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Runtime Evolution of Bitcoin’s Consensus Rules
Jakob S. Notland, Mariusz Nowostawski, and Jingyue Li

Abstract—Runtime evolution of a system concerns the ability to make changes during runtime without disrupting the service.
Blockchain systems need to provide continuous service and integrity. Similar challenges have been observed in centrally controlled
distributed systems that handle runtime evolution mainly by supporting compatible changes or running different versions concurrently.
However, these solutions are not applicable in the case of blockchains, and new solutions are required. This study investigates over a
decade of Bitcoin consensus evolution through their development channels using Strauss’grounded theory approach and root cause
analysis. The results show nine deployment features which form nine deployment techniques and ten lessons learned from Bitcoin.

Index Terms—Bitcoin, blockchain, consensus, grounded theory, root cause analysis, runtime evolution
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1 INTRODUCTION

DEPLOYMENT of consensus changes is one of the most
controversial [1], [2] and error-prone [3], [4], [5] activi-

ties in a blockchain. These changes redefine the fundamental
behaviour in a blockchain, which can affect its security
and the value of its currency. Trivial change could cause
disruption, which could result in suspended services [6],
lost mining revenue [4] and theft [7], [8].

This study considers the longest-living blockchain
project: Bitcoin. The motivation of this work is to col-
lect knowledge on evolutionary techniques in this specific
blockchain and to gather unknown known security require-
ments [9]. The proposed techniques and security require-
ments may be well known to a seasoned Bitcoin developer.
However, any other blockchain engineer may have to shuf-
fle through thousands of unstructured data samples before
acquiring the same knowledge. This research was conducted
to understand the implications of consensus rule changes
and techniques for a safe transition. The research questions
are divided in two, considering the current practice for
consensus changes in blockchain and the lessons learned.

• RQ1: What techniques have been applied to deploy
consensus changes?

• RQ2: What are the lessons learned from deploying
consensus changes?

This paper is the first to consider blockchain and con-
sensus change at runtime. The study has been conducted as
a qualitative analysis, covering 34 consensus rule changes
over more than a decade of Bitcoin development (Appendix
A, figure 7), and entails 1700 samples (Appendix B, figure 8
and 9). Samples correspond to email threads, forum threads,
Github issues/pulls, IRC days, proposals, and others. The
results overview techniques and best practices for consensus
rule changes. The further evaluation shows how different
factors impact secure deployment.
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The remaining structure is as follows: Section 2 shows
the background on blockchain and describes the nature
of software and system evolution. Section 3 describes the
application of grounded theory (GT) and root cause anal-
ysis. Section 4 presents the results, describing deployment
techniques for rule changes in Bitcoin and the root causes for
failure. Section 5 discusses the results before the conclusion
in Section 6. Future work is elaborated in Section 7.

2 BACKGROUND

2.1 The Bitcoin consensus protocol
Bitcoin is ”a peer-to-peer electronic cash system” [10] con-
sisting of a chain of blocks containing transaction history,
as illustrated by figure 1. Any new block must abide by
the consensus rules to be regarded as valid by the nodes in
the network. Miners attempt different values for the nonce
variable in a brute-force manner to produce a SHA-256 hash
based on the entire block. The miners find a valid nonce
for the block header when the resulting hash meets the
required target difficulty. The difficulty indicates that the
resulting hash must have a certain number of leading zeros.
This mechanism is known as Proof-of-Work (PoW), first
proposed to prevent email spam [11] and later applied for
cryptocurrencies [12]. In the case of Bitcoin, PoW prevents
Sybil attacks [13] and provides an immutability feature. The
strength of these principles is preserved by the difficulty
adjustment algorithm [10], ensuring that the network will
produce blocks with an average rate of around ten minutes.
Miners must comply with further consensus rules. Gen-
erally, blocks and transactions must be in a valid format.
Miners are incentivised to follow these rules by collecting
fees and the block reward generated in a special coinbase
transaction with no inputs from previous transactions.

Block collisions occur when two new valid blocks are
produced at the same height at approximately the same
time. Collisions are resolved by the longest (valid) chain rule as
specified in Nakamoto’s whitepaper: ”The majority decision
is represented by the longest chain, which has the greatest
proof-of-work effort invested in it” [10]. The notion of a
valid chain is important because validness is subjective from
the implementation’s point of view. Any collision should
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Fig. 1. Bitcoin blocks in a blockchain showing the content of the header
and the body.

Fig. 2. Choosing the longest chain in the event of a collision.

quickly resolve when another block is appended on top
of one of the colliding blocks. This behaviour implies that
blocks have a slight chance of being orphaned (discarded)
as illustrated in figure 2. The rule of thumb to prevent
financial loss from orphaned blocks is to wait until the block
containing the relevant transaction has at least six blocks
built on top [14]. Collisions happen naturally, by an attack
[15], or by inconsistent consensus validation [4].

2.2 Bitcoin consensus evolution

An inherent ideology within Bitcoin and especially Bitcoin
Core (BTC) indicates what kind of changes are viable or
controversial. One quote from the creator(s) can be seen as
a cornerstone of this ideology.
"The nature of Bitcoin is such that once version
0.1 was released, the core design was set in stone
for the rest of its lifetime."

Listing 1. Satoshi 2010-06-17 Forum, ID: 195
The statement from Nakamoto explains that the sys-

tem itself, as well as the original specification [10] defines
Bitcoin’s fundamental behaviour. Moreover, it highlights
the importance of non-disruptive changes, no matter how
insignificant they seem. This paper distinguishes between
Bitcoin in general, BTC and Bitcoin Cash (BCH), who
have different approaches to consensus changes. Consensus
rule changes in BTC should preferably allow backward-
compatibility such that legacy nodes can accept any new be-
haviour, keeping the network consistent (so-called soft fork).
Backwards-incompatible changes (so-called hard forks) are
prefered in BCH and sometimes required if the fundamental
implementation does not work as intended. Such a change
could be essential to prevent exploits or allow for the
adaption and survival of the system. The Bitcoin community
is sceptical of consensus changes and making them a habit
because bugged or ill-intended code may be deployed and
disrupt the integrity and stability of the system.

This paper will refer to conflicting blocks as chain splits.
Chain splits can be temporary; less than six blocks will
be orphaned, persistent; six or more blocks are orphaned,
or permanent; both chains are expanded independently for
all foreseeable future. An accidental chain split caused by
inconsistent validation among the nodes will be referred
to as a consensus failure. The longest chain rule is the most
fundamental factor in deciding whether a rule change is
successfully adopted in Bitcoin. The longest chain rule im-
plies that the majority of miners can apply a network-wide

backwards-compatible rule change. Relying on the majority
is the prefered technique to deploy changes in BTC.

In Bitcoin, one may rely on the majority (>50%) of block-
producing nodes (n) to perform a backwards-compatible
consensus change. The reason for this to work is because the
Nakamoto consensus model has a Byzantine Fault Tolerance
(BFT) [16] threshold of 50% (f ). Other consensus models
might have different fault tolerance, such as 33% or 20% [17].
This paper uses the term super-majority (SM) to generalize
the minimal threshold requirement for different deployment
techniques and to describe the required threshold where
faulty nodes are equal to or less than the tolerated threshold.
A super-majority of abiding nodes (h) is denoted as h>(n-f).

Consensus changes in BTC’s history have mainly been
deployed with techniques such as IsSuperMajority (ISM)
[18], and the more established miner-activated soft fork
(MASF) [19]. Other well-known techniques are the user-
activated soft fork (UASF) [20] or BCH’s prefered user-
activated hard fork (UAHF) [21].

2.3 Software evolution
Software evolution is a field entailing processes and models
for changing software. Within this domain, there is the
subfield of runtime evolution [22]. Relevant to blockchain
and this study is mainly the challenge of avoiding service
outages while changing the running system. In the case
of blockchain, this also relies on consistency in the net-
work. Combined with the strict requirements of partition
tolerance, there is a challenge of minimizing the impact
of a change on the consistency, availability, and partition
tolerance of the system (CAP) [23].

2.4 Evolution and maintenance in distributed systems
Before the decentralised networks, there were, and still are,
distributed networks dominating sectors that blockchains
have been envisaged to handle, such as finance [24] [25], lo-
gistics [26] [27], and healthcare [28] [29]. Researchers in this
area seem to have ended up with satisfactory frameworks
for maintenance where updates are deployed with central
control and rely on either being compatible [30] or running
different versions in parallel [31]. In these cases, changes
have been deployed with techniques such as fast reboot,
rolling upgrade, and big flip [32]. However, we argue that
these methods are not directly applicable when deploy-
ing consensus rule changes on a blockchain. First, known
techniques are hard to coordinate without central admin-
istration. Second, a consensus rule change in a blockchain
conflicts with legacy rules as it changes the set of valid
actions. Some techniques may even drastically affect the
stability of a blockchain, such as the total hash power in
the network. Thirdly, running different versions in parallel
is problematic because it may lead to consensus failure.

3 RESEARCH DESIGN

3.1 Research motivation and research questions
Blockchains must evolve to meet current and future require-
ments. Although there has been researched on different
kinds of consensus code changes in blockchain [33], there
is still a lack of understanding of how these changes are
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deployed. That is crucial because failed deployments can
severely affect a blockchain network. The consequences can
result in financial loss for any invested participant or loss of
faith in the system. Therefore this study investigated how
consensus changes can be deployed (RQ1) and what lessons
can be learned from past failures (RQ2).

