parameters, a re-estimation technique is executed to improve the accuracy of both this tone and
the previously estimated tones; d) recursions are stopped on the basis of a proper criterion, so that an estimate of K is also
generated.

The CSFDEC algorithm is initialised by: 1) running the CSFDE algorithm to compute the initial estimates F̂
(0)
D0

, F̂ (0)
r0 and

Â
(0)
0 of the parameters FD0 , Fr0 and A0 characterising the first target; 2) setting the recursion index i to 1 and Ȳ

(0)
0,0 = Ȳ0,0

(see (46)). Then, a recursive procedure is started. The i-th recursion of this procedure is fed by the vectors

F̂
(i−1)
D =

[
F̂

(i−1)
D0

, F̂
(i−1)
D1

, ..., F̂
(i−1)
Di−1

]T
, (88)

F̂(i−1)
r =

[
F̂ (i−1)
r0 , F̂ (i−1)

r1 , ..., F̂ (i−1)
ri−1

]T
(89)

and
Â(i−1) =

[
Â

(i−1)
0 , Â

(i−1)
1 , ..., Â

(i−1)
i−1

]T
, (90)

collecting the estimates of the normalised Doppler frequency, normalised delay and complex amplitude, respectively, of the i

tones detected and estimated in the previous recursions, and generates the new vectors F̂
(i)
D , F̂(i)

r and Â(i) after: a) estimating
the parameters F̂

(i)
Di

, F̂ (i)
ri and Â

(i)
i of the new (i.e., of the i-th) tone (if any); b) refining the estimates of the i tones available

at the beginning of the considered recursion. The procedure employed for accomplishing all this consists of the three steps
described below (the p-th step is denoted CSFDE-Sp, with p = 1, 2 and 3)

CSFDEC-S1 (spectral cancellation and estimation of a new tone) - In this step, the following quantities are evaluated (see
the initialisation part of the CSFDE algorithm):

a) The residual spectrum

Y
(i)
0,0 =

[
Ȳ

(i)
0,0 [l, p]

]
≜ Y

(i−1)
0,0

−C
(i)
0,0

(
Â(i−1), F̂

(i−1)
D , F̂(i−1)

r

)
, (91)

where

C
(i)
0,0

(
Â(i−1), F̂

(i−1)
D , F̂(i−1)

r

)
≜

i−1∑
k=0

C̄0,0

(
Â

(i−1)
k , F̂

(i−1)
Dk

, F̂ (i−1)
rk

)
(92)

represents the contribution given by all the i-th estimated 2D tones to Ȳ0,0 and C̄0,0(Â
(i−1)
k , F̂

(i−1)
Dk

, F̂
(i−1)
rk ) is the contribution

provided by the k-th tone (with k = 0, 1, ..., i−1) to the same matrix (the expression of the elements of the matrix C̄0,0(·, ·, ·)
is derived in Appendix A; see (169)). If the overall energy

ε0,0[i] ≜
∥∥∥Y(i)

0,0

∥∥∥2 (93)

of the vector Y(i)
0,0 (91) satisfies the inequality

ε0,0[i] < TCSFDEC, (94)

where TCSFDEC is a proper threshold, the algorithm stops and the estimate K̂ = i of K is generated.
b) The couple of integers (see (81)) (

l̂(i), p̂(i)
)
= arg max

l̃∈SM0
,p̃∈SN0

∣∣∣Ȳ (i)
0,0

[
l̃ , p̃

]∣∣∣ (95)

and the coarse estimates F̂
(i)
D,ci

= l̂(i)F̄D − 1/2 and F̂
(i)
r,ci = p̂(i)F̄r of FD,c and Fr,c, respectively (see (79) and (80)).

c) The preliminary estimate (see (53))

Ā
(i)
i = Ȳ (F̂

(i)
D,ci

, F̂ (i)
r,ci)

−Y̆0,0

(
F̂

(i)
D,ci

, F̂ (i)
r,ci ; Â

(i−1), F̂
(i−1)
D , F̂(i−1)

r

)
(96)
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of the complex amplitude Ai; here,

Y̆0,0

(
F̂

(i)
D,ci

, F̂ (i)
r,ci ; Â

(i−1), F̂
(i−1)
D , F̂(i−1)

r

)
≜

i−1∑
k=0

Ȳ0,0

(
F̂

(i)
D,ci

, F̂ (i)
r,ci ; Â

(i−1)
k , F̂

(i−1)
Dk

, F̂ (i−1)
rk

)
(97)

is the contribution given to Ȳ (F̂
(i)
D,ci

, F̂
(i)
r,ci) by the first i estimated tones for (FD , Fr) = (F̂

(i)
D,ci

, F̂
(i)
r,ci) and Ȳ0,0(F̂

(i)
D,ci

, F̂
(i)
r,ci ; Â

(i−1)
k , F̂

(i−1)
Dk

, F̂
(i−1)
rk )

represents the leakage due to the k-th tone and affecting the i-th tone. The expression of the quantity Ȳk1,k2
(F̂

(i)
D,ci

, F̂
(i)
r,ci ; Â

(i−1)
k , F̂

(i−1)
Dk

, F̂
(i−1)
rk )

is provided in Appendix B (see (174)).
d) The spectral coefficients

Ȳ
(i)
k1,k2

(
ρ
(i)
D , ρ(i)r

)
= Ȳk1,k2

(
ρ
(i)
D , ρ(i)r

)
−Y̆k1,k2

(
F̂

(i)
D,ci

, F̂ (i)
r,ci ; Â

(i−1), F̂
(i−1)
D , F̂(i−1)

r

)
(98)

with k1, k2 = 0, 1, 2, 3; here, we have that (see (84) and (85))

ρ
(i)
D = F̂

(i)
D,ci

/F̄D = l̂(i) − 1/(2F̄D), (99)

ρ(i)r = F̂ (i)
r,ci/F̄r = p̂(i) (100)

and

Y̆k1,k2

(
F̂

(i)
D,ci

, F̂ (i)
r,ci ; Â

(i−1), F̂
(i−1)
D , F̂(i−1)

r

)
≜

i−1∑
k=0

Ȳk1,k2

(
F̂

(i)
D,ci

, F̂ (i)
r,ci ; Â

(i−1)
k , F̂

(i−1)
Dk

, F̂ (i−1)
rk

)
(101)

is the contribution given to Ȳ
(i)
k1,k2

(ρ
(i)
D , ρ

(i)
r ) by all the estimated tones (in particular, Ȳk1,k2

(F̂
(i)
D,ci

, F̂
(i)
r,ci ; Â

(i−1)
k , F̂

(i−1)
Dk

, F̂
(i−1)
rk )

represents the leakage due to the k-th estimated tone for (FD , Fr) = (F̂
(i)
D,ci

, F̂
(i)
r,ci)).

e) The coefficients {aΩ , bΩ , cΩ } ({a∆ , b∆ , c∆}) on the basis of (71)-(73) ((76)-(78)) with (ρD, ρr) = (ρ
(i)
D , ρ

(i)
r ) and the

initial estimate of the residual Ω̂(0)
i (∆̂(0)

i ) of Ω (∆) on the basis of (69) or (74) with X = Ω (X = ∆);
e) The initial fine estimate of the normalized Doppler frequency

F̂
(0)
Di

= F̂
(0)
D,ci

+
Ω̂

(0)
i

2π
(102)

and that of the normalized delay

F̂ (0)
ri = F̂ (0)

r,ci +
∆̂

(0)
i

2π
(103)

on the basis of (42) and (43), respectively. The evaluation of F̂ (0)
D and F̂

(0)
r concludes the first step.

CSFDEC-S2 (refinement of the last tone) - In this step, Nit iterations are executed to refine the estimate of the parameters
of the new tone detected in the previous step. The processing accomplished in this step follows closely that described in the
refinement part (i.e., in the second step) of the CSFDE. For this reason, in each iteration, a new estimate of the complex
amplitude and of the two residuals of the i-th tone are computed. This requires reusing (96)-(97) and (98)-(101) for the
removal of spectral leakage. At the end of the last iteration, the estimates (F̌

(i)
Di

, F̌
(i)
ri , Ǎ(i)

i
) of (FDi

, Fri , Ai
) are available;

these represent (F̂ (i)
Di

, F̂
(i)
ri , Â

(i)
i ) if the next step is not accomplished (i.e. if tone re-estimation is avoided).

