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Abstract

In recent years Kubernetes has become the de facto standard in the realm of service orchestration. Despite its great benefits,

there are still numerous challenges to make it compatible with decentralised cloud computing platforms. One of the challenges of

mobile edge computing is that the location of the users is changing over time. This mobility will constantly alter the proximity

of the users to their connected services. One solution to this problem is to regularly move services to computing nodes near the

users. However, distributing the services in edge nodes only subject to user movements will result in the fragmentation of active

nodes. This leads to having active nodes that do not use their full capacity. We have proposed a method called Mobile-Kube

to reduce the latency of Kubernetes applications on mobile edge computing devices while maintaining energy consumption at

a reasonable level. An experimental framework is designed on top of real-world Kubernetes clusters and real-world traces of

mobile users’ movements have been used to simulate the user’s mobility. Experimental results show that Mobile-Kube can

achieve similar energy consumption performance to a heuristic approach that focuses on reducing energy consumption only

while reducing the latency of services by 43%.

1



1

Mobile-Kube: Mobility-aware and
Energy-efficient Service Orchestration on

Kubernetes Edge Servers
Saeid Ghafouri, Alireza Karami, Danial Bidekani Bakhtiarvand, Aliakbar Saleh Bigdeli, Sukhpal Singh Gill

and Joseph Doyle

Abstract—In recent years Kubernetes has become the de facto standard in the realm of service orchestration. Despite its great
benefits, there are still numerous challenges to make it compatible with decentralised cloud computing platforms. One of the
challenges of mobile edge computing is that the location of the users is changing over time. This mobility will constantly alter the
proximity of the users to their connected services. One solution to this problem is to regularly move services to computing nodes near
the users. However, distributing the services in edge nodes only subject to user movements will result in the fragmentation of active
nodes. This leads to having active nodes that do not use their full capacity. We have proposed a method called Mobile-Kube to reduce
the latency of Kubernetes applications on mobile edge computing devices while maintaining energy consumption at a reasonable level.
An experimental framework is designed on top of real-world Kubernetes clusters and real-world traces of mobile users’ movements
have been used to simulate the users’ mobility. Experimental results show that Mobile-Kube can achieve similar energy consumption
performance to a heuristic approach that focuses on reducing energy consumption only while reducing the latency of services by 43%.

Index Terms—Resource Management, Energy-Efficiency, Cloud Computing, Edge Computing, Reinforcement Learning

F

1 INTRODUCTION

NOWADAYS containerised services are ubiquitous. They
provide a modular way of packing a single or sets

of functionalities in separate isolated environments. The
containerisation of services provides agile development of
software with DevOps [1] practices by easing testing, mod-
ularisation and fully automating integration and delivery
process. From the cloud provider point of view, container-
isation provides lightweight and scalable deployment of
cloud services. This interest in using containerised software
has led to the implementation of production level container
management and orchestration systems. Kubernetes has
become the most popular orchestration system as it provides
automated solutions to tasks that previously required nu-
merous technologies working together with lots of human
provisioning [2].

One of the main challenges with centralised cloud com-
puting clusters is the distance of the infrastructure from
the end users [3]. Time-sensitive, real time and location-
aware services are some examples of the services that are
hard to deploy on distant cloud servers. To address this
challenge, the fog and edge computing paradigms [4] have
been proposed to distribute the computation so that it
is closer to the mobile devices. Mobile edge servers are
typically smaller nodes deployed near base stations. Typ-
ically users connected to the services on edge nodes can
access them directly rather than through the network core.

• S. Ghafouri, S.S. Gill and J. Doyle are with the School of Electronic
Engineering and Computer Science, Queen Mary University of London,
UK.
E-mail: {s.ghafouri, s.s.gill, j.doyle}@qmul.ac.uk.

• A. Karami, D.B. Bakhtiarvand and A.S. Bigdeli are independent re-
searchers.