3.2 Research method
The sheer amount of available samples on the world-wide-
web would allow for quantitative and qualitative analysis.
The authors chose to use a qualitative and inductive ap-
proach to achieve an insightful and holistic view of consen-
sus changes in blockchains. Strauss’ approach of grounded
theory (GT) has been chosen as it is more applicable to
studies with predefined research questions [34]. The GT
approach is an iterative and recursive approach where
the researchers must go back and forth until they achieve
theoretical saturation. That is, when new samples stop con-
tributing to the developing theories. The observations done
throughout the study are covert [35], where a researcher can
get the most authentic experience of how the actors conduct
a process. Although covert observations can be ethically
questionable, it is crucial to consider that the public archives
of Bitcoin were created for this purpose and to provide
transparency and accountability.

3.3 Research implementation
With the scope in mind, the study started with purpo-
sive sampling [35] of data, specifically from Bitcoin Core’s
development channels. Samples were discovered in these
archives by filtering and purposively selecting (cherry-
picking) samples relevant to consensus rule changes. The
selected samples are efficiently sorted through the use of
flexible coding [36]. Further, snowball sampling and trian-
gulation [37] to avoid limitations from the initial samples.

Root cause analysis has been utilized to address lessons
learned (RQ2) by drawing an Ishikawa diagram [38]. The
approach is similar to ”Discovering unknown known secu-
rity requirements” [9] as it also uses concepts from GT and
root cause analysis with incident fault trees.

A graph of the research method implemented is outlined
in figure 3. The oval shapes indicate processes, the lines
show the process flow, the rectangular shapes indicate data
objects, and the cylinders indicate archives. Different colours
highlight whether the concepts relate to data sampling, GT
analysis, or root cause analysis. Appendix B further describe
the method processes.

4 RESULTS

The analysis of evolution in Bitcoin reveals the system, ac-
tors, and their processes to develop in a symbiosis of chaos
tamed by the underlying infrastructure. It was challenging
to identify the causalities in the decentralised environment.
However, as the analysis commenced with codes giving
meaning to the data, data triangulation revealed the rela-
tionships within. Eventually, this formed a chain of events,
shown in the timeline in Appendix A, figure 7.

Initially, the categories discovered and applied through
grounded theory are introduced in in figure 4 with details

on codes in Appendix B, figure 10. Figure 4 indicates the
process of defining, implementing, and deploying consen-
sus rules. In Bitcoin’s case, these changes are usually mo-
tivated by some issues which prevent the implementation
from providing the full service envisaged in Nakamoto’s
white paper or code. The discovery of an issue leads to
development before moving on to deployment. On the outskirts
of the process lays the possible influence of human error
and social/political (governance). Human errors may disturb
development or deployment, where mistakes and errors
typically occur during development and violations occur in
deployment.

The subsequent sections describe how the nine features
for deployment were derived from the codes applied during
analysis. These features are used in nine different combi-
nations to perform deployment using different deployment
techniques that answer RQ1. These deployments may be
influenced in negative ways by governance and errors,
presented in ten different lessons as described in the section
on lessons learned to answer RQ2.

4.1 Results of RQ1 (deployment techniques)

4.1.1 Fork types

Common terminology [39] describing different consensus
rule changes in a blockchain distinguishes between hard
and soft forks. However, when considering the low-level
details of a rule change, these concepts become too general
and fail to provide an accurate description. For instance, a
hard fork has been established as a term for rule changes
that will result in a permanent chain split. However, this
can also happen in a soft fork if a minority deploys the
change. Besides soft and hard forks, Zamyatin et al. [33] also
describe bilateral and velvet forks. The last category of velvet
forks is irrelevant in this case because it does not require
network-wide agreement, making deployment a non-event.
Their terminology was adopted to accurately distinguish
fork types and focus on the following specifications:

• Expanding - changes that make previously illegal
actions legal (commonly referred as a hard fork).

• Reducing - changes that restricts the set of valid
actions (commonly referred as a soft fork).

• Bilateral - changes which deem all previous legal
actions as illegal as well as expanding the rule set
(commonly referred as a hard fork).

4.1.2 Deployment codes and features

This section introduces each analytical code in italic before
presenting the features in bold. The features for deployment
are Deployment strategy, Fork type, Chain split risk, Par-

allel, Standard, Signal, Inclusive, Threshold and Trigger,
the code-feature relation can be seen in figure 5.

4.1.2.1 Code: Compatibility: The deployment strat-

egy feature defines whether nodes 1) depend on each
other to coordinate the timing of an upgrade, i.e., miner-
activated strategy. 2) The upgrade is forced regardless of
miners’ promised support, i.e., a user-activated strategy. Or
3) Deployment must be forced due to an imminent issue,
i.e., emergency-activated strategy.
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Fig. 3. Method process model

Fig. 4. Categories from the GT analysis and their relations.

Fig. 5. Feature-code realations.

Whenever deploying rule changes to a blockchain, one
must consider the compatibility between new and old ver-
sions by understanding the fork type of the implementa-
tion. The relevant fork types are expanding, reducing, and
bilateral. The main difference is that a reducing fork will
be backwards-compatible, allowing it to be enforced by the
network with a super-majority of supporting hash power.
Therefore, a reducing fork can be desirable as miners can
keep the network consistent without relying on the whole
network to perform the deployment. As listing 2 empha-
sizes, BTC developers usually look for ways to implement
changes as reducing forks since they have desirable compat-
ibility attributes and are easier to digest for the network and
the community.
"I belief we shold flesh out luke-jr’s idea for
cleanly deploying segregated witness in bitcoin as
a soft fork and see what that looks like."

Listing 2. Gmaxwell 2015-11-04 IRC: #bitcoin-dev

We propose a total of nine possible deployment techiques
by combining the three fork types and three deployment
strategies, as further described in section 4.1.3. These de-
ployment techniques have an inherent Chain split risk

feature, which indicates how likely a prolonged chain split
is. Applying further deployment features can sustain chain
splits’ potential risk, length, and impact.

Another compatibility issue is whether it is possible to
perform several deployments in parallel. Deployments can
be conducted in parallel if the rule changes are isolated and
the deployment attributes are independent. This feature is
not by default and must be specified in the software im-
plementation. Listing 3 shows Bitcoin adopting this feature
after realizing that non-parallelism could become a problem.
"BIP 34 introduced a mechanism for doing
soft-forking (...). As it relies on comparing
version numbers as integers however, it only
supports one single change being rolled out at
once, requiring coordination between proposals, and
does not allow for permanent rejection: as long as
one soft fork is not fully rolled out, no future
one can be scheduled."

Listing 3. Pieter Wuille et al. 2015-10-04 Github, BIP9
4.1.2.2 Code: Pre-fork measurement: Pre-fork mea-

surements can be used to harden the deployment pro-
cess, mainly by preparing the blockchain to activate future
reducing changes. The hardening can be performed by
utilizing undefined elements such as opcodes or version
numbers in blocks and transactions. For instance, a handful
of undefined opcodes were deployed early into Bitcoin after
initialization as an expanding fork (BTC 0.3.6) and allowed
new opcode definitions to specify the undefined opcodes as
reduction forks later. These were used for reducing changes
such as BIP16 and BIP65. An example of utilizing an unde-
fined opcode can be seen in listing 4.
"(...) OP_EVAL == OP_NOP1 can be safely rolled out
as soon as 50% of the miners upgraded"

Listing 4. Sipa 2011-10-02 IRC: #bitcoin-dev
In addition to the consensus rules, nodes can utilize relay

policies to specify what transactions they will include in
their blocks and whether they are relayed to other nodes.
This can be seen as softly enforced rules that can be applied
at any rate before activating new consensus rules, allowing
individual miners to avoid unwanted or experimental be-
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haviour. Blocks and transactions accepted under this policy
are called standard. A deployment conducted by gradually
changing the policies before or after the rule deployment
will be recognized with the standard feature.

More aggressive enforcement of standard policies can be
conducted by feather-forking, also known as block discour-
agement. Miners can use this approach to refuse to mine on
top of blocks they do not appreciate. This gives an incentive
to avoid these kinds of blocks as they have a higher chance
of being orphaned together with the block reward.
"A feather-fork is when a miner refuses to mine on
any chain that includes a transaction it doesn’t
like in the most recent several blocks."

Listing 5. Socrates1024 2013-10-17 Forum, ID: 312668
4.1.2.3 Code: Signaling: A signal is a feature used to

signal the intention to upgrade and enforce new consensus
rules in Bitcoin that is usually represented by the version
bits in the block header or a string in the coinbase trans-
action message. Other implementations of on-chain signals
observed are multi-signature commitments to the chain as
implemented in Dash [40]. The signals make deployment
more predictable and allow the measurement of total hash
power support on the network. Listing 6 describes the first
approach to signalling to deploy pay-to-script-hash.
"when 50% of the last N coinbases contain "I
support FOOFEATURE", it’s enabled"

Listing 6. Luke-jr 2011-10-02 IRC: #bitcoin-dev
It is preferred to depend on miners to signal readiness

on-chain since that provides confidence that a significant
portion of miners will behave according to the new rules.
However, a signal can also come in other forms, such as a
verbal agreement. This happened once in Bitcoin’s history
during the deployment of BIP 30 (listing 7). The downside
is that the actors who are unaware of this agreement might
accept previously valid blocks and transactions without
knowing they were breaking the new rules.
"<gavinandresen> luke-jr: you’re a mining pool
operator, would you be willing to coordinate with
the other big pools to get this fixed quickly[?]"

Listing 7. gavinandresen 2012-02-17 IRC: #bitcoin-dev
The signals are most helpful on-chain, where they can

be interpreted by validating nodes to coordinate an up-
grade. They can also be used to exclude blocks mined by
non-signalling nodes to persuade them to upgrade. This
behaviour is defined by the inclusive feature. An inclusive
fork will continue to append blocks from miners that do not
intend to validate by the new rules. In contrast, an exclusive
fork will stop accepting blocks from miners who do not
show intention to validate by new rules. This restriction can
be lifted after a certain time or if the deployment fails.

