
P
os
te
d
on

22
M
ay

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
03
10
10
5.
v
3
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Runtime Evolution of Bitcoin’s Consensus Rules

Jakob Svennevik Notland 1,1,1, Mariusz Nowostawski 2, and Jingyue Li 2

1Norwegain University of Science and Technology
2Affiliation not available

October 31, 2023

1

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Runtime Evolution of Bitcoin’s Consensus Rules
Jakob S. Notland, Mariusz Nowostawski, and Jingyue Li

Abstract—The runtime evolution of a system concerns the ability to make changes during runtime without disrupting the service.
Blockchain systems need to provide continuous service and integrity. Similar challenges have been observed in centrally controlled
distributed systems or mobile applications that handle runtime evolution, mainly by supporting compatible changes or running different
versions concurrently. However, these solutions are not applicable in the case of blockchains, and new solutions are required. This
study investigates Bitcoin consensus evolution by analysing over a decade of data from Bitcoin’s development channels using Strauss’
grounded theory approach and root cause analysis. The results show nine deployment features which form nine deployment
techniques and ten lessons learned. Our results illustrate how different deployment techniques fit different contexts and pose different
levels of consensus failure risks. Furthermore, we provide guidelines for risk minimisation during consensus rule deployment for
blockchain in general and Bitcoin in particular.

Index Terms—Bitcoin, blockchain, consensus, grounded theory, root cause analysis, runtime evolution

✦

1 INTRODUCTION

D EPLOYMENT of consensus changes are the most im-
portant yet controversial [1], [2] and error-prone [3],

[4], [5] activities in a blockchain. These changes redefine the
fundamental behaviour of a blockchain, which can affect its
security and the value of its currency. Trivial changes could
cause disruption, which potentially results in suspended
services [6], loss of mining revenue [4] and theft [7], [8].

Runtime evolution concerns the deployment of changes
in a system while it is running. The concept is most relevant
for critical systems that cannot afford to halt their services
during an upgrade [9]. The critical system in the case of
blockchains is a payment system which should constantly be
operational. Typically, challenges in runtime evolution have
been handled in distributed systems that can be centrally
controlled. A single person can practically halt or roll back
if any exceptions occur. Furthermore, distributed systems
can handle different versions running concurrently [10].

In contrast, Bitcoin and other decentralised blockchains
are autonomous systems that, by design, cannot be con-
trolled centrally [11]. The design of blockchain enables
immutability and constant uptime, which are principles
conflicting with the ability to correct flaws. Blockchains also
require all operational nodes to run compatible versions to
be part of the same consensus agreement and consistently
evaluate state changes. The differences between distributed
and decentralised systems introduce new challenges in
terms of technical and governmental aspects of runtime
evolution.

This research is conducted to understand the impli-
cations of consensus rule changes, techniques for a safe
transition and crisis management. There are two research
questions, focusing on the current practice for consensus
changes in blockchain and the lessons learned.

• J.S. Notland and J. Li are with the Department of Computer Science,
Norwegian University of Science and Technology, Trondheim, Norway.
E-mail: jakob.notland@ntnu.no, jingyue.li@ntnu.no

• M. Nowostawski are with the Department of Computer Science, Norwe-
gian University of Science and Technology, Gjøvik, Norway.
E-mail: mariusz.nowostawski@ntnu.no

Manuscript received February 19, 2023; revised April 7, 2023.

• RQ1: What techniques have been applied to deploy
consensus changes?

• RQ2: What are the lessons learned from deploying
consensus changes?

The motivation of this work is to collect knowledge
on system evolution techniques from the Bitcoin financial
system and to gather unknown known security requirements.
Unknown known security requirements may have appeared
as security incidents, but they are unknown to requirements
engineers [12]. Therefore, our proposed techniques and
security requirements may be well-known to a seasoned
Bitcoin developer. However, any other blockchain engineer
may have to shuffle through thousands of unstructured data
samples to realise these security requirements. Rashid et
al. suggest combining grounded theory (GT) analysis and
incident fault trees to discover the root of these unknown
known security requirements [12]. Similarly, we apply the
Straussian GT [13] approach in combination with Ishikawa
diagrams [14] for root cause analysis.

This study has been conducted as a qualitative analy-
sis, covering 34 consensus rule changes over more than a
decade of Bitcoin development and entails 1700 samples.
Samples correspond to email threads, forum threads, Github
issues/pulls, IRC days, formal and informal improvement
proposals.

The results from RQ1 suggest nine features as building
blocks for consensus evolution, e.g. a feature for the flag-
day-like triggering of deployments. Additionally, we pro-
pose how the building blocks can be combined into nine
deployment techniques, e.g. a blockchain community can
use the Miner Activated Reduction Fork (MARF) technique
to coordinate the super-majority deployment of backward-
compatible changes.

The results demonstrate that deployment techniques
pose a trade-off between changing the functionality of a
blockchain and maintaining the consistency of the trans-
action data and the corresponding community cohesion.
This means that blockchain engineers might have to choose
between realising consensus changes and maintaining com-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

patibility with legacy implementations and consensus par-
ticipation for all actors in the system. Sometimes partici-
pants in a blockchain community cannot agree on how to
evolve functionality consistently. In these cases, the project
might end up with forked chains such as Bitcoin Core (BTC)
versus Bitcoin Cash (BCH).

Furthermore, with experience from the Bitcoin project,
we create a systematisation of lessons learned to address
RQ2. We identify ten lessons learned as follows to cover
all the issues experienced during the evolution of Bitcoins
consensus rules:

• Missing transformation assurance
• Improper reorganisation
• Improper human interference
• Too high thresholds
• Deploying ’irreversible’ changes
• No prepared for forward compatibility
• Lacking knowledge regarding network dynamics
• Insufficient damage control
• Improper miner incentives to enforce new rules
• Insufficient incentives to review code

The main contributions of the study are:

• We propose unique features and deployment tech-
niques to enable the safer evolution of consensus
rules.

• We propose theories about the trade-offs between
consistent consensus evolution and evolving func-
tionality of the blockchains.

• We show which issues lead to consensus failure and
suggest how to avoid and handle different crisis
scenarios during deployment.

The remaining structure is as follows: Section 2 explains
the background of blockchain and describes the nature
of software and system evolution. Section 3 describes the
research design and implementation. Section 4 presents
the deployment features and techniques. Section 5 presents
lessons learned. Section 6 discusses the results. Section 7
concludes the study and proposes future work. Throughout
the article, we include inline quotes and related quotes in
Appendix Section A to strengthen our claims.

2 BACKGROUND

2.1 The Bitcoin consensus protocol
Bitcoin is ”a peer-to-peer electronic cash system” [11] con-
sisting of a chain of blocks containing transaction history,
as illustrated by Figure 1. Any new block must abide by
the consensus rules to be regarded as valid by the nodes in
the network. Miners attempt different values for the nonce
variable in a brute-force manner to produce a SHA-256 hash
based on the entire block. The miners find a valid nonce
for the block header when the resulting hash meets the
required target difficulty. The difficulty indicates that the
resulting hash must have a certain number of leading zeros.
This mechanism is known as Proof-of-Work (PoW), first
proposed to prevent email spam [15] and later applied for
cryptocurrencies [16]. In the case of Bitcoin, PoW prevents
Sybil attacks [17] and provides immutability of transaction
data. The strength of these principles is preserved by the

Fig. 1. A Bitcoin block that includes the header and the body.

Fig. 2. Choosing the longest chain in the event of a collision.

difficulty adjustment algorithm [11], ensuring that the net-
work will produce blocks with an average rate of around ten
minutes. Miners must comply with further consensus rules.
Generally, blocks and transactions must be in a valid format.
Miners are incentivised to follow these rules by collecting
fees and the block reward generated in a special coinbase
transaction with no inputs from previous transactions.

Block collisions occur when two new valid blocks are
produced at the same height at approximately the same
time. Collisions are resolved by the longest (valid) chain rule as
specified in Nakamoto’s whitepaper: ”The majority decision
is represented by the longest chain, which has the greatest
proof-of-work effort invested in it” [11]. The notion of a
valid chain is important because validness is subjective from
the implementation’s point of view. Any collision should
quickly resolve when another block is appended on top
of one of the colliding blocks. This behaviour implies that
blocks have a slight chance of being orphaned (discarded)
as illustrated in Figure 2. The informal recommendation to
prevent financial loss from orphaned blocks is to wait until
the block containing the relevant transaction has at least six
blocks built on top [18]. Collisions happen naturally, by an
attack [19], or by inconsistent consensus validation [4].

2.2 Bitcoin consensus evolution
An inherent ideology within Bitcoin, especially BTC, indi-
cates what changes are viable and which are controversial.
One quote shown in Listing 1 from the creator(s) can be seen
as a cornerstone of this ideology (other related quotes are in
Section A.1).

The nature of Bitcoin is such that once version 0.1
was released, the core design was set in stone for
the rest of its lifetime.

Listing 1. Satoshi 2010-06-17 Forum, ID: 195

The statement from Nakamoto explains that the sys-
tem itself, as well as the original specification [11] defines
Bitcoin’s fundamental behaviour. Moreover, it highlights
the importance of non-disruptive changes, no matter how
insignificant they seem. Our paper distinguishes between
Bitcoin, Bitcoin Core (BTC) and Bitcoin Cash (BCH). Bit-
coin is the idea of peer-to-peer electronic cash envisaged
by Satoshi Nakamoto. BTC implements Bitcoin, preserves
most compatibility with Nakamoto’s original implementa-
tion, and contains the highest value [20] and consensus
participation [21]. BCH is a minority fork that created an
alternative chain by introducing a backward-incompatible
consensus rule in 2017 [22].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

The BTC and BCH communities have different ap-
proaches to consensus changes. Consensus rule changes in
BTC should preferably allow backward compatibility such
that legacy nodes can accept any new behaviour, keeping
the network consistent (so-called soft forks). Backward-
incompatible changes (so-called hard forks) are preferred in
BCH and sometimes required in general if the fundamental
implementation does not work as intended. Such a change
could be essential to prevent exploits or allow for the adap-
tion and survival of the system. As shown in Listing 2, the
Bitcoin community is skeptical of consensus changes and
making them a habit because bugged or ill-intended code
may be deployed and disrupt the integrity and stability of
the system (other quotes are in Section A.2).

5. Testing. I don’t have time to personally test
every PULL request, but if a pull involves more
than trivial code changes I’m not going to pull it
unless it has been thoroughly tested. We had a very
good rule at a company I used to work for--
programmers were NOT allowed to be the only ones to
test their own code. Help finding money and/or
people for a dedicated "core bitcoin quality
assurance team" is welcome. More unit tests and
automated testing is also certainly welcome.

If this was open source blogging software I’d be
much less uptight about testing and code review and
bugs. But it’s not, it is software for handling
money.

Listing 2. 2011-08-10 Gavin Andresen Email: bitcoin-dev

In this article, we refer to conflicting blocks as chain
splits. Chain splits can be temporary; less than six blocks will
be orphaned, persistent; six or more blocks are orphaned,
or permanent; both chains are expanded independently for
all foreseeable future. An accidental chain split caused by
inconsistent validation among the nodes will be referred
to as a consensus failure. The longest chain rule is the most
fundamental factor in deciding whether a rule change is
successfully adopted in Bitcoin. The longest chain rule im-
plies that the majority of miners can apply a network-wide
backward-compatible rule change. Relying on the majority
is the preferred technique to deploy changes in BTC.

In Bitcoin, one may rely on the majority (>50%) of block-
producing nodes (n) to perform a backward-compatible
consensus change. The reason for this to work is that the
Nakamoto consensus model has a Byzantine Fault Tolerance
(BFT) [23] threshold of 50% (f). Other consensus models
might have different fault tolerance, such as 33% or 20% [24].
This paper uses the term super-majority (SM) to generalize
the minimal threshold requirement for different deployment
techniques and to describe the required threshold where
faulty nodes are equal to or less than the tolerated threshold.
A super-majority of abiding nodes (h) is denoted as h>(n-f).

Consensus changes in BTC’s history have mainly been
deployed with techniques such as IsSuperMajority (ISM)
[25] and the more established miner-activated soft fork
(MASF) [26]. Other well-known techniques are the user-
activated soft fork (UASF) [27] or BCH’s preferred user-
activated hard fork (UAHF) [22].

2.3 Software evolution
Software evolution is a field entailing processes and models
for changing software. Within this domain, there is the

subfield of runtime evolution [9]. Relevant to blockchain
and this study is mainly the challenge of avoiding service
outages while changing the running system. In the case of
blockchain, this also relies on consistency in the network,
combined with the strict requirements of partition tolerance.
Hence, minimizing the impact of a change on the con-
sistency, availability, and partition tolerance of the system
(CAP) [28] is challenging.

To distinguish and characterise consensus changes, we
initially categorise consensus changes by different types of
maintenance [9]:

• Adaptive maintenance: Change the deployed software
to adapt to a changing environment.

• Perfective maintenance: Change the deployed software
to perfect existing functionality by improving the
user experience or performance.

• Preventive maintenance: Change the deployed soft-
ware to avoid faults before they occur.

• Corrective maintenance: Change the deployed software
to correct a fault discovered.

2.4 Evolution and maintenance in distributed systems
Before the decentralised networks, there were, and still are,
distributed networks dominating sectors that blockchains
have been envisaged to handle, such as finance [29], [30],
logistics [31], [32], and healthcare [33], [34]. Researchers in
these areas use several satisfactory frameworks for main-
tenance where updates are deployed with central control
and rely on either being compatible [35] or running different
versions in parallel [36]. In these cases, changes have been
deployed with fast reboot, rolling upgrade, and big flip [10].
However, we argue that these methods are not directly
applicable when deploying consensus rule changes on a
blockchain. Firstly, known techniques are hard to coordinate
without central administration. Secondly, a consensus rule
change in a blockchain conflicts with legacy rules as it
changes the set of valid actions. Some techniques may even
drastically affect the stability of a blockchain, such as the
total hash power in the network. Thirdly, running different
versions in parallel is problematic because it may lead to
consensus failures.

3 RESEARCH DESIGN AND IMPLEMENTATION

3.1 Research motivation and research questions
Blockchain systems must evolve to meet current and future
requirements. Although there have been studies on different
kinds of consensus code changes in blockchains [37], there
continues to be a considerable lack of understanding of
how these changes should be deployed safely, and how to
handle failure modes. A flawed deployment can result in
financial loss for any invested participant or loss of faith
in the system, undermining the value of the contained
cryptocurrency.

Throughout the history of Bitcoin, there have been cases
of suspended services [6], lost mining revenue [4], and
theft [7], [8]. One example shown in Listing 3 illustrates that
consensus changes are possible reasons for critical incidents
in the blockchain (Other related quotes are in Section A.3).
Thus, timing and correctness are essential to minimize these

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

incidents’ damage. Therefore, we investigate how consensus
changes can be deployed (RQ1) and what lessons can be
learned from past failures (RQ2).

Every time that you open up the door to changing
the rules, you are opening yourselves up to attack

Listing 3. 2020-08-03 Eric Lombrozo [38]

3.2 Research method
To answer RQ1, we used a qualitative and inductive ap-
proach to achieve an insightful and holistic view of con-
sensus changes in blockchains. We chose Strauss’ approach
of grounded theory (GT) as it is more applicable to studies
with predefined research questions [39]. The GT approach
is an iterative and recursive approach where the researchers
must go back and forth until they achieve theoretical sat-
uration, i.e., when new samples stop contributing to the
developing theories. The observations done throughout the
study are covert [40], where a researcher can get the most
authentic experience of how the actors conduct a process.
Although covert observations can be ethically questionable,
it is crucial to consider that the public archives of Bitcoin
were created for this purpose and to provide transparency
and accountability.

To answer RQ2, root cause analysis has been utilized to
address lessons learned by drawing an Ishikawa diagram
[14]. The approach is similar to ”Discovering unknown
known security requirements” [12] as it also uses concepts
from GT and root cause analysis with incident fault trees.

3.3 Data collection and filtering
Considering the scope, the study started with purposive
sampling [40] of data archives, specifically Bitcoin Core’s
development channels. Samples were discovered in these
archives by purposive sampling and filtering relevant to
consensus rule changes. The selected samples were effi-
ciently sorted using flexible coding [41]. Further, we ap-
plied snowball sampling and triangulation [13] to avoid
limitations from the initial samples. A graph of the research
method implemented is outlined in Figure 3.

3.3.1 Purposive sampling
The initial step in collecting data related to the consensus
changes in Bitcoin was to identify the consensus-changing
events in Bitcoin. An exhaustive list of all the consensus
changes throughout Bitcoin Core’s history is listed in the
Bitcoin Wiki [42] and in Table 1, highlighting eventual
issues and maintenance types. Further inspection reveals
an overview of the main events and information such as
the time, block height, version number, and deployment
techniques. Development channels were identified as the
most fruitful sources, and their data was extracted to initiate
the purposive selection of samples and the filtering process.

The channels that were selected as initial data were
the Bitcoin improvement proposals (BIPs) [43], the bitcoin-
dev emails [44], the Development & Technical Discussion
topic in the Bitcoin forum [45], the code repository (pull
requests [46] and issues [47]), and IRC channels (#bitcoin-
dev and #bitcoin-core-dev [48]). The total sample count is
1700 and is available online [49]. One sample corresponds

to one proposal, one thread (email, forum and GitHub), or
one day of IRC messages. Figures 9 and 10 in Appendix
Section A depict the distribution of samples over archives
and events.

However, the sample boundary was fluid, so samples
from other domains were considered whenever they ap-
peared. These could be domains such as other Bitcoin
channels, announcements, news articles, magazines, videos,
or other cryptocurrencies. The additional sources primar-
ily strengthened the theories rather than expanding them,
which shows the relevance of the development channels
initially selected by purposive sampling.