Services deployed on the edge are highly available and
usually do not suffer from the communication overhead of
centralised clouds [3]. Edge clusters are highly distributed
and have limited resources compared to the centralised
clouds. Therefore, their resource management is more dif-
ficult and requires more automated provisioning methods.
Migrating services and virtual machines (VMs) subject to
users’ mobility is one of the objectives that has been the topic
of some previous literature [5]–[10], [10]–[15]. This problem
is studied in a subset of edge computing called Mobile Edge
Computing (MEC) that deals with making edge computing
paradigms more accessible to mobile device users. The
mobile users are typically connected to the core network
of fog devices through base stations close to them. The
edge server is placed near the base station and can expose
the service to users with lower latency. However, mobile
users typically are not static users. Thus, the base station to
which they have connected changes over time based on their
mobility. Previous works in this area have mainly ignored
the challenges of deploying their methods on real-world
orchestration frameworks like Kubernetes.

The primary focus of architectures such as mobile edge
computing [16], cloudlets [17] and fog computing [18] has
been minimizing the latency or maximizing the through-
put of services to mobile users without considering the
energy consumption of the edge cloud and the associated
environmental impact. Recently, however, cloud services
with large providers such as Microsoft and Amazon have
increased their focus on reducing their environmental im-
pact by committing to carbon neutrality by 2030 and 2040
respectively [19], [20]. It is likely that the increasing pressure
from government organizations will result in edge clouds
also considering their operating energy consumption [21].



There has been considerable research on minimizing the
energy consumption of centralized cloud services including
work on consolidation [22], geographical load balancing
[23], the management of workloads that do not have strict
deadlines [24] and the choice of cloud architecture that
should be used to support services [25]. Thus, we propose
the Mobile-Kube system that considers both overall energy
consumption and the latency of service users to provide a
MEC platform with good performance for its services and a
reduced environmental impact.

The main contributions of this research work are:

• We present the Mobile-Kube system that integrates
with Kubernetes to reduce the latency of service
users on edge clusters based on users’ mobility while
considering energy consumption. Mobile-Kube mod-
els the problem of service placement while main-
taining a reasonable energy consumption as an opti-
mization problem and solves it using a reinforcement
learning algorithm.

• We compare several reinforcement learning meth-
ods to determine the best reinforcement learning
algorithm to achieve a reasonable trade-off between
the two aforementioned objectives. Our experiments
show that IMPALA is the best Reinforcement Learn-
ing(RL) method for this scenario based on its data
efficiency and fast convergence.

• We evaluate Mobile-Kube on the Google Cloud Plat-
form using a mobile user movement emulator that
is based on real-world traces. Our results show that
Mobile-Kube can achieve similar energy consump-
tion performance to a heuristic approach that focuses
on reducing energy consumption only while reduc-
ing the latency of services by 43%.

2 MOTIVATING SCENARIO

In MEC networks, users are typically connected to a base
station that connects them to one of the edge servers. In most
scenarios users are typically connected to their closest base
station. As the users of mobile edge cloud move around they
might transfer from the one base station and connect to an-
other base station that is closer as it provides a better signal.
The problem is that the service that they are connected to
may be closer to the former base station and this can result in
increased latency. One solution to this is to move the service
from their previous location to a place closer to a new base
station that the users of that service are connected to. A
greedy algorithm that just moves the service immediately
to an empty server closest to the base station can be utilised.
However, the problem with that approach is that the new
placement might result in switching on a new node which
will increase energy consumption. In this work, we try
to learn a service placement algorithm that can achieve a
balance between keeping the number of active nodes to a
minimum while providing a reasonable Quality of Service
(QoS) to the mobile users through moving services to nodes
closer to the users. This problem is also similar to the
problem of node autoscaling [26]. In node autoscaling in
a Kubernetes cluster the number of nodes in clusters is
up-scaled (nodes added) and down-scaled (nodes removed)
based on the incoming workloads. We have avoided using
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Fig. 1. In timestep n users are around the vicinity of the node and base
station 1 and connected to their service residing in it. In timestep n+1
the users of the service move to the area covered by node and base
station 2 therefore we move the service to node 2 to make it closer to its
connected users.
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Fig. 2. In timestep n there are three active nodes in the cluster. Moving
services 7 and 8 to nodes 1 and 2 will leave node 3 empty and now we
can turn off node 3 resulting in a reduction of energy consumption and
costs.

