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Abstract

Automated individual tree crown (ITC) delineation plays an important role in forest remote sensing. Accurate ITC delineation

benefits biomass estimation, allometry estimation, and species classification among other forest related tasks, all of which

are used to monitor forest health and make important decisions in forest management. In this paper, we introduce Neuro-

Symbolic DeepForest, a convolutional neural network (CNN) based ITC delineation algorithm that uses a neuro-symbolic

framework to inject domain knowledge (represented as rules written in probabilistic soft logic) into a CNN. We create rules

that encode concepts for competition, allometry, constrained growth, mean ITC area, and crown color. Our results show that

the delineation model learns from the annotated training data as well as the rules and that under some conditions, the injection

of rules improves model performance and affects model bias. We then analyze the effects of each rule on its related aspects of

model performance.
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Abstract—Automated individual tree crown (ITC) delineation
plays an important role in forest remote sensing. Accurate ITC
delineation benefits biomass estimation, allometry estimation, and
species classification among other forest related tasks, all of which
are used to monitor forest health and make important decisions in
forest management. In this paper, we introduce Neuro-Symbolic
DeepForest, a convolutional neural network (CNN) based ITC
delineation algorithm that uses a neuro-symbolic framework
to inject domain knowledge (represented as rules written in
probabilistic soft logic) into a CNN. We create rules that encode
concepts for competition, allometry, constrained growth, mean
ITC area, and crown color. Our results show that the delineation
model learns from the annotated training data as well as the rules
and that under some conditions, the injection of rules improves
model performance and affects model bias. We then analyze the
effects of each rule on its related aspects of model performance.
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I. INTRODUCTION

REMOTE sensing often uses aerial platforms to efficiently

capture data from large geographic regions. Commonly

collected data includes hyperspectral imagery covering the vis-

ible and near infrared wavelengths, LiDAR data, and synthetic

aperture radar imagery [1], [2]. Forest ecologists use remote

sensing data to monitor forest health and make predictions of

biomass and other forest properties. This is usually done by

integrating remote sensing data with allometric relationships

[3], [4]. One important metric used in allometric predictions

is individual tree crown (ITC) area, which can be estimated

from remote sensing based crown delineation [5], [6]. Re-

mote sensing based crown delineation, particularly for closed

canopy forests, remains an open area of research [7]–[9]. The

challenges of crown delineation result from the properties of

trees as well as limitations in remote sensing technology.

In densely forested areas neighboring tree crowns tend to

overlap, may be similar in appearance, and are often multi-

storied, making it difficult to tell where one tree ends and an-

other begins. This is further complicated by the unpredictable

growth patterns of trees; in short, tree crowns grow in irregular

shapes [10]. Adding to this, optical remote sensing technology,

which is commonly used for forest remote sensing, can suffer

from limited pixel resolution and noise. A typical resolution

for visible wavelength optical remotely sensed data is on the

order of 1m per pixel or less [5]. Therefore, one pixel may

contain the edge of one or more tree crowns or may contain

the edge of a tree crown as well as foreign objects.

Manual crown delineation is impractical as some forests

have stand densities on the order of hundreds of trees per

hectare and remote sensing data can cover thousands of

hectares thus capturing millions of trees [3]. The problem of

ITC delineation can be approached as a two step process: tree

detection followed by crown delineation. From a computer

vision perspective, both object detection and delineation are

well researched, however, the application of each process to

forest remote sensing is nuanced. ITC delineation can be

considered a specialized case of image segmentation, where

the goal is to group image pixels belonging to the same

object [11]. Automated approaches to crown delineation can

be categorized into three groups by their modality: those based

on LiDAR, those based on optical imagery (HSI or RGB), and

those based on the fusion of both LiDAR and imagery. These

categories can be further differentiated by type of algorithm:

non-neural [12], [13] and deep learning based [14], [15].

Non-neural algorithms tend to borrow heavily from image

analysis techniques, usually using LiDAR or pixel intensity

to find local peaks that are assumed to be crown centers,

followed by the application of segmentation algorithms, such

as the watershed algorithm, to identify ITCs. Other non-

neural algorithms apply simpler statistical machine learning

models, such as decision trees to identify crown boundaries.

Deep learning based methods, such as DeepForest [12], apply

convolutional neural networks (CNNs) to imagery to identify

ITCs [8], [16].

In the past, an accurate comparison of algorithm perfor-

mance was difficult due to lack of benchmark datasets and

closed-source algorithms, but recent studies suggest deep

learning methods outperform non-neural methods by as much

as 54% in precision and 39% in recall [7]. However, deep

learning based methods are not without problems. They can

require large amounts of annotated data to train, suffer from

dataset bias, and are difficult to tweak in cases where patterns

in the dataset are obfuscated by noise or redundancy.

We propose augmenting deep learning crown delineation

models with a student-teacher network (STN) capable of

incorporating expert knowledge as a set of rules. Using

probabilistic soft logic (PSL), ecologists can encode their

expert knowledge about a region. Because of the powerful

representational abilities of PSL, this knowledge could be

anything from average tree heights to leaf color constraints.

The only limitation on the encoded rules is that the data

associated with those rules must also be represented within

the dataset.

The STN is composed of two networks, one that acts as a
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student and one that acts as a teacher. Using the encoded rules,

the teacher-network guides the student-network’s training so

the student model encodes the rules as well as the information

it learns from the dataset. With this technique ITC delineation

performance is improved and dataset biases can be induced or

removed.

In the remainder of this work we look at related works in

section II, describe our data, methodology, and experiments

in sections III and IV, and finally discuss our results and

conclusions in sections V and VI.

II. RELATED WORK

The availability of aerial imagery along with the impracti-

cality of manual analysis, has spurred forest inventory algo-

rithm research, including algorithms assessing forest structural

properties, forest type, and forest biophysical and biochemical

properties [17]. Many of these algorithms, and those that

perform species classification in particular, require accurate

ITC detection and delineation in order to be useful. Non-

neural crown delineation algorithms can be classified into

3 categories: valley-following, region-growth, and watershed.

One of the earliest approaches to ITC delineation that relied

on knowledge formulated as a distinct set of rules within the

framework of a larger algorithm was proposed by Gougeon et

al. in 1995 [18], [19]. Their valley-following algorithm worked

on the premise that there is variation in shading between

canopies – in short a gap. A set of rules was followed to

trace out the pixel intensity valleys between canopies and

thus segment crowns. Gougen’s rules primarily use low level

visual concepts and do not directly incorporate any high

level ecological abstractions. Despite its simplicity, the valley-

following algorithm had a reported accuracy of 81% when

used with resolutions of 0.3m per pixel or better. As noted by

the paper’s author, the algorithm’s greatest shortcoming was its

underlying assumption that there are bands of shade between

crowns. This limits the algorithm to low to moderate density

forest stands.

Valley-following algorithms were superseded by region-

growing algorithms, which are commonly used in image

segmentation [20]. Region-growing algorithms start with a

seed pixel whose properties are assumed to be prototypical

of the region. Starting from the seed pixel, neighboring pixels

are examined in succession and added to the region if they are

similar to the seed. The process ends when boundary pixels

reach a dissimilarity threshold. Region growing algorithms

were first used for image segmentation in the 1990’s and

algorithms such as Culvenor’s TIDA, became popular for

ITC delineation in the early 2000’s [21]. Erickson created a

region-growth algorithm that incorporates fuzzy thresholding

and a set of rules to guide region growing, however, like the

valley-following algorithm, the rules do not incorporate high

level ecological concepts [20]. Erickson’s algorithm achieved

an overall accuracy of 73%. A common problem with these

algorithms comes from their method of choosing seed points.

TIDA and similar algorithms use local maxima in pixel

intensity to choose seeds. These points are assumed to be

crown centers, however this may not always be the case [22].

ITC delineation algorithms based on variations of the

watershed algorithm also became increasingly researched in

the early 2000’s [23]. Starting from a gray-scale image, the

watershed algorithm treats pixel intensities as if they were

elevations on a topographical map. Following this analogy, if

the object were slowly submerged in water, the water would

pool in regions of low pixel intensity first. As the object is

further submerged the pools of water collected would begin

to merge. The boundaries marked by the edge of each pool

can be considered a segment. Wang et al. used the watershed

algorithm to segment aerial imagery into ITCs [24]. Wang’s

algorithm had an accuracy of 75.6%. Watershed segmentation

ITC algorithms are subject to errors caused by inconsistencies

between gray-scale boundaries and tree crown boundaries.

Error can also be introduced into the algorithm when treetops

deviate from the crown center. This is common when tree

growth is not vertical.

More recent approaches to ITC delineation often combine

RGB or hyperspectral imaging with point cloud data generated

via LiDAR. Many of these algorithms, such as Dalponte’s

itcSegment, incorporate machine learning models [25]. Sackov

et al. developed a purely LiDAR based algorithm for ITC

delineation using what they called a point-based approach [26].

Their method uses allometric rules to improve the likelihood

of crown detection. Their results showed that their algorithm

was reliable only under specific conditions. Kientz et al. give a

comparison of segmentation based ITC delineation algorithms

in [27].