4.1.2.4 Code: Alert: Nodes intending to upgrade
can issue alerts on the peer-to-peer network to warn other
nodes of coming or ongoing upgrades. Increased awareness
will increase the chance of consensus when deploying an
upgrade. Alerts are not considered a deployment feature
since they happen off-chain and are not part of the de-
ployment mechanism. Listing 8 shows how alerts provide
maintenance information to nodes in the network.
"Alerts will be sent to pre-0.8 releases over the
next two months, telling people to either upgrade
or create a DB_CONFIG file so they can handle large
blocks. After May 15’th, blocks up to 1MB large

will be allowed again."

Listing 8. gavinandresen 2013-03-16 Github, Pull: 2373
4.1.2.5 Code: Activation: Activation and enforce-

ment of consensus rule changes can happen in stages, which
can be controlled by the threshold feature. One deployment
technique may implement several thresholds. For instance,
the first threshold enforces rules for all signalling nodes. The
second threshold enforces the rules for all nodes. Having
several thresholds is a tradeoff. On the one hand, the first
threshold incentivises miners to stay true to their intention
of validating by the new rules. On the other hand, every
threshold is a potential trigger for consensus failure. This
is possibly the reason that Bitcoin ceased using two-stage
activation using ISM (IsSuperMajority) [18]. The activation
thresholds are most relevant for miner-activated strategies
because they rely on coordination with other nodes. The
thresholds should be at least the super-majority (>50% in
Bitcoin), ensuring enforcement on the longest chain.

When the threshold is reached, the trigger feature will
enforce activation. The actiavtion is triggered dynamically,
staticly or instantly. It is desirable to evaluate using a
rolling window (dynamic height) to decide the timing for
miner-activated strategies. A rolling window trigger will
determine the amount of support based on a number of
recent blocks. The most primitive trigger can be based on
a static flag day (FD) or block height (BH), as used for
user-activated strategies and demonstrated by Nakamoto
(listing 9). Instant triggers are utilized in the urgency of an
emergency and are adopted as soon as they are rolled out to
prevent or resolve exploits or consensus fauilures. The static
and trigger provides no guarantee that a super-majority of
miners will prevent a chain split when the rules activate.
"if (blocknumber > 115000)

maxblocksize = largerlimit
It can start being in versions way ahead, so by the
time it reaches that block number and goes into
effect, the older versions that don’t have it are
already obsolete."

Listing 9. Satoshi 2010-10-03 Forum, ID: 1347
4.1.2.6 Code: Post-fork measurement: Post-fork mea-

surements expand upon emergency-activated strategies and
relate to measures that can be taken to reduce the impact of a
consensus failure. This stage aims to discard the conflicting
chain and coordinate nodes to reorganize the chain and
agree on a common history. The most naive approach to
solving a chain split is to ask nodes to either downgrade
or upgrade their nodes in the same manner, starting from
the same block height. An issue with applying the naive
approach with no further due is that it might result in a
persistent chain split before the valid chain becomes the
longest. Miners that fail to act will prolong the issue by
expanding the conflicting chain (listing 10).

"If you’re unsure, please stop processing
transactions."

Listing 10. 2013-03-12 Pieter Wuille Email: bitcoin-dev

4.1.3 Deployment techniques

Deployment techniques are meant to ensure consistency
and predictability for the parties involved in the deploy-
ment. The deployment techniques are summarized into nine
categories, shown in table 1. The techniques are defined
as a combination of two deployment features: 1) The fork
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type (expanding, reducing, or bilateral) and 2) the deployment
strategy (miner, user, or emergency). For each deployment
technique, the optimal combination is presented for the
remaining features to reduce the risk and impact of a chain
split. In blockchains with immediate finality [17], there is
unlikely to be chain splits unless there is a rollback. In those
cases, the features will reduce the risk and impact of nodes
failing to participate in consensus.

The only feature with consistent behaviour across the
deploy techniques is parallel because it can always be useful
to allow several deployments in flight simultaneously. The
features in table 1 are highlighted as essential, useful, or in-
significant (-). An overview of Bitcoin’s evolution over time
and the deployment features utilized are shown in table
2. The following paragraphs present the nine deployment
techniques and three special cases: Temporary reduction
fork, hybrid deployment and non-deterministic fork.

4.1.3.1 Miner-activated reduction fork (MARF): The
MARF deployment technique is unique in that it is the
only technique with a low chain split risk when deployed
using all the available deployment features. Like all miner-
activated techniques, it should rely on coordination between
miners in the network. The coordination is achieved by
relying on signals from other miners to reach at least super-
majority support to ensure that the network will reject new
invalid blocks. However, a higher threshold is desirable to
reduce the frequency and length of potential chain splits. A
dynamic trigger ensures that the threshold is reached before
triggering the activation.

Applying exclusiveness to MARF means that legacy
blocks will be guaranteed to be orphaned at activation, in-
creasing the risk of orphans and short chain splits. However,
it also persuades more nodes to upgrade since they know
they will be discarded, increasing the chance of reaching
a high threshold. Further, one can utilize standardness to
enable soft enforcement of the new rules long before acti-
vation. This greatly reduces the chance of upcoming invalid
transactions being mined.

4.1.3.2 Miner-activated expansion fork (MAEF):
Expansion forks will cause legacy nodes to deviate from
patched nodes when the behaviour of new rules appears in
blocks. Thus the chain split risk is high, and the network will
only stay consistent with 100% adoption. Alternatively, a
super-majority threshold can reduce the impact of a split by
keeping patched nodes together on the new chain from the
time of activation. With less than super-majority adoption,
the patched nodes will continue to follow the legacy chain
as new blocks violating the legacy rules will be discarded
due to the longest chain rule. This can cause frequent splits
of the chain depending on the adoption percentage, as
shown in figure 6. The issue of low adoption can also be
avoided by exclusiveness to enforce the discarding of all
legacy blocks, causing patched nodes to follow their own
path of the valid longest chain. The signal can be utilized
to increase predictability, and standardness allows for an
experimental phase after deployment where miners only
utilize the expanded rules if they choose to take the risk.
An example of a consensus rule in an experimental phase
is the multi-signature opcode which was non-standard from
BTC launch until BTC 0.6.0. Probably there was some doubt
whether the multi-signatures were safe to use, or worked as

intended, justified by the bug present in the opcode [41].
4.1.3.3 Miner-activated bilateral fork (MABF): Bilat-

eral forks carry the property that patched nodes will never
create valid blocks according to legacy nodes and vice versa.
Therefore, it is only possible to avoid a chain split with
100% adoption. Choosing any activation threshold less than
100% carries less utility in limiting the impact of a chain
split, and there can only be one split. However, it can be
helpful to demand a certain amount of support to ensure
that the patched nodes can provide sufficient security and
reliable service for the patched network. Signals provide
predictability, and the trigger should be dynamic to ensure
that the timing corresponds to the desired threshold. The ex-
clusion feature does not matter as it is an inherent property
of bilateral forks. Additionally, standardness can be applied
for soft enforcement to restrict certain functionality in an
experimental phase after activation.

4.1.3.4 User-activated reduction fork (UARF):
When moving over to the domain of user-activated forks,
the deployment has a different objective. In contrast to
keeping the network consistent, it is more important that
the fork activate regardless. Therefore, such a fork does not
require any threshold and should activate by a static trigger.
Signals are useful to increase predictability. Furthermore,
exclusion is essential since the updated consensus rules
cannot be expected to reach a super-majority. Exclusion
may cause a single chain split, while not excluding legacy
nodes will cause chain splits every time the new rules are
violated. The standard feature can be essential for UARF to
discriminate against upcoming rule-breaking transactions.
Feather-forking can persuade other nodes to upgrade by
actively attempting to orphan legacy blocks.

4.1.3.5 User-activated expansion fork (UAEF):
UAEF requires all nodes to upgrade to avoid a chain split
and is mainly applied when expecting full network adop-
tion with high confidence. This property was observed as
the preferable deployment technique for consensus changes
in both BCH and Ethereum. In these cases, the forks
have usually held high or unanimous support from the
community. Changes are implemented in different node
distributions and are expected to be adopted by the time
of activation. Signals can provide some utility by making
the upgrade more predictable and allowing for exclusion.
Exclusion must be applied if there is any doubt of super-
majority adoption. Otherwise, the upgraded nodes might
follow the legacy chain even after adoption, as it might be
the longest valid chain, as illustrated in figure 6. However,
if there is doubt, implementing a bilateral fork will be more
beneficial in avoiding influence from legacy nodes, just like
when BCH forked off BTC by UABF [21]. Standardness can
allow for an experimental phase after deployment.