the term autoscaling here because the migration of services
is currently not something native to Kubernetes and node
autoscaling happens based on incoming workloads rather
than the service migration. You can see an example of
moving services to a closer vicinity of the connected users
in Figure 1. This is the first objective of our optimisation. In
Figure 2 you can see an example of the binpacking objective
that aims to have the minimum number of active distributed
Kubernetes nodes in the Kubernetes cluster.
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3 RELATED WORKS

Mobility Aware Service Orchestration at Edge With the
advent of 5G and Long-Term Evolution (LTE) networks over
the past few years, the need for mobility driven service
placement methods has become more evident. Ouyang et
al. [6] have proposed a method for migrating the services to
nearby servers to the users while maintaining a reasonable
migration cost using Lyapunov optimisation. While it is not
evaluated experimentally they still have provided a strong
theoretical analysis to achieve an optimised service place-
ment subject to latency and a long term cost budget. Badri et
al. [27] examined the trade-off between energy consumption
and reducing the latency for QoS with service migration
through a stochastic optimisation approach. The method is
able to handle non-deterministic users movements. The cost
of relocating a service is also considered in their simulations.
Due to the Markovian nature of the service placement
problem reinforcement learning and bandit based methods
have also been used in recent years. Wang et al. [28] models
the problem as a Markov decision process under different
scenarios of 1-D and 2-D mobility. Real-world datasets have
been used by Wang et al. in [11] to show the effectiveness of
an offline reinforcement learning based approach to reduce
the overall service delay. The most similar papers to our
work are [8], [14] which have used different variations of RL
for placement of cloud services subject to the user mobility
while achieving a trade-off in energy consumption. Tang
et al. [8] have used a variation of reinforcement learning
namely Q-learning to model user movements as a Markov
decision process and have considered migration costs into
account. Despite their precise modeling of the cost and
delay in edge node, their implementation is not yet on
the real-world production-ready orchestration frameworks
like Kubernetes. They have used Checkpoint/Restore In
Userspace (CRIU) for implementation of the real-world
containers migrations for comparison of migration time
between VMs and containers. The resource consumption
and delay are modeled and the RL algorithm can maintain
a balance between the two objectives of reducing the delay
and power consumption. However, their experiments have
only been tested in a trace-driven simulation environment
and no integration with real-world service orchestration
systems is presented. To solve the large state space of the
MEC placement problem Brandherm et al. and Liu et al. [9],
[13] have used Multi-Agent version of the RL algorithms
in distributed settings. However, they have used different
Multi-agent algorithms. the former has used q-learning and
the latter uses actor-critic networks.

Kubernetes Limitations Ignored in previous works
Other than the lack of the real-world implementation of
the container migration, there is another problem in the
theoretical assumptions of the previous works when it
comes to deploying them in real-world systems. Kubernetes
resource models work through the request and limit model.
The request is the amount of the resource reserved for a
Kubernetes container in each node and the limit is the
maximum resources that could be used from the cluster. The
problem with some of the mentioned previous works [12],
[27] is that the requested computational resource is reserved
from the user side and a new container is started for each

users task. However, most of the time in reality a container
could be serving many users at the same time. Therefore,
the number of containers in the nodes for each service is
determined by the cloud provider, not the cloud user. Our
approach considers services with multiple connected users
to address this issue.