Though CNNs were developed in the 1990’s they have only

recently been applied to crown delineation [28]. Weinstein

et al. show CNNs are a viable method for ITC delineation

on a range of forest types using a RetinaNet based model

in their work [7], [29]. Braga et al. use Mask-RCNN for

crown delineation [8]. Though both models are similar, Mask-

RCNN segments detected objects allowing for the creation of

irregularly shaped boundaries [30]. Weinstein’s model, tested

on various forest types, averages a F1 of 68%. Braga’s model

has a global accuracy of 91% but has more limited testing.

Neuro-symbolics is the branch of artificial intelligence con-

cerned with bridging the gap between learning and reasoning

[31]. Connectionist machine learning models, such as neural

networks, excel at learning from experience but lack the ability

to reason (in a way that’s understandable to humans) about

what they learned. On the other hand, symbolic representations

of knowledge, such as those that incorporate propositional or

first order logic (FOL) are useful for reasoning and readily

understood by humans, but ill fitted for learning. In learning

applications, rule based models generally perform poorly com-

pared to connectionist models. The goal of neuro-symbolics is

to combine learning with reasoning ability, usually represent-

ing domain knowledge as a set of rules, a knowledge base, or a

knowledge graph that allows a connectionist model to benefit

from the symbolic representation of domain knowledge that is

related to the dataset.

Several recent works have applied neuro-symbolics to vision

intensive ecological tasks, such as the use of fine grained

image classification (FGIC) for species classification in plants

and animals [32]–[34]. Xu et al. use a two level object
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detection model based on R-CNN for FGIC of bird species

[32]. The model uses species specific domain knowledge from

a knowledge base and relevant text to boost CNN performance

by projecting the CNN predictions into the same semantic

embedding space as the knowledge base and text. Using this

approach their model can reason about which species is most

likely in an image by measuring the similarity between the

projected CNN prediction and the embedded species descrip-

tions from the knowledge base and text. Xu et al.’s model was

able to surpass the state of the art on the Cal-tech UCSD Bird

dataset [35].

Sumbul et al. use a similar approach for FGIC of tree

species classification from remote sensing imagery [34]. They

add to the difficulty by testing their model in a zero shot

learning scenario. Their model consists of a combination of

CNN and 3 separate sources of domain knowledge: manually

annotated attributes, relevant text corpora, and a hierarchical

representation of the species taxonomy. The CNN is used

to create visual embeddings of images. The 3 auxiliary data

sources are also embedded or encoded before further process-

ing. The model feeds the visual and auxiliary data embeddings

into a learned bilinear compatibility function that returns a

scalar value representing how closely the image matches a

particular class. The results for each class are fed into a

softmax function to make a prediction. Using their model,

Sumbul et al. achieved an average accuracy of 14%, which is

reasonable for zero shot learning.

CNN based models have several drawbacks. They require

datasets on the order of thousands of images or more to

get reasonable results. Training CNNs is also computationally

intensive, requiring thousands of giga-flops to train [36]. The

combination of large datasets and computational intensiveness

makes working with CNN based models impractical without

access to high powered computing hardware such as GPUs or

TPUs.

Our approach to neuro-symbolics uses CNNs and high

level ecological concepts encoded as a rule to improve ITC

delineation performance. To the best of our knowledge we are

the first to apply neuro-symbolics to ITC delineation.

III. DATA AND METHODOLOGY

Though our methods can theoretically be applied to any

machine learning RGB ITC delineation model, our work is

based on DeepForest. DeepForest is built around RetinaNet, a

CNN with 31.9M trainable parameters, used to drive crown

detection [29]. Like all deep CNNs, DeepForest requires

thousands of annotated images to train. DeepForest was trained

using data from the National Ecological Observatory Network

(NEON), which annually collects remote sensing data from

81 sites across the continental United States, Alaska, and

Puerto Rico. LiDAR, RGB, and hyperspectral imagery data are

categorized by site and year, and are available for download

from the NEON website at no charge [37]. Weinstein et

al. used 2018 NEON data products to train DeepForest and

create a benchmark dataset for ITC delineation [38]. The

dataset consists of annotated images divided into training and

evaluation sets and further divided by site. Annotations in the

evaluation dataset are verified against field measured crowns

when possible. To reduce the burden of manually annotat-

ing large numbers of images, DeepForest uses a three step

training process consisting of self-supervised and supervised

algorithms to generate a training set. The backbone of the

ITC delineation model is pre-trained on ImageNet. Then, a

large weakly labeled training set from a variety of forest-

types is generated based on an unsupervised crown delineation

algorithm to create a set of transferable weights. Using transfer

learning [39], these generalized weights are used as starting

points to retrain the model on smaller more region specific

datasets based on human labeled training data.

A. Knowledge Distillation and Posterior Regularization

A STN is an architecture that uses one or more teacher

networks to guide the training of a second network, the

student [40]. This technique was proposed by Bucilua et al.

as a means of compressing a large or complex model into

a smaller model [41]. It was later modified and popularized

by Hinton et al. to transfer knowledge from one model to

another in a process he named knowledge distillation [42]. In

Gou’s taxonomy of knowledge distillation strategies, Hinton’s

method falls into the response-based knowledge distillation

category where knowledge is transferred through the response

of the output layer of the teacher model [40].

Let the training set, D, consist of a set of points, X , where

X ∈ {x1, x2, ..., xn} and a set of labels, Y, where Y ∈
{y1, y2, ..., yn}. Each point xi ∈ X is paired with its label yi ∈
Y to create D, where D = {(x1, x2), (x2, y2), ..., (xn, yn)}.
In this example we focus on classification, so let y be a 1-

hot encoding such that y ∈ {0, 1}k and k is the number

of classes. Using response-based knowledge distillation, the

student-network learns from both the training data and the

teacher-network through its loss function, which is a function

of the teacher output, student output, and ground-truth labels

or prior distributions. In Hinton’s parlance, after the the logits

from the output layer of the teacher and student network are

passed through a soft-max layer, they are called soft-targets,

z. Fig. 1 shows a generic student teacher network that uses

response-based knowledge distillation. zs and zt are the soft-

targets from the student and teacher networks respectively.

The loss function for the entire network is composed of two

losses, the student-loss and the distillation-loss. The student-

loss measures the student-network’s inference skill relative to

ground-truth labels. The distillation-loss measures the student

network’s skill at imitating the predictions of the teacher-

network. Basing our example on a classification model acting

as the student in a STN, we can use cross-entropy loss to

measure the student’s inference skill relative to ground-truth

as shown in (1).

LS = LCE(y, zs) (1)

The distillation loss is a function of zt and zs as shown in (2).

Treating the soft-targets as distributions, a divergence measure

such as Kullback-Leibler is commonly used as the distillation

loss function [40].

LD = L(zt, zs) (2)
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Fig. 1. A generic response-based knowledge distillation student-teacher
network and its loss functions.

Thus, the response-loss is a function of LD and LS ,

L(LS , LD), commonly a linear combination of the two.

Models trained using knowledge distillation are shown to

outperform the same model trained on a dataset alone [42].

Prior to Hinton’s work Ganchev et al. produced a similar

result using posterior regularization [43]. Posterior regulariza-

tion (PR) is similar to the STN concept. The loss function

of a model trained with PR includes a regularization term that

essentially functions as the distillation loss. To align Ganchev’s

work with Gou’s terminology, let pθ be the student model with

parameters θ. The divergence between an optimal distribution,

q∗, and the model’s posterior distribution, pθ(y|x), are used

as arguments in what is equivalent to a distillation-loss term.

Distribution q∗ is then equivalent to zt in that knowledge

is passed from the teacher to the student through q∗. As

originally formulated in [43], distributions Q are constrained

based on prior knowledge:

Q = {q(Y ) : Eq[ϕ(X,Y )] ≤ b}. (3)

In (3) Q is the set of distributions that satisfy a constraint. In

this case, Q contains distributions where the expected value

of the constraint feature, ϕ, is bounded by b. In [43] the loss

function for model pθ is given as

L(θ) = log(pθ(Y |X)) + log(p(θ)), (4)

where the first term is the log-loss of the model’s posterior and

the second term is a prior on the model’s parameters. Using

Gou’s terminology, L(θ) is the student-loss. Finally, Ganchev

creates the posterior regularized likelihood as

JQ(θ) = L(θ)−KL(Q∥pθ(Y |X)) (5)

where

KL(Q∥pθ(Y |X)) = min
q∈Q

KL(q(Y )∥pθ(Y |X). (6)

The divergence term penalizes pθ for failing to match dis-

tribution q, making the divergence term equivalent to the

distillation loss and JQ the response loss. To train pθ, JQ is

optimized with respect to the bounded expected value of the

constraint features. Ganchev shows that the primal has closed

form solution

q∗ =
pθ(Y |X) · exp{−λ∗ · ϕ(X,Y )}

Z(λ∗)
(7)

where q∗ is the optimal distribution from set Q, λ∗ is a real

number ≥ 0, and

Z(λ∗) =
∑

Y

pθ(Y |X) · exp{−λ∗ · ϕ(X,Y )} (8)

serves to normalize q∗. See [43] for proof. Equation (7) can

be geometrically interpreted as the projection of pθ(Y |X) into

a subspace constrained by ϕ(X,Y ) [43].

We have shown that elements of a response-based knowl-

edge distillation STN are present in PR. The next step is

to build a framework to formalize the symbolic expression

of domain knowledge as a set of constraints and a means

to inject that knowledge into neural models. These concepts

were incorporated into a single machine learning paradigm by

Hu et al. [44]. Hu’s work builds on Ganchev’s by encoding

constraints, ϕ(X,Y ), in PSL and augmenting a student-loss

function with a distillation-loss term to transfer knowledge

from a teacher-network.