CSFDEC-S3 (tone re-estimation) - This step is fed by the (i + 1) normalized delays {F̂ (i−1)
r0 , F̂

(i−1)
r1 , . . ., F̂ (i−1)

ri−1 , F̌ (i)
ri },

normalized Doppler frequencies {F̂ (i−1)
D0

, F̂
(i−1)
D1

, . . ., F̂ (i−1)
Di−1

, F̌ (i)
ri } and the associated complex amplitudes {Â(i−1)

0 , Â
(i−1)
1 ,

. . ., Â(i−1)
i−1 , Ǎ(i)

i
}. It consists in repeating the previous step for each of the detected tones, starting from the first tone and ending

with the last (i.e., with the (i+ 1)-th) one. This means that, when re-estimating the k-th tone, the leakage due to all the other
(i−1) tones is removed (with k = 0, 1, . . . , i). This allows to progressively refine the amplitude, normalised Doppler frequency
and normalised delay of each tone, so generating the final estimates. Note that, in principle, this re-estimation procedure can
be repeated multiple (say, NREF) times.
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C. Computational complexity of the proposed algorithms

The computational complexity, in terms of number of floating point operations (flops), can be assessed for both the CSFDE
and the CSFDEC algorithms as follows8. First of all, the overall computational cost of the CSFDE is expressed as

CCSFDE = C0(CSFDE) +Nit Ci(CSFDE), (104)

where C0(CSFDE) and Ci(CSFDE) represent the computational cost of its initialization and that of each of its iterations,
respectively. The cost C0(CSFDE) is evaluated as9

C0(CSFDE) = Cl̂,p̂ + CȲk1,k2
+ CΩ̂ + C∆̂, (105)

where: a) Cl̂,p̂ is the contribution due to the computation of the couple (l̂, p̂) on the basis of (81); b) CȲk1,k2
is the contribution

due to the computation of the matrices {Ȳk1,k2
} on the basis of (66), including the evaluation of the spectrum Ȳ0,0; c) CΩ̂ and

C∆̂ are the contributions due to the evaluation of the estimates Ω̂ and ∆̂, respectively, on the basis of the quadratic equation
(69). The cost Ci,CSFDE, instead, is evaluated as

Ci(CSFDE) ≜ CȲ + Cρ̂D
+ Cρ̂r + CÂ + CȲk1,k2

+ CΩ̂ + C∆̂, (106)

where: a) CȲ is the contribution due to the computation of Ȳ (F̂D, F̂r) on the basis of (41) or of the interpolation of a few
adjacent elements of Ȳs (54); b) Cρ̂D

(Cρ̂r ) is the contributions due to the evaluation of ρ̂D (ρ̂r) on the basis of (84) ((85)); c)
CÂ is the contribution due to the evaluation of Â on the basis of (53); d) CȲk1,k2

is the contribution due to the computation of

the quantity Ȳk1,k2(ρ̂
(i−1)
D , ρ̂

(i−1)
r ) (98) through the interpolation of a few adjacent elements of the matrix LD Lr Ȳk1,k2 (see

(66)) for the considered values of (k1, k2); e) CΩ̂ and C∆̂ are the contributions due to the computation of Ω̂ and ∆̂ on the
basis of (69). Based on the results illustrated in Appendix C, it can be proved that CCSFDE = O(NCSFDE), where

NCSFDE = 16M0 N0 log2(M0 N0) +Nit 16 ID Ir, (107)

and ID (Ir) is the interpolation order adopted in the Doppler (range) domain for the evaluation of Ȳk1,k2
(ρ̂

(i−1)
D , ρ̂

(i−1)
r ) (98).

Note that, for small values of ID and Ir (e.g., if a 2D linear or barycentric interpolation is used; see [38]), the contribution of
the second term of the RHS of the last equation can be neglected, so that the order of the whole computational cost is well
approximated by its first term, i.e. by the term originating from DSFT processing.

Our assessment of the complexity of the CSFDEC algorithm is based on the considerations illustrated in [40] for its 1D
counterpart. This leads to concluding that CCSFDEC = O(NCSFDEC), where

NCSFDEC = 16M0 N0 log2(M0 N0) +KNit 16 ID Ir. (108)

The last result holds if tone re-estimation is not accomplished. The first term appearing in the RHS of the last equation accounts
for the initialization (and, in particular, for the computation of the matrices Ȳ0,0 (46) and

{
Ȳk1,k2

; (k1, k2) ̸= (0, 0)
}

(66)),
whereas the second one for the fact that, in the CSFDEC algorithm, the CSFDE is executed K times. Note that the computational
cost related to the estimation of the 2D-tones detected after the first one and to their frequency domain cancellation does not
play an important role in this case. However, if tone re-estimation is executed in the CSFDEC algorithm, the parameter K
appearing in the RHS of (108) is replaced by K2, since this task involves all the estimated 2D-tones.

IV. OTHER DETECTION AND ESTIMATION ALGORITHMS

In this subsection, various algorithms for the detection and estimation of multiple targets in an OFDM-based radar systems
are briefly described, and their computational complexity is analysed. These algorithms are divided in FFT-based techniques,
subspace-based methods and ML-based techniques.

A. FFT-based techniques

This class of algorithms includes the 2D periodogram method and the CLEAN algorithm [41], [42]. It is worth mentioning
that the family of FFT-based techniques also includes the estimation algorithms derived in [43] and [44] for the estimation
of multiple 2D complex tones. These last two algorithms differ from the CSFDEC in the fine estimation procedure, since a
linear interpolation of the 2D spectrum and its parabolic fitting are employed in [43] and [44], respectively. Moreover, their
computational complexity is limited, being slightly larger than that of the 2D periodogram method. However, our computer
simulations have evidenced that the accuracy they achieve in presence of closely spaced targets is quite poor. For this reason,
they are not taken into consideration in the following.

8The general criteria adopted in our evaluation of computational costs are summarised in [39, App. C].
9Note that the evaluation of the estimate of the tone complex amplitude is neglected, being based on (53), that requires a negligible computational effort.
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1) Two-dimensional periodogram method: This method requires the computation of the so-called range-Doppler map [17],
i.e. of the quantity

J(l, p) = |S(l, p)|2, (109)

with l = 0, 1, ...,M0 − 1 and p = 0, 1, ..., N0 − 1; here,

S(l, p) ≜
1

M0N0

M−1∑
m=0

N−1∑
n=0

Ĥm,n (Mm,n(FD[l], Fr[p]))
∗
, (110)

is the coefficient (l, p) of the order (M0, N0) DSFT of the 2D sequence {Ĥm,n},

FD[l] = l/M0 − 1/2 (111)

and
Fr[p] = p/N0. (112)

In the case of a single target, the estimates of its normalized Doppler frequency FD and normalized delay Fr are evaluated as
F̂D = FD[l̂] and F̂r = Fr[p̂], respectively, where(

l̂, p̂
)
≜ max

l̃∈SM0
, p̃∈SN0

J
(
l̃, p̃

)
. (113)

Moreover, the target complex amplitude A is estimated as

Â = LD Lr S
(
l̂, p̂

)
. (114)

with LD = M0/M and Lr = N0/N (see (49) and (50), respectively). A similar procedure is followed in a multi-target
scenario. In fact, in that case, multiple local maxima10 should be expected in the range-Doppler map, and the parameters of
the target associated with each of them can be estimated through (111), (112) and (114).

The most computationally intensive task required by this method is represented the evaluation of the above mentioned order
(M0, N0) order DSFT (see (110)). For this reason, its computational cost is CPM = O(NPM), where

NPM = M0 N0 log2(M0 N0). (115)

2) CLEAN algorithm: The adoption of the CLEAN algorithm in radar systems has been proposed in [41] and [42], where,
however, its use in stepped frequency continuous wave (SFCW) radar technology has been investigated. In this paragraph, we
show how this algorithm can be also employed for jointly estimating the range and velocity of multiple targets in OFDM-based
radar systems.

The CLEAN algorithm exploits the same cost function as the 2D periodogram method (see (109)), but, unlike it, employs
an iterative target cancellation process. This means that, within each of its iterations, a new target is detected, its parameters
are estimated and its contribution to the above mentioned cost function is cancelled; this results in a residual cost function,
which is passed to the next iteration.

The processing executed by the CLEAN algorithm consists in an initialization step followed by an iterative procedure. In
the initialization, we set the iteration index k to 0 and

Ĥm,n[0] = Ĥm,n, (116)

with m = 0, 1, ...,M − 1 and n = 0, 1, ..., N − 1. Then, in the k-th iteration (with k = 0, 1, ..., K̂ − 1, where K̂ denotes the
overall number of detected targets), the four steps described below are carried out sequentially.

1) Computation of the cost function - The cost function (see (109))

Jk(l, p) = |Sk(l, p)|2 (117)

is evaluated for l = 0, 1, ...,M0 − 1 and p = 0, 1, ..., N0 − 1; here, Sk(l, p) is expressed by (110), where, however, Ĥm,n is
replaced by Ĥm,n[k].

2) Estimation of the parameters of a new target - A search for the global maximum over the set {Jk(l, p); l ∈ SM0
,

p ∈ SN0
} (collecting M0 · N0 values) is performed to detect a new target (i.e., the k-th target); the value of the couple

(l, p) associated with the global maximum is denoted (l̂k, p̂k). Then, the estimates of the normalised frequency F̂Dk
and the

normalised delay F̂rk of the k-th target are evaluated as FD[l̂k] and Fr[p̂k] (see (111) and (112)), respectively, whereas that
of its complex amplitude Âk is evaluated according to (114), where S(l̂, p̂) is replaced by Sk(l̂k, p̂k).

3) Threshold test for the detection of false targets - If∣∣Âk

∣∣ < TCLEAN, (118)

10In our computer simulations, the Fast 2D peak finder function available in MatlabR2022a has been exploited to locate all the relevant peaks in the
range-Doppler map.
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where TCLEAN denotes a proper (positive) threshold, a false target is detected and the execution is stopped by moving to step
5); otherwise, we proceed with the next step.