Reinforcement Learning for Resource Management
Problems that can be expressed as a sequential decision
making process can be modelled as a Markov Decision
Processes (MDPs). MDPs are the core mathematical for-
malization that is used in most of the sequential decision
1 making problems. An MDP is a model of sequential
decisions that are an abstraction of an agents’ behavior in
a fully or partially observed environment. An agent is an
entity that makes the actions. For example, in an Atari 2

game the player who moves the joystick is the agent. At
each step of decision-making, the agent receives a reward
from the environment after the action has been taken. This
reward indicates the value of the taken action. If a learning
method is associated with the MDP then this reward is a
measure that is used to learn to take better actions over the
subsequent steps. The main property of the MDPs is that the
action taken at each timestamp depends only on the current
state of the environment and not any state(s) before that.
Mathematically speaking, an MDP consists of a trajectory of
states S, actions A and rewards R in the following order:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... (1)

Dynamic Resource management can be considered as an
example of sequential decision making since in almost all of
its forms it involves deciding which task should be allocated
to which resource. Therefore, it can be expressed as an MDP.
This gives us robust modeling of the resource management
problem that can be used alongside methods for solving the
MDPs to allocate resources effectively.

After the success of the DeepRM [30] there is a line
of research pursuing the problem of resource allocation
with RL to optimize classic system problems. The successes
of reinforcement learning in playing games and solving
control problems [29], [31] have motivated many researchers
to take it to their domain of interest. Some examples are
device placement optimization [32], [33], video streaming
bitrate adaptation [34], and Internet congestion control [35].
As noted before, the resource allocation problem can be
expressed as an MDP. This gives rise to the idea of using
reinforcement learning in this context which is naturally
a learning model designed to solve MDPs. Other than
the modeling capabilities of the RL it is adaptable toward
the incoming workload. The policy can change over time
according to the changes in the environment [30]. One of
the drawbacks of RL methods is that they require a large
amount of training data. Thus, the abundance of training
historical data in resource allocation logs makes them a good
fit for the problem [36].

3



TABLE 1
Nomenclature and Notational Conventions.

cc
Key Concept Definition

E Edge Node Set

m Number of Nodes

Ei ith node (i ∈ [1,m])

El
i Location of node i

EC
i CPU capacity of node i

EM
i Memory capacity of node i

pi Power consumed by node i

pidlei Idle power of node i

pmax
i Max power of node i

C Container Set

n Number of Containers

Cj jth container (j ∈ [1, n])

t Time interval

T Total time interval in each training episode

Cl
j(t) Location of container j at time t ((clj(t) ∈ {F})

Cr
j (t) CPU requirement of container j at time t

Cm
j (t) Memory requirement of container j at time t

Cm
j (t) List of mobile applications on container j at time t

M Mobile User set

o Number of mobile users

Mk kth mobile user (k ∈ [1, o])

M l
k Location of mobile userk at time t

Mr
k Container request of mobile user k at time t

dMk
Distance of user Mk from its connected service

dtotal Total system delay

dnet Network delay

dq Delay due to lack of available resources

prtotal Total Power consumption

ut
i Resource request of node i at time t

Ct Total Cost

4 PROBLEM FORMULATION

Let E = {E1, E2, . . . , Em} be the set of edge nodes,
C = {C1, C2, . . . , Cn} be the set of containers which host
mobile applications and M = {M1,M2, . . . ,Mo} be the set
of mobile users which connect to these applications. Each
edge node i has a location Eli , a CPU capacity ECi and
a memory capacity EMi . Each container j has a location
at time t which is denoted as Ctj ∈ {E}. The resource
requirements and allocation can change with time. Thus, let
Crj (t) and Cmj (t) represent the containers’ CPU resource re-
quirements, the containers’ memory resource requirements
respectively. We also need to consider the location of the
mobile user which can change over time and that they may
use different mobile applications at different times. Thus, let

1. In the context of reinforcement learning these decisions are referred
to as actions.

2. After the DeepMind seminal paper [29] that used Atari games as
a benchmark it has become a classic example and benchmark in the RL
community research.

M l
k(t) represent the location of the mobile user k and Mr

k (t)
represent the application that the mobile user k is accessing.