PSL is framework for probabilistic reasoning built on FOL

and fuzzy logic [45]. See section III-B for more information.

As in PR, [44] uses the projection of the student-network

into a rule regularized subspace to obtain zt. Because Hu’s

framework can be applied to any neural model and the domain

knowledge is encoded in PSL, Hu uses the term logic harness

rather than student-teacher network. Using Hu’s framework,

we modified DeepForest to have the architecture shown in

Fig 2. DeepForest is built around RetinaNet [29]. As shown

Fig. 2. Network architecture. The student-network (right side of the blue
dotted line) is trained using annotated RGB images. The annotations are shown
in orange and predictions in dark green. The student-network is projected into
a rule-regularized subspace (blue arrow) to create the teacher-network (left
side of the dashed blue line). The student-network is penalized for failing to
imitate the predictions of the teacher-network as well as incorrect inferences
relative to ground-truth. The combined loss is used to update the student-
network through backpropagation.

in Fig. 5 RetinaNet has classification and regression heads.

The classification heads are used to predict object class while
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regression heads are used to predict object location. As such,

its loss function is composed of two parts, one representing

the classification loss and a second representing bounding

box regression loss. We call the loss from the classification

heads Lcln and the loss from the regression heads Lreg .

We use the unmodified loss from RetinaNet as the student-

loss and implement PR by adding a distillation-loss term

[44]. Because the student network generates two predictions,

a class and location, we modify our notation. We introduce

location vectors. Location vectors are 4-vectors, with elements

representing the upper-left corner and the lower-right corner

of a bounding box:

t⃗ =⟨xmin, ymin, xmax, ymax⟩. (9)

We now represent the soft-targets, zs (10) and zt (11), as tuples

composed of a class prediction and a location vector. The class

prediction is as a k-dimensional probability simplex and the

location vector is formatted as previously described.

zs = (ŷ, t̂) (10)

zt = (s, v) (11)

The response-loss is shown in (12) where N is the number of

instances in a batch and π is a function of step number with

range [0, 1]. The parameter π is used to linearly blend the

student-loss with the distillation-loss and set how strongly the

student-network imitates the teacher. Pi is termed the imitation

parameter in [44].

LR =
1

N

N
∑

i=1

(1−π)·
(

Lcln(yi, ŷi)+Lreg(ti, t̂i)
)

+π·LD(zt, zs)

(12)

LD = Lcln(s, ŷ) + Lreg(v, t̂) (13)

For classification, Lcln is cross-entropy loss, in the case of

DeepForest, which only has two classes, binary cross entropy

loss. For bounding box regression, L1 loss is used. As in

[43], the student-network is projected to create the teacher-

network. For constraints that only affect classification the

teacher-network uses the same location predictions as the

student-network, v = t̂. Similarly, for constraints that only

affect bounding box predictions, the teacher-network uses the

same classification predictions as the student-network, s = ŷ.

Hu modifies (7) to work with constraints written in PSL. The

framework allows for the incorporation of multiple rules. In

(14) constraint function ϕ(X,Y ) is replaced with a set of rules

written in PSL, but the projection paradigm is the same. See

[44] for a proof.

q∗ ∝ pθ(Y |X) · exp
{

−
∑

l∈L,gl∈Gl

C · λl · (1− rl,gl(X,Y ))
}

(14)

In (14) q∗ is projection of pθ(Y |X) into a subspace con-

strained by the rules, where L is the set of rules and Gl is

the set of groundings for each rule. Each rule is paired with

a constant, λ, where

R = {(Rl, λl)} where λl ∈ [0,∞). (15)

λ represents the subjective confidence of the rule. C is a

regularization parameter. In Hu’s framework, q∗ is passed

through a soft-max function prior to use as the prediction of

the teacher-network.

The resulting network is trained with standard optimization

algorithms such as stochastic gradient descent [46]. We de-

velop the objective function, (16), from (12). In (16) τ is the

iteration number and θ the student-network parameters. At the

start of a training iteration, the network weights, rules, π, and

C are initialized. One batch of the training data is sampled.

The training data is forward-propagated through the student-

network. Using (14) the teacher predictions are computed.

Using Equation (16) the error is back-propagated through the

student-network and θ is updated. The process is then repeated.

The algorithm is summarized below.

θ(τ+1) = argmin
θ∈Θ

1

N

N
∑

i=1

(1−π)·
(

Lcln(yi, ŷi)+Lreg(ti, t̂i)
)

+ π · LD(zτt , zs) (16)

Algorithm 1 Logic Harness Training

INPUT:

D, dataset of images (X) and annotations (Y)

Rule set R = {(R1, λ1), (R2, λ2), ..., (RL, λL)}
Parameters: π, C, numEpochs

OUTPUT:

Trained network, pθ
METHOD:

Initialize weights, θ

for 1 to numEpochs:

for batch (X,Y) ⊂ D

zs ← pθ(X)
zt ← Eqn.(14)
θ(τ+1) ← Eqn.(16)

return pθ

B. Probabilistic Soft Logic

Rules are written using a relaxed version of probabilistic

soft logic (PSL), a combination of FOL and Lukasiewicz

logic. FOL is a powerful and highly expressive framework

where logical expressions are composed of constants, vari-

ables, predicates, and functions linked by logical operators

“and”, “or”, “if”, and “not” [47], [48]. Predicates take a set of

arguments as input and return a value of true or false. When

soft-logical operations are used they return a value between 0

and 1 [49]. Functions accept arguments and return a constant

of any kind. When used with soft-logic function range is also

limited to [0,1]. An atom is a predicate and its arguments.

A literal is an atom or a negated atom. A PSL rule can be

weighted or unweighted. In our framework the weight of a rule

is represented by the rule’s λ. Each rule has a precondition and

post condition, referred to as the body and head, respectively.

In strict PSL a rule’s body consists of a conjunction of literals

and the head consists of a single literal or a disjunction of

literals. Being continuous, these expressions can be evaluated

algebraically. Examples are shown in equations (17) - (20).
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A & B = max(A+B − 1, 0) (17)

A1 ∧A2 ∧ ... ∧AN =
∑ Ai

N
(18)

A ∨B = min(A+B, 1) (19)

¬A = 1−A (20)

PSL also allows for rules written in terms of arithmetic,

using arithmetic operators. Arithmetic rules constrain linear

combinations of atoms with an equality or an inequality.

Kimmig et al. provide a good introduction to PSL [45].

We motivate an example of a simple set of rules written in

PSL with a potential use case of logic-harness augmented

DeepForest. Assume that we have a large image of trees in

profile and we want to write rules to detect trees, by examining

rectangular subsections of the image. Given the two rules,

0.3 : hasLeaves(X)∧ isWoody(X) =⇒ isTree(X) (21)

0.8 : hasLeaves(X) ∧ isWoody(X) ∧ isTall(X)

=⇒ isTree(X), (22)

let X be a variable representing a subsection of the image. The

rule predicates are hasLeaves, isWoody, isTall, and isTree.

The atoms to the left of the arrows represent the body of the

rule and the atom to the right, the head of the rule. Expressed

in natural language rule 1 reads, “if x has leaves and is woody

then there is a chance x is a tree”. Rule 2 reads, “if x has leaves

and is woody and tall then there is a chance that x is a tree”.

The weights, 0.3 and 0.8, signify that the second rule is more

likely to be true than the first. A rule is evaluated by mapping

each atom to a soft truth value. This is called an interpretation,

I . A rule, r, is satisfied if I(rbody) ≤ I(rhead). Each rule

can be expressed algebraically by evaluating the atoms and

substituting the equations for the operators listed in (17) -

(20). Using (24), the first rule is expressed algebraically as

min{1−
hasLeaves(X) + isWoody(X)

2
+ isTree(X), 1}.

(23)

A =⇒ B ≡ ¬A ∨B (24)

Encoded rules can be evaluated by simplifying expressions

and transforming them into their algebraic equivalents.

C. Data

We used data from 4 NEON sites: Niwot Ridge (NIWO),

Teakettle Experimental Forest (TEAK), San Joaquin Experi-

mental Range (SJER), and Mountain Lake Biological Station

(MLBS). NIWO is an alpine forest in the Rocky Mountains of

Niwot, Colorado, located at 40°03’N latitude and 105°36’W

longitude [50], [51]. Its elevation is between 3,000-3,500 m.

The mean temperature is 1.5°C and its annual precipitation is

800 mm per year. The primary tree species are lodgepole pine,

subalpine fir, and Englemann spruce. The mean canopy height

is 0.2 m [51] (all canopy height values listed here include bare

ground and the prevalence of bare ground at NIWO is why this

value is so small). The tree density is 1,726 stems per hectare.

The NIWO dataset, the largest of all datasets, contained 10,757

training annotations, 1,655 validation annotations, and 1,624

testing annotations. The average ITC area for the NIWO

training set was 4.12 m2.

TEAK is a coniferous forest located in California’s Sierra

National Forest at 36°58’ N latitude and 119°1’ W longitude

[52], [53]. Its elevation is between 1,900 and 2,300 m and

the mean annual temperature is 8°C. It receives an average

of 1,222.5 mm precipitation per year. The primary vegetation

consists of Jeffrey pine, red fir, white fir, and lodgepole

pine. The mean canopy height is 35 m [52]. The TEAK

dataset contained 4,514 training annotations, 885 validation

annotations, and 734 testing annotations. The average training

set ITC area was 24.8 m2.