4.1.3.6 User-activated bilateral fork (UABF): The
most outstanding example of a UABF is the activation of
BCH. The fork became bilateral by demanding the first
block produced after activation be larger than 1 MB. Hence,
legacy nodes would never accept the patched chain, and
patched nodes would never accept the legacy chain. The
user-activated strategy does not evaluate any threshold for
support to coordinate a certain network portion, and the
trigger is static. Signalling is a valuable feature as it increases
predictability. Exclusion is embedded in bilateral forks, and
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TABLE 1
Deployment techniques. The notations indicate whether the features are required to reduce the chain split risk and the impact of a chain split:
Bold: Essential, Itallic: Useful, -: Insignificant. The abbrevations are: Miner-activated (MA), user-activated (UA), emergency-activated (EA),

reduction fork (RF), expansion-fork (EF), bilateral fork (BF), and super-majority (SM)

Deployment Fork Chain Parallel Standard Signal Inclusive Threshold Trigger Example consenus

strategy type split risk rule change

MA RF Low Yes Yes Yes Exclusive SM Dynamic Reduce max blocksize
MA EF High Yes Yes Yes Exclusive 100% Dynamic Increase max blocksize
MA BF High Yes Yes Yes - 100% Dynamic Increase max blocksize &

set min blocksize >legacy blocksize
UA RF Medium Yes Yes Yes Exclusive None Static Reduce max blocksize
UA EF High Yes Yes Yes Exclusive None Static Increase max blocksize
UA BF High Yes Yes Yes - None Static Increase max blocksize &

set min blocksize >legacy blocksize
EA RF Medium Yes - - Inclusive None Instant Reduce max blocksize
EA EF High Yes - - Exclusive None Instant Increase max blocksize
EA BF High Yes - - - None Instant Increase max blocksize &

set min blocksize >legacy blocksize

Fig. 6. Expansion forks can cause frequent chain splits before gaining super-majority adoption.

standardness allows for an experimental phase.
4.1.3.7 Emergency-activated reduction fork (EARF):

Emergency-activated deployment strategies are required
when the implementation does not work as specified, a
consensus failure has already occurred, or might occur. One
of the earliest cases, when the implementation did not work
as intended, was seen in BTC 0.3.10 with the overflow bug
where a seemingly valid transaction could be created to
generate additional bitcoins. An example of a consensus
failure was when BTC 0.8.0 deployed a new database, and it
caused a chain split. The third case, a potential exploit, can
be illustrated by the inflation bug in version 0.14.0, which
was discovered before being exploited. All of these deploy-
ments were EARFs. It is useful for EARF deployments to be
inclusive to allow unpatched nodes to reorganize and gener-
ate blocks on the valid chain originating from the reduction
fork when it becomes the longest. EARF deployments in
Bitcoin have been inclusive, which is the default behaviour.

An interesting observation in BTC 0.3.10 and 0.8.0 is
that miners had performed a rollback of blocks, deviating
from the longest valid chain rule and Bitcoin’s immutability
property to reach consensus. First, the overflow bug was
so severe that the consensus rules had to be changed such
that the chain containing the malicious transaction would
be rejected. During the consensus failure caused by the
database deployment, there was a need to downgrade nodes
even though the new chain was the longest and valid
according to the specification. That was because it was the
most conservative approach to keep compatibility with old
nodes and because many merchants and users were unlikely
to follow the patched chain within a reasonable timeframe.
Listing 11 shows that it was not obvious to downgrade and
deviate from the longest chain rule. Furthermore, listing 12
highlights the reason to downgrade to the previous version.
"<Luke-Jr> gavinandresen: sipa: jgarzik: can we get

a consensus on recommendation for miners to
downgrade?
(...)
<gavinandresen> the 0.8 fork is longer, yes? So
majority hashpower is 0.8....
<Luke-Jr> gavinandresen: but 0.8 fork is not
compatible"

Listing 11. Luke-Jr & gavinandresen 2013-03-12 IRC: #bitcoin-dev
"Doesn’t matter which chain is longer if a majority
of the people aren’t on it. Breaking changes need
to be given lots of warning to be effective. Trying
to force everyone to use 0.8 would have only made
the situation worse. From the chat discussion, I
don’t think mtgox was using 0.8. So trading at the
largest exchange would be halted until it could be
upgraded. If that doesn’t sound disastrous, I’m not
sure what does."

Listing 12. nevafuse 2013-03-13 Forum, ID: 152470
There is no point in signalling in the urgency of emer-

gency activation or waiting for a certain threshold. The
triggering will happen naturally as soon as the bug in
question triggers a consensus failure if the flaw is ever
exploited. The exclusion will happen naturally as legacy
nodes violating the rules of the EARF will be orphaned. In
addition, standardness becomes unnecessary since the rule
changes of an emergency fork require hard enforcement.

4.1.3.8 Emergency-activated expansion fork
(EAEF): Deploying EAEF alone can be risky as it might not
be widely adopted on a network basis, and miners might
be reluctant to deploy a hasty and radical expansion of the
consensus rules. Anything less than 100% adoption could
cause a permanent chain split if never fully adopted. This
encourages miners rather perform an emergency-activated
reduction fork if feasible, as it is the safer alternative.
Suppose a minority activates an EARF, and other nodes
follow with different timings. In that case, they might split
off from the legacy chain at different times, creating several
chain splits until the patched chain becomes the longest, as
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illustrated by figure 6. The figure shows how the patched
nodes will keep jumping back to the legacy blockchain as
long as that is the longest. As soon as the super-majority
of miners work on the expanded blocks, that chain will
become the longest one. However, legacy nodes will still
work on the legacy chain as they do not see the expansion
blocks as valid. It is possible that the BIP50 consensus
failure caused by BTC 0.8.0 looked somewhat like the EAEF
figure before making a persistent chain split, although that
cannot be assessed without access to the orphaned blocks.

The continuous chain splits can be avoided by using the
exclusion feature to invalidate the legacy chain. Another
solution would be to make it a bilateral fork. However,
an EAEF might be feasible in cases similar to the EAEF
in version 0.3.7. A plausible reason for it to work without
causing a chain split was that the expanded rules never
occurred before a super-majority adopted the change.

4.1.3.9 Emergency-activated bilateral fork (EABF):
This deployment technique has not been observed in any
known upgrade. However, one could imagine the BCH fork
being deployed with EABF as a reaction to revert the SegWit
deployment. In that case, the patched chain would have to
roll back to a block before the first SegWit-block was created
and create a conflicting block. That block would be the
instant trigger, while the remaining deployment features,
except parallel, are insignificant.

4.1.3.10 Temporary reduction fork: There is a spe-
cial case for the deployment of reduction forks (MARF,
UARF, and EARF). In contrast to ordinary activation at time
T, a temporary fork will activate at time T AND deactivate
at time T+X. Temporarily reduction forks can be illustrated
by an example from Bitcoin’s legacy: The 1 MB limit was
initially applied as a reduction fork. However, expanding
that limit would not require an expansion fork if it was
defined with an end-time, for instance, dating to 2022. Then
the community would have years to find a solution or delay
the issue by another temporary reduction fork before the
end time. Legacy nodes can still validate all blocks created
under the reduction fork, while patched nodes will know
the start and end-time. BTC 0.8.1 demonstrated a temporary
reduction fork shown in listing 13. The code defines a
temporal reduction between 2013-03-21 and 2013-05-15 (line
2057 and 2058) where transaction IDs (TxIDs) are counted
(lines 2062-2069) and the limitation is enforced (lines 2071
and 2072). The limit of 4,500 TxIDs was assumed to be low
enough to avoid reaching the database lock limit of 10,000.

4.1.3.11 Hybrid deployment: Another special case
in deployment is the deployment of different fork types
together. This technique inherits the attributes of the most
disruptive fork type in terms of chain split risk. That is in
the following order: BF>EF>RF. Consider the case where
all tree fork types are deployed together. The bilateral fork
guarantees that the patched chain splits from the legacy
chain patched nodes will never return to the legacy chain.
Thus it is no longer meaningful to pay respect to whether
there is super-majority adoption, inclusive fork or standard-
ness because a bilateral fork neglects all these features.
Hybrid deployment with combinations of expansion and
reduction forks has become a relatively common practice
in BCH, which performed hybrid deployments in BCHN
0.16.0, BCHN, 0.18.0, and BCHN 0.19.12. Combining several

2056 // Special short−term limits to avoid 10,000 BDB lock limit:
2057 if (GetBlockTime() >= 1363867200 && // start enforcing 21 March

2013, noon GMT
2058 GetBlockTime() < 1368576000) // stop enforcing 15 May 2013

00:00:00
2059 {
2060 // Rule is: #unique txids referenced <= 4,500
2061 // ... to prevent 10,000 BDB lock exhaustion on old clients
2062 set<uint256> setTxIn;
2063 for ( size t i = 0; i < vtx.size() ; i++)
2064 {
2065 setTxIn. insert (vtx[ i ]. GetHash());
2066 if ( i == 0) continue; // skip coinbase txin
2067 BOOST FOREACH(const CTxIn& txin, vtx[i].vin)
2068 setTxIn. insert (txin .prevout.hash);
2069 }
2070 size t nTxids = setTxIn.size () ;
2071 if (nTxids > 4500)
2072 return error(”CheckBlock() : 15 May maxlocks violation”);
2073 }

Listing 13. Code snippet illustrating a temporary reduction fork
from BTC 0.8.1 [42]

forks into one deployment is practical because it limits
deployments where the network is more vulnerable.

4.1.3.12 Non-deterministic forks: The non-
deterministic forks are best explained by the example of
BIP50 and the upgrades deployed with BTC 0.8.0 and BTC
0.8.1. The implementations contained a MAX BLOCK SIZE
of 1 MB. However, this rule was often overrun by the
default database locks setting in pre-0.8.0 nodes that were
too small to handle certain large blocks containing many
transactions, although less than 1 MB. The problem would
surface long before the consensus failure of BTC 0.8.0
because blocks used too many locks led to reorganisations.
This caused a lot of nodes to run custom configurations.
Listing 14 shows the problem surfacing and that some
miners set custom lock limits.
"<TD> EXCEPTION: 11DbException
<TD> Db::put: Cannot allocate memory
<TD> bitcoin in ProcessMessage()
<TD> ProcessMessage(block, 5798 bytes) FAILED
<TD> received block 00000000000001c0a13e
<TD> REORGANIZE
(...)
<DrHaribo> sturles said he got out of memory errors
without being out of memory, and that adding locks
and lockers fixed it"

Listing 14. sipa, TD & DrHaribo 2012-03-10 IRC: #bitcoin-dev
Furthermore, the Berkeley Database would behave in-

consistently depending on the underlying hardware. The
result is that chain splits and stuck nodes might appear non-
deterministically. Listing 15 describes how nodes running
identical code might behave differently depending on how
the blockchain is stored on disk.
"(...) contents of each node’s blkindex.dat
database is not identical, and the number of locks
required depends on the exact arrangement of the
blkindex.dat on disk (locks are acquired per-page)."