The overall goal of the system is to minimise the energy
consumption of edge cloud and maximise the performance
of the mobile applications. Maximising the performance of
the mobile applications is achieved by minimizing the total
delay of the system and the migration of containers. It goal
can be formulated as:

minimise Ct = w1dtotal + w2ptotal (2)

subject to
∑
Ctj∈Ei

Crj ≤ ECi ∀i (3)

∑
Ctj∈Ei

Cmj ≤ EMi ∀i (4)

Where w1 w2 are relative pricing functions used to indicate
the relative importance of each sub goal. They are frequently
used in systems problems to balance the importance of
factors in a trade off [37]. The conditions of the optimisation
problem are used to represent the resource capacities of the
edge servers.

The total delay is comprised of delays due to the net-
work dnet and delays due to lack of available resources for
computation dq . It can be formulated as:

dtotal = dnet + dq (5)

dnet will vary depending on the location of the containers
and the mobile users.

dnet is computed by averaging each individual users’
experienced latency:

dnet =
o∑

k=1

dMk
/o (6)

dq will always be zero as the optimisation conditions pre-
vent overloading an edge server. Further work will explore
relaxing these constraints to achieve better service consoli-
dation and how this affects service performance.

The power pi consumed by node i is based upon the
resource request of the at node ui(t). The power consumed
by node i can be calculated as:

pi(t) =

{
(pidlei + (pmaxi − pidlei ))× ui(t)), if ui(t) > 0

0, if ui(t) = 0
(7)

If the utilization is zero then then the system switches the
node off and it consumes no power which is why pi(t) = 0
if ui(t) = 0. The total power ptotal can then be calculated as:

ptotal =
m∑
i=1

pi(t) (8)

5 PROPOSED REINFORCEMENT LEARNING SOLU-
TION

As the user mobility and the movement of services in
our problem are a sequential decision making problem
preserving the Markov [8] property, deep reinforcement
learning solutions are a good approach for them. In deep
reinforcement learning an agent tries to learn a policy
π(s) that maximise the discounted reward received from
the environment. To achieve this, it first tries to find the

4



value of the states which is the sum of the observed
rewards from the starting state until the terminal state
vπ(s) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s]. Saving
all the state values in a table is not feasible in problems
with large state-space. In deep reinforcement learning a
neural network is used to save all the values of states and
at each timestamp of the reinforcement learning algorithm,
the weights of the neural network are updated based on
the received reward from the environment. In value based
reinforcement learning the neural network receives the state
of the environment as the input and returns the state-value
as the output. A maximisation or a greedy policy step
is done afterward to choose the appropriate action from
the output state values received from the neural network.
However, in policy gradient methods the neural network
returns the action directly to the output. [38] The general
scheme of the used RL algorithms is shown in Algorithm 1.
The πθold/new on line 6 depends on whether the old or new
policy is used based on whether the method is an on policy
or off policy RL algorithm. In our case, PG and PPO are on
policy and IMPALA is off policy.

Algorithm 1 Migration Algorithm
1: for iterations = 1, 2, . . . , N do
2: for episodes = 1, 2, . . . ,M do
3: Rb ← 0
4: Rl ← 0
5: for timesteps = 1, 2, . . . , T do
6: Run a trajectory πθold/new for T timesteps
7: Compute the timestep latency reward rl
8: Compute the timestep binpacking reward rb
9: end for

10: Rb ← Rb + rb
11: Rl ← Rl + rl
12: end for
13: R← w1Rb + w2Rl
14: Optimize the RL Agent policy π based on R
15: Move the containers based on π
16: end for

Agent We have used three different RL agents in our
experiments:

• PG Vanilla Policy Gradient (PG) is considered as
the basis of all policy gradient RL algorithms.
At each iteration of the standard policy gradient
method an episode τ (or a batch of episodes) is
performed. Each timestep t ∈ T of an episode is
comprised of a state st, action at and a reward
received from the environment for that state-action
pair r

(
sit,a

i
t

)
. The series of all these state, action and

reward triplets constitute a full episode trajectory
τ ∼ {s1, a1, r2, ..., sT−1, aT−1, rT }. The sum of all
the rewards in a sample episode r(τ) =

∑
t r
(
sit,a

i
t

)
is used to update the policy network π sets of param-
eters θ. To reach this goal first a objective function is
computed using the logarithm of the gradients of the
policy neural network log πθ(τ) based on the policy
gradient theorem [38].