SJER is an oak savanna located at the foot of the Sierra

Nevada Mountains in California at 37°5’45” N latitude and

119°43’45” W longitude [47], [48] [54], [55]. Its elevation

is between 213 - 518 m and the mean annual temperature

is 16.4°C. The mean annual precipitation is 539.6 mm. The

predominant vegetation is blue oak, interior live oak, and

foothill pine. The mean canopy height is 21 m [54]. The SJER

dataset contained 2,824 training annotations, 223 validation

annotations, and 255 testing annotations. The average training

set ITC area was 59.9 m2.

MLBS is a deciduous forest in the Appalachia Mountains of

Virginia located at 37°22’ 42” N latitude and 80°31’ 29.4492”

W longitude [56]. Its elevation is 1,170 - 1,320 m and the mean

annual temperature is 8.8°C. The mean annual precipitation

is 1,227mm. The primary tree species are red maple and

white oak. The mean canopy height is 18 m [56]. The MLBS

dataset contained 2,349 training annotations, 372 validation

annotations, and 481 testing annotations. The average training

set ITC area was 24.0 m2.

The data was collected via NEON’s airborne observation

platform (AOP), an array of remote sensing instruments in-

stalled on a light aircraft. The instruments include a discrete

and full-waveform LiDAR, a digital camera, an imaging

spectrometer, a GPS antenna, and an inertial measurement unit

(IMU) [57]. Data is collected from an above ground altitude

of 1000 m. The flights occur annually over all NEON sites

during each forests’ peak greenness and occur in conjunction

with field surveys.

The RGB imagery has a resolution of 0.1 m per pixel. The

resolution of the LiDAR point cloud data varies, but averages

2 - 8 points per square meter [58]. The lidar point clouds

are used to generate canopy height model (CHM) rasters

with a resolution of 1 m2 per pixel. For our experiments we

used NEON’s L3 RGB and CHM data products which are 1

km2 mosaiced tiles stored separately in a co-registered geotiff

format.

For training, model rasters larger than 500 pixels in either

dimension were decomposed into multiple rasters of 400 x

400 square pixels or less with 5% overlap. The train-test-

split used followed that used by [38], however for rule 3, we

only used RGB rasters that also had a corresponding canopy

height model raster available. The validation datasets were

created to be similar in size to the test set. More information
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Fig. 3. Example training images of sites from left to right: MLBS , NIWO, SJER, TEAK. Ground truth annotations are shown in orange.

on the creation of the dataset can be found in [38]. The

annotation count and ITC area distributions for each dataset

are summarized in Table I and Fig. 4 respectively. Examples

of images from each site are shown in Fig. 3. The ground-truth

tree crown annotations are shown in orange.

TABLE I
THE NUMBER OF ANNOTATED TREES COMPOSING THE TRAINING,

VALIDATION, AND TEST SETS BY SITE.

Site
Training

Annotations
Validation

Annotations
Testing

Annotations

NIWO 10,757 1,655 1,624
TEAK 4,514 885 734
SJER 2,824 223 254
MLBS 2,349 372 481

To support the incorporation of the ecology of competition,

for each annotated tree in the training set we measure the num-

ber of other annotated trees that touch or intersect its bounding

box. We use this metric as a measure of competition at each

site. Tree functional traits are highly dependent on species,

but also influenced by environment. During growth, there is

a trade-off between vertical growth and horizontal growth.

Dense stands limit crown expansion due to mechanical in-

teraction with neighboring crowns, while encouraging vertical

growth. On the other hand, lateral space promotes horizontal

expansion: open-grown trees are shorter with larger crowns

throughout their life [59], [60]. Table II shows the number of

trees in competition at each site. MLBS has the most trees

in competition with almost 100% of its population, followed

by NIWO, TEAK, and SJER. Table II also summarizes the

percentage of trees that support the assertion that competing

trees have smaller than average crowns while non-competing

have larger than average crowns.

D. Model

Deep Forest is built around Retinanet [29]. Retinet is a

deep convolutional neural network (CNN) for object detection.

The network architecture is shown in Fig 5. The network

consists of a backbone, feature pyramid network (FPN) [61],

and classification and regression heads. The backbone is built

from ResNet-50 using ImageNet pre-trained weights [62]. The

backbone provides the primary feature extraction. The FPN

TABLE II
THE COUNT OF COMPETING TREES (CMP) AND NON-COMPETING TREES

(NCMP) FOR EACH SITE’S TRAINING SET. FREQUENCY RELATIVE TO THE

SITE SAMPLE SIZE IS IN PARENTHESES.

NIWO TEAK MLBS SJER

cmp ≤ mean
5,590

(0.520)
2,243

(0.497)
1,408

(0.599)
720

(0.255)

cmp > mean
4,108

(0.382)
1,272

(0.282)
934

(0.398)
451

(0.160)

tot. cmp
9,698

(0.902)
3,515

(0.779)
2,342

(0.997)
1,171

(0.415)

ncmp ≤ mean
840

(0.078)
688

(0.152)
7

(0.003)
999

(0.354)

ncmp >mean
219

(0.020)
311

(0.069)
0

(0.000)
654

(0.232)

tot. ncmp
1,059

(0.098)
999

(0.221)
7

(0.003)
1,653

(0.585)

tot. trees
10,757
(1.000)

4,514
(1.000)

2,349
(1.000)

2,824
(1.000)

provides scale invariant feature detection. The classification

heads classify candidate objects. The classification heads use

a version of cross entropy loss. The regression heads localize

candidate objects by generating bounding box coordinates. The

regression heads use F1 loss.

Object detection networks come in two flavors, single stage

and two-stage [29], [63]. Both use the concept of anchor boxes

[61]. Anchor boxes are a predefined set of bounding boxes

of a particular size and aspect ratio. Two stage networks use

a region proposal network (RPN) to reduce the number of

candidate objects sent to classification and regression heads

and are thus bounding box sparse. Single stage networks lack a

RPN and thus send thousands of times more candidate objects

to the classification and regression heads and are anchor box

dense. RetinaNet can produce 100K anchor boxes per feature

map or more.

Single stage networks tend to have faster inference, while

2 stage networks have more accurate classification and local-

ization [29]. RetinaNet’s innovation was its ability to outper-

form two stage models by employing focal loss. The poor

performance of single stage object detection models stemmed

from the class imbalance between foreground and background

candidate objects with background candidate objects being in
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Fig. 4. Box plot of the crown area distribution for each site.

Fig. 5. RetinaNet architecture. The ResNet backbone generates feature maps
that are combined at different scales in the feature pyramid network. Classi-
fication and regression heads perform detection and localization respectively.

the majority. Focal loss reduces the loss contribution from

background objects by reducing the loss contribution from

high confidence classifications like background and increasing

the loss contribution from low confidence foreground objects

that the model is intended to detect. With Focal-loss, RetinaNet

outperforms two-stage models. Its fast inference and high

performance make it a popular choice for remote sensing

applications.

The prediction process for RetinaNet occurs as follows:

The convolutions are performed by the ResNet backbone to

produce feature maps at different scales. These are passed to

the FPN. The anchor boxes associated with each candidate

object are in 3 aspect ratios, {1:2, 1:1, 2:1} and each of

those aspect ratios are at 3 scales {20, 2
1

3 , 2
2

3 }.Only the top

1K predictions per FPN level are passed to classification

and regression heads. These top predictions are merged and

non-maximal suppression (NMS) is performed, removing any

candidate objects with a class probability of less than 0.5. Each

classification is assigned to 1 ground-truth object if it has an

intersection over union (IoU) > 0.5. If the IoU is between

0 and 0.4 the candidate object is assigned to the background

class.

E. Metrics

The IoU, also known as the Jaccard Index, is used to mea-

sure the overlap between predicted and ground-truth bounding

boxes. Given two bounding boxes A and B their IoU is given

by

IoU =
Aarea ∩Barea

Aarea ∪Barea

, (25)

where Aarea and Barea are the areas of box A and B

respectively.

The primary metrics used to measure model performance

are precision, recall, and macro-F1. When a predicted bound-

ing box has an IoU ≥ 0.5 with a ground-truth bounding box

it is considered a true positive. If the IoU is less than 0.5

or it does not intersect with a ground-truth bounding box it

is considered a false positive. A ground-truth bounding box

without a matching prediction is a false negative.

Precision is defined as

Precision =
TP

TP + FP
, (26)

where TP is the number of true positives, and FP is the

number of false positives. Recall is

Recall =
TP

TP + FN
(27)

where TP is the same as previously defined and FN is the

number of false negatives. The equation used for macro-F1 is

F1 =
2 · Pr ·Rec

Pr +Rec
(28)

where Pr is the precision, as defined in (26) and Rec is recall

as defined in (27).

The root mean square error (RMSE) is used to measure the

cumulative error between predicted values and the ground-

truth values. The RMSE is given by

RMSE =

√

√

√

√

1

N

N
∑

i=1

(

yi − ŷi
)2
, (29)

where y is the ground-truth value and ŷ is the predicted value.