Listing 15. Gavin Andresen 2013-03-20 BIP50
When the database was changed in BTC 0.8.0 the new

implementation would handle the locks differently and
always be able to handle the edge-case blocks. The legacy
nodes with custom lock limits would also handle these
blocks. On the contrary, a non-deterministic set of the vanilla
legacy node implementations would regard these blocks as
invalid, causing a chainsplit. The fork was non-deterministic
because of the inconsistent behaviour among legacy nodes.
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TABLE 2
Deployed rule changes in BTC and BCH. Star(*) = Forked repository. Triggers: BH = Block height, FD = Flagday, and DH = Dynamic height.

V Consensus change Deployment Fork Chain Parallel Standard Signal Inclusive Threshold Trigger

Strategy Type split risk

BTC Time based locking UA RF Medium Yes No None Inclusive None BH
0.1.6 nLockTime
BTC CVE-2010-5137 & EA RF Medium Yes No None Inclusive None Instant
0.3.5 CVE-2010-5141
BTC Disable/enable opcodes EA EF & RF High Yes No None Inclusive None Instant
0.3.6 hybrid
BTC Separate scriptSig & EA EF & RF High Yes No None Inclusive None Instant
0.3.7 scriptPubKey hybrid
BTC Output-value-overflow EA RF Medium Yes No None Inclusive None Instant
0.3.10 CVE-2010-5139
BTC 20 000-signature operation UA RF Medium Yes No None Inclusive None BH
0.3.12 limit & 1 MB blocksize
BTC BIP30: Duplicate transactions MA RF Low Yes No Offchain Inclusive >50% FD
0.6.0 CVE-2012-1909 agreement
BTC BIP16: Pay-to-script-hash MA RF Low Yes No Coinbase Inclusive 55% FD
0.6.0 vote
BTC BIP34: Include block height MA RF Low No No VersionBits Exclusive 75%/95% DH
0.7.0 in coinbase
BTC BIP50: Migrate from UA EF non- High Yes No None Inclusive None Instant
0.8.0 Berkeley DB to LevelDB deterministic
BTC BIP50: Rollback EA RF Medium Yes No None Inclusive None Instant
0.7.0
BTC BIP50: Database lock limit & UA RF Medium Yes No None Inclusive None Instant
0.8.1 Max TxID limit temporarily
BTC BIP50: Relax database lock UA EF High Yes No None Inclusive None FD
0.8.1 limit & Max TxID limit
BTC BIP42: 21 million supply UA RF Medium Yes No None Inclusive None Instant
0.9.2
BTC BIP66: Strict DER signature MA RF Low No Yes VersionBits Exclusive 75%/95% DH
0.10.0
BTC BIP65: Check lock time verify MA RF Low No No VersionBits Exclusive 75%/95% DH
0.11.2
BTC BIP68, BIP112, BIP113: MA RF Low Yes No VersionBits Inclusive 95% DH
0.12.1 Check sequence verify
BTC BIP141, BIP143, BIP146: MA RF Low Yes Yes VersionBits Inclusive 95% DH
0.13.1 Segregated Witness service bits
BTC CVE-2018-17144 UA EF High Yes No None Inclusive None Instant
0.14.0
BTC* BIP148: Segregated Witness UA RF Medium Yes Yes VersionBits Exclusive None FD
0.14.0 temporarily
BTC* SegWit2x/BIP91: MA RF Low Yes Yes VersionBits Inclusive 80% DH
0.14.1 Segregated Witness
BCHN Block size fork UA BF High Yes No None Exclusive None FD
0.14.5
BCHN LOW S & NULLFAIL & UA EF & RF High Yes Yes None Inclusive None FD
0.16.0 difficulty adjustment hybrid
BCHN Block size increase & UA EF High Yes No None Inclusive None FD
0.17.0 enable opcodes
BCHN Various rule changes UA EF & RF High Yes No None Inclusive None FD
0.18.0 hybrid
BCHN Fix CVE-2018-17144 EA RF Medium Yes No None Inclusive None Instant
0.18.2
BTC Fix CVE-2018-17144 EA RF Medium Yes No None Inclusive None Instant
0.16.3
BCHN Schnorr signatures & UA EF High Yes No None Inclusive None FD
0.19.0 SegWit recovery
BCHN Schnorr signatures for UA EF & RF High Yes No None Inclusive None FD
0.19.12 multisig & script attributes hybrid
BCHN SigChecks & UA EF High Yes No None Inclusive None FD
0.21.0 Reversebytes opcode
BCHN ASERT Difficulty algorithm UA BF High Yes No None Inclusive None FD
22.0.0
BCHN Lift transaction chain limit & UA EF High Yes No None Inclusive None FD
23.0.0 Multiple OP RETURN outputs
BTC BIP341, BIP342, BIP343: MA RF Low Yes Yes VersionBits Inclusive 90% DH
0.21.1 Taproot
BCHN CHIP-2021-03 UA EF High Yes No None Inclusive None FD
24.0.0 CHIP 2021-02
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4.2 Results of RQ2 (lessons learned)
All kinds of consensus rule changes in a blockchain can be
a liability as they increase the attack surface. The deploy-
ment process itself can disrupt the community as conflicts
arise. Lessons learned from Bitcoin deployments are syn-
thesized to minimize the risk of future deployments in any
blockchain. The GT analysis and root cause analysis derive
these lessons as seen in the Ishikawa diagram in appendix
B, figure 11. The issues and root causes are addressed under
each lesson learned.
"Every time that you open up the door to changing
the rules, you are opening yourselves up to attack"

Listing 16. 2020-08-03 Eric Lombrozo [43]
The human error categories [44] were used as codes in

the GT analysis to classify the issues discovered in the root
cause analysis. These are 1) Skill-based errors, i.e., execution
failure: Slips and lapses. 2) Mistakes, i.e., planning failures:
Rule-based (RB) mistakes and knowledge-based (KB) mis-
takes. 3) Violations: Routine, e.g., laziness and exceptional
violations, e.g., sabotage. Table 3 shows the lessons derived,
the impacted deployment features, their corresponding er-
ror categories and the affected Bitcoin versions.

4.2.1 L1: Missing transformation assurance

The most dangerous forks are those deployed by accident.
They occur either because existing consensus rules are ex-
ploitable or new rules are deployed by accident. Accidental
forks are not safely deployed using the deployment features
and will have a high risk of a chain split. This error is seen as
an RB mistake because developers misclassify the fork type
feature of the given code change. The most obvious remedy
is to perform extensive testing and review.

The lack of transformation assurance in Bitcoin has
caused an accidental chain split on one occasion (BTC 0.8.0)
and allowed a serious bug to enter the code (BTC 0.14.0).
However, Bitcoin have never had an accidental chain split
caused by compatibility issues cross node imlpementation,
although the split in Ethereum’s Berlin UAEF [45] demon-
strates this. The fork type feature is relevant for this lesson
because developers and node operators must understand
whether the code changes they apply will alter consensus
and what kind of fork type it is. Different techniques to
provide assurances [46] of consensus rule transformation in
blockchain are not widely adopted or explored.
"The review process is definetly a good idea, I
dont know if it provides as much security as people
assume it does. One thing that slip past one person
may as well slip past ten people or whatever."

Listing 17. 2020-06-23 Luke-Jr [47]
Having several implementations can both cause and

detect invalid transformation. Although BTC mainly relies
on one implementation, there are many cryptocurrencies,
such as BCH, using different implementations where all
should follow the same consensus rules. Running testing on
a test network with different implementations increases the
chance of discovering transformation issues before deploy-
ment. However, having different implementations incease
the risk of causing transformation issues (listing 18).
"Diversity is good and may help discover issues.
But as Gavin was saying and as I like to point out:
The most dangerous kind of failure in bitcoin isn’t
an implementation bug- any blockchain validation

inconsistencies in widely deployed implementations
are significantly worse than pretty much anything
other than a full private key leak or remote root
exploit... and are even harder to avoid."

Listing 18. Gmaxwell 2012-10-28 Forum, ID: 120836

4.2.2 L2: Improper reorganisation

Nodes must be prepared to handle reorganisation to coor-
dinate everyone to work on the same chain immediately in
case of an accidental split. Some nodes have been forced
to redownload the whole blockchain, which the original
slow initial block download (IBD) [48] made troublesome
(BTC 0.3.10). Moreover, the database lock-limit caused stuck
nodes during reorganisations prior to BTC 0.8.0 (see expla-
nation in section 4.1.3.12). Some nodes would also wipe the
existing mempool on reboot, making it harder to detect dou-
ble spend attempts (BTC 0.8.0). Measurements should be
taken to keep the current state of valid blocks and pending
transactions when performing an emergency fork, enabling
a swift recovery. The error leading to slow reorganisation
could be a lapse in the case where node operators, in a weak
moment, delete the whole blockchain on reboot and patch.
It can also be a KB mistake where developers defining the
code for reorganisations did not have the knowledge and
experience to handle them properly. Listing 19 shows the
issue of quickly reorganising the blockchain during the BTC
0.3.10 EARF.
knightmb, do you still have any of your monster
network available to turn on to help build the new
valid chain?