∇θJ(θ) ≈
1

N

N∑
i=1

∇θ log πθ(τ)r(τ) (9)

A gradient ascent step updates the weights of the
policy network:

θ ← θ + α∇θJ(θ) (10)

• PPO RL algorithms are of high variance by nature.
This means that the output actions can change in dif-
ferent training iterations depending on the received
random sample. Proximal Policy Optimization (PPO)
algorithm solves this issue by constraining the next
action within a certain range at each timestep. It does
so by clipping the objective function and using a
surrogate objective function instead of the equation
10 [39].

• IMPALA is a distributed deep RL method [40]. It
proposes a distributed training method for one of
the former Deep RL methods named A2C. The naive
policy gradient method is a high variance method
and it is not stable for environments with high fluc-
tuation in the reward signal. This is because the sum
of rewards r(τ) used in equation 9 are only sam-
pled from a single episode. But due to environment
dynamics, this single episode return might not be a
good indicator of the states’ worthiness. One of the
techniques used for reducing the variance is to have
another neural network called critic which acts as an
estimator for the reward function. In each timestep,
the parameters φ of another neural network is also
trained for estimating a value function:

V π (st) =
T∑
t′=t

Eπθ [r (st′ ,at′) | st] (11)

This value function will be a better estimate since
it is an approximation based on a series of episodes
rather than a single episode roll out. substituting the
r(τ) with V π (si,ai) the equation 9 will update to:

∇θJ(θ) ≈
∑
i

∇θ log πθ (ai | si)V π (si,ai) (12)

The update rule of the algorithm will stay the same
as equation 10. At each timestep of the A2C, it
distributes the computation of the advantage values
into several learners. IMPALA improves the training
procedure by distributing the learner into several
learners. In former distributed versions of the A2C
named A3C, the updating happens through pass-
ing gradient to a central learner, however, this can
produce a large communication overhead. Instead of
the gradients, IMPALA directly sends the trajectory
of experiences received from multiple actors to the
central learner. The distributed actors continuously
update their policy with the latest updated policy in
the learner and then send them to the learner. This
approach increases the exploration and throughput
rate. Each of the learners does the actions based on its
version of the policy network not the latest updated
version of the policy. To solve this problem, IMPALA
uses a correction step using importance sampling
called V-trace. Training another policy µ other than
the policy π that the agent is using to act in the
environment is referred to as off policy methods. To

5



fix the inconsistency of the actors’ policy µ with the
learner policy π, in IMPALA the value function in Eq
11 is substituted with another value function with
importance sampling to make the learners’ policy
consistent with the actors’ policy.

States Each state is derived by concatenation of two
arrays 1. An array of size n, U =< u1, u2, ..., un > which
the indexes are the users’ id and each entry value indicates
the corresponding user connected station id and is a value
from the set of all available stations ui ∈ [s1, s2, ..., sm].
2. Another array C =< c1, c2, ..., cm > which the indexes
represent the containers and the items represent the node
that the container is placed on, and the values are from
ci ∈ [n1, n2, ..., nk]. All the discrete values are then encoded
using a one-hot encoding before being fed to the RL model.
The final observation will be the concatenation of these two
parts O = U

⋃
C .

Actions The action map is represented as an array of the
size of the containers where each of the indices represents
one of the hosts and each of the values at that index
represents the id of the host that this container is placed
at the next timestamp. This is exactly like the U part of the
observations.

Reward The reward at each timestep is calculated per
each objective according to the Equation 4. For minimizing
the network latency we have Rl = 1/dtotal, and for max-
imizing the number of empty servers we set the binpack-
ing objective to Rb = ptotal. Both of the values are then
normalised according to the network size (see Section 7 for
more information). The two values are then summed up
according to two weights w1 and w2.