3.3.2 Data filtering
After acquiring an overview of consensus change events
and corresponding BIP specifications, filtering was applied
to the initial data. The first data considered were emails
from the developers’ mailing list. With a relatively compact
overview of all the threads made, it was considered viable
to traverse through the titles to purposefully select relevant
samples.

After the email samples were included, the next step was
the analysis of the forum texts. However, the forum source
proved large and challenging to sort through. Therefore, a
search was conducted in two stages: first, all the threads
leading up to and surrounding the dates of each consen-
sus incident were checked for relevance and purposively
sampled. Second, the forum was filtered with the help of a
search tool targeting the Bitcoin forum [50]. This filtering ap-
proach was also applied to the GitHub search. The relevant
BIPs could be found as they directly correlate to consensus
changes and deployment techniques.

We used the search strings in Table 1 to filter the Bitcoin
forum and GitHub. We based our initial search on Bitmex’s
overview of consensus changes [51], which did not contain
the consensus changes after 2017. We used unique identi-
fiers to search for samples related to consensus changes:
Title, BIP number, changed code, and block height. The
consensus-changing events after 2017 were found later by
snowball sampling.

Regarding IRC channels, the initial plan was to focus on
the meetings conducted in Bitcoin’s history and limit the
number of samples collected in the initial phase. However,
after getting familiar with information in Bitcoin meetings,
it became clear that there were only a few meetings (four
in total) before the developers decided on weekly meetings
in the fall of 2015. Therefore, a search was conducted by
applying a few search strings that could indicate conversa-
tions about the issues of consensus changes that have taken
place. These strings were ”fork,” ”chain split,” ”stuck,”
and ”reorg”. Using grep [52], the files were traversed all
together, showing each related sentence. The whole log from
each sample was collected whenever indicating some value
or relevance.

The search strings used for IRC samples are fewer and
more general than those used for the other archives. That
is because almost as many IRC samples are available as
there are days since the first conversations from 2010. Addi-
tionally, a single IRC sample often contains discussions on
many different topics. Therefore, the search strings in Table 1
would provide too many samples, making them infeasible

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 3. Research method implementation. The oval shapes indicate processes, the lines show the process flow, the rectangular shapes indicate
data objects and the cylinders indicate archives. Different colours highlight whether the concepts relate to data sampling, grounded theory, or root
cause analysis.

TABLE 1
Overview of consensus changes in Bitcoin Core and applied search strings. Bold = blockchain specific issue.

V Consensus change Maintenance type Issues Search strings
BTC Time based locking Corrective No nLockTime
0.1.6 nLockTime
BTC CVE-2010-5137 & Corrective No CVE-2010-5137, CVE-2010-5141, 0.3.5
0.3.5 CVE-2010-5141
BTC Disable/enable opcodes Adaptive & preventive Upgrading issues OP CHECKSIG, OP NOP, 0.3.6
0.3.6 (bad dependency)
BTC Separate scriptSig & Corrective No scriptSig, scriptPubKey, 0.3.7
0.3.7 scriptPubKey
BTC Output-value-overflow Corrective Slow adoption & overflow bug, 184, CVE-2010-5139,
0.3.10 CVE-2010-5139 long split 0.3.10, 74638, 74 638
BTC 20 000-signature operation Corrective ”Irreversible” change, 0.3.12, MAX BLOCK SIZE,
0.3.12 limit & 1MB blocksize source of controversy MAX BLOCK SIGOPS, 79400 & 79 400
BTC BIP30: Duplicate transactions Corrective No bip30, bip 30, duplicate transactions
0.6.0 CVE-2012-1909
BTC BIP16: Pay-to-script-hash Perfective Stuck Nodes, slow adoption, bip12, bip 12, bip16, bip 16, bip17,
0.6.0 conflicting proposals, new bug bip 17, bip18, bip 18, OP EVAL,

P2SH, pay-to-script-hash, 0.6, 0.6.0
BTC BIP34: Include block height Corrective No bip34, bip 34, 0.7, 0.7.0, 227835, 227 835
0.7.0 in coinbase
BTC BIP50: Migrate from Corrective & perfective Accidental fork, long split, bip50, bip 50, leveldb, berkeley db, 225430,
0.8.0 Berkeley DB to LevelDB financial loss, double spend 225 430, max 4 500, reduce blocksize,

lock limit & 0.8
BTC BIP50: Database lock Corrective No (same as BTC 0.8.0)
0.8.1 limit & Max TxID limit
BTC BIP50: Relax database lock Corrective No (same as BTC 0.8.0)
0.8.1 limit & max TxID limit
BTC BIP42: 21 million supply Preventive No bip42, bip 42, 21 million, 21 000 000,
0.9.2 13,440,000, 13440000, 13 440 000 & 0.9.0
BTC BIP66: Strict DER signature Corrective Short splits, false signaling bip66, bip 66, strict der signatures,
0.10.0 0.10.0, 0.9.5
BTC BIP65: Check lock time verify Perfective No bip65, bip 65, check lock-time verify,
0.11.0 CHECKLOCKTIMEVERIFY, CLTV

, 0.10.4 & 0.11.2
BTC BIP68, BIP112, BIP113: Perfective No bip68, bip 68, bip112, bip 112, bip113, bip 113,
0.12.1 Check sequence verify Check sequence verify, Relative lock-time,

CHECKSEQUENCEVERIFY, CSV, 0.11.3, 0.12.1
BTC BIP141. BIP143. BIP147: Perfective, corrective, High risk for chain split, bip141, bip 141, bip143, bip 143, bip147, bip 147,
0.13.1 Segregated Witness adaptive & preventive slow adoption, conflicting segwit, 0.13, bip91, bip 91, bip148, bip 148,

proposals, potential network segregated witness, 481824 & 481 824
parition & complicated change

BTC CVE-2018-17144 Perfective new bug -
0.14.0
BTC Fix CVE-2018-17144 Preventive No -
0.16.3
BTC BIP341, BIP342, BIP343: Perfective & adaptive No -
0.21.1 Taproot

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

to sort out. We focused on search strings indicating how
developers assessed concerns on consensus failures during
deployment.

The size of the resulting data set of IRC samples indicates
that the search strings were accurate and broad enough to
catch relevant samples. For instance, it revealed samples
explaining how the deployment techniques were initially
implemented and further developed to avoid failure. Addi-
tionally, the logs around important dates were purposively
sampled and inspected. Finding relevant samples also be-
came simpler from the autumn of 2015 as the weekly meet-
ings could be collected. A challenge with the IRC logs has
been that the logs are somewhat dispersed between different
and inconsistent archives [53], [54], [55], [56]. Therefore,
it became clear that all the different archives had to be
considered when searching.

3.4 Data analysis
Although Strauss’ approach [13] was promising to an-
swer the research questions, it became apparent that the
grounded theory approaches describe little on how modern
data analysis tools should be utilized most effectively when
performing analysis with a large number of samples. To
cope with this, we applied flexible coding proposed in [41],
which explains ways that large sets of data can be col-
lected and coded through qualitative data analysis software
(QDAS) such as Atlas.ti [57], NVIVO [58], or MaxQDA [59].

3.4.1 Open coding
The indexing approach was applied as a specific form of
open coding to analyse large datasets using QDAS accord-
ing to the guidelines on flexible coding [41]. The purpose
is to get an overview of the initial data and effectively
define and evaluate codes and categories. In practice, the
data was initially indexed on a sample basis to highlight
the essence of each sample. The process of indexing was
constantly evaluated as new codes and categories emerged.
Memos were created to understand the correlation between
codes, categories, and events. One specific code was used
to highlight notable quotes that considerably impacted the
results [41]. This code always overlaps with some other
code and is labelled ”aha” to signal the aha experience
that these quotes represent. Quotes labelled with this code
were constantly revisited and were candidates to present
and support the content of this paper.

3.4.2 Axial coding
The axial coding phase was conducted by revising, combin-
ing, and splitting codes and categories. Some codes were
combined with decreasing levels of granularity, and others
were split to increase granularity and enhance insights. This
stage also developed patterns and relations within the codes
and categories. as shown in Figure 4.

The open and axial coding processes also revealed issues
highlighted in Table 1. A few issues in Table 1 are related
to well-known general software engineering practices, such
as introducing bugs caused by insufficient reviewing and
testing. Other issues are blockchain-specific and should be
analysed in depth. These issues include chain split, network
partitioning, adoption, controversial changes, stuck nodes,
conflicting proposals, and malicious behaviour.

3.4.3 Selective coding
The process of selective coding would focus on saturat-
ing the main categories of the data, their correlation, and
the root causes of blockchain-specific issues. We realize
the causalities of where deployment issues are rooted and
where they surface. The lessons learned were revised to
reflect this, and the measurements to address these issues
are summarized.

3.4.4 Constant comparison and theoretical saturation
The codes, categories and emerging theories were constantly
compared by controlling whether they made sense regard-
ing the research questions and the objective domain. It was
assumed that the samples collected in the initial search
could lead to an adequate theory in this paper. However,
there was always a possibility that the current data set was
too narrow. Therefore, the techniques of data saturation,
snowball sampling [60], and data triangulation [13] were
systematically applied.

The data saturation process led to additional samples
that were not found in the initial data collection phase. The
findings could, for instance, be missing links from one of
the resources used in the data collection, or it could be an
article from the Bitcoin Project’s website [61], a blog post, or
a video. These new samples were systematically collected
by applying the snowball sampling technique. The essence
of the snowball sampling technique is to include samples
found by references in the collected samples.

Data triangulation was applied between the different
resources to see the same phenomena from different per-
spectives. It was possible that when something important
happened in one place, there would probably be more to
read about from other samples. These techniques gave a rich
data set with multiple perspectives. For instance, the IRC
chat had inconsistencies on the 2015 event (version 0.10.0),
where the samples of 2015-06-03, 2015-06-04, and 2015-06-05
were missing. Many other samples also revealed how this
specific consensus failure was caused by custom and lazy
validation and spy-mining [62].

3.4.5 Root cause analysis
The appliance of Ishikawa diagrams [14] as seen in Section B
and Figure 11 in Appendix Section A further enhanced the
analysis for RQ2 (lessons learned). The identified root causes
were classified within the categories of human errors [63] to
gain further insight. The different errors were applied as
codes during the GT analysis as seen in Section 5. Com-
plementing the grounded theory approach with root cause
analysis gave higher confidence in covering relevant issues
and gaining in-depth understanding.

4 RESULTS OF RQ1 (DEPLOYMENT TECHNIQUES)
The data analysis revealed a chain of events, shown in
the timeline in Figure 5, which summarizes 34 consensus-
changing events, including 24 Bitcoin Core changes and
10 Bitcoin Cash changes. The figure indicates some is-
sues where the deployment was performed by emergency,
caused a chain split, or other problems. These issues are
further assessed in Section 5 on lessons learned.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 4. Analytical codes and categories. The relation between the categories indicates a pattern in the cycle of consensus evolution.

Fig. 5. The figure shows the timeline of consensus changes in Bitcoin Core and Bitcoin Cash. The date and order of these changes are based on
either the flag day/block for the activation, the date where the changes were activated based on signal thresholds, or when these versions were
released. The red boxes indicate some issues where the deployment was performed by emergency, caused a chain split, or other issues.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 6. The figure presents a minimal overview of analytical categories
highlighting the pattern in the development cycle: An issue sparks the
development processes, which eventually is realised by the deployment
processes. The human error category could negatively impact both
development and deployment, as further discussed in Section 5. The
social/political aspects decide whether a consensus change fork will be
deployed and which deployment techniques are utilised.

Fig. 7. The figure shows the feature-code relations. The features were
derived from low-level analytical codes and showed consensus evolu-
tion’s essential technical building blocks.

The categories discovered and applied through
grounded theory also revealed the process of defining,
implementing, and deploying consensus rules, as shown
in Figure 6. In Bitcoin’s case, these changes are usually
motivated by some issues which prevent the implementation
from providing the full service envisaged in Nakamoto’s
white paper or code. The discovery of an issue leads to de-
velopment before moving on to deployment. The nine features
for deployment were derived from the codes applied during
analysis. Figure 7 illustrates how the deployment features
were derived. These features are used in nine combinations
to define different deployment techniques that answer RQ1.

4.1 Deployment features
The features for deployment are Deployment strategy, Fork
type, Chain split risk, Parallel, Standard, Signal, Inclusive,
Threshold and Trigger.

4.1.1 Deployment strategy
The deployment strategy feature defines whether nodes
1) depend on each other to coordinate the timing of an
upgrade, i.e., miner-activated strategy. 2) The upgrade is
forced regardless of miners’ promised support, i.e., a user-
activated strategy. 3) Deployment must be forced due to an
imminent issue, i.e., emergency-activated strategy.

4.1.2 Fork type
Common terminology [64] describing different consensus
rule changes in a blockchain distinguish between hard and

soft forks. However, these concepts fail to provide an accu-
rate description when considering the low-level details of a
rule change. For instance, a hard fork has been established
as a term for rule changes that results in a permanent
chain split. However, this can also happen in a soft fork
if a minority deploys the change. Therefore, Zamyatin et
al’s terminology [37] was adopted to accurately distinguish
relevant fork types:

• Expanding: Changes that make previously illegal ac-
tions legal (commonly referred to as a hard fork).

• Reducing: Changes that restrict the set of valid actions
(commonly referred to as a soft fork).

• Bilateral: Changes that deem all previous legal actions
illegal and expand the rule set (commonly referred to
as a hard fork).

Whenever deploying rule changes to a blockchain, one
must consider the compatibility between new and old ver-
sions by understanding the fork type of the implementa-
tion. The main difference is that a reducing fork will be
backward-compatible, allowing it to be enforced by the
network with a super-majority of supporting hash power.
Therefore, a reducing fork can be desirable as miners can
keep the network consistent without relying on the whole
network to perform the deployment. As Listing 4 indi-
cates, BTC developers usually look for ways to implement
changes as reducing forks since they have desirable compat-
ibility attributes and are easier to digest for the network and
the community (Other related quotes are in Section A.4).

I belief we shold flesh out luke-jr’s idea for
cleanly deploying segregated witness in bitcoin as
a soft fork and see what that looks like.

Listing 4. Gmaxwell 2015-11-04 IRC: #bitcoin-dev

4.1.3 Chain split risk

The different fork types and deployment strategies imply
different levels of chain split risk. This feature indicates
how likely a prolonged chain split is. Applying additional
deployment features can sustain chain splits’ potential risk,
length, and impact.

4.1.4 Parallel

Another compatibility issue is whether performing several
deployments in parallel is possible. Deployments can be
conducted in parallel if the rule changes are isolated and
the deployment attributes are independent. Listing 5 shows
an example that Bitcoin adopting parallel deployments af-
ter realising that non-parallelism could become a problem
(Other related quotes are in Section A.5).

BIP 34 introduced a mechanism for doing
soft-forking (...). As it relies on comparing
version numbers as integers however, it only
supports one single change being rolled out at
once, requiring coordination between proposals, and
does not allow for permanent rejection: as long as
one soft fork is not fully rolled out, no future
one can be scheduled.

Listing 5. Pieter Wuille et al. 2015-10-04 Github, BIP9

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

4.1.5 Standard
In addition to the consensus rules, nodes can utilize relay
policies to specify what transactions they will include in
their blocks and whether they are relayed to other nodes.
This can be seen as softly enforced rules that can be applied
at any rate before activating new consensus rules, allowing
individual miners to avoid unwanted or experimental be-
haviour. A deployment conducted by gradually changing
the policies before or after the rule deployment will be
recognized by the standard feature.

4.1.6 Signal
A signal is a feature used to signal the intention to upgrade
and enforce new consensus rules in Bitcoin that are usually
represented by the version bits in the block header or a
string in the coinbase transaction message. Other imple-
mentations of on-chain signals observed are multi-signature
commitments to the chain as implemented in Dash [65]. The
signals make deployment more predictable and allow the
measurement of total hash power support on the network.
Listing 6 is one example describing the first approach to sig-
nalling to deploy pay-to-script-hash (Other related quotes
are in Section A.6).

when 50% of the last N coinbases contain "I support
FOOFEATURE", it’s enabled

Listing 6. Luke-jr 2011-10-02 IRC: #bitcoin-dev

On-chain signalling provides confidence that a signifi-
cant portion of miners will behave according to the new
rules. However, a signal can also come in other forms, such
as a verbal agreement. This happened once in Bitcoin’s
history during the deployment of BIP 30, as illustrated in
Listing 7 (Other related quotes are in Section A.7).

<gavinandresen> luke-jr: you’re a mining pool
operator, would you be willing to coordinate with
the other big pools to get this fixed quickly[?]

Listing 7. gavinandresen 2012-02-17 IRC: #bitcoin-dev

4.1.7 Inclusive
The signals are most helpful on-chain, where they can be
interpreted by validating nodes to coordinate an upgrade.
They can also be used to exclude blocks mined by non-
signalling nodes to persuade them to upgrade and avoid
unwanted behaviour. This behaviour is defined by the in-
clusive feature. An inclusive fork will continue to append
blocks from miners that do not intend to validate by the
new rules. In contrast, an exclusive fork will stop accepting
blocks from miners who do not show intention to validate
by new rules. This restriction can be lifted after a certain
time or if the deployment fails.

4.1.8 Threshold
Activation and enforcement of consensus rule changes can
happen in stages, which can be controlled by the threshold
feature. One deployment technique may implement several
thresholds. For instance, the first threshold enforces rules for
all signalling nodes. The second threshold enforces the rules
for all nodes. Having several thresholds is a trade-off. On
the one hand, the first threshold incentivises miners to stay
true to their intention of validating by the new rules. On the

other hand, every threshold is a potential trigger for consen-
sus failure. This is possibly one of the reasons that Bitcoin
ceased using two-stage activation by ISM (IsSuperMajority)
[25]. The activation thresholds are most relevant for miner-
activated strategies because they rely on coordination with
other nodes. The thresholds should be at least the super-
majority (>50% in Bitcoin) to preserve consistency, ensuring
enforcement on the longest chain.