The mean absolute error measures the same concept, but is less

sensitive to outliers than the RMSE. The MAE is given by the

equation

1

N

N
∑

i=1

|yi − ŷi|. (30)

Both RMSE and MAE are used to measure the cumulative

difference between the predicted and ground-truth ITC areas.

The Kullback-Leibler Divergence (KL-Divergence) is used

to measure the difference between two probability distribu-

tions. The output is a scalar value given by the equation

DKL(P∥Q) =
∑

x∈X

P (x)log(
P (x)

Q(x)
) (31)

where P (X) and Q(X) are probability distributions. KL-

divergence is not a true metric as it is not commutative. We

use it to measure the difference between predicted and actual

ITC area distributions.

To measure rule enforcement we use the verification ratio

as in [64]. Given a set of predictions, Ŷ , let ŶR be the subset

of Ŷ that satisfies rule R. Then the verification ratio is defined

as

ver. ratio =
|ŶR|

|Ŷ |
. (32)
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TABLE III
A SUMMARY OF EACH RULE’S FUNCTION WRITTEN IN NATURAL LANGUAGE AND PSL ALONG WITH THE DOMAIN KNOWLEDGE IT INCORPORATES. THE

RULES ARE GROUPED BY THE INTEGRATION INTO RETINANET. RULES 1, 3, AND 4 HOOK INTO THE NETWORK USING THE CLASSIFICATION HEAD,
WHILE RULE 2 USES THE REGRESSION HEAD.

Rule Natural Language PSL Domain Knowledge Incorporated

1 For all predictions, if the ITC area of

a predicted tree is less than the site’s

average ITC area, it is probably a tree.

∀ŷ
(

1(y = +) =⇒ bboxSize(Abbox(t̂))+ ∧ bboxSize(Abbox(t̂))+ =⇒ 1(y = +)
)

Site mean ITC area

3 For all predictions, if the ITC area is

less than or equal to the area predicted

from the H-CA allometry, then it’s prob-

ably a tree.

∀ŷ
(

1(y = +) =⇒ bboxHCA(Abbox(t̂))+ ∧ bboxHCA(Abbox(t̂))+ =⇒ 1(y = +)
)

CHM, height-crown allometry

4 For all predictions that match ground

truth trees, if the ITC color composition

is more than 20% green pixels, it is

probably a tree.

isTree(ŷ) =⇒
(

1(y = +) =⇒ isGreen(pg)+ ∧ isGreen(pg)+ =⇒ 1(y = +)
)

Crown color

2 If the predicted ITC is in competition

then its area is probably constrained.

∀(ŷ, t̂) isComp(ŷ, t̂) =⇒ constrained(t̂) Crown area distribution

IV. EXPERIMENTS

We develop 4 rules to demonstrate a variety of approaches

to the injection of domain knowledge into a crown delineation

CNN. Rules 1 - 3 are designed to improve performance, while

rule 4 is designed to alter model behavior without changing the

dataset at the expense of performance. This allows the model

to be trained on the same dataset, but accomplish two different

tasks. Rules can be further subdivided based on the strength of

their grounding in ecological domain knowledge. Rules 1 and

4 have the weakest ecological basis and are more oriented

towards correcting or inducing bias in the model, whereas

rules 2 and 3 have a stronger ecological foundation. Rule 2

is designed to only operate in some contexts. Furthermore,

rules 1, 3, and 4 feed into the model through the classification

heads. Rule 2 feeds into the model using the regression heads.

Much of ecology domain knowledge is site and species

specific. Concepts that apply to one site may need modification

to be applied to another site or may not be applicable at

all. There is a great body of research on site and species

specific allometry [59], [60], [65], [66]. Of particular interest

to this work is crown allometry. Stem diameter breast height

(DBH) and stem height are frequently studied in relation to

crown area. These studies include modeling the crown area

distribution as well as fitting log-linear models for height

crown area allometry. For the 4 sites in this work, despite the

canopies being composed of multiple species, the data does

not include species identities, therefore the rules applied are

not species specific.

A. Rule 1

For rule 1 we measure the mean area of the annotated

crowns in the training set and use this knowledge to improve

test set performance. As shown in Fig. 4 crown area varies

significantly among sites. For example, the average crown

area for trees at NIWO is an order of magnitude less than

the average crown area for trees at SJER. Since tree size

distributions are highly right-skewed most trees at a site

will be smaller than the mean. In addition, in some cases

DeepForest produces size measurements that are somewhat

larger than field measurements [67]. Therefore, we use the

following rule to incorporate mean ITC area into our model

while acknowledging the shape of the size distribution and

potential overestimates of crown size by the model:

For all predictions, if the ITC area of a predicted tree is less

than the site’s average ITC area, it is probably a tree.

To encode this rule into PSL we create a function of ITC

area whose range is (0, 1). We use the sigmoid function as

a soft unit step function flipped about the y-axis. We set the

site average crown area at the inflection point thus pθ(y|x) for

crowns that are greater than average are reduced. We call this

function bboxSize. The equation for the function is

bboxSize(A) =
1

1 + e−ksig·(µarea−A)
(33)

where ksig is a constant, µarea is the mean ITC area for the

site, and “A” is the area of the bounding box. We formulate

Rule 1 in relaxed PSL as follows

∀ŷ
(

1(y = +) =⇒ bboxSize(Abbox(t̂))+

∧ bboxSize(Abbox(t̂))+ =⇒ 1(y = +)
)

. (34)

Using the notation from [44], 1 is an indicator function that

returns 1 when its argument is true and 0 otherwise. The “+”

represents the positive class,

bboxSize(a)+ = bboxSize(a), (35)

and

bboxSize(a)− = 1− bboxSize(a), (36)

Abbox() is a function that takes a predicted bounding box

vector and returns its area in pixels. Replacing “∧” with the

equation for “&” given in 17, the PSL for rule 1 simplifies to

bboxSize(Abbox(t̂)) when y = + and 1−bboxSize(Abbox(t̂))
otherwise.

B. Rule 2

Rule 2 addresses the challenge of excessively large trees

more directly by decreasing the dimensions of the predicted

bounding box for ITCs that are in the extreme tail of the

empirical size distribution. It does this while accounting for

an additional piece of ecological knowledge, which is that
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trees with very large canopy areas may occur naturally when

there is no competition from surrounding trees, and inversely,

trees are likely to have a smaller canopy areas when there is

competition from surrounding trees. We do this by applying

the domain knowledge as a PSL statement, but we wanted to

see if we could inject this knowledge through the regression

heads rather than the classification heads like rules 1, 3, and

4. We implement the output of the rule as a vector and deviate

from strict PSL by changing the range of the predicate to the

reals. Changing the output range to the reals allowed for finer

control. The predicate used can be easily returned to strict PSL

by passing the real output through a sigmoid function. We use

clipping to avoid underflow and overflow from exponentiation.

We assume that for a value of 0⃗ the expression is satisfied and

the expression’s distance from 0⃗ is used to measure distance

from satisfaction.

First, for each site, we create a distribution of the bounding

box widths and lengths from the training set data. Like the

area, this distribution is modeled as a Weibull distribution.

We want to reduce the size of bounding boxes with a width

or length that falls outside of 98% of the distribution on the

right tail. By constructing separate tests of each dimension, we

can control for bounding box aspect ratio. Let t̂ be a predicted

bounding box of class tree for prediction ŷ. As described in

section III-A, t̂ has the form given in (9).

Let’s assume the optimum aspect ratio for bounding boxes

at this site is 1:1. Thus the optimum width and height, w∗ and

h∗ respectively, are the same. We define width as

w = txmax − txmin (37)

and height as

h = tymax − tymin. (38)

Then let function dx be defined as

dx =

{

0, (w∗ − w) ∈ [llw, lrw]

w∗ − w, otherwise
(39)

and dy be defined as

dy =

{

0, (h∗ − h) ∈ [llh, lrh]

h∗ − h, otherwise
(40)

where llw, lrw, llh, and lrh are the right and left limits

representing the cutoffs for the width and height bounding box

distributions respectively. We define function constrained as

constrained : t̂→ ⟨dx(w), dy(h)⟩ (41)

To avoid applying this rule in contexts where trees with very

large crown areas are expected to occur, we incorporate the

ecological concept of competition as defined in section III-C.

The rule can be interpreted in natural language as

If a prediction is in competition then there is a chance its

corresponding bounding box should be constrained.

We write this in PSL as

∀(ŷ, t̂) isComp((ŷ, t̂)) =⇒ constrained(t̂)) (42)

where isComp is true if ŷ intersects another prediction’s

bounding box and false otherwise. The coordinates of t̂ are

converted to homogeneous coordinates. We use the compo-

nents q∗ from (14) as the scaling coefficients of an affine

transformation that scales prediction t̂ while keeping its orig-

inal center [68].