4) Cancellation of the last detected target - The new residual frequency response

Ĥm,n[k + 1] ≜ Ĥm,n[k]− Âk Mm,n

(
F̂Dk

, F̂rk

)
(119)

is evaluated to cancel the contribution of the last detected target to Ĥm,n[k] (with m = 0, 1, ...,M −1 and n = 0, 1, ..., N −1);
note that the function Mm,n(·, ·) is defined by (25). Then, the iteration index k is increased by one and a new iteration is
started (i.e., we go back to step 1));

5) End - The final output provided by the CLEAN algorithm is represented by the set {(F̂Dk
, F̂rk , Âk); k = 0, 1, ..., K̂−1},

where K̂ represents the last value taken on by the iteration index k.
The serial cancellation procedure expressed by eq. (119) may suffer from error accumulation; this is due to the fact that the

effects of errors in the estimation of target parameters accumulate over successive iterations. This may result in: a) poor accuracy
in the presence of multiple and/or closely spaced targets; b) the detection of false targets. These considerations motivate the
use of a refinement procedure to be executed after the last iteration of the CLEAN algorithm. This procedure consists of NREF

iterations. In its i-th iteration (with i = 1, 2, ..., NREF), the refined estimates {(F̂ (i)
Dk

, F̂ (i)
rk , Â(i)

k ); k = 0, 1, ..., K̂ − 1} of the
parameters of the K̂ targets detected by the CLEAN algorithm are computed. To this aim, we first compute (l̂

(i)
k , p̂

(i)
k ), that

represents the value of the couple (l, p) maximising the function

J
(i)
k (l, p) = |S(i)

k (l, p)|2. (120)

over a specific grid, whose center depends on both F̂
(i−1)
Dk

and F̂
(i−1)
rk , and whose step size gets smaller as i increases. Here,

S
(i)
k (l, p) is still evaluated on the basis of (110), but the quantity Ĥm,n appearing in the RHS of that equation is replaced by

Ĥ(i)
m,n[k] = Ĥm,n[0]−

K̂−1∑
j=0, j ̸=k

Â
(i−1)
j Mm,n

(
F̂

(i−1)
Dj

, F̂ (i−1)
rj

)
(121)

for k = 0, 1, ..., K̂ − 1. Moreover, the search grid for F
(i)
Xk

(with X = r and D) is selected after establishing which of the
following couple of inequalities is satisfied: 1) FX,min ⩽ F̂

(i−1)
Xk

< FX,min+δX ; 2) FX,min+δX ⩽ F̂
(i−1)
Xk

⩽ FX,max−δX ; 3)
FX,max−δX < F̂

(i−1)
Xk

⩽ FX,max; here, δX = 1/M0 (δX = 1/N0) for X = D (X = r). In fact, the z-th tentative value F̃
(i)
Xk

[z]

for F (i)
Xk

in the search for the maximum of J (i)
k (l, p) (120) is evaluated as FX,min +∆X [i] z δX , F̂ (i−1)

Xk
+∆X [i](z δX − 1/2)

and FX,max +∆X [i](z δX − 1), in cases 1), 2) and 3), respectively; here, ∆X [i] ≜ δX/i, z = l (z = p) if X = D (X = r)
l = 0, 1, ..., M̃0−1 (p = 0, 1, ..., Ñ0−1), with M̃0 (Ñ0) being the number of searching points for normalized Doppler frequency
(normalized delay). Then, the estimates of F̂

(i)
Dk

= FD[l̂
(i)
k ] and F̂

(i)
rk = Fr[p̂

(i)
k ] of FDk

and Frk , respectively, are evaluated
(see (111) and (112), respectively). Finally, the amplitude Â

(i)
k is computed on the basis of (114), where, however, S(l̂, p̂) is

replaced by S
(i)
k (l̂

(i)
k , p̂

(i)
k ).

It is important to point out that: a) the evaluation of Ĥ
(i)
m,n[k] according to (121) aims at cancelling the contribution given

to Ĥm,n[0] by the (K̂ − 1) targets different from the k-th one in the i-th iteration; b) at the end of the last (i.e., the NREF-th)
iteration, the refined estimates {(F̂ (NREF)

Dk
, F̂ (NREF)

rk , Â(NREF)
k ); k = 0, 1, ..., K̂ − 1} become available.

It can be shown that the computational cost of the CLEAN algorithm with refinement is O(NCL), where (see [41, Sec.
III-E, eq. (43)])

NCL = N̄CL(M0, N0) +NREF N̄CL

(
M̃0, Ñ0

)
. (122)

Here,
N̄CL(M0, N0) = MN(6M0N0 + 15) + 2M0N0(M +N) (123)

is the contribution due a single iteration of the algorithm; note that the parameters (M0, N0) ((M̃0, Ñ0)) define the grid size
for the initialization (for the refinement) step.

B. Subspace-based methods

This class of methods includes the 2D-MUSIC algorithm and the 2D-ESPRIT. However, in the following we focus on the
first algorithm only since the latter performs similarly as 2D-MUSIC and does not require a lower computational complexity
[31], [45].
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1) Two-dimensional MUSIC algorithm: The use of the 2D-MUSIC algorithm in OFDM-based radar systems has been
investigated in [27], [28] and [46]. This algorithm requires a prior estimate (denoted K̂) of K and consists of the following
steps. First, the columns of the M ×N matrix Ĥ0,0 = [Ĥm,n] (see (48)) are stacked to form the (M N)-dimensional vector
H̄; based on this, the (M N)× (M N) correlation matrix

R ≜
1

MN
H̄ H̄H (124)

is computed. Then, the pseudo-spectrum

PMUSIC[l, p] ≜
1∥∥QH

n M̄[l, p]
∥∥2 (125)

is evaluated for l = 0, 1, . . . ,M0 − 1 and p = 0, 1, . . . , N0 − 1; here, M0 and N0 are integer parameters defining the size
of the search space for the normalized Doppler frequency and normalized delay, respectively, M̄[l, p] is a (MN)× (M0 N0)
matrix whose (m,n)-th element is defined by (25) (with FD and Fr expressed by (111) and (112), respectively) and Qn is
(MN)× (MN − K̂) matrix, whose columns represent the (MN − K̂) eigenvectors of R (124) associated with noise.

Given the pseudo-spectrum (125), the estimates of the normalized delay and the normalized Doppler frequency are evaluated
by finding its global maximum (the K̂ highest local peaks) in the case of a single target (multiple targets).

The overall 2D-MUSIC complexity is O(NMUSIC), where

NMUSIC = CR + Ce + CP. (126)

Here, we have that: a) CR = 10(MN)2+2MN −2 is the cost due to the computation of the covariance matrix R (see (124));
b) Ce ≈ (MN)3 is the contribution due to computation of the eigenvalues of the matrix R; c) CP = M0 N0

(
8(M N)2 +M N

)
is the contribution due to the evaluation of the pseudo-spectrum (see (125)).

C. Maximum likelihood-based techniques

This class of algorithms includes: a) the approximate ML method recently proposed in [31]; b) the MWL algorithm developed
in [41] and [42] for joint range and azimuth estimation of multiple targets in FMCW radars; c) the expectation maximization
(EM) algorithm. As far as point a) is concerned, it is important to point out that, in our work, the ML algorithm devised in
[31] has been properly modified to adapt it to our signal model (30), since inter-pulse and inter-subcarrier Doppler effects
are ignored; the resulting algorithm, called modified alternating projection ML (MAP-ML) exploits alternating projections to
turn a 2D optimization problem in a couple of simpler 1D problems. Moreover, another algorithm, called modified Zhang ML
(MZML), has been also investigated for completeness; it uses the same metric as the MAP-ML algorithm, but requires solving
a 2D optimization problem. Note that both the MAP-ML and MZML algorithms require a prior estimate (denoted K̂) of K.

1) Modified Zhang maximum likelihood algorithm: The processing accomplished by this algorithm is iterative; in each
iteration, the estimates of the detected targets are refined. The algorithm is initialised by setting the iteration index i to 1 and
selecting the initial estimates F̂

(0)
Dk

and F̂
(0)
rk of the normalized Doppler frequency FDk

and normalized delay Frk , respectively,
with k = 0, 1, ..., K̂ − 1 according to (111) and (112); here, the couple (l̂

(0)
k , p̂

(0)
k ) is computed on the basis of (113).