4.1.9 Trigger
When the threshold is reached, the trigger feature will
enforce activation. The activation is triggered dynamically,
statically, or instantly. Using a rolling window to decide
the timing for miner-activated strategies dynamically can
be desirable. A rolling window trigger will determine the
amount of support based on a number of recent blocks. The
most primitive trigger can be based on a static flag day (FD)
or block height (BH), as used for user-activated strategies
and demonstrated by Nakamoto, as shown in Listing 8
(Other related quotes are in Section A.8). Instant triggers are
utilized in the urgency of an emergency and are adopted
as soon as they are rolled out to prevent or resolve exploits
or consensus failures. The static and instant triggers have a
higher risk as they do not guarantee that a super-majority
of miners will prevent a chain split when the rules activate.

if (blocknumber > 115000)
maxblocksize = largerlimit

It can start being in versions way ahead, so by the
time it reaches that block number and goes into
effect, the older versions that don’t have it are
already obsolete.

Listing 8. Satoshi 2010-10-03 Forum, ID: 1347

4.2 Deployment techniques
Our first contribution is to define nine possible consensus
change deployment techniques. These techniques have dif-
ferent qualities indicated by the inherited chain split risk.
Our findings do not necessarily indicate that one technique
is better than the other. Instead, some techniques are more
viable than others depending on the context. Therefore we
suggest the theory that choosing a deployment technique
is a trade-off between the functionality and consistency of
the blockchain and its community. This is a spectrum. On
the one hand, if the whole community supports a fork, then
it can be deployed without causing a chain split. On the
other hand, if a fork does not have unanimous support, then
different techniques can be used to persuade the network to
move together or split the chain if the new functionality is
more important than maintaining consistency.

Furthermore, deployment techniques preserve consis-
tency and predictability for the parties involved in deploy-
ment. We summarize nine deployment techniques, shown in
Table 3. The techniques are defined as a combination of two
deployment features: 1) The fork type (expanding, reducing,
or bilateral) and 2) the deployment strategy (miner, user,
or emergency). For each deployment technique, the optimal
combination to reduce the risk and impact of a chain split is
shown using the remaining deployment features.

An overview of Bitcoin’s evolution over time and the de-
ployment features utilized are depicted in Table 2. This sec-
tion presents the nine deployment techniques (Table 3) and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

three special cases. The features in Table 3 are highlighted
as essential, useful, or insignificant (-) for the corresponding
technique. The only feature with consistent behaviour across
all the deployment techniques is parallel because it can
always be useful to allow several deployments in flight
simultaneously.

4.2.1 Miner-activated reduction fork (MARF)
The MARF deployment technique is the only technique with
a low chain split risk when deployed using all the available
deployment features. Like all miner-activated techniques,
it should rely on coordination between miners in the net-
work. The coordination is achieved by relying on signals
from other miners to reach at least super-majority support.
However, a higher threshold is desirable to reduce the chain
split risk. A dynamic trigger ensures that the threshold is
reached before triggering the activation.

4.2.2 Miner-activated expansion fork (MAEF)
Expansion forks will cause legacy nodes to deviate from
patched nodes when the behaviour of new rules appears in
blocks. Thus the chain split risk is high, and the network
will only stay consistent with 100% adoption. A super-
majority threshold can reduce the impact of a split by
keeping patched nodes together on the new chain from the
time of activation. With less than super-majority adoption,
the patched nodes will continue to follow the legacy chain
as new blocks violating the legacy rules will be discarded
due to the longest chain rule. This can cause frequent chain
splits depending on the adoption percentage, as shown in
Figure 8. The issue of low adoption can also be avoided by
exclusiveness to enforce the discarding of all legacy blocks,
causing patched nodes to follow their own path of the valid
longest chain.

4.2.3 Miner-activated bilateral fork (MABF)
Bilateral forks carry the property that patched nodes will
never create valid blocks according to legacy nodes and vice
versa. Therefore, it is only possible to avoid a chain split
with 100% adoption. Choosing any activation threshold less
than 100% carries less utility in limiting the impact of a chain
split, and there can only be one split. However, it can be
helpful to demand a certain amount of support to ensure
that the patched nodes can provide sufficient security and
reliable service for the patched network.

4.2.4 User-activated reduction fork (UARF)
When moving over to the domain of user-activated forks,
the deployment has a different objective. In contrast to
keeping the network consistent, it is more important that
the fork activate regardless. Therefore, such a fork does
not require any threshold and should activate by a static
trigger. Furthermore, the exclusion is essential since the
updated consensus rules cannot be expected to reach a
super-majority. Exclusion ensures that the deployment may
only cause a single chain split. However, including legacy
nodes will cause chain splits every time the new rules are
violated. The standard feature can be essential for UARF to
discriminate against upcoming rule-breaking transactions.
As shown in Listing 9, feather-forking can be a viable

technique to persuade other nodes to upgrade by actively
attempting to orphan legacy blocks (Other related quotes
are in Section A.9).

A feather-fork is when a miner refuses to mine on
any chain that includes a transaction it doesn’t
like in the most recent several blocks.

Listing 9. Socrates1024 2013-10-17 Forum, ID: 312668

4.2.5 User-activated expansion fork (UAEF)
UAEF requires all nodes to upgrade to avoid a chain split
and is mainly applied when expecting full network adop-
tion with high confidence. This property was observed as
the preferable deployment technique for consensus changes
in both BCH and Ethereum. In these cases, the forks have
usually held high or unanimous support from the com-
munity. Changes are implemented in different node dis-
tributions and are expected to be adopted by the time of
activation. Exclusion must be applied if there is any doubt
of super-majority adoption. Otherwise, the upgraded nodes
might follow the legacy chain even after adoption, as it
might be the longest valid chain, as illustrated in Figure 8.
However, if there is doubt, implementing a bilateral fork
will be more beneficial in avoiding influence from legacy
nodes, just like when BCH forked off BTC by UABF [22].

4.2.6 User-activated bilateral fork (UABF)
The most outstanding example of a UABF is the activation
of BCH. The fork became bilateral by demanding that the
first block produced after activation was larger than 1 MB.
Hence, legacy nodes would never accept the patched chain,
and patched nodes would never accept the legacy chain.
Bilateral forks ensure that a permanent chain split will
commence and there will be two different cryptocurrencies.

4.2.7 Emergency-activated reduction fork (EARF)
Emergency-activated deployment strategies are required
when the implementation does not work as specified, and
a consensus failure has already occurred or might occur.
One of the earliest cases, when the implementation did not
work as intended, was seen in BTC 0.3.10 with the overflow
bug where a seemingly valid transaction could be created
to generate additional bitcoins. An example of a consensus
failure was when BTC 0.8.0 deployed a new database, and it
caused a chain split. The third case, a potential exploit, can
be illustrated by the inflation bug in version 0.14.0, which
was discovered before being exploited. All of these deploy-
ments were EARFs. It is useful for EARF deployments to
be inclusive to allow unpatched nodes to reorganize and
generate blocks on the valid chain originating from the
reduction fork when it becomes the longest.

An interesting observation in BTC 0.3.10 and 0.8.0 is that
miners performed a rollback of blocks, deviating from the
longest valid chain rule and Bitcoin’s immutability property
to reach consensus. First, the overflow bug was so severe
that the consensus rules had to be changed such that the
chain containing the malicious transaction would be re-
jected. During the consensus failure caused by the database
deployment (BTC 0.8.0), there was a need to downgrade
nodes even though the new chain was the longest and valid
according to the specification. That was because it was the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 2
Deployed rule changes in BTC and BCH. Star(*) = Forked repository. Triggers: BH = Block height, FD = Flagday, and RW = Rolling window.

V Consensus change Deployment Fork Chain Parallel Standard Signal Inclusive Threshold Trigger
Strategy Type split risk

BTC Time based locking UA RF Medium Yes No None Inclusive None BH
0.1.6 nLockTime
BTC CVE-2010-5137 & EA RF Medium Yes No None Inclusive None Instant
0.3.5 CVE-2010-5141
BTC Disable/enable opcodes EA EF & RF High Yes No None Inclusive None Instant
0.3.6 hybrid
BTC Separate scriptSig & EA EF & RF High Yes No None Inclusive None Instant
0.3.7 scriptPubKey hybrid
BTC Output-value-overflow EA RF Medium Yes No None Inclusive None Instant
0.3.10 CVE-2010-5139
BTC 20 000-signature operation UA RF Medium Yes No None Inclusive None BH
0.3.12 limit & 1 MB blocksize
BTC BIP30: Duplicate transactions MA RF Low Yes No Offchain Inclusive >50% FD
0.6.0 CVE-2012-1909 agreement
BTC BIP16: Pay-to-script-hash MA RF Low Yes No Coinbase Inclusive 55% FD
0.6.0 vote
BTC BIP34: Include block height MA RF Low No No VersionBits Exclusive 75%/95% RW
0.7.0 in coinbase
BTC BIP50: Migrate from UA EF non- High Yes No None Inclusive None Instant
0.8.0 Berkeley DB to LevelDB deterministic
BTC BIP50: Rollback EA RF Medium Yes No None Inclusive None Instant
0.7.0
BTC BIP50: Database lock limit & UA RF Medium Yes No None Inclusive None Instant
0.8.1 Max TxID limit temporarily
BTC BIP50: Relax database lock UA EF High Yes No None Inclusive None FD
0.8.1 limit & Max TxID limit
BTC BIP42: 21 million supply UA RF Medium Yes No None Inclusive None Instant
0.9.2
BTC BIP66: Strict DER signature MA RF Low No Yes VersionBits Exclusive 75%/95% RW
0.10.0
BTC BIP65: Check lock time verify MA RF Low No No VersionBits Exclusive 75%/95% RW
0.11.2
BTC BIP68, BIP112, BIP113: MA RF Low Yes No VersionBits Inclusive 95% RW
0.12.1 Check sequence verify
BTC BIP141, BIP143, BIP146: MA RF Low Yes Yes VersionBits Inclusive 95% RW
0.13.1 Segregated Witness service bits
BTC CVE-2018-17144 UA EF High Yes No None Inclusive None Instant
0.14.0
BTC* BIP148: Segregated Witness UA RF Medium Yes Yes VersionBits Exclusive None FD
0.14.0 temporarily
BTC* SegWit2x/BIP91: MA RF Low Yes Yes VersionBits Inclusive 80% RW
0.14.1 Segregated Witness
BCHN Block size fork UA BF High Yes No None Exclusive None FD
0.14.5
BCHN LOW S & NULLFAIL & UA EF & RF High Yes Yes None Inclusive None FD
0.16.0 difficulty adjustment hybrid
BCHN Block size increase & UA EF High Yes No None Inclusive None FD
0.17.0 enable opcodes
BCHN Various rule changes UA EF & RF High Yes No None Inclusive None FD
0.18.0 hybrid
BCHN Fix CVE-2018-17144 EA RF Medium Yes No None Inclusive None Instant
0.18.2
BTC Fix CVE-2018-17144 EA RF Medium Yes No None Inclusive None Instant
0.16.3
BCHN Schnorr signatures & UA EF High Yes No None Inclusive None FD
0.19.0 SegWit recovery
BCHN Schnorr signatures for UA EF & RF High Yes No None Inclusive None FD
0.19.12 multisig & script attributes hybrid
BCHN SigChecks & UA EF High Yes No None Inclusive None FD
0.21.0 Reversebytes opcode
BCHN ASERT Difficulty algorithm UA BF High Yes No None Inclusive None FD
22.0.0
BCHN Lift transaction chain limit & UA EF High Yes No None Inclusive None FD
23.0.0 Multiple OP RETURN outputs
BTC BIP341, BIP342, BIP343: MA RF Low Yes Yes VersionBits Inclusive 90% RW
0.21.1 Taproot
BCHN CHIP-2021-03 UA EF High Yes No None Inclusive None FD
24.0.0 CHIP 2021-02

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 3
Deployment techniques. The notations indicate whether the features are required to reduce the chain split risk and the impact of a chain split:
Bold: Essential, Itallic: Useful, -: Insignificant. The abbrevations are: Miner-activated (MA), user-activated (UA), emergency-activated (EA),

reduction fork (RF), expansion fork (EF), bilateral fork (BF), and super-majority (SM)

Deployment Fork Chain Parallel Standard Signal Inclusive Threshold Trigger Example consenus
strategy type split risk rule change
MA RF Low Yes Yes Yes Exclusive SM Dynamic Reduce max blocksize
MA EF High Yes Yes Yes Exclusive 100% Dynamic Increase max blocksize
MA BF High Yes Yes Yes - 100% Dynamic Increase max blocksize &

set min blocksize >legacy blocksize
UA RF Medium Yes Yes Yes Exclusive None Static Reduce max blocksize
UA EF High Yes Yes Yes Exclusive None Static Increase max blocksize
UA BF High Yes Yes Yes - None Static Increase max blocksize &

set min blocksize >legacy blocksize
EA RF Medium Yes - - Inclusive None Instant Reduce max blocksize
EA EF High Yes - - Exclusive None Instant Increase max blocksize
EA BF High Yes - - - None Instant Increase max blocksize &

set min blocksize >legacy blocksize

Fig. 8. Inclusive expansion forks can cause frequent chain splits before gaining super-majority adoption.

most conservative approach to keep compatibility with old
nodes and because many merchants and users were likely
to follow the legacy chain. Listing 10 shows that it was
not obvious to downgrade and deviate from the longest
chain rule. Furthermore, Listing 11 highlights that users and
services depended on the legacy chain (Other related quotes
are in Section A.10).

<Luke-Jr> gavinandresen: sipa: jgarzik: can we get
a consensus on recommendation for miners to
downgrade?
(...)
<gavinandresen> the 0.8 fork is longer, yes? So
majority hashpower is 0.8....
<Luke-Jr> gavinandresen: but 0.8 fork is not
compatible

Listing 10. Luke-Jr & gavinandresen 2013-03-12 IRC: #bitcoin-dev

Doesn’t matter which chain is longer if a majority
of the people aren’t on it. Breaking changes need
to be given lots of warning to be effective. Trying
to force everyone to use 0.8 would have only made
the situation worse. From the chat discussion, I
don’t think mtgox was using 0.8. So trading at the
largest exchange would be halted until it could be
upgraded. If that doesn’t sound disastrous, I’m not
sure what does.

Listing 11. nevafuse 2013-03-13 Forum, ID: 152470

There is no point in signalling or waiting for a certain
threshold in the urgency of emergency activation. If the
flaw is exploited, the triggering will happen naturally as
soon as the bug in question triggers a consensus failure. The
exclusion happens naturally because legacy nodes violating
the rules of the EARF will be orphaned. In addition, gradual
soft enforcement by standard relay policies becomes unnec-
essary since the rule changes of an emergency fork require
instant consensus enforcement.

4.2.8 Emergency-activated expansion fork (EAEF)
Deploying EAEF alone can be risky as it might not be-
come widely adopted on a network basis. Miners might
be reluctant to deploy a hasty and radical expansion of the
consensus rules. Anything less than 100% adoption could
cause a permanent chain split if never fully adopted. This
encourages miners rather perform an emergency-activated
reduction fork if feasible, as it is the safer alternative.

Figure 8 illustrate the problem that patched nodes might
keep jumping back to the legacy blockchain as long as that
is the longest. This will eventually be resolved as soon as
the super-majority of miners work on the expanded blocks,
and that chain will become the longest. However, legacy
nodes will still work on the legacy chain as they do not see
the expansion blocks as valid. The BIP50 consensus failure
caused by BTC 0.8.0 might have looked somewhat like the
EAEF figure before making a persistent chain split, although
that cannot be assessed without access to the orphaned
blocks.

4.2.9 Emergency-activated bilateral fork (EABF)
This deployment technique has not been observed in any
known upgrade. However, one could imagine the BCH fork
being deployed with EABF as a reaction to revert the SegWit
deployment. In that case, the patched chain would have to
roll back to a block before the first SegWit-block was created
and create a conflicting block.

4.2.10 Special cases
In addition to the nine deployment techniques, there are
three special cases. These cases fit into more than one of the
defined techniques:

• Temporary reduction forks (related to MARF, UARF,
and EARF)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

2056 // Special short−term limits to avoid 10,000 BDB lock limit:
2057 if (GetBlockTime() >= 1363867200 && // start enforcing 21 March

2013, noon GMT
2058 GetBlockTime() < 1368576000) // stop enforcing 15 May 2013

00:00:00
2059 {
2060 // Rule is: #unique txids referenced <= 4,500
2061 // ... to prevent 10,000 BDB lock exhaustion on old clients
2062 set<uint256> setTxIn;
2063 for (size t i = 0; i < vtx.size() ; i++)
2064 {
2065 setTxIn. insert (vtx[i]. GetHash());
2066 if (i == 0) continue; // skip coinbase txin
2067 BOOST FOREACH(const CTxIn& txin, vtx[i].vin)
2068 setTxIn. insert (txin .prevout.hash);
2069 }
2070 size t nTxids = setTxIn.size () ;
2071 if (nTxids > 4500)
2072 return error(”CheckBlock() : 15 May maxlocks violation”);
2073 }

Listing 12. Code snippet illustrating a temporary reduction fork
from BTC 0.8.1 [66]

• Hybrid deployment (related to all deployment tech-
niques)

• Non-deterministic forks (relate to all deployment
techniques)

In addition to ordinary activation at time T, a tempo-
rary reduction fork has a predefined deactivation time. BTC
0.8.1 demonstrated a temporary reduction fork shown in
Listing 12. The code defines a temporal reduction that was
activated on 2013-03-21 and deactivated on 2013-05-15 (lines
2057 & 2058). The code for the temporary reduction counts
transaction IDs (TxIDs) (lines 2062-2069) and enforces the
limitation (lines 2071 & 2072). The limit of 4,500 TxIDs was
assumed low enough to avoid reaching the database lock
limit of 10,000.