Listing 19. Insti 2010-08-15 Forum, ID: 823

4.2.3 L3: Improper human interference

Bitcoin’s early history shows improper handling of deploy-
ment attributes. This happened in the pay-to-script-hash
upgrade. The activation trigger feature is relevant here.
The BTC developers set and moved the flag day trigger
manually depending on whether the threshold was reached
(BTC 0.6.0). The threshold was not met in time for the
first flag day, and nodes had to update to change the new
flag day. Some nodes did not catch this in time and lost
track of the correct chain as an invalid pay-to-script-hash
transaction was mined after the first flag day. The error can
be seen as a RB mistake from the developers’ side, who
had faulty expectations for node operators. It could also be
a KB mistake from the node operators’ side if they were
unaware of the changed flag day or a lapse in case they
forgot to update in time. The error in the pay-to-script-hash
deployment demonstrates that dynamic triggering must be
incorporated into the software, not changed manually.

Deployment features should not be changed during de-
ployment because each change acts as a fork by itself and is,
therefore, a liability. In addition, developers should not alter
ongoing deployment without giving time to review changes.
That can be severe as it can allow the inclusion of flawed or
ill-intended changes at the last minute.

4.2.4 L4: Too high thresholds

High thresholds are crucial to onboard hash power during
deployment. The threshold feature is relevant in combi-
nation with the deployment strategy feature since miner-
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TABLE 3
Lessons learned, impacted features, corresponding error categories and impacted Bitcoin versions.

ID Lesson Impacted features Error categories Negatvely affected versions

L1 Missing transformation assurance Fork type RB Mistake BTC 0.8.0, BTC 0.14.0, BCHN 0.17.0
L2 Improper reorganisation - Lapse, KB Mistake BTC 0.3.10, Before BTC 0.8.0, BTC 0.8.0
L3 Improper human interference Trigger Lapse, RB mistake, BTC 0.6.0

KB mistake
L4 Too high thresholds Threshold, inclusive & RB Mistake BTC 0.13.1

deployment strategy
L5 Deplyoing ’irreversible’ changes Fork type KB Mistake BTC 0.3.12
L6 Not prepared for forward Fork type, standard & KB Mistake BTC 0.7.0, BTC 0.10.0, BTC 0.11.2

compatibility parallelism
L7 Lacking knowledge regarding Signal KB Mistake -

network dynamics
L8 Insufficient damage control - KB Mistake BTC 0.8.0
L9 Improper miner incentives - Routine violation, BTC 0.10.0

to enforce new rules Exceptional violation
L10 Insufficient incentices to review the code - Routine violation BTC 0.8.0, BTC 0.14.0, BCHN 0.17.0

activated strategies utilize thresholds. The Segwit deploy-
ment (BTC 0.13.1) showed that high thresholds such as 95%
is troublesome because it allows a >5% minority veto as
shown in listing 20. The error can be seen as an RB mistake
because SegWit was falsely considered non-controversial.
The slow adoption of SegWit engaged the use of the less safe
user-activated strategy to overthrow non-signalling nodes
using the inclusive feature to exclude the opponents.
"Activation is dependent on near unanimous hashrate
signalling which may be impractical and is also
subject to veto by a small minority of
non-signalling hashrate."

Listing 20. Shaolinfry 2017-04-06 Email: bitcoin-dev
BTC demonstrated some changes to avoid issues with

high thresholds in the most recent Taproot upgrade (BTC
0.21.1). They changed the activation threshold to 90%, re-
duced the decision-making time, and intended to use user-
activated deployment if the miner-activated deployment
failed. Another method to cope with high thresholds is grad-
ually decreasing the threshold towards the lower limit of
super-majority. Dash’s dynamic activation thresholds utilize
this technique where the initial limit is 80% and is gradually
reduced to 60% [49]. However, there is a tradeoff that lower
thresholds are more likely to disrupt consensus.

4.2.5 L5: Deploying ’irreversible’ changes

Changes conducted with reduction forks should be applied
carefully as they might never be reverted if the nodes are
reluctant to adopt future expansion forks. This makes the
fork type feature relevant for this lesson. Nakamoto could
probably never have imagined the fuzz caused by his 1 MB
block size reduction that was created as a remedy for denial-
of-service (BTC 0.3.12). So far, this reduction seems to be
nearly irreversible in practice for the expansion-reluctant
BTC community. Therefore it can be valuable to consider
the fork type of temporary reduction forks when there is any
doubt whether such a reduction fork should be permanent.
The error is classified as a KB mistake because the devel-
oper did not foresee the future challenges of expanding
the consensus rules. Listing 21 shows frustration for the
’irreversible’ block size limit since the early days of Bitcoin.
"I’m very uncomfortable with this block size limit
rule. This is a "protocol-rule" (not a
"client-rule"), what makes it almost impossible to
change once you have enough different softwares

running the protocol. Take SMTP as an example...
it’s unchangeable."

Listing 21. Caveden 2010-11-20 Forum, ID: 1347

4.2.6 L6: Not prepared for forward-compatibility

Nakamoto implemented support for Bitcoin to be forward
compatible. He created domains of undefined behaviour by
initially defining block versions, transaction versions, and
later OP NOP opcodes (BTC 0.3.6). This is related to the fork
type feature because it facilitates specifying future changes
as reduction forks, which are safer. Most of the planned
reduction forks in Bitcoin have depended on forward-
compatibility. Forward-compatibility was further adopted
when SegWit was created. The developers defined a 4-byte
nVersion field to allow future changes to the script specifica-
tion to be created as reduction forks (BTC 0.13.1, BTC 0.21.1).
The error of not preparing for forward-compatibility can be
seen as a KB mistake as developers might not be aware of
the future compatibility issues. However, some people, the
BCH community and many other blockchain projects (e.g.,
Ethereum and Dash) do not value compatibility between
versions. They rather perform less safe expansion forks if
that makes the end product more elegant.
"This is another problem that only exists because
of the desire to soft fork. If "script 2.0" is a
hard fork upgrade, you no longer need weird
hacks like scripts-which-are-not-scripts."

Listing 22. Mike Hearn 2014-11-04 Email: bitcoin-dev
The standard feature facilitates forward-compatibility.

This was done for all consensus rules dealing with mal-
leability (BTC 0.10.0, BTC 0.13.1, BTC* 0.14.0, BTC* 0.14.1,
BCHN 0.16.0 and BTC 0.21.1). All the rules changes related
to malleability were already softly enforced by standard-
ness. The standard nodes would minimize the success of
malleability attacks by not including or relaying those trans-
actions.

Additionaly, the parallel feature is relevant to forward-
compatibility as it makes it possible to perform several
deployments at the same time or sequentually. This was
not the case for the first established deployment method
ISM used in BTC 0.7.0, BTC 0.10.0 and BTC 0.11.2. These
versions were deployed without the forward-compatibility
and would not allow other deployments in parallel. Addi-
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tionally, this technique permanently consumed versionBits
such that they could never be used in a reduction fork again.

4.2.7 L7: Lacking knowledge regarding network dynamics

Some rule changes may require nodes to broadcast ad-
ditional information to other nodes in the network. Like
SegWit’s extension blocks that legacy nodes would not relay.
The worst-case outcome of this behaviour could be that the
network would create partitions of nodes that could only
validate blocks made within that partition. A potential error
of network partitioning would be a KB mistake because of
the lack of knowledge regarding network dynamics. As seen
in listing 23 the peer-to-peer network relied on the signal
feature by using a service bit for a node to signal the ability
of providing the witness data (BTC 0.13.1).
"To ensure that the network is not partitioned and
that segwit blocks are being passed to segwit
enabled nodes, a Core 0.13.1 node will use its
outgoing connection slots to connect to as many
nodes with the NODE_WITNESS service bit as possible
(...)"

Listing 23. achow101 2016-11-26 Forum, ID: 1682183

4.2.8 L8: Insufficient damage control

Forks are necessary for the evolution of blockchains. As
history has proven and Murphy’s law will ensure, consen-
sus failures will occur in the future. End-users and miners
should take measurements to perform damage control. Past
failures to perform these measurements would be a KB
mistake because the actors did not know or did not have ex-
perience with chain splits. These measurements would be to
detect a chain split and suspend transactions or increase the
amounts of confirmations required. In the past, merchants
have been subject to double-spend attacks, and pool funds
have been drained by miners working on the chain that
eventually orphaned (BTC 0.8.0, listing 24). In Bitcoin, there
are mechanisms for detecting chains splits. Additionally,
one can run nodes with different versions to monitor that
they stay on the same chain. Listing 25 discusses some ways
to perform damage control in case of a consensus failure.
"I’ve lost way too much money in the last 24 hours"

Listing 24. Eleuthria 2013-03-12 IRC: #bitcoin-dev
"So I think the only way Mallory gets free beer
from you with segwit soft-fork is if:
- you’re running out of date software and you’re
ignoring warnings to upgrade (block versions have
bumped)
- you’ve turned off standardness checks
- you’re accepting low-confirmation transactions
- you’re not using any double-spend detection
service"

Listing 25. Erisian 2015-12-18 Email: bitcoin-dev
Replay attacks can be performed by re-broadcasting

transactions from one chain to another in the event of a per-
manent chain split. To prevent this attack, one of the chains
should to implement replay protection [8]. BCH implements
replay protection for all planned consensus changes [50].

Some damage control can be prepared up front, e.g., by
incorporating a kill switch mechanism [51] to activate an
emergency rollback. However, this kill switch mechanism
have an increased risk of centralization and foreign inter-
ception if it is held by a single person or closed community.