C. Rule 3

Rule 3 imposes the well established ecological pattern of an

allometry between tree height and crown area on the model

[69], [70]. For each site the co-registered RGB images are

combined with the LIDAR-based CHM to provide data on tree

height for training and testing. The CHM is used to create

a log-linear model of height to crown area. Following the

method given in [51] ordinary least squares on log-transformed

data is employed for fitting the regression model. Crown area

as a function of height is given by the power function

Aitc = b · ha (43)

where a and b are constants that can vary by forest type, Aitc

is the ITC area, and h is maximum height detected within

the ITC bounding box. The function bboxSize is modified,

replacing the constant, µarea, with the fitted function (43):

bboxHCA(A) =
1

1 + e−ksig·(b·ha−A)
(44)

Because we have access to the CHM in this context it is also

used to encode ecological knowledge about minimum tree

height. This is done by creating a mask that has the same

dimensions as the CHM and RGB image. The value of the

mask is set to zero where the CHM height is less than 2 m and

1 everywhere else. Heights of 2-3 m are typically considered

reasonable approximations for the minimum height of trees

that can be detected in remote sensing data. Morphological

dilation is applied to the mask with a 7x7 kernel [58] [68]. The

mask is then multiplied by the RGB image, effectively remov-

ing areas that are unlikely to have trees. Rule 3 is then applied

using the same PSL in Rule 1, but with the modified bboxSize

function, bboxHCA, describing the ecological allometry. This

combination of mask and rule provides integrated information

of two sources of ecological knowledge about how tree crowns

are related to tree height.

Because DeepForest is designed purely for RGB imagery,

we incorporate the CHM into the RGB rasters as a 4th channel

and modify the dataset object to apply the mask and remove

the 4th channel prior to passing the RGB raster to RetinaNet.

Then RetinaNet receives the masked raster and the CHM as

separate tensors. In this way, RetinaNet is able to incorporate

the CHM model without major changes to its architecture

allowing for better comparisons to the original model. We also

alter the baseline for rule 3. The rule 3 augmented version of

DeepForest is compared to the predictions of plain DeepForest

on the masked RGB rasters.

D. Rule 4

Rule 4 is used to demonstrate that in addition to improving

model performance neuro-symbolic approaches can be used to
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TABLE IV
THE NUMBER OF TREES IN THE TEAK TEST SET BROKEN DOWN BY HSV

COLOR COMPOSITION. TREES COMPOSED OF MORE THAN 20% GREEN

PIXELS ARE CONSIDERED LIVING. FOR RULE 4, TREES WITH LESS THAN

20% GREEN PIXELS ARE CONSIDERED DEAD.

only green >20% only brown >20%
both green &
brown >20%

Total

Count 589 47 634 734

modify what models can do. This is different from the other

rules in that it changes the general behavior of the model.

This rule modifies the basic DeepForest model to ignore dead

trees. While identification of dead trees from remote sensing

is challenging, it is generally associated with a lack of green

coloration during the growing seasons [71]–[73]. Traditional

approaches to this would use different training data with alive

and dead labels. Instead we add an additional rule without

relabeling the data.

For this experiment we concentrate on TEAK, as it is the

dataset with the largest number of easily identifiable dead

trees. The TEAK test set is composed of 734 annotated trees.

To determine if we could qualitatively adjust the behavior

of the model we used a rule based on the appearance of

alive vs. dead trees, with alive trees having a reasonable

amount of green foliage (NEON imagery is collected during

the growing season) and dead trees having little to no green

and lots of brown. For analysis, we placed each tree in 1 of

3 categories: trees composed only of > 20% green pixels,

trees composed only of > 20% brown pixels. And trees

composed of both > 20% green and > 20% brown pixels. We

consider the trees with > 20% green to be living regardless

of their brown composition. Twenty percent was empirically

determined to give observably differentiable results between a

tree that appears living and dead. Table IV gives the count for

each category of tree.

After converting training images to the hue, saturation, and

value (HSV) color space, values for the three components

were chosen that include the majority of the green trees in

the training set. Unlike RGB, HSV is a non-linear color space

that better matches human intuition regarding colors [68]. In

the HSV space it is easier to select for color due to the

arrangement of hue on the color cylinder [74]. We chose

the values of HSV between (18, 47, 0) and (44, 161, 227),

representing the green color found in living trees at the site.

For brown we use HSV values between (2, 68, 224) and (20,

132, 255). The brown color limits were only used to categorize

the trees for analysis purposes.

We create a function named isGreen to represent the

probability a prediction is a tree based on the percentage of

green pixels it contains. We measure the percentage of green

pixels in a predicted bounding box by first converting the sub-

image within the bounding box to the HSV color space and

then counting the number of green pixels. Let Ab be the set of

pixels in the bounding box defined by t̂. Then the cardinality

of set Ab is given by

|Ab| = Abbox(t̂). (45)

Then for pixels in set Ab let Ag be the pixels that are within the

HSV green color boundaries defined above such that Ag ⊆ Ab.

Let function inRange count the number of pixels within t̂ on

image I that are within the HSV green color limits such that

|Ag| = inRange(I, t̂). (46)

Then let

pg =
|Ag|

|Ab|
. (47)

Again using the sigmoid, we create the function isGreen as

isGreen(pg) =
1

1 + e(100·pg−tp)
, (48)

where, tp is between [0, 100] representing the threshold be-

tween the color composition for living and dead trees.

Rule 4 uses a PSL statement similar to rule 1 (see III), but

replaces the function bboxSize with the function isGreen.

Unlike rule 1, during training, rule 4 is only applied to

predictions that match ground-truth trees using the isTree

function. This was found to boost performance. Ground-truth

is not needed to make predictions once the model is trained.

The PSL for rule 4 can be interpreted in natural language as

For all predictions that match ground truth trees, if the ITC

color composition is more than 20% green pixels, it is

probably a tree.

Table III summarizes each rule, its PSL, and the domain

knowledge it incorporates.

E. Hyperparameters

After initializing the model with pre-trained weights, rules

1 - 3 were trained for a fixed number of epochs depending

on the training site. The number of epochs for each site

was determined empirically. Because the performance of the

teacher-network is dependent on the student-network’s skill,

performance is usually best when a rule is applied in the

latter epochs of the training process. Therefore, there is an

inherent trade-off between not over-fitting the model and

training for enough epochs to allow the rule to take effect,

but not so many epochs that the rule causes an imbalance

between what is learned from the training set and what is

learned from the rules. Continued application of the rule

beyond some point degrades performance. Adding to this, the

lengthy hyperparameter tuning process, we erred on the side of

fewer training epochs. Fig. 6 shows the training and validation

loss for the baseline model at each site. Models trained on

NIWO were trained for 7 epochs and the remaining sites were

trained for 5 epochs. The use of transfer learning causes the

initial inversion of the validation and training curves. Rule 4

was trained for 6 epochs. As shown in Fig. 6 none of the

models suffered from over-fitting. We use a version of the

function used in [44] as the imitation parameter, π. In (49) t

is the training step number, α is a constant ≤ 1, and π0 is a

constant < 1 that limits the growth of the function.

π(t) =

{

1.0−max{π0, α
t}, t > πs

0, otherwise
(49)
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Fig. 6. The training and validation loss at each site for plain DeepForest
using pre-trained weights.

The baseline and experiment models shared the same non-

rule related hyperparameters in each experiment. The only

difference between the baseline and experimental models for

rules 1, 2, and 4 were within the logic harness and the

modification of the loss function. For rule 3, the DeepForest

data pipeline was modified to accommodate the addition of

the CHM.

Hyperparameters related to the rules were optimized using

a combination of automated and manual tuning. The rec-

ommended manual tuning process for rules is discussed in

section IV-F. For rules 1 - 3 site specific hyperparameters were

chosen to optimize performance as measured by F1. Rule 4

hyperparameters were selected to minimize the percentage of

dead trees detected. The hyperparameters for each experiment

are summarized in table V - VIII.

TABLE V
RULE 1 HYPERPARAMETERS.

Site Epochs C πs µarea ksig π0 α

MLBS 5 1.25e-4 1 2304 0.5 0.88 0.4
NIWO 7 1.25e-4 5 400 0.5 0.95 0.5
SJER 5 1.25e-4 3 5184 0.5 0.80 0.5
TEAK 5 0.01 4 2304 1e-6 0.95 0.5

TABLE VI
RULE 2 HYPERPARAMETERS.

Site Epochs C πs w* h* llw lrw llh lrh π0 α

MLBS 5 1 3 48 48 0 82.6 0 85.5 0.95 0.5
NIWO 7 1 3 20 20 0 34.6 0 36.0 0.95 0.5
SJER 5 1 1 72 72 0 146.3 0 149.5 0.95 0.5
TEAK 5 1 1 46 46 0 96.1 0 97.7 0.95 0.5

TABLE VII
RULE 3 HYPERPARAMETERS.

Site Epochs C πs a b ksig π0 α

MLBS 5 1.25e-4 1 1.40645 0.33549 0.5 0.88 0.4
NIWO 7 1.24e-4 6 0.87992 0.32658 0.5 0.95 0.9
SJER 5 1.25e-4 3 1.22315 3.32067 0.5 0.80 0.5
TEAK 5 0.01 2 0.83606 1.28339 1e-6 0.80 0.5

TABLE VIII
RULE 4 HYPERPARAMETERS

Site Epochs C πs tp green lower limit

green

upper
limit

ksig π0 α

TEAK 6 1 3 20 (18, 47, 0) (44, 161, 227) 1 0.6 0.1

DeepForest shows a large model variance. We found that

the variance varies by site. The sites in order of decreasing

variance are SJER, MLBS, TEAK, and NIWO. After removing

all other sources of variation, it was found that weight initial-

ization, and thus random number generator (RNG) initializa-

tion, is a factor in the final performance of the trained model.