Temporarily reduction forks can also be illustrated by an
example from Bitcoin’s legacy: The 1 MB limit was initially
applied as a reduction fork. However, expanding that limit
would not require an expansion fork if the limit had a
predefined deactivation time. Then the community would
have years to find a solution or delay the issue by another
temporary reduction fork before the end time. Legacy nodes
can still accept all blocks created under the reduction fork,
while patched nodes will know the start and end-time.

A hybrid deployment is another special case where
different fork types are deployed together. This technique
inherits the attributes of the most disruptive fork type
regarding chain split risk. That is in the following order:
BF>EF>RF. Hybrid deployment with combinations of ex-
pansion and reduction forks has become a relatively com-
mon practice in BCH, which performed hybrid deployments
in BCHN 0.16.0, BCHN, 0.18.0, and BCHN 0.19.12. Combin-
ing several forks into one deployment is practical because
it limits the number of deployments where the network is
exposed.

The non-deterministic forks are best explained by the
example of BIP50 and the upgrades deployed with BTC 0.8.0
and BTC 0.8.1. The implementations contained a MAX -
BLOCK SIZE of 1 MB. However, this rule was often overrun
by the default database locks setting in pre-0.8.0 nodes that
were too small to handle certain large blocks containing
many transactions. The problem would surface long before
the consensus failure because blocks used too many locks

led to reorganisation. This caused many nodes to run cus-
tom configurations. Listing 13 shows the problem surfacing
one year before the consensus failure and that some miners
had to set custom lock limits (Other related quotes are
in Section A.11).

<TD> EXCEPTION: 11DbException
<TD> Db::put: Cannot allocate memory
<TD> bitcoin in ProcessMessage()
<TD> ProcessMessage(block, 5798 bytes) FAILED
<TD> received block 00000000000001c0a13e
<TD> REORGANIZE
(...)
<DrHaribo> sturles said he got out of memory errors
without being out of memory, and that adding locks
and lockers fixed it

Listing 13. sipa, TD & DrHaribo 2012-03-10 IRC: #bitcoin-dev

Furthermore, the Berkeley Database would behave in-
consistently depending on the underlying hardware. The
result is that chain splits and stuck nodes appear non-
deterministic. Listing 14 describes how nodes running iden-
tical code would result in a non-deterministic fork depend-
ing on how the blockchain is stored on disk (Other related
quotes are in Section A.11).

(...) contents of each node’s blkindex.dat database
is not identical, and the number of locks required
depends on the exact arrangement of the
blkindex.dat on disk (locks are acquired per-page).

Listing 14. Gavin Andresen 2013-03-20 BIP50

When the database was changed in BTC 0.8.0, the new
implementation would handle the locks differently and
always be able to handle the edge-case blocks. The legacy
nodes with custom lock limits would also handle these
blocks. On the contrary, a non-deterministic set of the legacy
node implementations would regard these blocks as in-
valid, causing a chain split. The fork was non-deterministic
because of the inconsistent compatibility to blocks among
legacy nodes running the same protocol.

5 RESULTS OF RQ2 (LESSONS LEARNED)
All consensus rule changes in a blockchain can be a liability
as they increase the attack surface. The deployment process
itself can disrupt the community as conflicts arise. Lessons
learned from Bitcoin deployments are synthesised to min-
imise the risk of future deployments in any blockchain. The
GT and root cause analysis derive these lessons as seen in
the Ishikawa diagram in Figure 11 in Appendix Section B.

The human error categories [63] were used as codes in
the GT analysis to classify the issues discovered in the root
cause analysis. These are 1) Skill-based errors, i.e., execution
failure: Slips and lapses. 2) Mistakes, i.e., planning failures:
Rule-based (RB) mistakes and knowledge-based (KB) mis-
takes. 3) Violations: Routine violations, e.g., laziness and
4) exceptional violations, e.g., sabotage. Table 4 shows the
lessons derived, the impacted deployment features, their
corresponding error categories, and the affected Bitcoin
versions.

5.1 Missing transformation assurance
The most dangerous forks are those deployed by accident.
They occur either because existing consensus rules are ex-
ploitable or new rules are deployed by accident. Accidental

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 4
Lessons learned, impacted features, corresponding error categories and impacted Bitcoin versions.

ID Lesson Impacted features Error categories Negatvely affected versions
L1 Missing transformation assurance Fork type RB Mistake BTC 0.8.0, BTC 0.14.0, BCHN 0.17.0
L2 Improper reorganisation - Lapse, KB Mistake BTC 0.3.10, Before BTC 0.8.0, BTC 0.8.0
L3 Improper human interference Trigger Lapse, RB mistake, BTC 0.6.0

KB mistake
L4 Too high thresholds Threshold, inclusive & RB Mistake BTC 0.13.1

deployment strategy
L5 Deplyoing ’irreversible’ changes Fork type KB Mistake BTC 0.3.12
L6 Not prepared for forward Fork type, standard & KB Mistake BTC 0.7.0, BTC 0.10.0, BTC 0.11.2

compatibility parallelism
L7 Lacking knowledge regarding Signal KB Mistake -

network dynamics
L8 Insufficient damage control - KB Mistake BTC 0.8.0
L9 Improper miner incentives - Routine violation, BTC 0.10.0

to enforce new rules Exceptional violation
L10 Insufficient incentices to review the code - Routine violation BTC 0.8.0, BTC 0.14.0, BCHN 0.17.0

forks are not safely deployed using the deployment features
and will have a high risk of a chain split. This error is seen as
an RB mistake because developers misclassify the fork-type
feature of the given code change. As proposed in Listing 15,
the most obvious remedy is to perform extensive testing
and review, although further assurance is required (Other
related quotes are in Section A.12).

The review process is definetly a good idea, I dont
know if it provides as much security as people
assume it does. One thing that slip past one person
may as well slip past ten people or whatever.

Listing 15. 2020-06-23 Luke-Jr [67]

The lack of transformation assurance in Bitcoin has
caused an accidental chain split on one occasion (BTC 0.8.0)
and allowed a serious bug to enter the code (BTC 0.14.0).
However, Bitcoin has never had an accidental chain split
caused by compatibility issues due to cross-node imple-
mentation, although the split in Ethereum’s Berlin UAEF
[68] demonstrates this. To avoid bad code from entering
deployment and accidental chain splits, techniques to
provide assurances [69] of consensus rule transformation
in blockchain must become widely adopted and further
developed.

Having several implementations can both cause and
detect invalid transformations. Although BTC mainly relies
on a single implementation, many cryptocurrencies, such as
BCH, use multiple different implementations, all of which
should follow the same consensus rules. Running testing
on a test network with different implementations increases
the chance of discovering transformation issues before de-
ployment. However, as pointed out in Listing 16, having
different implementations increase the risk of causing trans-
formation issues (Other related quotes are in Section A.13).

Diversity is good and may help discover issues. But
as Gavin was saying and as I like to point out: The
most dangerous kind of failure in bitcoin isn’t an
implementation bug- any blockchain validation
inconsistencies in widely deployed implementations
are significantly worse than pretty much anything
other than a full private key leak or remote root
exploit... and are even harder to avoid.

Listing 16. Gmaxwell 2012-10-28 Forum, ID: 120836

5.2 Improper reorganisation
In case of an accidental split, nodes must be prepared
to handle reorganisation to coordinate everyone to work
on the same chain. Some nodes have been forced to re-
download the whole blockchain. However, the original
slow initial block download (IBD) [70] made it troublesome
(BTC 0.3.10). Moreover, the database lock limit caused stuck
nodes during reorganisations before BTC 0.8.0 (see expla-
nation in Section 4.2.10). Some nodes would also wipe the
existing mempool on reboot, making it harder to detect
double-spend attempts (BTC 0.8.0). Measurements should
be taken to keep the current state of valid blocks and
pending transactions when performing an emergency
fork, enabling a swift recovery. The error leading to slow
reorganisation could be a lapse in the case where node
operators, in a weak moment, delete the whole blockchain
on reboot and patch. It can also be a KB mistake where
developers defining the code for reorganisations did not
have the knowledge and experience to handle them prop-
erly. Listing 17 shows the issue of quickly reorganising
the blockchain during the BTC 0.3.10 EARF (Other related
quotes are in Section A.14).

knightmb, do you still have any of your monster
network available to turn on to help build the new
valid chain?

Listing 17. Insti 2010-08-15 Forum, ID: 823

5.3 Improper human interference
Bitcoin’s early history shows improper handling of de-
ployment features. This happened in the pay-to-script-hash
upgrade. The BTC developers manually set and moved the
flag day trigger depending on whether the threshold was
reached (BTC 0.6.0). The threshold was not met in time for
the first flag day, and nodes had to update to change the
new flag day. Some nodes did not catch this in time and lost
track of the correct chain as an invalid pay-to-script-hash
transaction was mined after the first flag day. The error can
be seen as an RB mistake from the developers’ side, which
had false expectations for node operators. It could also be
a KB mistake from the node operators’ side if they were
unaware of the changed flag day or a lapse in case they
forgot to update in time. The error in the pay-to-script-hash

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

deployment demonstrates that dynamic thresholds must be
incorporated into the software, not changed manually.

Deployment features should not be changed during de-
ployment because each change acts as a fork by itself and is
a liability. In addition, developers should not alter ongoing
deployment without giving time to review changes. That
can be severe as it can allow the inclusion of flawed or ill-
intended changes at the last minute.

5.4 Too high thresholds

High thresholds are crucial to onboard hash power during
deployment. The threshold feature is relevant in combi-
nation with the deployment strategy feature since miner-
activated strategies utilize thresholds. The Segwit deploy-
ment (BTC 0.13.1) showed that high thresholds, such as
95%, are troublesome because it allows a >5% minority
veto as shown in Listing 18 (Other related quotes are
in Section A.15). The error can be seen as an RB mistake
because SegWit was falsely considered non-controversial.
The slow adoption of SegWit engaged using the less safe
user-activated strategy to overthrow non-signalling nodes
using the inclusive feature to exclude the opponents.

Activation is dependent on near unanimous hashrate
signalling which may be impractical and is also
subject to veto by a small minority of
non-signalling hashrate.

Listing 18. Shaolinfry 2017-04-06 Email: bitcoin-dev

BTC demonstrated some changes to avoid issues with
high thresholds in the most recent Taproot upgrade (BTC
0.21.1). They changed the activation threshold to 90% to
reduce the decision-making time and intended to use user-
activated deployment if the miner-activated deployment
failed. Another method to cope with high thresholds is
gradually decreasing the threshold towards the lower limit
of the super-majority. Dash’s dynamic activation thresholds
utilize this technique where the initial limit is 80% and is
gradually reduced to 60% [71]. However, there is a trade-off
that lower thresholds are more likely to disrupt consensus.

5.5 Deploying ’irreversible’ changes

Changes conducted with reduction forks should be applied
carefully, as they might only be reverted if the nodes are
willing to adopt future expansion forks. Nakamoto could
probably never have imagined the fuzz caused by his 1
MB block size reduction created as a remedy for denial-
of-service (BTC 0.3.12). So far, this reduction is nearly ir-
reversible in practice for the expansion-reluctant BTC com-
munity. Therefore, it can be valuable to consider the fork
type of temporary reduction forks when there is any doubt
whether such a reduction fork should be permanent. The
error is classified as a KB mistake because the developer did
not foresee the future challenges of expanding the consensus
rules. Listing 19, shows frustration for the ’irreversible’
block size limit since the early days of Bitcoin (Other related
quotes are in Section A.16.

I’m very uncomfortable with this block size limit
rule. This is a "protocol-rule" (not a
"client-rule"), what makes it almost impossible to
change once you have enough different softwares

running the protocol. Take SMTP as an example...
it’s unchangeable.

Listing 19. Caveden 2010-11-20 Forum, ID: 1347

5.6 Not prepared for forward compatibility
Nakamoto implemented support for Bitcoin to be forward-
compatible. As shown in Listing 20, he created domains of
undefined behaviour by initially defining block versions,
transaction versions, and later OP NOP opcodes (BTC 0.3.6)
(Other related quotes are in Section A.17). This facilitates
specifying future changes as reduction forks, which are
safer. Most of the planned reduction forks in Bitcoin have
depended on forward compatibility. To ensure forward
compatibility, a blockchain should be defined with do-
mains of undefined functionality, such as version numbers
and empty opcodes.
(...) OP_EVAL == OP_NOP1 can be safely rolled out
as soon as 50% of the miners upgraded

Listing 20. Sipa 2011-10-02 IRC: #bitcoin-dev

Forward compatibility was further adopted when Seg-
Wit was created. The developers defined a 4-byte nVersion
field to allow future changes to the script specification to
be created as reduction forks (BTC 0.13.1, BTC 0.21.1). The
error of not preparing for forward compatibility can be
seen as a KB mistake, as developers might not be aware
of future compatibility issues. However, some people in the
BCH community and many other blockchain projects (e.g.,
Ethereum and Dash) do not value compatibility between
versions. They instead perform less safe expansion forks if
that makes the end product more elegant. This can be seen
as choosing functionality over consistency.

The standard feature can be used to facilitate forward
compatibility. This was done for all consensus rules deal-
ing with malleability (BTC 0.10.0, BTC 0.13.1, BTC* 0.14.0,
BTC* 0.14.1, BCHN 0.16.0, and BTC 0.21.1). All the rule
changes related to malleability were already softly enforced
by standardness. The standard nodes would minimize the
success of malleability attacks before activating the consen-
sus change by not including or relaying those transactions.

Additionally, the parallel feature is relevant to forward
compatibility as it makes it possible to perform several
deployments simultaneously or sequentially. This was
not the case for the first established deployment method
ISM used in BTC 0.7.0, BTC 0.10.0, and BTC 0.11.2. These
versions were deployed without forward compatibility and
would not allow other deployments in parallel. Further-
more, this technique permanently consumed versionBits. So,
they could never be used in a reduction fork again.

5.7 Lacking knowledge regarding network dynamics
Some rule changes may require nodes to broadcast addi-
tional information to other nodes in the network. The worst-
case outcome of this behaviour could be that the network
would create partitions of nodes that could only validate
blocks made within that partition. Therefore, changes in
the peer-to-peer network must be handled to enable com-
patibility with legacy nodes and avoid network partition.

A potential error of network partitioning would be a
KB mistake because of the lack of knowledge regarding

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

network dynamics. For instance, the extension blocks intro-
duced for SegWit contain signature data the legacy nodes
would not recognise or relay. As seen in Listing 21 the
peer-to-peer network relied on the signal feature by using
a service bit for a node to signal the ability to provide
the witness data (BTC 0.13.1) (Other related quotes are
in Section A.18).

To ensure that the network is not partitioned and
that segwit blocks are being passed to segwit
enabled nodes, a Core 0.13.1 node will use its
outgoing connection slots to connect to as many
nodes with the NODE_WITNESS service bit as possible
(...)

Listing 21. achow101 2016-11-26 Forum, ID: 1682183

5.8 Insufficient damage control

Forks are necessary for the evolution of blockchains. As
history has proven and Murphy’s law will ensure, consen-
sus failures will occur in the future. End-users and miners
should take measurements to perform damage control.
Past failures to perform these measurements would be a
KB mistake because the actors did not know or did not have
experience with chain splits.

These measurements would be to detect a chain split and
suspend transactions or increase the number of confirma-
tions required. In the past, merchants have been subject to
double-spend attacks, and pool funds have been drained by
miners working on the chain that eventually orphaned (BTC
0.8.0, Listing 22, other related quotes are in Section A.19).
In Bitcoin, there are mechanisms for detecting chain splits.
Additionally, one can run nodes with different versions
to monitor that they stay on the same chain. Listing 23
discusses some ways to perform damage control in case
of a consensus failure. The simplest solution in case of
a consensus failure is to stop accepting and processing
transactions (Listing 24).

I’ve lost way too much money in the last 24 hours

Listing 22. Eleuthria 2013-03-12 IRC: #bitcoin-dev

So I think the only way Mallory gets free beer from
you with segwit soft-fork is if:
- you’re running out of date software and you’re
ignoring warnings to upgrade (block versions have
bumped)
- you’ve turned off standardness checks
- you’re accepting low-confirmation transactions
- you’re not using any double-spend detection
service

Listing 23. Erisian 2015-12-18 Email: bitcoin-dev

If you’re unsure, please stop processing
transactions.

Listing 24. Pieter Wuille 2013-03-12 Email: bitcoin-dev

Replay attacks can be performed by re-broadcasting
transactions from one chain to another in the event of a per-
manent chain split. To prevent this attack, one of the chains
should implement replay protection [8]. BCH implements
replay protection for all planned consensus changes [72].

Some damage control can be prepared up front, e.g., by
incorporating a kill switch mechanism [73] to activate an
emergency rollback. However, this kill-switch mechanism

increases the risk of centralisation and foreign interference
if a single person or a closed community holds it.

5.9 Improper miner incentives to enforce new rules
Even though miners give a signal for an upgrade in blocks,
this does not guarantee that these miners will enforce the
new rules. Simple-payment-verification (SPV) mining has
become popular because less validation gives an advantage
in the block race. The incentive mechanism in Bitcoin re-
wards the first valid block, and the tradeoff between the
risk of not being first and the risk of being invalid may
favour being first, as it was seen in BTC 0.10.0 [4] (Listing 25,
other related quotes are in Section A.20). The grace time
between the time of reaching the first threshold and the time
of activation added through BIP9 [26] was likely included
because of this incident to give miners some time to ensure
proper validation in time for activation.

If there is a cost to verifying transactions in a
received block, then there is an incentive to *not
verify transactions*. However, this is balanced by
the a risk of mining atop an invalid block.