Then, the iterations are started. The i-th iteration (with i = 1, ..., NREF, where NREF denotes the overall number of iterations)
is fed by the vectors

F̂
(i−1)
D =

[
F̂

(i−1)
D0

, F̂
(i−1)
D1

, . . . , F̂
(i−1)
DK̂−1

]T
(127)

and
F̂(i−1)

r =
[
F̂ (i−1)
r0 , F̂ (i−1)

r1 , . . . , F̂ (i−1)
rK̂−1

]T
, (128)

collecting the estimates of the normalised Doppler frequency and normalised delay, respectively, of the K̂ tones estimated
in the previous (i− 1) iterations, and produces the new estimates F̂

(i)
D and F̂

(i)
r . Moreover, it consists of two steps, that are

repeated sequentially for each target (i.e., for k = 0, 1, . . . , K̂ − 1); their description is provided below for the k-th target.
1) Computation of the cost function - In this step, the cost function

J
(i)
k [l, p] ≜ H̄H P

(i)
k (l, p) H̄ (129)

is evaluated for l = 0, 1, ...,M0−1 and p = 0, 1, ..., N0−1, with M0 (N0) being the size of the search space for the normalised
Doppler frequency (normalised delay); here, H̄ is the (M N)-dimensional vector resulting from the ordered concatenation of
the columns of the M ×N matrix Ĥ0,0 (48),

P
(i)
k (l, p) ≜ M̆

(i)
k

((
M̆

(i)
k

)H

M̆
(i)
k

)−1(
M̆

(i)
k

)H

(130)
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is an (MN)× (MN) orthogonal projection matrix11, M̆(i)
k = M̆

(i)
k (F̃

(i)
Dk

[l], F̃
(i)
rk [p]) is an (M N)× K̂ matrix defined as

M̆
(i)
k ≜

[
M

(i−1)
0 ,M

(i−1)
1 , ...,M

(i−1)
k−1 ,M

(i−1)
k+1 ,

...,M
(i−1)

K̂−1
,M(i)

]
; (131)

moreover, F̃
(i)
Dk

[l] and F̃
(i)
rk [p] are tentative values of FDk

and Frk , respectively (these are evaluated on the basis of the
procedure described for F̃

(i)
Xk

[z], with X = D and r, right after (121)) and M
(i−1)
u (M(i)) is an (M N)-dimensional column

vector resulting from the ordered concatenation of the columns of the M × N matrix M̂
(i−1)
u ≜ [Mm,n(F̂

(i−1)
Du

, F̂
(i−1)
ru )]

(M̂(i) = M̂(i)(F̃
(i)
Dk

[l], F̃
(i)
rk [p]) ≜ [Mm,n(F̃

(i)
Dk

[l], F̃
(i)
rk [p])]; with m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1).

It is worth noting that: a) the vector M(i−1)
u represents the contribution (evaluated on the basis of the parameters estimated

in the (i− 1)-th iteration) of the u-th target (with u ̸= k) to the vector M(i)(F̃
(i)
Dk

[l], F̃
(i)
rk [p]) computed for the k-th target in

the i-th iteration; b) building the matrix M̆
(i)
k according to (131) allows to compensate for the leakage effect in the evaluation

of the projection matrix P
(i)
k [l, p] (130).

2) Target detection and estimation - In this step, the estimates (F̂
(i)
Dk

, F̂
(i)
rk ) of (FDk

, Frk) are computed on the basis of (111)
and (112); here, (

l̂
(i)
k , p̂

(i)
k

)
= arg max

l̃∈SM0
, p̃∈SN0

∣∣∣J (i)
k

(
l̃, p̃

)∣∣∣. (132)

Then, the new estimate Â
(i)
k of the complex amplitude Ak is evaluated as

Â
(i)
k =

((
M̆

(i)
k

(
F̂

(i)
Dk

, F̂ (i)
rk

))H

M̆
(i)
k

(
F̂

(i)
Dk

, F̂ (i)
rk

))−1

·
(
M̆

(i)
k

(
F̂

(i)
Dk

, F̂ (i)
rk

))H

(133)

At the end of the last iteration, the vectors F̂
(NREF)
D , F̂

(NREF)
r and Â(NREF), collecting the normalised frequencies, the

normalized delays and the complex amplitudes of the K̂ targets are available.
The overall computational cost of MZML algorithm can be expressed as

CMZML ≜ C0,MZML +NREF Ci,MZML, (134)

where C0,MZML is the cost of its initialization (i.e., the same cost as the periodogram method; see (115)), whereas

Ci,MZML ≜ CP + CJ + Cl,p (135)

represents the cost of a single iteration; here, we have that: a) CP ≈ 8M0 N0 K̂
2M2N2 is the cost due to the evaluation of

the M0 N0 projection matrices {P(i)
k [l, p]} (see (130)) for all the K̂ targets; b) CJ ≈ 8M0 N0 K̂ M2N2 is the cost due to the

evaluation of the M0 N0 cost functions {J (i)
k [l, p]} (see (129)); c) Cl,p = 4M0 N0 K̂ is the cost due to solving optimization

problem in (132). Based on these results, it can be shown that the computational cost of MZML algorithm is O(NMZML),
where

NMZML = NREF 8M0 N0

(
K̂2 + K̂

)
M2N2 (136)

2) Modified alternating projection maximum likelihood algorithm: Similarly as the MZML algorithm, the MAP-ML al-
gorithm exploits the cost function J

(i)
k (l, p) (129) in the estimation of the parameters of the k-th target and it is initialised

exactly in the same way; however, an alternating projection (AP) is exploited for its maximization in order to replace the 2D
optimization problem (132) with two 1D optimization problems. In practice, in its i-th iteration, the couple (l̂

(i)
k , p̂

(i)
k ) appearing

in the LHS of (132) is evaluated as follows. First we compute

p̂
(i)
k = arg max

p̃∈SN0

∣∣∣J (i)
k

(
l̂
(i−1)
k , p̃

)∣∣∣. (137)

Then, we evaluate
l̂
(i)
k = arg max

l̃∈SM0

∣∣∣J (i)
k

(
l̃, p̂

(i)
k

)∣∣∣ (138)

Note that: a) the evaluation of J (i)
k (l̂

(i−1)
k , p̃) in (137) (J (i)

k (l̃, p̂
(i)
k ) in (138)) requires the computation of matrix M̆

(i)
k (F̂

(i−1)
Dk

, F
(i)
rk [p̃])

(M̆(i)
k (F

(i)
Dk

[l̃], F̂
(i)
rk )) (131); b) if i = 1, F̂ (0)

Dk
is evaluated on the basis of (111) with l̂

(0)
k computed on the basis of (113); c)

the estimate of the complex amplitude is computed on the basis of (133).

11The dependence of M̆(i)
k on the trial couple (F̃

(i)
Dk

[l], F̃
(i)
rk [p]) is not explicitly shown in the definition (130) for simplicity.
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The overall computational cost CMAP−ML of the MAP-ML algorithm can be expressed as

CMAP−ML = C0,MAP−ML +NREF Ci,MZAP, (139)

where C0,MAP−ML is the contribution due to its initialization (this is the same as MZML algorithm), whereas

Ci,MAP−ML = CPr
+ CPD

+ CJr
+ CJD

+ Cp + Cl (140)

is the contribution due to each of its iterations. Moreover, in the last formula, we have that: a) CPr
≈ 8N0K̂

2M2N2 (CPD
≈

8M0K̂
2M2N2) and CJr

≈ 8N0K̂M2N2 (CJD
≈ 8M0K̂M2N2) are the costs due to the evaluation of the projection matrices

{P(i)
k [l, p]} (see (130)) and of the cost functions {J (i)

k [l, p]} (see (129)), respectively, in the first (second) 1D optimization; b)
Cp = 4N0 (Cl = 4M0) is the cost required by solving the 1D maximization in (137) ((138)).

Based on (139)-(140), it can be shown that the computational cost of MAP-ML algorithm is O(NMAP−ML), where

NMAP−ML = NREF 8(M0 +N0) (K̂
2 + K̂)M2N2. (141)

3) MWL algorithm: Similarly as the CLEAN algorithm, the MWL algorithm, in each of its iterations, estimates the
parameters of a new target. However, unlike the CLEAN algorithm, the MWL algorithm requires solving 1D optimization
problems only. Moreover, in [41] it has been shown that it can achieve similar and even better accuracy than the CLEAN
algorithm with a smaller computational effort.

The processing accomplished by this algorithm evolves through the four steps described below.
1) Coarse estimation of the Doppler of a new target - In this step, the coarse estimate F̆Dk

of the Doppler frequency FDk

of a new (namely, of the k-th) target is evaluated solving the 1D optimization problem

l̆k ≜ arg max
l̃∈SM0

aH
(
FD

[
l̃
])

R[k]a
(
FD

[
l̃
])

(142)

where FD[l̃] is defined by (111), a(FD[l̃]) is an M -dimensional column vector whose m-th element, denoted am(FD[l̃]), is
defined by (26) (with m = 0, 1, . . . ,M − 1), R[k] = [Rm,m′ [k]] is an M ×M autocorrelation matrix such that

Rm,m′ [k] ≜
1

N

N−1∑
n=0

Ĥm,n[k]
(
Ĥm′,n[k]

)H

, (143)

with m = 0, 1, . . . ,M − 1 and m′ = 0, 1, . . . ,M − 1, and Ĥm,n[k] is evaluated on the basis of (119) for n = 0, 1, . . . , N − 1.
Given l̆k (142), the coarse estimate is computed as F̆Dk

= FD[l̆k] (see (111)).
2) Estimation of target delay - In this step, an estimate F̂rk of the normalized delay Frk characterising the k-th target is

evaluated by solving another 1D optimization problem. This requires:
a) Computing the N -dimensional column vector

v̂k ≜ [v̂k[0], v̂k[1], ..., v̂k[N − 1]]
T
, (144)

whose n-th element is defined as
v̂k[n] ≜

[
aH

(
F̆Dk

)
a
(
F̆Dk

)]T
aH

(
F̆Dk

)
Hn[k] (145)

with n = 0, 1, . . . , N − 1; here, Hn[k] ≜ [Ĥ0,n[k], Ĥ1,n[k], . . ., ĤM−1,n[k]]
T is an M -dimensional vector.

b) Evaluating
p̂k = arg max

p̃∈SN0

∥∥bH(Fr[p̃]) v̂k

∥∥2. (146)

Here, Fr[p̃] is defined by (112) and b(Fr[p̃]) is an N -dimensional column vector whose n-element (with n = 0, 1, . . . , N − 1)
is denoted bn(Fr[p̃]) and defined by (27). Given p̂k (146), the final estimate F̂rk of the target delay is evaluated according to
(112) with p = p̂k.