4.2.9 L9: Improper miner incentives to enforce new rules

Even though miners give a signal for an upgrade in blocks,
that does not guarantee that these miners will enforce the
new rules. Simple-payment-verification (SPV) mining has
become popular because less validation gives an advantage
in the block race. The incentive mechanism in Bitcoin re-
wards the first valid block, and the tradeoff between the
risk of not being first and the risk of being invalid may
favor being first as it was seen in BTC 0.10.0 [4] (listing 26).
The grace time between the time of reaching the threshold
and the time of activation was added through BIP9 [19] was
likely added because of this incident to give miners some
time to ensure proper validation in time for activation.
"If there is a cost to verifying transactions in a
received block, then there is an incentive to *not
verify transactions*. However, this is balanced by
the a risk of mining atop an invalid block."

Listing 26. nathan 2015-07-11 Email: bitcoin-dev
This error is caused by routine, or even exceptional viola-

tions where miners generate blocks without performing val-
idation. Some measurements exist to incentivise validation.
For instance, Ethereum’s future slashing mechanism [52]
which discourage reckless behaviour. Alternatively, Dash
incentivises validation by requiring collateral for master
nodes [53], as well as giving them extra rewards.

4.2.10 L10: Insufficient incentices to review the code

Another incentive issue is in regards to reviewing code. All
the actors in Bitcoin do benefit from having bug-free code
deployed in the network to secure the value of the currency.
However, testing and reviewing can be tricky, costly, and
tedious. The average Bitcoin participant (e.g., end-users and
miners) would not even have the skills to perform that task.
The stakes might be high for anyone pushing code that
affects the network badly, as it may harshly influence their
reputation. At the same time, there is not enough incentive
to spend substantial time and resources on secure develop-
ment and code review. The lack of incentives could make
developers lazy and errors are made by routine violations.

Many of the critical bugs contained in Bitcoin have been
fixed since its conception, and new ones arise as developers
make mistakes (BTC 0.8.0, BTC 0.14.0 and BCHN 0.17.0).
However, these mistakes are not for developers to bear alone
but for those who naively adopt flawed code. A project
directly incentivising its development is Dash, where 10%
of block rewards are allocated to development [54].

5 DISCUSSION

5.1 Comparison with related work
The available literature on the evolution of Bitcoin mainly
concerns socio-technical aspects of governance [55], [56] and
their economics [57]. For instance, [55] addresses ”how and
when code development practices combine into a pattern of
self-organizing.” Deployment of consensus rules is slightly
mentioned in the paper as a practice that can result in
competing infrastructures. This research builds upon their
work by showing how this can be technically carried out.

Kiffer et al. [8] evaluates the event of the Decentralised
Autonomous Organization (DAO) hack in Ethereum and
replay attacks. The case of Ethereum’s split is relevant for
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damage control. This paper provides a bigger picture by
showing how one may end up with a network partition.

Abortable consensus [58], [59], [60], and this paper is
similar in how they both look at how and when the network
should switch to an arbitrary consensus algorithm. The
main goal for abortable consensus is to gain performance
when needed and increase fault tolerance when the network
fails. This paper focuses on preventing and controlling fail-
ures during the deployment and transition.

The similarities between open source software and
blockchain evolution are seen in the decision-making on a
code repository level [61], [62]. Anyone is free to propose
a change, and it is up to the maintainers of a repository
whether they want to include that change. However, the
decision is not only based on the maintainers’ preference
in blockchain but also on the opinion of the community,
miners and possibly developers of other implementations
of the same protocol. Even when a change is included in a
code repository, it does not mean the network will adopt it.

The adoption rate of a new network protocol spans sev-
eral years, does not require a specific threshold for adoption,
and can tolerate different versions running in parallel [63].
In contrast, the requirements for running different versions
in parallel are different since blockchain relies on abandon-
ing old consensus rules by activating new ones. The simi-
larity between BTC and TLS is that they value backwards
compatibility to allow nodes running old protocols to be
part of the network during and after an upgrade.

Comparing blockchain deployment techniques to tech-
niques in distributed systems such as fast reboot, rolling
upgrade, and big flip [32], the most significant difference is
that blockchain is decentralised, and the network must reach
a consensus before changes can be activated. This is done
through unique deployment features such as standardness,
signals, thresholds and inclusiveness.

5.2 Implications
To our knowledge, this research is the first to present a
holistic overview of deployment techniques for runtime
evolution in blockchains. The deployment processes of con-
sensus rule changes in the blockchain are important as they
can be both the cause and remedy of consensus failures.
By generalizing the adoption logic of blockchain, this paper
can contribute to the field of self-adaptive systems where
processes for runtime evolution of new domain logic require
further exploration [64].

Practitioners can utilize the contributions of this paper
to perform consensus rule changes most predictably and
safely. The lessons learned in Bitcoin are valuable to prevent
history from repeating itself. These lessons can strengthen
the security of blockchains, hinder direct financial loss and
preserve a blockchain’s value as a cryptocurrency.

5.3 Threats to validity
The sheer amount of data and the limited number of re-
searchers dedicated to this project may raise questions about
missing data or analysis. Regular cross-author discussions
have evaluated the analysis and results to address this. All
the samples used for the analysis are also available at [65].
By conducting rigorous data collection through snowballing

and triangulation, the analysis has gathered a holistic pic-
ture of Bitcoin evolution and other blockchains outside of
the initial domain. The results are also strengthened by
combining GT with root cause analysis.

This study seeks to avoid bias by looking at other viable
projects with similar attributes, such as BCH, Ethereum and
Dash. Different actors have different concerns, and results
are represented by diverse perspectives provided by those
who have worked on Bitcoin over the last decade. The
thoroughness applied in this study gives confidence that the
results are applicable to different blockchain architectures.

6 CONCLUSION

Safe deployment of consensus rules in blockchains is vital to
hinder failures causing financial losses for miners and end-
users. The paper demonstrates an extensive study using the
grounded theory approach, flexible coding and root cause
analysis to address these issues. This study specifies nine
deployment techniques for blockchain with nine different
features. Additionally, the study shows how contention may
arise during rule changes in Bitcoin, resulting in ten lessons
learned. The findings bring novel insights to prosper safe
evolution of blockchains.

7 FUTURE WORK

The greatest challenge in blockchain evolution is regard-
ing compatibility and transformation assurance [66]. Like
adaptive systems, blockchain systems would benefit from
identifying whether a change is a fork and what kind of
fork it will be. Transformation assurance would significantly
reduce the risk of deployment failures. Another aspect is to
handle deployments in a multichain environment. Various
research indicates that these environments will rely on mid-
dleware to relay actions cross chains. We believe that this
middleware must be responsible for listening to and trig-
gering changes based on the deployment techniques used
in the attached chains. Further research might identify the
implications of consensus evolution in such an environment.
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APPENDIX A
TIMELINE

The timeline in figure 7 summarizes 34 consensus changing
events including 24 changes in Bitcoin Core and 10 changes
in Bitcoin Cash (represented by Bitcoin Cash Node (BCHN))
marked as gray boxes. The date and order of these changes
are based on either the flag day/block for the activation, the
date where the changes activated based on signal thresh-
olds, or otherwise when these versions were released. The
red boxes indicates some issue where the deployment was
performed by emergency, caused a chain split, or other
issues. These issuse are further assessed in section 4.2 on
lessons learned.

APPENDIX B
RESEARCH IMPLEMENTATION

B.1 Purposive sampling
The initial step in collecting data related to the consensus
changes in Bitcoin was to identify the consensus changing
events in Bitcoin. An exhaustive list of all the consensus
changes throughout Bitcoin Core’s history is listed in the
Bitcoin Wiki [67] and in table 4, which also highlight even-
tual issues. Further inspection reveals an overview of the
main events and information such as the time, block height,
version number, and deployment techniques. Development
channels were identified as the most fruitful sources and
their data was extracted to initiate the filtering process.
However, the sample boundary was fluid such that sam-
ples from other domains were considered whenever they
appeared. These could be domains such as other Bitcoin
channels, announcements, news articles, magazines, videos,
or other cryptocurrencies. The additional sources primar-
ily strengthened the theories rather than expanding them,
which shows the relevance of the development channels
initially selected by purposive sampling.

The channels that were selected as initial data were
the Bitcoin improvement proposals [68], the bitcoin-dev
emails [69], the Development & Technical Discussion topic
in the Bitcoin forum [70], the code repository (pull requests
[71] and issues [72]), and IRC channels (#bitcoin-dev and
#bitcoin-core-dev [73]). The total sample count is 1700 as
depicted in figures 8 and 9. One sample corresponds to one
thread (email, forum and Github), one proposal or one day
of IRC messages.

B.2 Data collection
Filtering was applied to the initial data after acquiring an
overview of consensus change events and corresponding
BIP specifications. The first source of data that was consid-
ered was the emails. With a relatively compact overview
of all the threads that have been made, it was considered
viable to traverse through the titles to find relevant sam-
ples. After email samples were collected, the next step was
the forum. However, the forum source proved to be large
and challenging to sort through. Therefore the search was
conducted in two stages: First, all the threads leading up to
and surrounding the dates of each consensus incident were
checked for relevance, which has been referred to as cherry-
picking samples. Second, the forum was filtered with the

help of a search tool targeting the Bitcoin forum [74]. The
filtering was commenced using the search strings shown
in table 4. This filtering approach was also applied for the
Github search. The relevant BIPs could be found as they
directly correlate to consensus changes and deployment
techniques.