Listing 25. nathan 2015-07-11 Email: bitcoin-dev

This error is caused by routine or exceptional viola-
tions where miners generate blocks without performing
validation. Measurements should be taken to incentivise
validation. For instance, Ethereum’s slashing mechanism
[74] discourages reckless behaviour. Alternatively, Dash in-
centivises validation by requiring collateral for master nodes
[75] and giving them extra rewards.

5.10 Insufficient incentives to review the code
Another incentive issue concerns reviewing code. Most ac-
tors in Bitcoin benefit from having bug-free code deployed
in the network to secure the currency’s value. However,
testing and reviewing can be tricky, costly, and tedious.
The average Bitcoin participant (e.g., end-users and miners)
would not even have the skills to perform that task. The
stakes might be high for anyone pushing code that affects
the network badly, as it may harshly influence their repu-
tation. At the same time, there needs to be more incentive
to encourage spending substantial time and resources on
secure development and code review. The lack of incentives
could make developers lazy and errors are made by routine
violations.

Many of the critical bugs contained in Bitcoin have been
fixed since its conception, and new ones arise as developers
make mistakes (BTC 0.8.0, BTC 0.14.0, and BCHN 0.17.0).
However, these mistakes are not for developers to bear alone
but for those who naively adopt flawed code. A project
directly incentivising its development is Dash, where 10%
of block rewards are allocated to development [76]. The
takeaway for this lesson is that blockchain communities
should allocate incentives to review code and minimise
the chance of bugs being accepted into production.

6 DISCUSSION

6.1 Comparison with related work
The available literature on the evolution of Bitcoin mainly
concerns socio-technical aspects of governance [77], [78] and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

their economics [79]. For instance, [77] addresses ”how and
when code development practices combine into a pattern of
self-organizing.” Deployment of consensus rules is slightly
mentioned in the paper as a practice that can result in com-
peting infrastructures. Our research builds upon their work
by showing how to tame the evolution of the infrastructure.

Kiffer et al. [8] evaluate the event of the Decentralised
Autonomous Organization (DAO) hack in Ethereum and
replay attacks. The case of Ethereum’s chain split is relevant
for damage control. This paper provides a bigger picture by
showing how chain splits appear and how to resolve them.

Abortable and adaptable consensus [80], [81], [82] are
similar because they look at how and when the network
should switch to an arbitrary consensus algorithm. The
main goal for switching the consensus protocol is to gain
performance when needed and increase fault tolerance
when the network fails. However, abortable and adaptable
consensus does not discuss much about how the switching
mechanism should work to perform deployment in a decen-
tralised environment. Our paper encompasses any consen-
sus change and entails changing the consensus algorithm.

The similarities between open source software and
blockchain evolution are seen in the decision-making on
a code repository level [83], [84]. Anyone is free to pro-
pose a change, and it is up to the repository’s maintainers
whether they want to include that change. However, the
decision is not only based on the maintainers’ preference
in blockchain but also on the opinion of the community,
miners and possibly developers of other implementations
of the same protocol. Even when a change is included in a
code repository, it does not mean the network will adopt it.

The adoption rate of a new network protocol spans sev-
eral years, does not require a specific threshold for adoption,
and can tolerate different versions running in parallel [85].
In contrast, blockchain relies on abandoning old consensus
rules by activating new ones. BTC and TLS are similar
in that they value backward compatibility to allow nodes
running old protocols to be part of the network during and
after an upgrade.

The most significant difference when comparing
blockchain deployment techniques to techniques in dis-
tributed systems, such as fast reboot, rolling upgrade, and
big flip [10], is that blockchain is decentralised, and the
network must reach a consensus before changes can be
activated. The system reaches consensus through unique
deployment features, such as standardness, signals, thresh-
olds, and inclusiveness.

6.2 Implications

To our knowledge, this research is the first to present a
holistic overview of deployment techniques for runtime
evolution in blockchains. The deployment processes of con-
sensus rule changes in the blockchain are vital as they can
cause and remedy consensus failures. By generalizing the
adoption logic of blockchain, this paper can contribute to the
field of self-adaptive systems where processes for runtime
evolution of new domain logic require further exploration
[86].

Our findings apply to any decentralised blockchain.
Regardless of how practitioners perform consensus rule

evolution today, their method is a variant of those covered
by our paper. Our work can provide guidance on how to
strengthen the existing practices of consensus evolution to
avoid failures. Further, we summarise deployment tech-
niques and best practices for different scenarios, such as
planned consensus deployment or emergency deployment.

Practitioners can utilize the contributions of this paper
to perform consensus rule changes predictably and safely.
Our results present a comprehensive overview of measure-
ments to avoid and handle consensus failure. The lessons
learned in Bitcoin are valuable to prevent history from
repeating itself. These lessons can strengthen the security
of blockchains, hinder direct financial loss, and preserve
blockchains’ value as cryptocurrencies.

Interestingly, BTC is not necessarily a trendsetter in the
space yet. Their conservative approach favouring miner-
activated reduction forks (MARFs) and predictable con-
sensus support by using signals and thresholds is unique.
Most other blockchains are willing to drastically change
the consensus rules by expansion forks and make older
nodes obsolete by the use of user-activated expansion forks
(UAEFs) and a flag day to set the activation time. UAEF
deployment can be reasonably safe to avoid chain splits
as long as the network and community act unanimously.
However, as blockchains mature and communities become
content, they may prefer more conservative and predictable
approaches to consensus evolution, similar to BTC.

6.3 Threats to validity
The sheer amount of data and the limited number of re-
searchers dedicated to this project may raise questions about
missing data or analysis. Regular cross-author discussions
have evaluated the analysis and results to address this. All
the samples used for the analysis are also available at [49].
We have gathered a holistic picture of Bitcoin evolution and
other blockchains outside the initial domain by conducting
rigorous data collection through snowball sampling and tri-
angulation. The results are also strengthened by combining
GT with root cause analysis.

This study seeks to avoid bias by looking at other viable
projects with similar attributes, such as BCH, Ethereum and
Dash. Different actors have different concerns, and results
are represented by diverse perspectives provided by those
who have worked on Bitcoin over the last decade. We
included additional quotes in Appendix Section A to show
different people from different times supporting our claims.
The thoroughness applied in this study gives confidence
that the results apply to different blockchain architectures.

7 CONCLUSION AND FUTURE WORK

Safe deployment of consensus rules in blockchains is vital to
hinder failures causing financial losses for miners and end-
users. The paper demonstrates an extensive study using the
grounded theory approach, flexible coding, and root cause
analysis to address these issues. This study specifies nine
deployment techniques for blockchain with nine different
features. Additionally, the study shows how contention may
arise during consensus rule changes in Bitcoin, resulting in
ten lessons learned. The findings bring novel insights to
promote a safe evolution of blockchains.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

Decision-making and governance of the consensus rules
were intentionally left out of scope for this study to focus
solely on the technical approaches and the implications of
consensus change. However, the decision-making progress
in blockchain communities is exciting and differentiates
itself from typical open-source projects. Therefore, these
aspects should be explored further.

The greatest challenge in blockchain evolution is com-
patibility and transformation assurance [87]. Like adaptive
systems, blockchain systems would benefit from identifying
whether a change is a fork and what type of fork it will
be. One future work is to study transformation assurance to
reduce the risk of deployment failures significantly. Another
future work is to handle deployments in a multichain envi-
ronment. Various research indicates that these environments
will rely on middleware to relay actions across chains.
We believe that this middleware must be responsible for
listening to and triggering changes based on the deployment
techniques used in the attached chains.

ACKNOWLEDGMENTS

This work is jointly supported by the National Key Research
and Development Program of China (No.2019YFE0105500)
and the Research Council of Norway (No.309494).

REFERENCES

[1] A. V. Wirdum. (2020) The battle for p2sh: The
untold story of the first bitcoin war. Bitcoin Magazine.
[Online]. Available: https://bitcoinmagazine.com/technical/the-
battle-for-p2sh-the-untold-story-of-the-first-bitcoin-war

[2] ——. (2017) The long road to segwit: How bitcoin’s biggest pro-
tocol upgrade became reality. Bitcoin Magazine. [Online]. Avail-
able: https://bitcoinmagazine.com/technical/the-long-road-to-
segwit-how-bitcoins-biggest-protocol-upgrade-became-reality

[3] G. Andresen. (2014) March 2013 chain fork post-mortem.
Bitcoin Core. [Online]. Available: https://github.com/bitcoin/
bips/blob/master/bip-0050.mediawiki

[4] Bitcoin.org. (2015) Some miners generating invalid blocks.
Bitcoin.org. [Online]. Available: https://bitcoin.org/en/alert/
2015-07-04-spv-mining

[5] B. Core. (2018) Cve-2018-17144 full disclosure. Bitcoin Core. [On-
line]. Available: https://bitcoincore.org/en/2018/09/20/notice/

[6] C. Harper. (2021) Open ethereum clients encounter ‘consensus
error’ after berlin hard fork; coinbase pauses eth withdrawals.
CoinDesk. [Online]. Available: https://www.coindesk.com/
tech/2021/04/15/open-ethereum-clients-encounter-consensus-
error-after-berlin-hard-fork-coinbase-pauses-eth-withdrawals/

[7] Bitcoin.org. (2013) A successful double spend us$10000 against
okpay this morning. Simple Machines Forum. [Online]. Available:
https://bitcointalk.org/index.php?topic=152348

[8] L. Kiffer, D. Levin, and A. Mislove, “Stick a fork in it:
analysing the ethereum network partition,” in Proceedings of
the 16th ACM Workshop on Hot Topics in Networks. New
York, NY, USA: ACM, 2017, pp. 94–100. [Online]. Available:
https://doi.org/10.1145/3152434.3152449

[9] T. Mens, “Introduction and roadmap: History and challenges of
software evolution,” in Software evolution. Berlin, Heidelberg:
Springer, 2008, pp. 1–11.

[10] E. A. Brewer, “Lessons from giant-scale services,” IEEE Internet
computing, vol. 5, no. 4, pp. 46–55, 2001.

[11] S. Nakamoto. (2008) Bitcoin: A peer-to-peer electronic cash system.
Bitcoin.org. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[12] A. Rashid, S. A. A. Naqvi, R. Ramdhany, M. Edwards,
R. Chitchyan, and M. A. Babar, “Discovering ”unknown known”
security requirements,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 866–876.
[Online]. Available: https://doi.org/10.1145/2884781.2884785

[13] J. Corbin and A. Strauss, Basics of qualitative research: Techniques and
procedures for developing grounded theory. London, England, UK:
Sage publications, 2014.

[14] K. Ishikawa, Guide to quality control. Hong Kong: Asian Produc-
tivity Organization, 1982.

[15] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Advances in Cryptology — CRYPTO’ 92, E. F. Brickell, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 139–147.

[16] M. Jakobsson and A. Juels, Proofs of Work and Bread Pudding
Protocols(Extended Abstract). Boston, MA: Springer US, 1999, pp.
258–272. [Online]. Available: https://doi.org/10.1007/978-0-387-
35568-9 18

[17] J. R. Douceur, “The sybil attack,” in Peer-to-Peer Systems, P. Dr-
uschel, F. Kaashoek, and A. Rowstron, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 251–260.

[18] M. Rosenfeld, “analysis of hashrate-based double spending,”
arXiv preprint arXiv:1402.2009, vol. abs/1402.2009, 2014. [Online].
Available: https://doi.org/10.48550/arXiv.1402.2009

[19] S. Sayeed and H. Marco-Gisbert, “Assessing blockchain consensus
and security mechanisms against the 51% attack,” Applied Sciences,
vol. 9, no. 9, p. 1788, 2019.

[20] Coinmarketcap. (2023) Today’s cryptocurrency prices
by market cap. Coinmarketcap. [Online]. Available:
https://coinmarketcap.com/

[21] bitinfocharts. (2023) Bitcoin, bitcoin cash hashrate historical chart.
bitinfocharts. [Online]. Available: https://bitinfocharts.com/
comparison/hashrate-btc-bch.html#3y

[22] bitcoincash.org. (2017) Uahf technical spec-
ification. bitcoincash.org. [Online]. Available:
https://github.com/bitcoincashorg/bitcoincash.org/blob/
master/spec/uahf-technical-spec.md

[23] L. Lamport, R. Shostak, and M. Pease, “The byzantine
generals problem,” ACM Trans. Program. Lang. Syst., vol. 4,
no. 3, p. 382–401, jul 1982. [Online]. Available: https:
//doi.org/10.1145/357172.357176

[24] H. Knudsen, J. S. Notland, P. H. Haro, T. B. Raeder, and J. Li,
Consensus in Blockchain Systems with Low Network Throughput:
A Systematic Mapping Study. New York, NY, USA: Association
for Computing Machinery, 2021, p. 15–23. [Online]. Available:
https://doi.org/10.1145/3475992.3475995

[25] P. Todd. (2014) Op checklocktimeverify. Bitcoin Core. [Online].
Available: https://github.com/bitcoin/bips/blob/master/bip-
0065.mediawiki

[26] P. Wuille, P. Todd, G. Maxwell, and R. Russel. (2015) Version bits
with timeout and delay. Bitcoin Core. [Online]. Available: https:
//github.com/bitcoin/bips/blob/master/bip-0009.mediawiki

[27] S. Fry. (2017) Mandatory activation of segwit deployment.
Bitcoin Core. [Online]. Available: https://github.com/bitcoin/
bips/blob/master/bip-0148.mediawiki

[28] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” Acm Sigact
News, vol. 33, no. 2, pp. 51–59, 2002.

[29] A. Tapscott and D. Tapscott, “How blockchain is changing fi-
nance,” Harvard Business Review, vol. 1, no. 9, pp. 2–5, 2017.

[30] P. Treleaven, R. G. Brown, and D. Yang, “Blockchain technology in
finance,” Computer, vol. 50, no. 9, pp. 14–17, 2017.

[31] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, “Blockchain
technology and its relationships to sustainable supply chain man-
agement,” International Journal of Production Research, vol. 57, no. 7,
pp. 2117–2135, 2019.

[32] K. Korpela, J. Hallikas, and T. Dahlberg, “Digital supply chain
transformation toward blockchain integration,” in proceedings of
the 50th Hawaii international conference on system sciences. Manoa
Hawaii, USA: ScholarSpace, 2017, pp. 4182–4191.

[33] M. Mettler, “Blockchain technology in healthcare: The revolution
starts here,” in 2016 IEEE 18th international conference on e-health
networking, applications and services (Healthcom). Munich, Ger-
many: IEEE, 2016, pp. 1–3.

[34] T. McGhin, K.-K. R. Choo, C. Z. Liu, and D. He, “Blockchain in
healthcare applications: Research challenges and opportunities,”
Journal of Network and Computer Applications, vol. 135, pp. 62–75,
2019.

[35] J. Kramer and J. Magee, “The evolving philosophers problem:
Dynamic change management,” IEEE Transactions on software engi-
neering, vol. 16, no. 11, pp. 1293–1306, 1990.

[36] S. Ajmani, B. Liskov, and L. Shrira, “Modular software upgrades
for distributed systems,” in ECOOP 2006 – Object-Oriented Pro-

https://bitcoinmagazine.com/technical/the-battle-for-p2sh-the-untold-story-of-the-first-bitcoin-war
https://bitcoinmagazine.com/technical/the-battle-for-p2sh-the-untold-story-of-the-first-bitcoin-war
https://bitcoinmagazine.com/technical/the-long-road-to-segwit-how-bitcoins-biggest-protocol-upgrade-became-reality
https://bitcoinmagazine.com/technical/the-long-road-to-segwit-how-bitcoins-biggest-protocol-upgrade-became-reality
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://bitcoin.org/en/alert/2015-07-04-spv-mining
https://bitcoin.org/en/alert/2015-07-04-spv-mining
https://bitcoincore.org/en/2018/09/20/notice/
https://www.coindesk.com/tech/2021/04/15/open-ethereum-clients-encounter-consensus-error-after-berlin-hard-fork-coinbase-pauses-eth-withdrawals/
https://www.coindesk.com/tech/2021/04/15/open-ethereum-clients-encounter-consensus-error-after-berlin-hard-fork-coinbase-pauses-eth-withdrawals/
https://www.coindesk.com/tech/2021/04/15/open-ethereum-clients-encounter-consensus-error-after-berlin-hard-fork-coinbase-pauses-eth-withdrawals/
https://bitcointalk.org/index.php?topic=152348
https://doi.org/10.1145/3152434.3152449
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/2884781.2884785
https://doi.org/10.1007/978-0-387-35568-9_18
https://doi.org/10.1007/978-0-387-35568-9_18
https://doi.org/10.48550/arXiv.1402.2009
https://coinmarketcap.com/
https://bitinfocharts.com/comparison/hashrate-btc-bch.html#3y
https://bitinfocharts.com/comparison/hashrate-btc-bch.html#3y
https://github.com/bitcoincashorg/bitcoincash.org/blob/master/spec/uahf-technical-spec.md
https://github.com/bitcoincashorg/bitcoincash.org/blob/master/spec/uahf-technical-spec.md
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/3475992.3475995
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0148.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0148.mediawiki

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

gramming, D. Thomas, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 452–476.

[37] A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl,
and W. J. Knottenbelt, “A wild velvet fork appears! inclusive
blockchain protocol changes in practice,” in International Confer-
ence on Financial Cryptography and Data Security. Berlin, Heidel-
berg: Springer, 2018, pp. 31–42.

[38] E. Lombrozo. (2020) Bitcoin magazine’s independence
day: Activating taproot with eric lombrozo and
luke dashjr. Bitcoin Magazine. [Online]. Available:
https://www.youtube.com/watch?v=yQZb0RDyFCQ

[39] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in
software engineering research: A critical review and guidelines,”
in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: Association for
Computing Machinery, 2016, pp. 120—-131. [Online]. Available:
https://doi.org/10.1145/2884781.2884833

[40] B. J. Oates, “Researching information systems and computing,”
2006.