3) Fine estimation of target Doppler - In this step, the fine estimate F̂Dk
of the normalised Doppler FDk

characterising the
k-th target is evaluated by solving the last 1D optimization problem. In fact, we compute

l̂k ≜ arg max
l̃∈SM0

∣∣∣aH(
FD

[
l̃
])

B̂
(
F̂rk

)∣∣∣2, (147)

where B̂(F̂rk) is an M -dimensional row vector, whose m-th element is defined as

B̂m

(
F̂rk

)
≜

[
N−1∑
n=0

Ĥm,n b
∗
n

(
F̂rk

)]
Ĉ−1

(
F̂rk

)
; (148)
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here,

Ĉ
(
F̂rk

)
≜

N−1∑
n=0

bn

(
F̂rk

)
b∗n

(
F̂rk

)
. (149)

Given l̂k (147), F̂Dk
is computed according to (111) with l = l̂k.

4) Estimation of target complex amplitude - In this step, the estimate

Âk =
∥∥∥a(F̂Dk

)∥∥∥−2

aH
(
F̂Dk

)
B̂
(
F̂rk

)
, (150)

of the complex amplitude Ak is evaluated.
Similarly as the CLEAN algorithm, at the end of the last step a false target is detected if∣∣Âk

∣∣ < TMWL, (151)

where TMWL denotes a proper (positive) threshold. When this occurs, the execution is stopped; otherwise, a new iteration is
started going back to the first step.

An iterative procedure can be employed to refine the target estimates generated by the MWL algorithm. Similarly as the
CLEAN algorithm, this refinement procedure is based on the idea of evaluating a new estimate of the parameters of each target
after removing the spectral contribution of the other K̂ − 1 targets, i.e. their leakage. More specifically, in its i-th iteration
(with i = 1, 2, ..., NREF), the refined estimates {(F̂ (i)

Dk
, F̂ (i)

rk , Â(i)
k ); k = 0, 1, ..., K̂ − 1} of the parameters of the K̂ targets

detected by the MWL algorithm are computed; here, F̂ (i)
Dk

and F̂
(i)
rk are computed according to (111) and (112) with l = l̂

(i)
k

and p = p̂
(i)
k . Such estimates are evaluated as follows. First, we compute the coarse estimate F̆

(i)
Dk

= (l̆
(i)
k /M0 − 1/2) of FDk

,
where (see (142))

l̆
(i)
k ≜ arg max

l̃∈SM0

aH
(
FD

[
l̃
])

R(i)[k]a
(
FD

[
l̃
])

(152)

and R(i)[k] is an M ×M matrix whose element (m,m′) is still defined by (143), where, however, Ĥm,n[k] is replaced by

Ȟ(i)
m,n[k] = Ĥm,n[0]−

K̂−1∑
j=0, j ̸=k

Â
(i−1)
j Mm,n

(
F̂

(i−1)
Dj

, F̂ (i−1)
rj

)
. (153)

Then, we evaluate
p̂
(i)
k = arg max

p̃∈SN0

∥∥∥bH(Frk [p̃]) v̂
(i)
k

∥∥∥2, (154)

where v̂
(i)
k plays the same role as v̂k in (146), but whose n-th element is defined as (see (145))

v̂
(i)
k [n] ≜

[
aH

(
F̆

(i)
Dk

)
a
(
F̆

(i)
Dk

)]T
aH

(
F̆

(i)
Dk

)
H(i)

n [k] (155)

with F̆
(i)
Dk

≜ FD[l̆
(i)
k ] (see (111)); here, H

(i)
n [k] ≜ [Ĥ

(i)
0,n[k], Ĥ

(i)
1,n[k], . . . , Ĥ

(i)
M−1,n[k]]

T . Moreover, the vector b(Frk [p̃])
appearing in the RHS of (154) is an N -dimensional column vector whose n-element, denoted bn(Frk [p̃]), is defined by
(27).

Finally, given F̂
(i)
rk = Fr[p̂

(i)
k ] (see (112)), a finer estimate of the normalized Doppler frequency is evaluated as F̂

(i)
Dk

=

FD[l̂
(i)
k ], where

l̂
(i)
k ≜ arg max

l̃∈SM0

∣∣∣aH(
FD[l̃]

)
B̂
(
F̂ (i)
rk

)∣∣∣2, (156)

and the m-th element (m = 0, 1, . . . ,M − 1) of the row vector B̂(F̂
(i)
rk ) is still defined by (148) with F̂

(i)
rk in place of F̂rk .

This concludes the i-th iteration.
The estimates {(F̂ (NREF)

Dk
, F̂

(NREF)
rk , Â

(NREF)
k ); k = 0, 1, ..., K̂ − 1} available at the end of the last (i.e., of the NREF-th)

iteration represent the output of the refinement algorithm.
It can be shown that the computational cost of MWL algorithm is O(NMW), where (see [41, Sec. III-E, eq. (44)])

NMW = N̄MW(M0, N0) +NREF N̄MW(M̃0, Ñ0). (157)

Here,

N̄MW(M0, N0) =
[
M2(6N + 8M0) + 30MN

+8N0N + 30M0M ] (158)

represents the cost due to a single iteration of the algorithm; note that the parameters (M0, N0) ((M̃0, Ñ0)) define the grid
size for the initialization (for the refinement) step.
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4) EM-based algorithm (EM): The EM algorithm can be employed jointly with any of the previously described algorithms
to refine their estimates of the parameters of multiple targets. For this reason, generally speaking, we can assume that the
EM algorithm is fed by the K̂-dimensional vectors F̂D = [F̂D0 , F̂D1 , . . . , F̂DK̂−1

], F̂r = [F̂r0 , F̂r1 , . . . , F̂rK̂−1
] and Â =

[Â0, Â1, . . . , ÂK̂−1], collecting the initial estimates of the normalised Doppler, normalised delay and the complex amplitude
of the K̂ detected targets.

The EM algorithm is iterative; in each of its iterations, it executes an expectation step (E-step) followed by a maximisation
step (M-step). In our description of such steps, we focus on the i-th iteration (with i = 1, ..., NREF, where NREF denotes
the overall number of iterations) and consider the k-th target (with k = 0, 1, .., K̂ − 1). At the beginning of this iteration, the
estimates (F̂

(i−1)
Dk

, F̂
(i−1)
rk , Â

(i−1)
k ) are available for the normalised Doppler, the normalised delay and the complex amplitude,

respectively, of the considered target; note that, if i = 1, we have that (F̂
(0)
Dk

, F̂
(0)
rk , Â

(0)
k ) = (F̂Dk

, F̂rk , Âk). The two steps
accomplished within the considered iteration are described below.

1) E step - In this step, the cost function

J
(i)
EMk

(l, p) =
1

MN

∥∥∥∥(M̆(i)
k

(
F̃

(i)
Dk

[l], F̃ (i)
rk

[p]
))H

Ĥ
(i)
k

∥∥∥∥2 (159)

is computed for l = 0, 1, . . . ,M0 − 1 and p = 0, 1, . . . , N0 − 1; here, the (MN)×K matrix M̆
(i)
k (F̃

(i)
Dk

[l], F̃
(i)
rk [p]) is defined

by (131),

Ĥ
(i)
k = Ĥ

(i−1)
k + β

(i)
k

H̄−
K̂−1∑
k′=0

Ĥ
(i−1)
k′

 (160)

is the reconstructed channel vector evaluated for the k-th target in the i-th iteration, H̄ is the (MN)-dimensional vector
resulting from the ordered concatenation of the columns of the channel measurement matrix Ĥ0,0 (48),

Ĥ
(i−1)
k ≜ Â

(i−1)
k M

(i−1)
k , (161)

where M
(i−1)
k an MN -dimensional vector defined right after (131). Moreover, for any i, the K̂ parameters {β(i)

k ; k =

0, 1, ..., K̂ − 1} are the so called mixing coefficients and satisfy the inequalities 0 ⩽ β
(i)
k ⩽ 1 for k = 0, 1, ..., K̂ − 1

(e.g., see [41, Par. III-D]).
2) M step - The new (and, hopefully, finer) estimates F̂

(i)
Dk

= FD[l̂
(i)
k ] and F̂

(i)
rk = Fr[p̂

(i)
k ] of FDk

and Frk , respectively,
are evaluated; here, (l̂(i)k , p̂

(i)
k ) represents the value of the couple (l, p) maximising the function J

(i)
EMk

[l, p] over a specific grid,
whose center depends on both F̂

(i−1)
Dk

and F̂
(i−1)
rk , and whose step size gets smaller as i increases. The grid employed in this

case is generated according to the same criteria illustrated for the refined procedure of the CLEAN algorithm (these criteria
are described right after (121)).