Therefore, to make accurate comparisons between baselines

and experiments, we chose to train and test the baseline model

and experiments across a randomly selected set of RNG initial

values. To calculate the change in performance between the

baseline and experiment we make a 1-to-1 comparison for

each RNG seed and take the average. We report the mean and

95% confidence intervals for F1, bounding box precision, and

bounding box recall.

A λr of 100 was used for each rule. Each rule was trained

with a batch size of 1 and a learning rate of 0.0018 using

stochastic gradient descent. The experiments were performed

on a high performance computing cluster using a NVIDIA

A100 GPU with 80 GB of GPU memory, 20GB of RAM, and

a single processor.

F. Creating Rules

We show that rules can be created from a variety of domain

knowledge and used to constrain the neural network training

process. There are no limitations on the domain knowledge

that can be used, but [44] suggests logic harnessing works best

when the domain knowledge is also well represented in the

training set data. Once this requirement is met, the next hurdle

is the PSL formulation of rules. The most straightforward

formulations come from the creation of a set of predicates that

map an attribute of interest to a real number in [0, 1], where

the range of the output can be interpreted as the probability

that attribute is in agreement with the metric it is intended to

measure.

Hyperparameter tuning is one of the most time consuming

parts of the training process. We recommend using an auto-

mated tuner when possible. When tuning by hand these are

the steps we followed.

1) Determine the number of epochs that give the best model

performance without the harness, let this be eb. Let

the number of training epochs where π begins to be

incremented be πs.

2) Set the parameters of π for a low rate of growth, we

recommend starting with α = 0.95 and π0 = 0.

3) With the harnessed model and modified loss function,

set πs = eb − 1 and train the model.

4) If the model’s performance improves versus the baseline,

repeat step 3 decrementing πs by 1. If the model’s

performance does not improve, the rule may not be

useful for the dataset. Otherwise, repeat step 3 until the
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model’s performance decreases relative to the previous

value of πs.

5) Set πs to the value that gave the best performance.

Decrement α in increments of 0.05 - 0.10 until a value

is found that worsens performance. Note the final value

of π.

6) Set α to 0.5 to 0.10 less than the value that gave the

best performance in step 5. Try setting π0 to the value

that allows the maximum value of π found in step 5.

Retrain the network. If this step improves performance,

then try decreasing πs by 1. Keep the parameters that

give the best performance.

V. RESULTS

A. Ablation Study of π

Before delving into a site by site analysis of the results, we

explore the effect of variation in π on F1 and the verification

ratio of each rule. For each sample point, the value of π is fixed

and the model is trained for the number of epochs associated

with each rule. The top row of Fig. 7 shows the average F1

score versus π across all sites. The bottom row shows the

average verification ratio versus π across all sites. The results

suggest the model pays a high cost in F1 for enforcing rules 1

and 3, and a much lower cost for rules 2 and 4. For rule 2, the

marginal change in F1 is likely the result of the limited number

of crowns the rule is designed to affect. Similarly, rule 4 only

affects a fraction of trees. Rules 1 and 3 affect all predictions,

a significant proportion of which are larger than the mean, as

shown in Fig. 4. Therefore, increasing the verification ratio

for rules 1 and 3 has ramifications for globally affecting what

features are recognized as trees in addition to reducing IoU

scores. This negatively impacts F1.

On average rule 2 and 4 are least likely to produce an

increase in F1 versus the baseline. Because rule 4 is designed

to induce a bias that causes DeepForest to ignore certain

trees, the drop in F1 with increasing rule verification is a

logical outcome. For all rules, π is positively correlated with

the verification ratio. We leave the ablation study needed to

determine how the dataset features effect curve structure to

future works.

B. Rules 1 - 3

Next we look at the effect of rules 1 - 3 on each site. Rule

1 was the most effective. It improved the F1 score for every

site. It was most impactful on SJER, increasing its F1 by 4.01

F1 points. It was least effective on MLBS, increasing its F1

by 0.708 F1 points.

Of the rules, rule 2 had the poorest showing, definitively

improving F1 only for TEAK. Rule 2 appears to have no

effect on NIWO and a negative effect on MLBS and SJER.

It decreased the F1 score at MLBS by 2.09 F1 points and at

SJER by 1.31 F1 points.

Rule 3 had a net positive effect at 3 of the 4 sites: MLBS,

NIWO, and TEAK. It was most effective at TEAK, increasing

its F1 by 3.12 F1 points. Its effect on SJER was not definitively

negative, but on average its net result was a decrease in F1

Fig. 7. A plot of F1 and verification ratio versus π averaged over 4 samples.
For each sample point, the value of π is fixed and the model is trained for
the number of epochs associated with its rule.

Fig. 8. The average change in F1 for each site-rule combination with 95%
confidence interval error bars.

by 0.61 F1 points. Fig.8 gives a per-site breakdown of rule

performance.

The effect on F1 for each rule came as a result of changes

to both precision and recall. Rule 1 improved precision for all

sites, but had a net negative effect on recall for MLBS and

SJER. Rule 2 increased precision for NIWO and TEAK and

decreased precision for MLBS and SJER. It had a negative

effect on recall for all sites except TEAK. Rule 3 had a

positive effect on precision for all sites except NIWO. It had

a negative effect on recall for every site except NIWO. Table

IX summarizes the effect of each rule on precision, recall, and

F1.

Averaged across all sites, rule 1 decreased the number

of predictions by 6.34%. Rule 2 reduced the number of

predictions by 3.88% and rule 3 by 7.75%. On a per-site basis,

each rule caused a reduction in the number of predictions

except for rule 1 and rule 3 on NIWO. Rule 1 increased

the number of predictions on NIWO by 1.72% and rule 3

increased the number of predictions on NIWO by 3.08%.

To try to understand how application of the rules produces

its effect on models we examined IoU for predictions that

matched a ground-truth bounding box. Fig. 9 shows the distri-
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TABLE IX
THE AVERAGE CHANGE IN BOUNDING BOX PRECISION, BOUNDING BOX

RECALL, AND F1 FOR EACH SITE-RULE COMBINATION WITH 95%
CONFIDENCE INTERVALS (µ± CI ). n VARIED BY SITE AND RULE.

Site Metric
DF+Harness

Rule 1

DF+Harness

Rule 2

DF+Harness

Rule 3

MLBS ∆Bboxprec. 3.55± 0.23 −0.17± 0.23 2.71± 0.25
∆Bboxrec. −2.01± 0.33 −4.00± 0.34 −2.43± 0.35
∆F1 0.708± 0.23 −2.09± 0.25 0.11± 0.25
n 300 300 300

NIWO ∆Bboxprec. 0.34± 0.21 0.72± 0.22 −0.12± 0.27
∆Bboxrec. 1.37± 0.52 −0.51± 0.48 0.79± 0.35
∆F1 1.01± 0.35 −0.03± 0.32 0.51± 0.26
n 101 101 101

SJER ∆Bboxprec. 8.87± 1.02 −1.64± 1.56 1.96± 1.00
∆Bboxrec. −6.32± 0.90 −1.17± 1.02 −4.42± 0.87
∆F1 4.01± 0.93 −1.31± 1.23 −0.61± 0.86
n 301 76 222

TEAK ∆Bboxprec. 3.37± 0.47 2.73± 0.44 11.81± 0.72
∆Bboxrec. 0.61± 0.61 1.34± 0.61 −4.28± 0.93
∆F1 2.04± 0.38 2.09± 0.39 3.12± 0.52
n 101 101 90

bution of IoUs for the baseline in yellow and the experiments

in green. The vertical line represents the mean of the respective

distribution. Every rule, even in cases where the rule did not

improve F1, shifted the distribution of IoU’s to the left. The

number of predictions with IoU’s between 50 - 60% increases

while predictions with IoU’s > 70% shrank. Furthermore, for

all sites except MLBS, the baseline model predictions show a

positive correlation between the size of a predicted bounding

box and IoU. Application of the harness preserved this trend

when it existed, but reduced the slope of the regression line

for IoU versus predicted bounding box area (See Appendix

Fig. 14).

Fig. 9. The distribution of IoU values for predictions that were matched with
ground-truth bounding boxes. The vertical lines represent the mean of their
respective distribution.

Next we looked at how well predicted bounding box area

matched with ground-truth area. Fig. 10 shows a scatter plot

of predicted area to ground truth area for predictions that

matched with a ground truth bounding box. The baseline

predictions are in yellow and experimental predictions in

green. The change in RMSE and MAE for each site is listed

in the upper right hand corner. On average, the rules had the

following effect on RMSE: rule 1 reduced the RMSE by 83.6,

rule 2 reduced it by 99.3, and rule 3 increased RMSE by

41.7. A similar effect was seen with MAE. Rule 1 decreased

MAE by 36.2, rule 2 decreased MAE by 43.7, and rule 3

increased MAE by 33.6. Change in RMSE and MAE was most

pronounced for SJER for both positive and negative change.

NIWO generated the smallest changes in RMSE and MAE.

Reduction in RMSE and MAE were consistently negatively

correlated with improvement in F1. Some sites where the F1

worsened with application of a rule, such as rule 2 on MLBS

still showed an improvement in RMSE. Inversely, there were

sites such as rule 1 on NIWO, where F1 improved, but RMSE

was slightly worse.

It can also be seen from Fig. 10 that the application of

the logic harness tends to reduce the size of the area of the

predictions. In the majority of the cases, the regression line

for the harness falls below the baseline regression line. And

in most cases the maximum predicted area for the harness is

less than the maximum predicted area for the baseline.