[41] N. M. Deterding and M. C. Waters, “Flexible coding of in-depth
interviews: A twenty-first-century approach,” Sociological methods
& research, vol. 50, no. 2, pp. 708–739, 2021.

[42] B. Wiki. (2022) Consensus versions. Bitcoin Wiki. [Online].
Available: https://en.bitcoin.it/wiki/Consensus versions

[43] B. Core. (2021) Bitcoin core integration/staging tree. Bitcoin Core.
[Online]. Available: https://github.com/bitcoin/bips

[44] L. Foundation. (2022) Bitcoin-dev email list. Linux Foundation.
[Online]. Available: https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/

[45] S. M. Forum. (2021) Bitcoin forum. Simple Machines Forum.
[Online]. Available: https://bitcointalk.org/

[46] B. Core. (2021) Pull requests. Bitcoin Core. [Online]. Available:
https://github.com/bitcoin/bitcoin/pulls

[47] ——. (2021) Issues. Bitcoin Core. [Online]. Available: https:
//github.com/bitcoin/bitcoin/issues

[48] B. wiki. (2020) Irc channels. Bitcoin Core. [Online]. Available:
https://en.bitcoin.it/IRC channels

[49] J. S. Notland. (2022) Exported samples. Norwegian
University of Technology and Science. [Online]. Available:
https://folk.ntnu.no/jakobsn/Runtime%20Evolution%20of%
20Bitcoin’s%20Consensus%20Rules/exported%20samples.zip

[50] Ninjastic. (2021) Ninjastic.space. Ninjastic.space. [Online].
Available: https://ninjastic.space

[51] B. Research. (2017) A complete history of bitcoin’s consensus
forks. BitMex. [Online]. Available: https://blog.bitmex.com/
bitcoins-consensus-forks/

[52] T. F. S. Foundation. (2020) Gnu grep. the Free Software Foundation.
[Online]. Available: https://www.gnu.org/software/grep/

[53] Erisian. (2021) bitcoin-core-dev. Erisian Consulting. [Online].
Available: https://www.erisian.com.au/bitcoin-core-dev/

[54] ——. (2021) bitcoin-dev. Erisian Consulting. [Online]. Available:
https://www.erisian.com.au/bitcoin-dev/

[55] BuildingBitcoin. (2019) bitcoin-dev. buildingbitcoin. [Online].
Available: https://buildingbitcoin.org/bitcoin-dev/

[56] Erisian. (2018) bitcoin-dev. Erisian Consulting. [Online]. Available:
http://azure.erisian.com.au/∼aj/tmp/irc/

[57] Atlas.ti. (2022) All-in-one research software. ATLAS.ti Scientific
Software Development GmbH. [Online]. Available: https:
//atlasti.com/

[58] NVIVO. (2022) Qualitative data analysis software. QSR Interna-
tional. [Online]. Available: https://www.qsrinternational.com/
nvivo-qualitative-data-analysis-software/home

[59] MAXQDA. (2022) Organize. code. analyse. present. VERBI GmbH.
[Online]. Available: https://www.maxqda.com/

[60] J. Penrod, D. B. Preston, R. E. Cain, and M. T. Starks, “A discussion
of chain referral as a method of sampling hard-to-reach popula-
tions,” Journal of Transcultural nursing, vol. 14, no. 2, pp. 100–107,
2003.

[61] Bitcoin.org. (2022) Bitcoin is an innovative payment network
and a new kind of money. Bitcoin.org. [Online]. Available:
https://bitcoin.org/

[62] B. Research. (2017) Empty block data by mining pool. BitMex.
[Online]. Available: https://blog.bitmex.com/empty-block-data-
by-mining-pool/

[63] J. Reason, Human error. New York, NY, USA: Cambridge univer-
sity press, 1990.

[64] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder,
Bitcoin and cryptocurrency technologies: a comprehensive introduction.
Princeton, New Jersey, USA: Princeton University Press, 2016.

[65] Dash. (2018) Introducing long living masternode quorums.
Dash Core. [Online]. Available: https://www.dash.org/blog/
introducing-long-living-masternode-quorums/

[66] G. Andresen. (2013) Before 15 may, limit created block size
to 500k. Bitcoin Core. [Online]. Available: https://github.com/
bitcoin/bitcoin/blob/v0.8.1/src/main.cpp

[67] Luke-jr. (2020) Segwit/psbt vulnerability (cve-2020-14199) with
luke dashjr — bitdevsla. BitDevsLA. [Online]. Available:
https://www.youtube.com/watch?v=CojixIMgg3c

[68] C. Harper. (2021) Open ethereum clients encounter ‘consensus
error’ after berlin hard fork; coinbase pauses eth withdrawals.
CoinDesk. [Online]. Available: https://www.coindesk.com/
tech/2021/04/15/open-ethereum-clients-encounter-consensus-
error-after-berlin-hard-fork-coinbase-pauses-eth-withdrawals/

[69] R. d. Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson,
M. Litoiu, B. Schmerl, D. Weyns, L. Baresi, N. Bencomo et al.,
“Software engineering for self-adaptive systems: Research chal-
lenges in the provision of assurances,” in Software Engineering for
Self-Adaptive Systems III. Assurances. Berlin, Heidelberg: Springer,
2017, pp. 3–30.

[70] Bitcoin.org. (2022) Running a full node. Bitcoin.org.
[Online]. Available: https://bitcoin.org/en/full-node#initial-
block-downloadibd

[71] PastaPastaPasta. (2020) Dash core 0.16.0.1 release announcement.
Dash Core. [Online]. Available: https://github.com/dashpay/
dash/releases/tag/v0.16.0.1

[72] B. C. Node. (2017) Buip-hf digest for replay protected signature
verification across hard forks. Bitcoin-ABC. [Online]. Available:
https://gitlab.com/bitcoin-cash-node/bchn-sw/bitcoincash-
upgrade-specifications/-/blob/master/spec/replay-protected-
sighash.md

[73] D. Core. (2021) sporks. Dash Core. [Online]. Available: https:
//docs.dash.org/en/stable/introduction/features.html#sporks

[74] Ethereum.org. (2022) Proof-of-stake and security. Ethereum.
[Online]. Available: https://ethereum.org/en/developers/docs/
consensus-mechanisms/pos/#pos-and-security

[75] I. Dash Core Group. (2022) Understanding masternodes.
Dash Core. [Online]. Available: https://docs.dash.org/en/
stable/masternodes/understanding.html

[76] I. Dash Core Group, Inc. (2021) Understanding dash governance.
Dash Core. [Online]. Available: https://docs.dash.org/en/stable/
governance/understanding.html

[77] J. V. Andersen and C. I. Bogusz, “Patterns of self-organising in
the bitcoin online community: Code forking as organising in
digital infrastructure.” in ICIS. Seoul, South Korea: AIS, 2017.
[Online]. Available: https://pure.itu.dk/portal//files/83566552/
ICIS revision 2017.pdf

[78] P. De Filippi and B. Loveluck, “The invisible politics of
bitcoin: governance crisis of a decentralised infrastructure,”
Internet Policy Review, vol. 5, no. 4, 2016. [Online]. Available:
https://papers.ssrn.com/sol3/papers.cfm?abstract id=2852691

[79] J. A. Kroll, I. C. Davey, and E. W. Felten, “The economics of bitcoin
mining, or bitcoin in the presence of adversaries,” in Proceedings
of WEIS, no. 11, Washington, DC. 37th and O Streets, Rafik
B. Hariri Building, Washington, DC 20057, United States: ISE,
2013. [Online]. Available: http://www.infosecon.net/workshop/
downloads/2013/pdf/The Economics of Bitcoin Mining, or
Bitcoin in the Presence of Adversaries.pdf

[80] W. Chen, “Abortable consensus and its application to probabilistic
atomic broadcast,” Technical Report MSR-TR-2006-135, Tech. Rep.,
2007.

[81] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma, and
M. Vukolić, “The next 700 bft protocols,” ACM Trans.
Comput. Syst., vol. 32, no. 4, jan 2015. [Online]. Available:
https://doi.org/10.1145/2658994

[82] J.-P. Bahsoun, R. Guerraoui, and A. Shoker, “Making bft protocols
really adaptive,” in 2015 IEEE International Parallel and Distributed
Processing Symposium. Hyderabad, India: IEEE, 2015, pp. 904–913.

[83] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. Van Deursen,
“Communication in open source software development mailing
lists,” in 2013 10th Working Conference on Mining Software Reposito-
ries (MSR). San Francisco, CA, USA: IEEE, 2013, pp. 277–286.

[84] P. N. Sharma, B. T. R. Savarimuthu, and N. Stanger, “Extracting ra-
tionale for open source software development decisions—a study

https://www.youtube.com/watch?v=yQZb0RDyFCQ
https://doi.org/10.1145/2884781.2884833
https://en.bitcoin.it/wiki/Consensus_versions
https://github.com/bitcoin/bips
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/
https://bitcointalk.org/
https://github.com/bitcoin/bitcoin/pulls
https://github.com/bitcoin/bitcoin/issues
https://github.com/bitcoin/bitcoin/issues
https://en.bitcoin.it/IRC_channels
https://folk.ntnu.no/jakobsn/Runtime%20Evolution%20of%20Bitcoin's%20Consensus%20Rules/exported%20samples.zip
https://folk.ntnu.no/jakobsn/Runtime%20Evolution%20of%20Bitcoin's%20Consensus%20Rules/exported%20samples.zip
https://ninjastic.space
https://blog.bitmex.com/bitcoins-consensus-forks/
https://blog.bitmex.com/bitcoins-consensus-forks/
https://www.gnu.org/software/grep/
https://www.erisian.com.au/bitcoin-core-dev/
https://www.erisian.com.au/bitcoin-dev/
https://buildingbitcoin.org/bitcoin-dev/
http://azure.erisian.com.au/~aj/tmp/irc/
https://atlasti.com/
https://atlasti.com/
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
https://www.maxqda.com/
https://bitcoin.org/
https://blog.bitmex.com/empty-block-data-by-mining-pool/
https://blog.bitmex.com/empty-block-data-by-mining-pool/
https://www.dash.org/blog/introducing-long-living-masternode-quorums/
https://www.dash.org/blog/introducing-long-living-masternode-quorums/
https://github.com/bitcoin/bitcoin/blob/v0.8.1/src/main.cpp
https://github.com/bitcoin/bitcoin/blob/v0.8.1/src/main.cpp
https://www.youtube.com/watch?v=CojixIMgg3c
https://www.coindesk.com/tech/2021/04/15/open-ethereum-clients-encounter-consensus-error-after-berlin-hard-fork-coinbase-pauses-eth-withdrawals/
https://www.coindesk.com/tech/2021/04/15/open-ethereum-clients-encounter-consensus-error-after-berlin-hard-fork-coinbase-pauses-eth-withdrawals/
https://www.coindesk.com/tech/2021/04/15/open-ethereum-clients-encounter-consensus-error-after-berlin-hard-fork-coinbase-pauses-eth-withdrawals/
https://bitcoin.org/en/full-node#initial-block-downloadibd
https://bitcoin.org/en/full-node#initial-block-downloadibd
https://github.com/dashpay/dash/releases/tag/v0.16.0.1
https://github.com/dashpay/dash/releases/tag/v0.16.0.1
https://gitlab.com/bitcoin-cash-node/bchn-sw/bitcoincash-upgrade-specifications/-/blob/master/spec/replay-protected-sighash.md
https://gitlab.com/bitcoin-cash-node/bchn-sw/bitcoincash-upgrade-specifications/-/blob/master/spec/replay-protected-sighash.md
https://gitlab.com/bitcoin-cash-node/bchn-sw/bitcoincash-upgrade-specifications/-/blob/master/spec/replay-protected-sighash.md
https://docs.dash.org/en/stable/introduction/features.html#sporks
https://docs.dash.org/en/stable/introduction/features.html#sporks
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/#pos-and-security
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/#pos-and-security
https://docs.dash.org/en/stable/masternodes/understanding.html
https://docs.dash.org/en/stable/masternodes/understanding.html
https://docs.dash.org/en/stable/governance/understanding.html
https://docs.dash.org/en/stable/governance/understanding.html
https://pure.itu.dk/portal//files/83566552/ICIS_revision_2017.pdf
https://pure.itu.dk/portal//files/83566552/ICIS_revision_2017.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2852691
http://www.infosecon.net/workshop/downloads/2013/pdf/The_Economics_of_Bitcoin_Mining,_or_Bitcoin_in_the_Presence_of_Adversaries.pdf
http://www.infosecon.net/workshop/downloads/2013/pdf/The_Economics_of_Bitcoin_Mining,_or_Bitcoin_in_the_Presence_of_Adversaries.pdf
http://www.infosecon.net/workshop/downloads/2013/pdf/The_Economics_of_Bitcoin_Mining,_or_Bitcoin_in_the_Presence_of_Adversaries.pdf
https://doi.org/10.1145/2658994

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

of python email archives,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). Madrid, ES: IEEE, 2021,
pp. 1008–1019.

[85] R. Holz, J. Hiller, J. Amann, A. Razaghpanah, T. Jost, N. Vallina-
Rodriguez, and O. Hohlfeld, “Tracking the deployment of tls 1.3
on the web: A story of experimentation and centralization,” ACM
SIGCOMM Computer Communication Review, vol. 50, no. 3, pp. 3–
15, 2020.

[86] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson,
M. Litoiu, B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel,
D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y. Brun,
B. Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs,
K. M. Göschka, A. Gorla, V. Grassi, P. Inverardi, G. Karsai,
J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii,
R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzè, C. Prehofer,
W. Schäfer, R. Schlichting, D. B. Smith, J. P. Sousa, L. Tahvildari,
K. Wong, and J. Wuttke, Software Engineering for Self-Adaptive
Systems: A Second Research Roadmap. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 1–32. [Online]. Available:
https://doi.org/10.1007/978-3-642-35813-5 1

[87] R. d. Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson,
M. Litoiu, B. Schmerl, D. Weyns, L. Baresi, N. Bencomo et al.,
“Software engineering for self-adaptive systems: Research chal-
lenges in the provision of assurances,” in Software Engineering for
Self-Adaptive Systems III. Assurances. Berlin, Heidelberg: Springer,
2017, pp. 3–30.

[88] T. Ohno, Toyota production system: beyond large-scale production. crc
Press, 1988.

https://doi.org/10.1007/978-3-642-35813-5_1

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

APPENDIX A
SUPPLEMENTARY QUOTES

This appendix lists additional quotes to support those al-
ready presented in the main article. The first quote in each
section shows the corresponding quote from the article,
while the remaining quotes supplement further evidence of
our claims. At the end, Figures 9 and 10 show the sample
distribution among events and sources.

A.1 Core design was set in stone for its lifetime

The nature of Bitcoin is such that once version 0.1
was released, the core design was set in stone for
the rest of its lifetime.

Listing 26. Satoshi 2010-06-17 Forum, ID: 195

2986 2011-09-13 22:12:26 <gavinandresen> ... and
that’s one of the problems with scheduling a
block-chain split, it opens up debate to fix a
zillion things.

Listing 27. gavinandresen 2011-09-13 Forum, ID: 195

>I don’t see what the big deal is with changing the
maximum block size.

>Why all the fuss ? It’s not like blocks which are
currently on average about half the current maximum
size will suddenly and inexplicably jump in size
overnight just because it’s possible.

hard fork

Listing 28. samson & HCLivess 2015-06-01 Forum, ID: 1347

This would fork the blockchain. More useful changes
have been kept-out-until-later for that reason. ;)

Listing 29. Luke-jr 2011-08-22 Forum, ID: 45211

<sipa> the reason against incorporating bip142 is
people yelling "see! sehwit needs new address
types! everyone has to upgrade! not backward
compatible!"

Listing 30. sipa 2016-03-10 IRC: #bitcoin-core-dev

A.2 Cautious about updates and worry about flaws

5. Testing. I don’t have time to personally test
every PULL request, but if a pull involves more
than trivial code changes I’m not going to pull it
unless it has been thoroughly tested. We had a very
good rule at a company I used to work for--
programmers were NOT allowed to be the only ones to
test their own code. Help finding money and/or
people for a dedicated "core bitcoin quality
assurance team" is welcome. More unit tests and
automated testing is also certainly welcome.

If this was open source blogging software I’d be
much less uptight about testing and code review and
bugs. But it’s not, it is software for handling
money.

Listing 31. 2011-08-10 Gavin Andresen Email: bitcoin-dev

? The wallet encryption bug was embarrassing and
stressful, and chewed up a lot of my time over the
past couple of weeks. Bugs happen, but I’ve been
spending time thinking about what I can do
differently to make it less likely major bugs slip
into releases.

Finding the money to hire some professional QA
people to help create test plans and then execute
them (the test plans, not the QA people) is one
possible answer. If you have experience finding
funding for open source projects (or know somebody
who does) I’d like to talk with you-- I would much
rather spend my time writing code and thinking
about technical issues instead of trying to figure
out if advertising or sponsorship or a Donate menu
entry in the client is a reasonable way to get more
testing resources for the project.

Listing 32. 2011-11-22 Gavin Andresen Email: bitcoin-dev

<luke-jr> cjdelisle: the review cycle for
protocol changes is
<luke-jr> the dev cycle is already far too slow
<rjk2> same problem as most projects - lack of many
dedicated testers :(

Listing 33. luke-jr & rjk2 2011-12-27 IRC: #bitcoin-dev

<luke-jr> IMO, deploying OP_EVAL on miners only
gets gavinandresen what he wants, and gets the
delay camp what we want.
<BlueMatt> also, the "we have had plenty of eyes on
the old engine, dont add OP_EVAL", Id like to see a
group formed to pay for a professional code
analysis of OP_EVAL
<BlueMatt> well funds concerns, but Id like to see
all of bitcoin reviewed on each release

Listing 34. luke-jr & BlueMatt 2011-12-28 IRC: #bitcoin-dev

A.3 Rule changes are a liability

Every time that you open up the door to changing
the rules, you are opening yourselves up to attack

Listing 35. 2020-08-03 Eric Lombrozo [38]

The amount of code and the amount of changes in
SegWit makes this a very dangerous change in (of?)
Bitcoin. I counted 10 core concepts in Bitcoin
being changed with it. We don’t yet know how they
will interact. We can?t.