Finally, the complex amplitude Â
(i)
k is evaluated as (e.g., see [31, Sec IV, eq. 48]):

Â
(i)
k =

1

M N
M̂

(i)
k Ĥ

(i)
k . (162)

This concludes the M step.
At the end of the last iteration (i.e., for i = NREF), the final estimates (F̂

(NREF)
Dk

, F̂
(NREF)
rk , Â

(NREF)
k ) are available, with

k = 0, 1, . . . K̂ − 1.
The overall computational cost of a single iteration of the EM algorithm in the presence of K̂ targets can be expressed in

a similar way as [41, App. C], i.e. as
CEM = K̂

(
CH + CA + CJ + Cl,p + CM̆

)
, (163)

where: a) CH = 2(K̂ + 2)M N is the contribution due to the computation of (M N)-dimensional vectors {Ĥ(i)
k } (see eq.

(160)); b) CM̆ = 6M N M0 N0 is the contribution due to the evaluation of the matrix M̆
(i)
k (·, ·) (M0 and N0 denote the

size of the search grid for the normalized Doppler frequency and the normalized delay, respectively); c) CJ = 8M N M0 N0

(Cl,p = 4M0 N0) is the cost due to the computation (optimization) of J
(i)
EMk

[l, p] (see (159)); d) CA = 8M N is the cost due
to the computation of the complex amplitude estimation Â

(i)
k on the basis of (162).

The complexities of the estimation algorithms considered in our computer simulations are listed in Table I.

V. NUMERICAL RESULTS

The accuracy of the CSFDEC algorithm and of the other estimation algorithms illustrated in the previous section has been
assessed in four different scenarios. The first three scenarios (denoted S1, S2 and S3) are characterised by a couple of targets
having amplitudes A0 = A1 = 0.8, but differ for the assumptions we make about target ranges and speeds. More specifically,
we have that:
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Table I
ORDER OF THE COMPUTATIONAL COMPLEXITY OF VARIOUS ESTIMATION ALGORITHMS.

Algorithm 2D periodogram method MWL 2D-MUSIC

O(·) M0 N0 log2(M0 N0) N̄MW(M0, N0) +NREF N̄MW(M̃0, Ñ0) (M N +M0 N0)(M N)2

Algorithm CSFDEC CLEAN MZML

O(·) 16M0 N0 log2(M0 N0) +K2 Nit 16 ID Ir N̄CL(M0, N0) +NREF N̄CL

(
M̃0, Ñ0

)
NREF 8M0 N0

(
K2 +K

)
M2N2

Algorithm MAP-ML EM

O(·) NREF 8 (M0 +N0)
(
K2 +K

)
M2N2 NREF

[
K(14M N M0 N0) + 2K2M N

]

a) The target ranges (velocities) are R0 = 10 m and R1 = 35 m (v0 = 5/3.6 m/s and v1 = 10/3.6 m/s) in S1.

b) In S2, the range R0 (velocity v0) is uniformly distributed12 over the interval [Rmin, Rmax] = [3, 80] m ([vmin, vmax] =
[1/3.6, 36/3.6] m/s), whereas R1 = R0+1.1Rbin and v1 = v0+1.1vbin; here, Rbin = c/(2N∆f ) (vbin = c/(2M fc Ts))
represents the size of the range (velocity) bin that characterizes our FFT processing in the absence of oversampling.

c) In S3, the range R0 (velocity v0) is uniformly distributed over the interval [Rmin, Rmax] = [3, 30] m ([vmin, vmax] =
[1/3.6, 20/3.6] m/s), whereas R1 = R0 + ∆R(d)Rbin (v1 = v0 + ∆v(d) vbin), with d = 0, 1, . . ., 10; here, ∆R(d)
(∆v(d)) represents the tone spacing normalised with respect to Rbin (vbin). In particular ∆R(d) = 0.8+0.05 d (∆v(d) =
0.8 + 0.05 d); moreover, the signal-to-noise ratio (SNR), that, in general, is defined as

SNR ≜

∑K−1
k=0 |Ak|2

σ2
W

(164)

where σ2
W represents the variance of each element of the complex noise sequence {W̄m(n)} (see (28)), is equal to 0 dB

in this scenario.

d) The fourth scenario (denoted S4) is characterized by K ∈ {2, 3, . . ., 9}, i.e. by a varying number of targets. For any K,
the amplitude, range and velocity of the k-th target are given by

Ak ≜ 10−k∆a/10 (165)

Rk ≜ R0 + 1.8 k Rbin and vk ≜ v0 + 1.8 k vbin, respectively, with k = 0, 1, . . ., K − 1. Moreover, the random variables
R0 and v0 are generated in the same way as S3 and the SNR is equal to 5 dB for the strongest tone.

It is important to point out that: a) on the one hand, the study of S1 has been uniquely motivated by our interest in comparing
the accuracy achieved by all the considered algorithms in a simple scenario, characterised by two targets whose spacing in the
velocity and range domains is fixed and not small; b) on the other hand, the study of S2 (S3) has allowed us to assess how
the considered estimators perform in the presence of two close targets whose spacing in both the range and velocity domains
is small and fixed (variable); c) the study of S4 unveils how the performance of different estimation algorithms is affected by
an increasing number of close targets; d) in all the considered scenarios, target velocities are always positive.

In our computer simulations, the estimation accuracy of each algorithm has been assessed by evaluating the root mean square
error (RMSE) for the range and velocity of the considered targets (these are denoted RMSEr and RMSEv , respectively)
under the assumption that the overall number of targets is known a priori. Moreover, the following parameters have been
selected for the OFDM modulation: 1) overall number of subcarriers N = 32; 2) overall number of OFDM symbols/frame
M = 32; 3) subcarrier spacing ∆f = 250 kHz; 4) cyclic prefix duration TG = 12.5 µs (consequently, the OFDM symbol
duration is Ts = 1/∆f + TG = 16.5 µs); 5) carrier frequency fc = 78 GHz. Then, we have that Rbin = 18.75 m and
vbin = 3.64 m/s.

In S1, the accuracy of eight different estimators (namely, the 2D-FFT13, 2D-MUSIC, CSFDEC, CLEAN, MWL, MZML,
MAP-ML and EM algorithms) has been assessed. Moreover, the following choices have been made for these algorithms14: a)
the oversampling factor LD = 16 (Lr = 16) has been selected for Doppler (range) estimation in both the 2D-FFT and CSFDEC
algorithms (so that M0 = MLD = 512 and N0 = NLr = 512; see (49) and (50), respectively); b) (74) has been always
employed in the evaluation of the CSFDEC residuals (so that 13 DSFTs {Ȳk1,k2

} have been computed in each new run); c)
the 2D-FFT method has been used to compute the initial estimates of the MZML, MAP-ML and EM algorithms; d)M0 = 512
(N0 = 512), has been chosen for the refinement grid over Doppler (range) described right after (121) (and employed by
the CLEAN, MWL, MZML, MAP-ML and EM algorithms); e) Nit = 20 refinement steps have been accomplished for the

12In both S2 and S3, R0 and v0 are independent random variables.
13In this section, the acronym 2D-FFT is used to denote the 2D periodogram method.
14The following values of the considered parameters have been also employed in S2 and S3.
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Figure 1. Root mean square error performance achieved in range estimation (first scenario)
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Figure 2. Root mean square error performance achieved in velocity estimation (first scenario)

computation of the residuals in the CSFDEC algorithm and the interpolation15 orders ID = Ir = 7 have been selected; f)
NREF = 5 (NREF = 3) re-estimations have been executed by the CSFDEC, CLEAN and MWL (MZML, MAP-ML and
EM) algorithms; g) M0 = N0 = 11 (M0 = N0 = 9) have been chosen for the grid size in the CLEAN and MWL (MZML,
MAP-ML and EM) algorithms during the re-estimation steps; h) a unit value has been assigned to the coefficient β(i)

k (with
k = 0, 1, . . .K − 1 and i = 1, 2, . . . NREF) in the EM algorithm (see (160)). Moreover, in S1, M0 = 32 (N0 = 61) has been
selected for the number of trial values of the 2D-MUSIC algorithm and for the initial trial values of the CLEAN and MWL
algorithms in the Doppler (range) domain. More specifically, uniformly spaced trial values for range (velocity) have been
selected in the interval16 [0, Rmax] ([0, vmax]) with Rmax = 36 m (vmax = 3.62 m/s); the spacing between adjacent values is
∆R = 0.6 m (∆v = 0.1166 m/s).