Fig. 10. The scatter plot of the predicted bounding box area versus the ground-
truth bounding box area for predictions that were matched with ground-truth
boxes. The change in RMSE and MAE for each site-rule combination is shown
in the upper right corner.

We also examined how well baseline and experiment models

matched the distribution of the ground-truth bounding box

areas for each test set. In Fig. 11, the baseline distribution is

shown in yellow, the experiment distribution is shown in green,

and the ground-truth distribution for the test set is shown in

orange. We measured the KL-divergence between the baseline

and the test set as well as between the experiment and the

test set. The difference between the baseline and experiment

KL-divergence is in the upper right corner of each graph.

The color coded vertical lines represent the mean of their

respective distributions. On average, each rule decreased the

KL-divergence. Rule 1 decreased KL-divergence by 0.028,

rule 2 by 0.005, and rule 3 by 0.0428. On a per site basis the

KL-divergence was reduced most on NIWO by rule 3. There
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was an increase in KL-divergence for 3 out of the 12 rule-site

combinations: rule 1 on TEAK, rule 2 on NIWO, and rule 3 on

TEAK. For 7 out of the 8 rule-site combinations that resulted

in an increase in F1 there was a decrease in KL-divergence.

Fig. 11. The distribution of prediction bounding box areas for each site-
rule combination. The predictions for plain DeepForest are shown in yellow,
DeepForest+Rule in green, and the distribution from the test set in orange.
The change in the KL-divergence between the baseline and the experiment
for each site-rule combination is given in the upper right corner.

We examined the ratio of the two terms of the loss function

to understand how the interplay of the loss terms may affect

model performance. In Fig. 12, we show the average loss

versus epochs during training. The distillation-loss is in green,

the student-loss is in orange, and π is in black. The graphs

show that as π increases the loss contributed by the distillation

term tends to decrease. The enforcement of the rule causes

predictions to be more in line with the teacher reducing the

distillation-loss. This trend is most easily observed in the

TEAK-R3 and TEAK-R4 graphs. For the majority of the

graphs, the reduction in the student-loss is not proportional

to the reduction in distillation-loss as π increases. However,

in some cases there is an increase in the student-loss as

the distillation-loss decreases. This suggests there may be a

conflict between the rules and the dataset annotations. This is

most visible in TEAK-R3 and SJER-R3 at the end of their last

epoch.

C. Rule 4

Of the rules, the results from rule 4 are the easiest to

observe. Rule 4 was designed to bias the model to ignore

dead trees, where we define a dead tree to be a tree whose

pixel composition is less than 20% green. We only applied this

rule to TEAK. In the images of Fig. 13 the orange boxes are

ground-truth annotated trees. The green boxes are predictions.

In the first image, the ground-truth annotations are shown with

the percentage of green pixels that compose each bounding

box. Many of the brown trees have a pixel composition of less

than 20% and are thus considered dead. The second image

shows the predictions from the baseline model after being

trained on the dataset. Both living and dead trees are detected.

Fig. 12. The average of the terms of the loss function for each site-rule
combination. The distillation-loss in green represents the loss from the logic
harness, the student-loss in orange represents the sum of the loss terms from
the original model. The value of π is shown in black.

The third image shows the predictions from the model after

being trained on the same dataset with rule 4. The majority

of the dead trees are ignored.

On average, application of rule 4 decreased the percentage

of dead trees detected by 52 percentage points compared to

the baseline. The detection of trees that had a composition

of > 20% green pixels was reduced by 2.5 percentage points

compared to the baseline. The detection of trees composed of

> 20% green pixels and > 20% brown pixels were decreased

by 6.2 percentage points compared to the baseline model. The

application of rule 4 increased the bounding box precision

by 8.85 percentage points and reduced the recall by 9.82

percentage points. This resulted in a drop in F1 of 1.34 F1

points. The detailed results of rule 4 are listed in Table X.

TABLE X
THE AVERAGE CHANGE IN DETECTION RATE FOR TREES OF EACH COLOR

COMPOSITION WITH 95% CONFIDENCE INTERVALS (µ± CI ; n = 101).
TREES WITH >20% GREEN PIXELS AND >20% BROWN PIXELS SHOWED

THE LARGEST DECREASE. SEE SECTION IV-D FOR A DESCRIPTION OF

EACH CATEGORY.

∆ % only grn
detected

∆ % only brn
detected

∆ % brn

& grn detected

∆ Bbox

Prec.

∆ Bbox

Rec.
∆ F1

DF+R4 -2.5±0.76 -52.1±2.17 -6.2±0.78 8.85±0.57 -9.82±0.90 -1.34±0.52

As indicated by the reduction in green trees detected and the

slight increase in the student-loss with an increase in π (see

Fig. 12), the enforcement of rule 4 causes contradictions with

the annotated training data. The reason there is not a larger

drop in F1 is likely the small number of dead trees within the

test set.

VI. CONCLUSION

Neuro-symbolics is a means of incorporating domain knowl-

edge into neural networks. To the best of our knowledge, this

work is the first to attempt applying neuro-symbolics to CNN

based ITC delineation. Current ITC delineation models, both

non-neural and machine learning based, have no standardized



16

Fig. 13. Each image is based on the same RGB raster from the TEAK test set. The left image shows the ground-truth annotations with the percentage
of green pixels found in each bounding box. The middle image shows the predictions from plain DeepForest in green with the ground-truth annotations in
orange. The right image shows the predictions from DeepForest with rule 4 applied.

way of ensuring domain knowledge is absorbed into their

models. Nor is there a standardized method of formulating the

knowledge. Using our method, ecologists can ensure that high

level ecological concepts like competition, allometries, and

even specific visual features are baked into their models and

that the domain knowledge can be formulaically represented

as a rule. Though it can be argued that similar results can

be obtained using the traditional method of creating datasets

specifically for a task, a neuro-symbolic approach has several

benefits by comparison. Foremost, neuro-symbolics guarantee

some level of explainability. Being able to formulate a rule and

constrain the model to obey the rule during inference creates

a more trustworthy model and provides some guarantee as

to what features the model will use to make its inference.

Secondly, neuro-symbolics can ensure that a model will learn

the desired concept. If there is a contradiction between the con-

cept captured in the training data and the concept represented

as a rule, it is usually discernible from the model’s reduced

performance. Finally, neuro-symbolics can provide a means of

creating multi-use datasets. By changing a rule, a model can

be trained to perform different tasks using the same dataset.

In this study we implemented a neuro-symbolic CNN ITC

delineation model that uses domain knowledge encoded as

rules written in PSL. We tested 4 rules that were based on

different aspects of forest ecology expert knowledge, including

competition, constrained growth, allometry, and average ITC

areas.

We found that ecologically sound and seemingly applicable

rules do not always boost model performance. The rules can

have unpredictable effects on other aspects of model inference,

but with careful tuning useful parameters can sometimes be

found. The degree to which a rule enhances or degrades the

target metric is highly dependent on parameter tuning.

While at the time of writing, the authors know of no other

study that applies neuro-symbolics to ITC delineation, some of

our more generalizable findings are in line with other neuro-

symbolic research that has examined the effects the degree

of rule enforcement has on model skill, particularly, the work

of Seo et al, where it is shown that for an applicable rule,

increasing the imitation parameter improves the target metric

rapidly in the low to mid range values, but have decreasing or

negative returns for increasingly higher settings [64].

A. Limitations

Our study had three notable limitations. 1. We only used

NEON data. 2. The annotations were all generated by our

group using rectangular bounding boxes. 3. We only tested

the harness framework on a single ITC delineation model.

DeepForest alone has been shown to work on other remote

sensing datasets, so theoretically, the framework should per-

form comparably, but this has not been shown empirically. The

annotations in our dataset were created all in our group using

only airborne imagery for annotation. As such, it is not known

how mixing datasets annotated using different methods would

affect the performance and enforcement of rules. Similarly,

while the logic harness is model agnostic, and should be

applicable to other ITC delineation models, we do not know

how the use of a different model affects the framework overall.

Of minor note, the rules we implemented all focused on

shrinking the bounding boxes, but the framework is not limited

to rules that shrink area. We found rules that shrink the

bounding box area were most likely to improve F1 and focused

on these for our work. However, rules can be applied to

perform any number of operations to predictions including

expansion, rotation, and altering aspect ratio.

B. Future Work

We believe we have only scratched the surface of what can

be done with neuro-symbolics in this area. Neuro-symbolics

is known to be capable of reducing the size of a dataset

required to train models, and is therefore sometimes used in

few shot and zero shot learning [34], [44]. In future works

we would like to examine the applicability of this property

to ITC delineation. We would also like to perform a study to

determine how features in remote sensing datasets influence

verification ratio curves and other inference parameters.
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C. Conclusion

Neuro-symbolics can be successfully applied to ITC de-

lineation and build upon a wide range of ecology domain

knowledge, but results are highly rule and site dependent.

Even when a rule and annotated data seem to be compatible

there may be issues that limit the effectiveness of the pairing.

Applying rules can have unintended effects, if the rule and

training data are not in agreement; the rule is enforced at the

expense of general model performance.
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VIII. APPENDIX

Fig. 14. A scatter plot of IoU vs predicted area for each site-rule combination.
Predictions for plain DeepForest are in yellow. Predictions using the logic
harness are in green.
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