You are asking people to create everyone-can-spend
transactions that would mean a loss of funds to
everyone that used it if we do find a major flaw
and need to rollback.

Listing 36. Tom Zander 2016-10-16 Email: bitcoin-dev

Then you don’t really know a lot about large
institutions, do you ?

I would bet that many banks run software written in
1999 or even before, you know why ? Because when
huge risks and costs are involved, you don’t change
something that works properly unless there is a
serious reason. Hell, some large companies still
run COBOL code written 30-40 years ago !

Changing software versions is a significant risk
each time it is done.

Listing 37. ShadowOfHarbringer 2012-03-12 Email: bitcoin-dev

A.4 Prefer backward-compatible reducing forks

I belief we shold flesh out luke-jr’s idea for
cleanly deploying segregated witness in bitcoin as
a soft fork and see what that looks like.

Listing 38. Gmaxwell 2015-11-04 IRC: #bitcoin-dev

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

<devrandom> gmaxwell: I’m not sure that the
argument of valid->invalid vs invalid->valid makes
sense. In either case, the clients that did not
upgrade will be on the wrong fork until they
upgrade.
<gmaxwell> Not true.
<gmaxwell> They’ll switch to the right fork once it
has a longer chain, which" if a super majority of
the miners have upgraded in advance" will always be
true.
<gmaxwell> This isn’t true for invalid->valid.
<gmaxwell> There could even be some crazy rule on
the upgraded nodes: "New txn will be permitted and
the rules will begin being enforced at the first
block number after 12345 when the prior 1000 blocks
have not had the opcode, prior to that point I will
not mine any txn with that opcode"
<gmaxwell> And then you _intentionally_ inject txn
that use the opcode.. and the network will activate
only after almost all the miners are smart enough
to reject it
<gmaxwell> and everyone can agree on when it
activated (because its an objective fact of the
chain) so no splits.
Xunie has joined
<gmaxwell> This would avoid the risk that you don’t
quite get a super majority of the miners and you
end up with old clients on a seperate fork for days
at a time.

Listing 39. devrandom & gmaxwell 2011-10-03 IRC: #bitcoin-dev

<jgarzik> gavinandresen: so, dumb question... is
this multisig stuff a breaking change, that makes
blocks incompatible with older clients?
<imsaguy2> They were talking about a db version
change that would
<gavinandresen> jgarzik: no, not my current
proposal. It uses only existing opcodes
<imsaguy2> one way
piotrp has quit (Quit: leaving)
<gavinandresen> ... the db4.7-4.8 is a different
issue
<jgarzik> gavinandresen: That’s about the only
thing I would push back on, in a major way. I
really think breaking changes ("if (block > 200000)
new_behavior()") should be avoided absent a
catastrophic problem such as sha256 is broken.
<jgarzik> gavinandresen: Adding new standard
transactions is a good thing in general. I like the
testnet roll-out that people currently do
tynx has quit (Quit: Leaving)
<gavinandresen> jgarzik: yes, this doesn’t feel
like a good reason to schedule a block chain split.
<jgarzik> gavinandresen: agreed
<gavinandresen> (although it it is SO tempting to
make it perfect.....)
<jgarzik> gavinandresen: yes ;-) ;-)
<jgarzik> gavinandresen: I have ideas about that,
too... IMNSHO people need an outlet for breaking
changes. It’s tempting to either (a) work on a
bitcoin2, which is current bitcoin + rational
breaking changes like new hash algo or new
protocol, or (b) someone maintain a list of
"changes community would like to see, if and only
if there is a planned block chain split"
<gavinandresen> jgarzik: I was thinking about how
to handle "when we DO decide to fork the
blockchain" patches/changes, too... didn’t come up
with any solution I really like.
<jgarzik> gavinandresen: from an existential and PR
standpoint, I think major blockchain forks are
tough no matter how high the technical
justification, because, in theory, blockchhain
forks are like US Constitutional Conventions:
anything can be changed, in theory, including the
basic rules like the 21M limit. Blockchain forks
are our equivalent of Federal Reserve policy

changes. It is the "nuclear option."
<jgarzik> gavinandresen: Thus, I prefer extremely
ugly hacks, or simply saying "no" (or "put it in
btc2") than blockchain forks that are incompatible
with older clients
<jgarzik> blockchain forks that are compatible with
older clients, I am OK with. The sendmany was a
good example of that... clients wouldn’t relay for
a while, but older clients supported it just fine.

Listing 40. jgarzik, imsaguy2 & gavinandresen 2011-08-24 IRC:
#bitcoin-dev

A.5 Parallell deployments

BIP 34 introduced a mechanism for doing
soft-forking (...). As it relies on comparing
version numbers as integers however, it only
supports one single change being rolled out at
once, requiring coordination between proposals, and
does not allow for permanent rejection: as long as
one soft fork is not fully rolled out, no future
one can be scheduled.

In addition, BIP 34 made the integer comparison
(nVersion >= 2) a consensus rule after its 95%
threshold was reached, removing 231+2 values from
the set of valid version numbers (all negative
numbers, as nVersion is interpreted as a signed
integer, as well as 0 and 1). This indicates
another downside this approach: every upgrade
permanently restricts the set of allowed nVersion
field values. This approach was later reused in BIP
66 and BIP 65, which further removed nVersions 2
and 3 as valid options. As will be shown further,
this is unnecessary.

Listing 41. Pieter Wuille et al. 2015-10-04 BIP9

I do not see how this helps much; the reversibility
is a selling point, but at a far from zero cost.
We’ll be moving on 62 once 66 is actually deployed
(one flaw in the the legacy softfork deployment
mechanism is that only one change can be in flight
at a time)

Listing 42. gmaxwell 2015-04-21 Forum, ID: 1033396

// Start enforcing the DERSIG (BIP66) rules, for
block.nVersion=3 blocks, when 75% of the network
has upgraded:
if (block.nVersion >= 3 && IsSuperMajority(3,
pindex->pprev,
Params().EnforceBlockUpgradeMajority())) {

flags |= SCRIPT_VERIFY_DERSIG;
}

Listing 43. Pieter Wuille 2015-02-01 BIP66

// Start enforcing CHECKLOCKTIMEVERIFY, (BIP65) for
block.nVersion=4
// blocks, when 75% of the network has upgraded:
if (block.nVersion >= 4 && IsSuperMajority(4,
pindex->pprev,
chainparams.GetConsensus().nMajorityEnforceBlockUpgrade,
chainparams.GetConsensus())) {

flags |= SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY;
}

Listing 44. Peter Todd 2015-10-08 BIP65

A.6 Signaling

when 50% of the last N coinbases contain "I support
FOOFEATURE", it’s enabled

Listing 45. Luke-jr 2011-10-02 IRC: #bitcoin-dev

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Perhaps as a safeguard:
(3) Before applying the new rule, require 50% of
the last Y blocks contain a

coinbase with a "I am upgraded" code
(4) Until the new rule is active, include an "I am
upgraded" code in every

block; after it’s active, this can be turned off

Listing 46. Luke-jr 2011-10-03 Email: bitcoin-dev

First of all, that’s an expensive beer!

Second of all, any consensus rule change risks
non-full-validating or non-upgraded nodes seeing
invalid confirmations...but assuming a large
supermajority (i.e. > 95%) of hashing power is
behind the new rule, it is extremely unlikely that
very many invalid confirmations will ever be seen
by anyone. The number of confirmations you require
depends on your use case security
requirements...and especially during a new rule
activation, it is probably not a good idea for
non-validating nodes or non-upgraded nodes to
accept coins with low confirmation counts unless
the risk is accounted for in the use case (i.e. a
web hosting provider that can shut the user out if
fraud is later detected).

Third of all, as long as the rule change activation
is signaled in blocks, even old nodes will be able
to detect that something is fishy and warn users to
be more cautious (i.e. wait more confirmations or
immediately upgrade or connect to a different node
that has upgraded, etc...)

I honestly don’t see an issue here - unless you’re
already violating fundamental security assumptions
that would make you vulnerable to exploitation even
without rule changes.

Listing 47. 2015-12-18 Eric Lomrozo Email: bitcoin-dev

A.7 Verbal agreement

<gavinandresen> luke-jr: you’re a mining pool
operator, would you be willing to coordinate with
the other big pools to get this fixed quickly[?]
<luke-jr> gavinandresen: looks good from what I
see, though I commented where I think it could be
improved inline
<luke-jr> oh, you mean me talk to the other poolops
for it?
<luke-jr> sure I guess

Listing 48. gavinandresen 2012-02-17 IRC: #bitcoin-dev

<sipa> gavinandresen: i’ve got replies for around
55% percent support for BIP30, and deepbit intends
to implement before march 15
(...)
<gavinandresen> sipa: Great, March 15 it is, then

Listing 49. sipa & gavinandresen 2012-03-03 IRC: #bitcoin-dev

<Luke-Jr> gavinandresen: sipa: jgarzik: can we get
a consensus on recommendation for miners to
downgrade? (...)
<Eleuthria> I can single handedly put 0.7 back to
the majority hash power
<Eleuthria> I just need confirmation that thats
what should be done (...)
<sipa> Eleuthria: imho, that is was you should do,
but we should have consensus first (...)
<jgarzik> sipa, Eleuthria: ACK on preferring 0.7
chain, for the moment (...)
<gavinandresen> Eleuthria: if you can cleanly get
us back on the 0.7 chain, ACK from here, too (...)

<Eleuthria> alright (...)
<doublec> ok, rolling back to 0.7.2

Listing 50. Developers: Luke-Jr, sipa, jgarzik, and gavinandresen. Pool
operators: Eleuthria and doublec 2013-03-12 IRC: #bitcoin-dev

A.8 Trigger

if (blocknumber > 115000)
maxblocksize = largerlimit

It can start being in versions way ahead, so by the
time it reaches that block number and goes into
effect, the older versions that don’t have it are
already obsolete.

Listing 51. Satoshi 2010-10-03 Forum, ID: 1347

1 // Deployment of SegWit (BIP141, BIP143, and BIP147)
2 consensus.vDeployments[Consensus::DEPLOYMENT SEGWIT]
3 . bit = 1;
4 consensus.vDeployments[Consensus::DEPLOYMENT SEGWIT]
5 .nStartTime = 1479168000; // November 15th, 2016.
6 consensus.vDeployments[Consensus::DEPLOYMENT SEGWIT]
7 .nTimeout = 1510704000; // November 15th, 2017.

Listing 52. Pieter Wuille 2016-10-17 BIP141, BIP143 & BIP147

1 // Start enforcing BIP68 (sequence locks) and BIP112
(CHECKSEQUENCEVERIFY) using versionbits logic.

2 int nLockTimeFlags = 0;
3 if (VersionBitsState(pindex−>pprev, chainparams.GetConsensus(),

Consensus::DEPLOYMENT CSV, versionbitscache)
==THRESHOLD ACTIVE) {

4 flags |= SCRIPT VERIFY CHECKSEQUENCEVERIFY;
5 nLockTimeFlags |= LOCKTIME VERIFY SEQUENCE;
6 }

Listing 53. btcdrak 2016-03-18 BIP66 & BIP112

A.9 Feather fork/block discouragement

A feather-fork is when a miner refuses to mine on
any chain that includes a transaction it doesn’t
like in the most recent several blocks.

Listing 54. Socrates1024 2013-10-17 Forum, ID: 312668

<gavinandresen> roconnor: fixing that bug safely is
non-trivial.... the right answer is for new
clients/miners to ’discourage’ (refuse to
relay/mine) blocks/transactions with weird version
numbers. I’ve got a ’discourage blocks’ patch
sitting on my machine that I haven’t had time to
clean up into a pull request yet.

Listing 55. gavinandresen 2012-01-02 IRC: #bitcoin-dev

<gmaxwell> BlueMatt: wrt reorg, I think we should
discourage blocks with duplicate coinbases in the
short term.

Listing 56. gmaxwell 2012-02-06 IRC: #bitcoin-dev

A.10 Emergency activated reduction fork

<Luke-Jr> gavinandresen: sipa: jgarzik: can we get
a consensus on recommendation for miners to
downgrade?
(...)
<gavinandresen> the 0.8 fork is longer, yes? So
majority hashpower is 0.8....
<Luke-Jr> gavinandresen: but 0.8 fork is not
compatible

Listing 57. Luke-Jr & gavinandresen 2013-03-12 IRC: #bitcoin-dev

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Doesn’t matter which chain is longer if a majority
of the people aren’t on it. Breaking changes need
to be given lots of warning to be effective. Trying
to force everyone to use 0.8 would have only made
the situation worse. From the chat discussion, I
don’t think mtgox was using 0.8. So trading at the
largest exchange would be halted until it could be
upgraded. If that doesn’t sound disastrous, I’m not
sure what does.

Listing 58. nevafuse 2013-03-13 Forum, ID: 152470

Please upgrade to 0.3.6 ASAP! We fixed an
implementation bug where it was possible that bogus
transactions could be displayed as accepted. Do not
accept Bitcoin transactions as payment until you
upgrade to version 0.3.6! If you can’t upgrade to
0.3.6 right away, it’s best to shut down your
Bitcoin node until you do.

Listing 59. Satoshi 2010-07-29 Forum, ID: 626 bitcoin-dev

*** WARNING *** We are investigating a problem. DO
NOT TRUST ANY TRANSACTIONS THAT HAPPENED AFTER
15.08.2010 17:05 UTC (block 74638) until the issue
is resolved.

Listing 60. Satoshi 2010-08-15 Email: bitcoin-dev

A.11 Non-deterministic forks

<TD> EXCEPTION: 11DbException
<TD> Db::put: Cannot allocate memory
<TD> bitcoin in ProcessMessage()
<TD> ProcessMessage(block, 5798 bytes) FAILED
<TD> received block 00000000000001c0a13e
<TD> REORGANIZE
(...)
<DrHaribo> sturles said he got out of memory errors
without being out of memory, and that adding locks
and lockers fixed it

Listing 61. sipa, TD & DrHaribo 2012-03-10 IRC: #bitcoin-dev

(...) contents of each node’s blkindex.dat database
is not identical, and the number of locks required
depends on the exact arrangement of the
blkindex.dat on disk (locks are acquired per-page).

Listing 62. Gavin Andresen 2013-03-20 BIP50

<gmaxwell> JyZyXEL: versions prior to 0.8 couldn’t
follow along with new blocks in a somewhat
non-determinstic way that depended on the fine
structure of the node’s local database.
<gmaxwell> JyZyXEL: there are still unmodified 0.7
nodes that are trucking along, though the recent
trigger block seems to have gotten most of them.
<gmaxwell> JyZyXEL: the non-determinism of it was
why it was absolutely essential to fix it via a
hardfork.

Listing 63. 2013-09-03 gmaxwell IRC: #bitcoin-dev

A.12 Missing transformation assurance

The review process is definetly a good idea, I dont
know if it provides as much security as people
assume it does. One thing that slip past one person
may as well slip past ten people or whatever.

Listing 64. 2020-06-23 Luke-Jr [67]

<gavinandresen> I’m probably reading the code
wrong, but I think OP_EVAL wouldn’t cause a
blockchain split!

<sipa> how so? each client that doesn’t support it
would fail verifying such a transaction
<sipa> so the first time an OP_EVAL txout is spent,
it would cause a blockchain split for those clients
<gavinandresen> Nope. They’d look like
anybody-can-spend transactions to old clients,
assuming we use OP_NOP1 for OP_EVAL

Listing 65. gavinandresen & sipa 2011-10-02 IRC: #bitcoin-dev

More generally, this OP_EVAL is a very large change
that clearly hasn’t been vetted nearly enough. It
took me all of 70 minutes of looking to find this
bug. You guys are not ready to implement this.
OP_EVAL turns a fundamentally Turing-incomplete
langauge with clear termination conditions into
what I believe an "in-principle" Turing complete
language that is only held in check by hacks (which
haven’t even been implemented properly).
You guys need to stop what you are doing and really
understand Bitcoin. In particular you should make a
proper specification of the existing scripting
language, ideally by creating a formal model of the
scripting language. Prove upper bound on the space
and time usage of scripts. Decide what bounds you
want to maintain, and only then start defining
OP_EVAL, proving that it preserves whatever
properties you want your scripting system to have.
OP_IF, OP_CODESEPARATOR, OP_EVAL all have the
possibility of interacting complicated ways and you
can’t just hack the scripting language arbitrarily.

The problem with poor review of other
clients/branches can be addressed by largely
revamping the download on Bitcoin.org. IMO,
Bitcoin.org needs to list 3 categories of clients:
"well-tested for production server deployments"
(currently bitcoind 0.4.x), "no major problems,
safe for everyday users" (Bitcoin-Qt + bitcoind
0.5.x), "testing, please help if you can"
(Bitcoin-Qt + bitcoind 0.6.x beta/rc, and MultiBit
0.2.0), and finally "experimental, it compiled,
maybe it works" (Bitcoin-Qt + bitcoind "next");
giving users these options enables them to more
easily provide input.

Listing 66. gavinandresen 2013-03-16 Github, Issue: 729

<gavinandresen> It wasn’t caught by the unit test
for a couple of amusing-in-retrospect reasons....

Listing 67. gavinandresen 2011-12-27 IRC: #bitcoin-dev

Before releasing 0.6, I would like to have an
"intelligent,
bitcoin-specific fuzzing tool" that automatically
finds this type of
bug that we can run before every release. If
anybody already has one,
please speak up!