When considering the IRC channels, the initial plan was
to focus on the meetings conducted in Bitcoin’s history and
limit the number of samples collected in the initial phase.
However, after getting familiar with Bitcoin meetings of the
past, it became clear that there were only a few meetings
(four in total) before the developers decided on weekly
meetings in fall 2015. Therefore a search was conducted by
applying a few search strings that could indicate conversa-
tions about the issues of consensus changes that have taken
place. These strings were ”fork”, ”chain split”, ”stuck” and
”reorg”. With the use of Grep [75] the files were traversed
all together, showing each related sentence. The whole log
from each sample was collected whenever indicating some
value or relevance. Considering the size of the resulting
data set of IRC samples, they indicate that the search
strings were accurate and broad enough to catch relevant
samples. For instance, it revealed samples explaining how
the deployment techniques were initially implemented and
further developed to avoid failure. Additionally, the logs
around important dates were cherry-picked and inspected,
even if they included the search strings or not. Finding
relevant samples also became simpler from the fall of 2015
as the weekly meetings could be collected. A challenge
with the IRC logs has been that the logs are somewhat
dispersed between different archives [76] [77] [78] [79].
Together with the inherent inconsistencies [80] within the
archives, it became clear that all the different archives had to
be considered when searching. The distribution of samples
from the different sources can be seen in figure 8, while the
distribution across each event can be seen in figure 9. The
sum of samples across the events are larger than the sum
of samples across sources because some samples relate to
multiple events.

B.3 Grounded theory
Although Strauss’ approach [37] was promising to an-
swer the research questions, it became apparent that the
grounded theory approaches do not describe much on
how modern data analysis tools should be utilized most
effectively when performing analysis with a large number
of samples. To cope with this, we refer to flexible coding
from [36], which explains ways that large sets of data can be
collected and coded through qualitative data analysis soft-
ware (QDAS) such as Atlas.ti [81], NVIVO [82] or MaxQDA
[83]. These techniques were useful for getting an overview
of the whole data set, defining the codes, grouping the
data into different categories, and constantly comparing and
considering those.

B.3.1 Open coding

The guidelines on flexible coding describe a viable approach
for the purpose [36] of analysing large datasets using QDAS.
The indexing approach was applied as a specific form
of open coding designed to provide an overview of the
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Fig. 7. Timeline of conensus changes in Bitcoin Core and Bitcoin Cash.

Fig. 8. Sample distribution among different sources.
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TABLE 4
Overview of consensus changes in Bitcoin Core and applied search strings. Bold = blockchain specific issue.

V Consensus change Maintenance type Issues Search strings

BTC Time based locking Corrective No nLockTime
0.1.6 nLockTime
BTC CVE-2010-5137 & Corrective No CVE-2010-5137, CVE-2010-5141, 0.3.5
0.3.5 CVE-2010-5141
BTC Disable/enable opcodes Adaptive & preventive Upgrading issues OP CHECKSIG, OP NOP, 0.3.6
0.3.6 (bad dependency)
BTC Separate scriptSig & Corrective No scriptSig, scriptPubKey, 0.3.7
0.3.7 scriptPubKey
BTC Output-value-overflow Corrective Slow adoption & overflow bug, 184, CVE-2010-5139,
0.3.10 CVE-2010-5139 long split 0.3.10, 74638, 74 638
BTC 20 000-signature operation Corrective ”Irreversible” change, 0.3.12, MAX BLOCK SIZE,
0.3.12 limit & 1MB blocksize source of controversy MAX BLOCK SIGOPS, 79400 & 79 400
BTC BIP30: Duplicate transactions Corrective No bip30, bip 30, duplicate transactions
0.6.0 CVE-2012-1909
BTC BIP16: Pay-to-script-hash Perfective Stuck Nodes, slow adoption, bip12, bip 12, bip16, bip 16, bip17,
0.6.0 conflicting proposals, new bug bip 17, bip18, bip 18, OP EVAL,

P2SH, pay-to-script-hash, 0.6, 0.6.0
BTC BIP34: Include block height Corrective No bip34, bip 34, 0.7, 0.7.0, 227835, 227 835
0.7.0 in coinbase
BTC BIP50: Migrate from Corrective & perfective Accidental fork, long split, bip50, bip 50, leveldb, berkeley db, 225430,
0.8.0 Berkeley DB to LevelDB financial loss, double spend 225 430, max 4 500, reduce blocksize,

lock limit & 0.8
BTC BIP50: Database lock Corrective No -——-
0.8.1 limit & Max TxID limit
BTC BIP50: Relax database lock Corrective No -——-
0.8.1 limit & max TxID limit
BTC BIP42: 21 million supply Preventive No bip42, bip 42, 21 million, 21 000 000,
0.9.2 13,440,000, 13440000, 13 440 000 & 0.9.0
BTC BIP66: Strict DER signature Corrective Short splits, false signaling bip66, bip 66, strict der signatures,
0.10.0 0.10.0, 0.9.5
BTC BIP65: Check lock time verify Perfective No bip65, bip 65, check lock-time verify,
0.11.0 CHECKLOCKTIMEVERIFY, CLTV

, 0.10.4 & 0.11.2
BTC BIP68, BIP112, BIP113: Perfective No bip68, bip 68, bip112, bip 112, bip113, bip 113,
0.12.1 Check sequence verify Check sequence verify, Relative lock-time,

CHECKSEQUENCEVERIFY, CSV, 0.11.3, 0.12.1
BTC BIP141. BIP143. BIP147: Perfective, corrective, High risk for chain split, bip141, bip 141, bip143, bip 143, bip147, bip 147,
0.13.1 Segregated Witness adaptive & preventive slow adoption, conflicting segwit, 0.13, bip91, bip 91, bip148, bip 148,

proposals, potential network segregated witness, 481824 & 481 824
parition & complicated change

BTC CVE-2018-17144 Perfective new bug -
0.14.0
BTC Fix CVE-2018-17144 Preventive No -
0.16.3
BTC BIP341, BIP342, BIP343: Perfective & adaptive No -
0.21.1 Taproot

initial data and effectively define and evaluate codes and
categories. In practice, the data was initially indexed on a
sample basis to highlight the essence of each sample. The
process of indexing was constantly evaluated as new codes
and categories emerged. Memos were created to understand
the correlation between codes, categories, and events. One
specific code was used to highlight notable quotes that had
considerable impact on the results [36]. This code always
overlap with some other code and is labeled ”aha” to sig-
nal the aha-experience that these quotes represent. Quotes
labeled with this code were consistently revisited and were
candidates to present and support the content of this paper.

B.3.2 Axial coding

The axial coding phase was conducted by revising, com-
bining, and splitting codes and categories. Some of them
were combined with decreasing levels of granularity when
the low-level details became unhelpful in addressing the
research questions and increasing theoretical saturation. On

the other hand, some codes were split to increase granularity
and enhance insights. This stage also developed patterns
and relations within the codes and categories.

The processes of indexing samples and identifying root
causes revealed a collection of blockchain-specific issues as
highlighted in table 4. A few issues in table 4 are related to
well-known general software engineering practices, such as
introducing bugs caused by insufficient reviewing and test-
ing. Therefore, to further inspect the nature of blockchain-
specific issues and to derive lessons learned, it became
evident that the blockchain-specific issues such as chain
split, network partitioning, adoption, controversal changes,
stuck nodes, conflicting proposals and malicious behaviour
should be analysed in depth.

B.3.3 Selective coding

At this stage, the analysis revealed the main categories of the
data, their correlation, and the root causes of blockchain-
specific issues. Therefore the process of selective coding
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Fig. 9. Sample distribution among different consensus changes.

would focus on saturating these concepts. We realize the
causalities of where deployment issues are rooted and
where they surface. The lessons learned were revised to
reflect this and the relevant deployment techniques to ad-
dress all these issues are summarized. We further elaborated
on Bitcoin and other blockchains’ technocratic governance
structures to reflect on the governance structures and their
relation to the deployment techniques.

B.3.4 Constant comparison and theoretical saturation

The codes, categories and emerging theories were constantly
compared by controlling whether they made sense in terms
of the research questions and the objective domain. Samples
that no longer gave more insights were stored in a group
labeled ”not interesting” to ensure that the most relevant
and interesting logs were saturated first. It was assumed
that the samples collected in the initial search could lead
to an adequate theory in this paper. However, there was
always a possibility that the current data set was too nar-
row. Therefore the techniques of snowballing [84] and data
triangulation [37] were systematically applied.

The data saturation process led to additional findings
not identified in the initial data collection phase. The find-
ings could, for instance, be missing links from one of the
resources used in the data collection, or it could be an article
from the Bitcoin Project’s website [85], a blog post, or a
video. These new samples were systematically collected by
applying the snowballing technique. Then they were also
included in the data set if they were relevant to the research
questions, which gave a significant amount of additional

samples from resources other than the initially collected
ones.

Data triangulation was applied between the different
resources to see the same phenomena from different per-
spectives. It was possible to figure out that when something
important happened in one place, there would probably be
more to read about it from other samples. This gave a rich
data set with multiple perspectives and helped when, for
instance, the IRC chat had inconsistencies on the 2015 event
(version 0.10.0) where 2015-06-03, 2015-06-04, and 2015-06-
05 are missing. Having many other samples revealed how
this specific consensus failure was caused by custom and
lazy validation as well as spy-mining [86].

B.4 Root cause analysis
The appliance of Ishikawa diagrams [38] as seen in figure 11
further enhanced the analysis for RQ2 (lessons learned). The
identified root causes were classified within the categories
of human errors [44] to gain further insight. The differ-
ent errors were applied as codes during grounded theory
analysis as seen in section 4.2. The complementation of the
grounded theory approach with root cause analysis gave
higher confidence in covering relevant issues and gain an in
depth understanding.
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Fig. 10. Codes and categories
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Fig. 11. Ishikawa diagram - root causes