Some numerical results referring to S1 are given in Fig. 1 (2), where the RMSEr (RMSEv) characterising all the considered
algorithms is shown for SNR ∈ [−15, 25] dB; note that, in these figures and in all the following ones, simulation results are
represented by labels, whereas continuous lines are drawn to ease reading. From these results it is easily inferred that:

1) The CSFDEC, CLEAN and MWL algorithms achieve good accuracy (very close to the CRLB) thanks to their use of a
cancellation and refinement procedure. Note that the computational complexity of the CSFDEC (CLEAN) algorithm is
approximately 16 (3.4) times higher than that of the 2D-FFT, whereas that of the MWL algorithm is 2 times lower.

2) Traditional techniques, like the 2D-FFT and 2D-MUSIC algorithms, perform poorly at high SNRs since their estimates
suffer from a bias due to the leakage effect. Moreover, the 2D-MUSIC outperforms the 2D-FFT algorithm, but at the
price of a 648 times higher complexity.

3) The MAP-ML and the MZML algorithms perform similarly since both aim at maximising the same cost function. Their
computational costs are approximately 577 and 2593 times higher than that of the 2D-FFT algorithm.

4) The EM algorithm can be fruitfully exploited to refine the estimates generated by other methods; in particular, if employed

15In all our simulations, the barycentric interpolation described in [38] has been always used.
16In our simulations, positive trial values are always considered for target velocities, without loss of generality.
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Figure 3. Root mean square error performance achieved in range estimation (second scenario)
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Figure 4. Root mean square error performance achieved in velocity estimation (second scenario)

jointly with the 2D-FFT algorithm, achieves an estimation accuracy similar to that provided by the MAP-ML and MZML
algorithms, but at approximately a 233 times smaller computational cost.

Some numerical results referring to S2 are provided in Fig. 3 (4), where the RMSEr (RMSEv) characterising all the
considered algorithms is shown for SNR ∈ [−25, 25] dB. In this case, M0 = 131 (N0 = 181) have been selected for the number
of trial values of the 2D-MUSIC algorithm and for the initial trial values of the CLEAN and MWL algorithms in the Doppler
(range) domain. In particular, uniformly spaced trial values for range (velocity) have been selected in the interval [0, Rmax]
([0, vmax]) with Rmax = 108 m (vmax = 15.15 m/s); the spacing between adjacent values is ∆R = 0.6 m (∆v = 0.1166 m/s).

These results lead to the following conclusions:
1) The CSFDEC, MWL, CLEAN, MAP-ML, MZML and EM algorithms are substantially more accurate than the 2D-FFT

and 2D-MUSIC techniques. In particular, the RMSEs in range (velocity) of the 2D-FFT and 2D-MUSIC algorithms are
3.9 (4) and 1.5 (1.68) times higher, respectively, than that of the above mentioned group of algorithms at SNR = 0 dB;
moreover, these performance gaps, in terms of both RMSEr and RMSEv , tend to increase by a factor 1.75 if the SNR
is incremented by 5 dB.

2) The trend of both the RMSEr and RMSEv curves referring to the 2D-MUSIC and 2D-FFT algorithms does not follow
that of the corresponding CRLB; for this reason, these algorithms are ignored in following.

3) The SNR threshold of the CSFDEC, CLEAN, MAP-ML and EM algorithms is about −10 dB, whereas that of the MWL
algorithm is substantially higher (about −5 dB).

4) The MAP-ML algorithm performs similarly as the MZML algorithm; since the latter estimator requires an higher
computational effort than the former one, it is ignored in the following.

It is also important to point out that the considerations illustrated about the computational complexity of the various algorithms
in S1 still hold; however, the complexities of the CLEAN, MWL, and 2D-MUSIC algorithms are 32 times, 0.66 times and
5497 times, respectively, higher than that of the 2D-FFT algorithm.

In S3, the RMSEs have been evaluated for different values of the normalised tone spacing δR and δv; some numerical results
referring to this scenario are illustrated in Figs. 5 and 6, that show the dependence of RMSEr and RMSEv , respectively,
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Figure 5. Root mean square error performance achieved in range estimation (third scenario) vs normalized tone spacing δR. The CSFDEC, CLEAN, MWL,
MAP-ML and EM algorithms are considered.
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Figure 6. Root mean square error performance achieved in velocity estimation (third scenario) vs normalized tone spacing δv . The CSFDEC, CLEAN, MWL,
MAP-ML and EM algorithms are considered.

on the normalized tone spacing. In this case, the number of initial trial values are M0 = 101 (N0 = 101) for the CLEAN
and MWL algorithms in the Doppler (range) domain. Moreover, uniformly spaced trial values for range (velocity) have been
selected in the interval [0, Rmax] ([0, vmax]) with Rmax = 60 m (vmax = 11.66 m/s) and the spacing between adjacent values
is ∆R = 0.6 m (∆v = 0.1166 m/s).

These results lead to the following conclusions:
1) The lowest threshold in range estimation is achieved by the CSFDEC algorithm; more specifically, in the considered

scenario, this threshold is found at the normalised spacing δR(2) = 0.9.
2) The lowest threshold in velocity estimation is achieved by both the CLEAN and CSFDEC algorithms; note also that the

complexity of the CSFDEC is approximately 1.11 times higher than that of the CLEAN algorithm in this case.
Based on the considerations illustrated above, in S4 we restrict our attention to the CSFDEC, CLEAN, MWL, MAP-ML and

EM algorithms. Moreover, our performance analysis does not concern RMSEr and RMSEv , but the probability of failure
(Pf ), i.e. the probability that a given algorithm does not converge. Our interest in Pf can be motivated as follows. Each of
the considered estimation algorithms is highly nonlinear; for this reason, its behavior is characterized by a threshold, whose
value depends on the specific scenario in which it is employed and is certainly influenced by the values of SNR and K.
In practice, if an estimation algorithm operates above its threshold, failures are very rare events; consequently, the assessed
RMSEs are negligibly influenced by them, i.e., they account for the intensity of the errors observed after the convergence
of the algorithm itself. On the contrary, if the algorithm operates below its threshold, a portion of its estimation errors (but
not all of them) refers to events in which it has not converged; when this happens, large estimation errors (i.e., outliers) may
be observed. In the last case, RMSEs are not so meaningful since they account for two heterogeneous contributions. In our
computer simulations, we have observed that large estimation errors become more and more frequent as K increases in the
considered scenario. To detect the frequency of these errors, we counted, in each simulation run, the number of failure events of
each of the considered algorithms; in practice, an event of this type is detected whenever the absolute value of the range error
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Figure 7. Probability of failure versus overall number of tones (fourth scenario). The CSFDEC, CLEAN, MWL, MAP-ML and EM algorithms are considered.

or that of the velocity error (or both) exceed the thresholds ∆ϵr = c/(4N∆f ) = 9.375 m and ∆ϵv = c/(4MfcTs) = 1.82
m/s, respectively17. Moreover, in our simulations, the following changes have been made with respect to the other scenarios:
a) NREF = 7 (NREF = 5) re-estimations have been executed by the CSFDEC, CLEAN and MWL (MAP-ML and EM)
algorithms; b) M0 = 551 (N0 = 551) have been selected for the initial trial values of the CLEAN and MWL algorithms in
the Doppler (range) domain. In this case, uniformly spaced trial values for range (velocity) have been selected in the interval
[0, Rmax] ([0, vmax]) with Rmax = 330 m (vmax = 64.1 m/s) and the spacing between adjacent values is ∆R = 0.6 m
(∆v = 0.1166 m/s).

The probability of failure estimated for K = 2, 3, . . ., 9 is illustrated in Fig. 7. From this figure it is easily inferred that:
1) The MAP-ML and EM (MWL) algorithms exhibit a Pf greater than 10−2 for K ≥ 4 (K ≥ 5).
2) The CSFDEC algorithm is substantially more robust than all the other algorithms since it is characterized by a Pf not

exceeding 10−3 for K ≤ 8;
3) The CLEAN algorithm achieves a Pf smaller than 10−2 for K ≤ 7.
These results show that the CSFDEC algorithm performs substantially better than the other estimators in the presence of

multiple closely spaced targets. This feature plays a fundamental role in the estimation of extended targets, whose radar image
is usually a dense point cloud.

Finally, based on all the results illustrated above, we can state that, thanks to its accuracy, its limited complexity and its
ability to resolve multiple closely spaced point targets, the CSFDEC algorithm represents a good candidate for target detection
and estimation in future OFDM-based radars.

VI. CONCLUSIONS

In this manuscript, a novel algorithm, dubbed CSFDE, for the detection of a single 2D complex tone and the estimation of
its parameters has been derived. Moreover, it has been shown how combining the CSFDE algorithm with a serial cancellation
procedure leads to the development of a new algorithm for the detection and the estimation of multiple 2D tones. Then, the
last algorithm, called CSFDEC, has been applied to the detection of multiple targets, and to the estimation of their range and
velocity in an OFDM-based radar system. In addition, it has been compared, in terms of accuracy and computational complexity,
with other estimation methods available in the technical literature. Our simulation results evidence that the CSFDEC algorithm
is very accurate and outperforms all the other related estimators in the presence of multiple closely spaced targets. Future work
concerns the application of the CSFDEC algorithm to other JCAS systems.