Listing 68. 2011-12-25 Gavin Andresen Email: bitcoin-dev

A.13 Different versions - client diversity

Diversity is good and may help discover issues. But
as Gavin was saying and as I like to point out: The
most dangerous kind of failure in bitcoin isn’t an
implementation bug- any blockchain validation
inconsistencies in widely deployed implementations
are significantly worse than pretty much anything
other than a full private key leak or remote root
exploit... and are even harder to avoid.

Listing 69. Gmaxwell 2012-10-28 Forum, ID: 120836

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Like Olipro, got a lot of people doing custom
builds out there -- in fact, I must use a custom
build on several machines.

Listing 70. jgarzik 2010-07-29 Forum, ID: 626

If you got 22DbRunRecoveryException and you’ve used
someone else’s build before, you may need to delete
(or move the files somewhere else)
database/log.000000*

Listing 71. Satoshi 2010-07-29 Forum, ID: 626

A.14 Improper reorganisation

knightmb, do you still have any of your monster
network available to turn on to help build the new
valid chain?

Listing 72. Insti 2010-08-15 Forum, ID: 823

Patch is uploaded to SVN rev 132!
For now, recommended steps:
1) Shut down.
2) Download knightmb’s blk files. (replace your
blk0001.dat and blkindex.dat files)
3) Upgrade.
4) It should start out with less than 74000 blocks.
Let it redownload the rest.

If you don’t want to use knightmb’s files, you
could just delete your blk*.dat files, but it’s
going to be a lot of load on the network if
everyone is downloading the whole block index at
once.

I’ll build releases shortly.

Listing 73. Satoshi 2010-08-15 Forum, ID: 823 bitcoin-dev

Question about fallout: I had a transaction that I
submitted after the bad block, using the bad block
chain.

What is the status of that transaction?
From what I can tell, my (updated) sending client
wallet shows the deducted amount.

Will it get reincorporated into the fixed chain,
and will the recipient be able to spend it?

Right, it will get reincorporated into the fixed
chain. The transaction won’t disappear, it’ll still
be visible on both sides, but the confirmation
count will jump back to 0 and start counting up
again.

It’s only if you generated a block in the bad chain
after block 74638 that the 50 BTC from that will
disappear. Any blocks in the bad chain wouldn’t
have matured yet.

Listing 74. Ground Loop & Satoshi 2010-08-16 Forum, ID: 823

Most people running clients are not reading this
message thread. So... Silly questions:

1) How will this continue to affect version 3.8.1
(pre-catastrophe) clients with bad block chain?
2) How will this affect clients that upgrade to
3.8.10 but don’t remove their block chain files?

1) Once more than 50% of the node power is upgraded
and the good chain overtakes the bad, the 0.3.10
nodes will make it hard for any bad transactions to
get any confirmations.

2) If you didn’t remove your blk*.dat files, you’re
not helping to contribute to that 50%, and you’ll
still show bad transactions until the good chain
overtakes the bad chain.

Listing 75. Gold Rush & Satoshi 2010-08-16 Forum, ID: 823

Un-upgraded nodes have the correct chain most of
the time, but they are still trying to include the
overflow transaction in every block, so they’re
continually trying to fork and generate invalid
blocks. If an old version node is restarted, its
transaction pool is emptied, so it may generate
valid blocks for a while until the transaction gets
broadcast again. 0.3.9 and lower nodes still must
upgrade.

Listing 76. Satoshi 2010-08-16 Forum, ID: 823

11:24:46 <ArtForz> blockexplorer doesnt deal with
reorgs nicely without manual intervention

Listing 77. ArtForz 2011-05-26 IRC: bitcoin-dev

<jgarzik> thankfully, that block chain reorg was
not longer than coin maturation

Listing 78. jgarzik 2011-04-05 IRC: bitcoin-dev

A.15 Too high thresholds

Activation is dependent on near unanimous hashrate
signalling which may be impractical and is also
subject to veto by a small minority of
non-signalling hashrate.

Listing 79. Shaolinfry 2017-04-06 Email: bitcoin-dev

- the 95% threshold allows small minorities to veto
proposed changes, lead to stagnation (viz. current
standoffs)

Listing 80. Sancho Panza 2017-04-03 Email: bitcoin-dev

Possibility? Seems like a probability to me.
Bitcoin.com and ViaBTC are sustaining ˜10% of the
hashing power meaning they can veto the upgrade and
they seem ideologically bent on on-chain,
block-size scaling.

Listing 81. Yefi 2016-11-15 Forum, ID: 1682183

A.16 Deploying ’irreversible’ changes

I’m very uncomfortable with this block size limit
rule. This is a "protocol-rule" (not a
"client-rule"), what makes it almost impossible to
change once you have enough different softwares
running the protocol. Take SMTP as an example...
it’s unchangeable.

Listing 82. Caveden 2010-11-20 Forum, ID: 1347

Why so many OP codes are disabled? Is it possible
that the official client accept them again in the
near future? (at least INVERT, OR, AND, XOR and
arithmetic ones)

Listing 83. Jackjack 2011-08-15 Forum, ID: 37157

Mark Boldyrev: Back in 2010, there was a bug found
in Core which allowed denial-of-service attacks due
to the software crashing on some machines while
executing a script - see CVE-2010-537. I believe
the removed ("disabled") opcodes should be
re-introduced along with a standardized behavior
definition.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

For example, when execution of an opcode results in
an arithmetic error, such as OP_DIV with a zero
divisor, the script should exit and fail. The
string splice opcodes should also check their
arguments for correctness, etc. These opcodes would
enhance the flexibility of scripts and allow
sophisticated native smart contracts to be created.

AFAICT, re-enabling these old OP-codes would
require a hardfork.

If we had SegWit enabled, we could via a soft fork
allocate new OP-codes for the same functionality
(by introducing a new version of Script). I believe
the Elements alpha project has been experimenting
with re-enabling old OP-codes:
https://elementsproject.org/elements/opcodes/

Listing 84. Mark Boldyrev & Hampus Sjøberg 2017-05-19 Email: bitcoin-
dev

<ForceDestroyer> Did you read the thread? It’s a
bit convoluted if you want the counter- and
counter-counter-arguments further down, but the
first post has the rough idea
<ArtForz> ForceDestroyer: increasing the block size
limit *when it’s needed* won’t be really
controversial, so it’s only a matter of changing a
#define and getting everyone to update
<Diablo-D3> Im trying to read the thread, but the
amount of dumb shit in it is amazing
<Diablo-D3> ArtForz: WELLL
<Diablo-D3> we should do it early
<Diablo-D3> just so we arent stuck with assholes
who wont upgrade

Listing 85. ForceDestroyer, ArtForz & Diablo-D3 2011-04-23 Email:
bitcoin-dev

What was the reason for disabling these opcodes in
the first place? I can
understand wanting to prevent excessive
signature-verification, or limitation
of arithmetic to a limited amount of bits, but
completely disabling all
arithmetic beyond addition and subtraction, and all
bitwise operations seems
very limiting to me. Thus, if we agree to do a
future incompatible update,
i would vote to re-enable these, and maybe allow
arithmetic up to 520 or
1024 bits numbers.

Listing 86. Pieter Wuille 2011-08-24 Email: bitcoin-dev

<[Tycho]> But someday additional ops should be
enabled anyway...
<gavinandresen> [Tycho]: agreed. someday....
<luke-jr> the critical block and secure string
changes, I wasn’t so sure about
<luke-jr> they seem more like refactors with a
potential for damage
<luke-jr> [Tycho]: probably the best way to handle
it is to do a single block chain fork, changing as
many things as possible

Listing 87. Tycho, gavinandresen & luke-jr 2011-12-02 IRC: bitcoin-dev

<roconnor> worst case is that we are stuck with
OP_EVAL forever, which means miners never get the
opportinity to implement static analysis of script
code ever again.

Listing 88. Roconnor 2011-12-28 IRC: bitcoin-dev

While we could right now make all these rules
non-standard, and
schedule a soft fork in a year or so to make them
illegal, it would

mean removing potential functionality that can only
be re-enabled
through a hard fork. This is significantly harder,
so we should think
about it very well in advance.

Listing 89. Pieter Wuille 2014-02-19 Email: bitcoin-dev

A.17 Not prepared for forward-compatibility

This is another problem that only exists because of
the desire to soft fork. If "script 2.0" is a hard
fork upgrade, you no longer need weird hacks like
scripts-which-are-not-scripts.

Listing 90. Mike Hearn 2014-11-04 Email: bitcoin-dev

Ya joking? A scripting system inside a scripting
system. Hacks on hacks on hacks will lead to a
messier protocol than FTP is now. Well, it seems
good at first glance. But fast-tracking this into
the block-chain is probably not a wise idea.
There’s no rush so it might be prudent to think of
this as something for 2 years time or later.
Bitcoin is not exploding tomorrow, so there’s no
big loss from holding off on momentous changes like
these. https://en.bitcoin.it/wiki/BIP_0001That’s a
good place to start. Re-enabling parts of the old
scripting system in a controlled manner is a good
idea. Adding new operations- not so much *right*
now.

Listing 91. genjix 2011-10-02 Email: bitcoin-dev

A.18 Lacking knowledge regarding network dynamics

To ensure that the network is not partitioned and
that segwit blocks are being passed to segwit
enabled nodes, a Core 0.13.1 node will use its
outgoing connection slots to connect to as many
nodes with the NODE_WITNESS service bit as possible
(...)

Listing 92. achow101 2016-11-26 Forum, ID: 1682183

In addition to defining witness structures and
requiring commitments in future blocks (BIP141 -
Consensus segwit BIP), new mechanisms must be
defined to allow peers to advertise support for
segregated witness and to relay the witness
structures and request them from other peers
without breaking compatibility with older nodes.

Listing 93. Eric Lombrozo & Pieter Wuille 2016-01-08 BIP50

<BlueMatt> handling connections to othernodes on
the p2p network and then handling block chain
reorgs is hard

Listing 94. BlueMatt 2011-08-13 IRC: #bitcoin-dev

A.19 Insufficient damage control

I’ve lost way too much money in the last 24 hours

Listing 95. Eleuthria 2013-03-12 IRC: #bitcoin-dev

So I think the only way Mallory gets free beer from
you with segwit soft-fork is if:
- you’re running out of date software and you’re
ignoring warnings to upgrade (block versions have
bumped)
- you’ve turned off standardness checks
- you’re accepting low-confirmation transactions

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

- you’re not using any double-spend detection
service

Listing 96. Erisian 2015-12-18 Email: bitcoin-dev

DO NOT TRUST ANY TRANSACTIONS THAT HAPPENED AFTER
15.08.2010 17:05 UTC (block 74638). We are
investigating a problem.

Listing 97. Satoshi 2010-08-15 Forum, ID: 823

If you’re unsure, please stop processing
transactions.

Listing 98. 2013-03-12 Pieter Wuille Email: bitcoin-dev

For now I have stopped generating on my nodes.

Listing 99. 2010-08-15 aceat64 Forum, ID: 822 bitcoin-dev

<slush> jgarzik: does your pool have any checks
against double spending?

Listing 100. slush 2011-02-02 IRC: #bitcoin-dev

<moa7> or appoint an independent 3rd party to audit
your blocks for irregulaties is another option
(...)
<[Tycho]> moa7, I already started a pledge of 50
BTC to make fork monitoring site (that was like
˜1500 USD), but no one cared. Also I proposed a
change in miners code that will add something like
anti-fork functionality at client side, independent
from any pool, but no one cared.

Listing 101. moa7 & Tycho 2011-07-08 IRC: #bitcoin-dev

I’m afraid the community is just too big and
distributed now to expect much in the way of
voluntary quick action on anything, especially
generation which I’m sure many have on automatic
and largely unmoderated.

Listing 102. kencausey 2010-08-15 Forum, ID: 823

1. Where are we at with network health? What
metrics should we be using? Is there work to be
done?
And meta-issue: can somebody volunteer to be the
Bitcoin Network Health Inspector to keep track of
this?

Listing 103. 2011-08-10 Gavin Andresen Email: bitcoin-dev

A.20 Improper miner incentives to enforce new rules

If there is a cost to verifying transactions in a
received block, then there is an incentive to *not
verify transactions*. However, this is balanced by
the a risk of mining atop an invalid block.

Listing 104. nathan 2015-07-11 Email: bitcoin-dev

<sipa> just require the vereion bit to be set to 1
in the first block that has the rule activated
<CodeShark> I’m not too concerned about that, I
suppos
<sipa> so your second bit is purely informational
<CodeShark> yeah, in this example it would be
<sipa> there is no point in that, i think
<sipa> there is no reason why miners would not
incorrectly set that bit if they are already
incorrectly setting the other
<CodeShark> in the end, what matters is not really
whether or not miners acknowledge the version
change...what matters is whether they enforce the
new rule
<sipa> yes, and you can’t measure that in a softfork

<sipa> in a hardfork you can require the forking
block to be explicitly incompatible with the old
rules
<CodeShark> with BIP66, imagine what would have
happened if miners would have been able to continue
mining version 2 blocks after the rule change...
<sipa> yes, that’s why i think forcing a fork is
good
<CodeShark> there were two things at play - 1)
whether miners were enforcing the version rule, 2)
whether miners were enforcing BIP66
<sipa> oh
<sipa> you can’t force a fork
<sipa> i was wrong
<sipa> not in any useful way
<CodeShark> so then this boils down to a problem of
miner incentives
<sipa> only informationally

Listing 105. sipa & CodeShark 2015-09-129 Email: bitcoin-dev

Satoshi Nakamoto’s original Bitcoin implementation
provided the nSequence number field in each input
to allow replacement of transactions containing
that input within the mempool. When receiving
replacements, nodes were supposed to replace
transactions whose inputs had lower sequence
numbers with transactions that had higher sequence
numbers.

In that implementation, replacement transactions
did not have to pay additional fees, so there was
no direct incentive for miners to include the
replacement and no built-in rate limiting that
prevented overuse of relay node bandwidth. Nakamoto
removed replacement from Bitcoin version 0.3.12,
leaving only the comment, "Disable replacement
feature for now"

Listing 106. Dave A. Harding & Peter Todd 2015-12-04 BIP125

APPENDIX B
ROOT CAUSE ANALYSIS

The appliance of Ishikawa diagrams [14] as seen in Figure 11
further enhanced the analysis for RQ2 (lessons learned). The
identified root causes were classified within the categories
of human errors [63] to gain further insight. The differ-
ent errors were applied as codes during grounded theory
analysis as seen in Section 5. The complementing of the
grounded theory approach with root cause analysis gave
higher confidence in covering relevant issues and gaining
an in-depth understanding.

We based the diagram’s main paths on blockchains’ roles
(validators, users/merchants, developers and miners). The
first stage of each consensus change issue was based on a
surfacing problem, such as ”Introduce bugs or vulnerabili-
ties”. After that, we based the following steps on ”the five
whys” to understand the root cause of the surfacing issue:
”By repeating why five times, the nature of the problem as
well as its solution becomes clear” [88]. Sometimes the issue
could be understood without going five steps deep, and we
did not go further. Additionally, some root causes are similar
for different surfacing issues. For instance, ”Introduce bugs
or vulnerabilities” and ”Not prepared for consensus failure”
could be caused by the same reason: ”Do not understand the
implications of a change”. We highlighted similar causes by
colour-coding the diagram. From the complete diagram, we
derived which lessons learned were relevant for consensus
changes in particular.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 9. Sample distribution among different sources.

Fig. 10. Sample distribution among different consensus changes. The sum of samples across the events is larger than that across sources because
some samples are related to multiple events.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 11. The figure shows the Ishikawa diagram used for root cause analysis and reveals lessons learned.

	Introduction
	Background
	The Bitcoin consensus protocol
	Bitcoin consensus evolution
	Software evolution
	Evolution and maintenance in distributed systems

	Research design and implementation
	Research motivation and research questions
	Research method
	Data collection and filtering
	Purposive sampling
	Data filtering

	Data analysis
	Open coding
	Axial coding
	Selective coding
	Constant comparison and theoretical saturation
	Root cause analysis

	Results of RQ1 (deployment techniques)
	Deployment features
	Deployment strategy
	Fork type
	Chain split risk
	Parallel
	Standard
	Signal
	Inclusive
	Threshold
	Trigger

	Deployment techniques
	Miner-activated reduction fork (MARF)
	Miner-activated expansion fork (MAEF)
	Miner-activated bilateral fork (MABF)
	User-activated reduction fork (UARF)
	User-activated expansion fork (UAEF)
	User-activated bilateral fork (UABF)
	Emergency-activated reduction fork (EARF)
	Emergency-activated expansion fork (EAEF)
	Emergency-activated bilateral fork (EABF)
	Special cases

	Results of RQ2 (lessons learned)
	Missing transformation assurance
	Improper reorganisation
	Improper human interference
	Too high thresholds
	Deploying 'irreversible' changes
	Not prepared for forward compatibility
	Lacking knowledge regarding network dynamics
	Insufficient damage control
	Improper miner incentives to enforce new rules
	Insufficient incentives to review the code

	Discussion
	Comparison with related work
	Implications
	Threats to validity

	Conclusion and future work
	References
	Appendix A: Supplementary quotes
	Core design was set in stone for its lifetime
	Cautious about updates and worry about flaws
	Rule changes are a liability
	Prefer backward-compatible reducing forks
	Parallell deployments
	Signaling
	Verbal agreement
	Trigger
	Feather fork/block discouragement
	Emergency activated reduction fork
	Non-deterministic forks
	Missing transformation assurance
	Different versions - client diversity
	Improper reorganisation
	Too high thresholds
	Deploying 'irreversible' changes
	Not prepared for forward-compatibility
	Lacking knowledge regarding network dynamics
	Insufficient damage control
	Improper miner incentives to enforce new rules

	Appendix B: Root cause analysis