APPENDIX

A. Spectral Cancellation of a Two-Dimensional Complex Tone

In this paragraph, the expression of the vector C̄0,0(Â
(i−1)
k , F̂

(i−1)
Dk

, F̂
(i−1)
rk ) appearing in the RHS of (92) is provided. This

vector is evaluated to cancel the contribution of the sequence

sm,n

(
F̄D, F̄r, Ā

)
= Ā w̄m

D w̄n
r (166)

to the vector Ȳ0,0 (46) (the adopted cancellation procedure is expressed by (91) and (92)); here,

w̄D ≜ exp
(
j2πF̄D

)
(167)

17Note that ∆ϵr (∆ϵv) correspond to half the size of the range (Doppler) bin characterizing the processing of the considered algorithms.
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and
w̄r ≜ exp(−j2πF̄r). (168)

Since Ȳ0,0 is the order (M0, N0) DSFT of the zero-padded version Ĥ
(ZP )
0,0 (47) of the matrix Ĥ0,0 (48), it is easy to show

that
C̄0,0

(
Ā, F̄D, F̄r

)
= ĀW̄0, (169)

where W̄0 denotes the order (M0, N0) DSFT of the M0 ×N0 matrix

w̄0 ≜

[
w̄ 0M,N0−N

0M0−M,N 0M0−M,N0−N

]
, (170)

w̄ ≜ [wm,n] is an M ×N matrix such that
wm,n ≜ w̄m−n, (171)

with m = 0, 1, ...,M − 1 and n = 0, 1, ..., N − 1, and w̄ ≜ w̄D w̄r. Then, the (m,n)-th element of the matrix W̄0 is given by

W̄0[m,n] =
1

M0

M−1∑
l=0

w̄l
D exp

(
−j2π

m

M0
l

)

· 1

N0

N−1∑
p=0

w̄p
r exp

(
j2π

n

N0
p

)

=
1

M0

M−1∑
l=0

(q̂D[m])
l 1

N0

N−1∑
p=0

(q̂r[n])
p
, (172)

where q̂D[m] ≜ exp(j2π(F̂D −m/M0)) and q̂r[m] ≜ exp(−j2π(F̂r − n/N0)). Finally, it is useful to note that the identity
N−1∑
n=0

qn =
qN − 1

q − 1
, (173)

holding for any q ∈ C, can be exploited for an efficient computation of the two sums appearing in the RHS of (172).

B. Cancellation of Two-Dimensional Spectral Leakage

In this paragraph, the expression of the quantity Ȳk1,k2
(F̂

(i)
D,ci

, F̂
(i)
r,ci ; Â

(i−1)
k , F̂

(i−1)
Dk

, F̂
(i−1)
rk ) appearing in the RHS of (97)

and (101) is derived. This quantity is computed by the CSFDEC algorithm to cancel the contribution of the sequence
{sm,n(F̄Dk

, F̄rk , Āk)} (see (166)) to Ȳ
(i)
k1,k2

(ρ
(i)
D , ρ

(i)
r ) (98) for k1, k2 = 0, 1, 2, 3. It is not difficult to show that

Ȳk1,k2

(
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D,ci

, F̂ (i)
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, (174)

where

W̄
(k)
k1k2
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, (175)

q̄D

(
F̂

(i)
D,ci

, F̂
(i−1)
Dk

)
= exp

(
j2π

(
F̂

(i−1)
Dk

− F̂
(i)
D,ci

))
, (176)

q̄r

(
F̂ (i)
r,ci , F̂

(i−1)
rk

)
= exp

(
−j2π

(
F̂ (i−1)
rk

− F̂ (i)
r,ci

))
, (177)

and F̂
(i−1)
Dk

and F̂
(i−1)
rk are the fine estimates of the normalised Doppler frequency and normalised delay, respectively, computed

at the (i− 1)-th iteration for the k-th target. Note that the identities (173),

(q − 1)
2
N−1∑
n=0

n qn = (N − 1) qN+1 −N qN + q, (178)
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(q − 1)
3
N−1∑
n=0

n2 qn = (N − 1)
2
qN+2 +N2 qN − q2

−q −
(
2N2 − 2N − 1

)
qN+1 (179)

and

(q − 1)
4
N−1∑
n=0

n3 qn = q + 4q2 + q3 −N3qN

+
(
3N3 − 3N2 − 3N − 1

)
qN+1

+
(
−3N3 + 6N2 − 4N

)
qN+2

+(N − 1)
3
qN+3 (180)

holding for any q ∈ C, can be exploited for an efficient computation of all the factors appearing in the RHS of (97) and (98)
(with k1, k2 = 0, 1, 2, 3).

C. Computational Complexity of the CSFDE Algorithm

In this Appendix, the derivation of the approximation (107) of CCSFDE is sketched. The evaluation of CCSFDE requires
that of the computational costs C0(CSFDE) and Ci(CSFDE) appearing in the RHS of (104). The cost C0(CSFDE) can be
easily estimated on the basis of (105) since: 1) the cost Cl̂,p̂ is equal to 5M0N0 + 2 (see (81)); 2) the cost18 CȲk1,k2

is equal
to 16M0 N0 log2(M0 N0) (13M0 N0 log2(M0 N0)) if 16 (13) DSFT of order (M0, N0) are evaluated, i.e. if (69) ((74)) is
employed in the evaluation of Ω̂ and ∆̂; 3) both CΩ̂ and C∆̂ are negligible, being equal to 134 (102) flops if (69) ((74)) is
employed in the evaluation of Ω̂ and ∆̂. Substituting these results in the RHS of (105) and keeping the dominant terms only
leads to the conclusion that

C0(CSFDE) ≈ 16M0 N0 log2(M0 N0). (181)

Similarly, the cost Ci(CSFDE) can be easily estimated on the basis of (106), since: 1) the cost CȲ is in the order of 25MN
(IDIr) if the evaluation of Ȳ (F̂D, F̂r) is based on (41) (on the interpolation of multiple elements of the matrix Ȳs (54));
2) the cost CȲk1,k2

is equal to 15 CȲ (12 CȲ ) if (69) ((74)) is adopted in the evaluation of Ω̂ and ∆̂; 3) the other costs are
negligible. The last results lead easily to the conclusion that

Ci(CSFDE) ≈ 16 IDIr, (182)

if (69) is employed and 2D interpolation is employed in the evaluation of Ȳk1,k2
(ρ̂

(i−1)
D , ρ̂

(i−1)
r ) (98). Finally, substituting the

RHSs of (181) and (182) in that of (104) yields (107).

D. Cramer-Rao Lower Bounds

Cramer-Rao lower bounds (CRLBs) for OFDM-based radar systems have been already derived in [27, Sec V-A, eq. (46)-
(47)] and [26, Sec IV-B, eq. (18)-(19)], but refer to Doppler and range only. In our work, CRLBs have been derived for the ML
estimation problem (32) investigated in Paragraph III-A. The procedure we followed is conceptually the same as that adopted
in [47]; for this reason, the inverse of the Fisher information matrix

E


∂L

(
Ĥ0,0|θ

)
∂θ

∂L
(
Ĥ0,0|θ

)
∂θ

H
, (183)

has been evaluated; here, θ ≜ [FD, Fr , a, ϕ]
T is the vector collecting the parameters to be estimated (a = |A| and ϕ denote

the modulus and the phase, respectively, of the complex amplitude A of the 2D-tone; see (29)), Ĥ0,0 is the M × N matrix
defined by (48) (its element Ĥm,n is expressed by (31)), L(·|·) is the log-likelihood function

L
(
Ĥ0,0

∣∣∣θ̃) = KL −MN lnσ2
W − 1

σ2
W

·
M−1∑
m=0

N−1∑
n=0

εm,n

(
F̃D, F̃r, ã exp

(
jϕ̃

))
(184)

θ̃ ≜ [F̃D, F̃r , ã, ϕ̃]
T , KL is a constant, σ2

W is the variance of the noise samples {W̄m(n)} (see (28)) and εm,n(·, ·, ·) is defined
by (34) (note that the last quantity depends on the measurements {Ĥm,n}).

18Note that this cost includes the computation of the spectrum Ȳ0,0 (see (46)).
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The CRLBs derived for the estimation of FD, Fr, a and ϕ are

CRLBFD
(M,N,SNR) =

3

2π2SNRM (M 2 − 1)N
, (185)

CRLBFr
(M,N,SNR) =

3

2π2SNRM N (N 2 − 1)
, (186)

CRLBa

(
M,N, σ2

W

)
=

σ2
W

2M N
(187)

and
CRLBϕ(M,N,SNR) =

7M N +M +N − 5

2 SNRM (M + 1)N (N + 1)
, (188)

respectively, where SNR ≜ a2/σ2
W is the signal-to-noise ratio referring to the signal model (31).

Finally, it is worth pointing out that: a) the bounds (185), (186) and (188) are inversely proportional to the SNR, whereas
the bound (187) is directly proportional to the noise variance σ2

W , but independent of the amplitude a; b) the bounds (185) and
(186) are identical to those provided in [27, Sec V-A] and [26, Sec IV-B], even if the expressions illustrated in first reference
refer to ωd1 = 2πFD and ωτ1 = 2πFr, whereas those provided in the second one to target speed and range (see eqs. (46)-(47)
of [27, Sec V-A] and eqs. (18)-(19) of [26, Sec IV-B], respectively).
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