R = w1Rb + w2Rl (13)

RL helper Due to the large state space of the problem,
the RL agent will face many illegal actions that try to place
containers to hosts without enough space. If we want to
end the training episode every time we face an illegal action
then we stop the agent from learning longer episodes and
it makes the training slow. To solve this problem during the
training, we assigned a negative reward to the illegal actions
but we continued the simulator traces to the next timestep.
In the test phase on the real-world Kubernetes servers if an
illegal action is received, we skip that action and keep the
servers at their place until the next timesteps’ action.

Policy Networks We have used a similar structure
for the policy neural network across all the reinforcement
learning agents. We have used a two-layer fully-connected
network with 64 neurons at each layer. We chose this simple
architecture as we did not see a meaningful difference in
using more complicated architectures when we experimen-
tally evaluated them.

6 SYSTEM DESIGN

We have designed a complete end to end experimental
setup. The implementation of Kubernetes side is all done
in real-world Google Cloud cluster. However, the user mo-
bility side is simulation based on real-world data. This is
due to the difficulty of having real-world experiments with
real moving mobile users.

Kubernetes Internal Structure Kubernetes clusters are
deployed with a number of nodes. Nodes can be considered
as the equivalent of servers in other forms of computing
clusters. A node could be a bare metal server or virtual
machine of any kind. Once a computing resource is defined
as a Kuberentes node, all the nodes of different types will
look the same from the users’ perspective. Containers in
Kubernetes are the minimum isolation level of the appli-
cations, but the smallest Kuberentes abstraction for repre-
senting containers is another entity called a pod. Pods are
the smallest deployable unit that presents a set of containers
that share the same networking interface. All the containers
inside a pod are always co-located in the same cluster
node [41]. Pods are ephemeral objects and are replaced and
rescheduled constantly during their lifetime. Kubernetes
services are a way of building a consistent representation
of the Kubernetes pods networking for accessing them. This
is different from the concept of the service we have used
in this work, it is just the Kubernetes internal networking
tool that we have used to expose our applications which
call a unit of them a service. The state of the cluster and all
the internal Kubernetes communications are done through
the Kubernetes API server. The API server exposes the
Kubernetes API using a rest API. In order to be able to
interact with the API server, there are many options like the
Kuberntes CLI named kubectl or other client APIs available
in multiple language. We have used the python client API
for interacting with the API server.

Our definition of Services Usually, real world cloud
services are made from a sets of containers and stateful and
stateless microservices. For example, a streaming service
consists of a database system, authentication system, video
analytic service, and many other small decoupled modular
objects. For experimental purposes we limit the definition
of a service to a single pod containing one single container
inside it with a Flask Python app [42] for generating load
on the container CPU and RAM. The Flask Python app is
exposed to the outside world using Kubernetes’ service.

Load Generation Module To emulate artificial load on
the services, we have used a model with two containerised
Flask applications. One of them called the utilisation server
is deployed as a single Flask application in one arbitrary
server outside the cluster and the other one is an application
running on all the services. At each timestamp, the utilisa-
tion server sends the resource usage of each application to
them and the applications on the services put the load on
the CPU and RAM of the application using a Linux tool
named stress-ng.

Changes to the Kubernetes default scheduler Kuber-
netes schedules pods at the beginning of their lifetime. The
scheduling of pods is a two step process: 1. Filtering and 2.
Scoring. In the filtering phase, the Kubernetes filters out the
nodes that are suitable for placing pods on them. The Ku-
berenetes scheduler does this filtering based on a set of pred-
icates. For example, PodFitsResources checks if the resource
request of the pod is available in the node. Another example
is NoDiskConflict which checks if the requested disk space
is mounted. In the scoring phase, it scores the nodes that
have passed the filtering phase and ranks them based on
suitability for scheduling the pod on them. This is done
through a set of priorities. For example, LeastRequestedPri-
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Fig. 3. The design of the system including of five parts (a) the controller in charge of making decisions about the placement of the services (b)
The real world Kubernetes cluster (c) Kubernetes Python API connection to the Kubernetes cluster (d) Python mobility simulator (e) Simulated
connection of the users to the services.

ority and MostRequestedPriority favor nodes with the most
and least resource request currently on them respectively
and ImageLocalityPriority gives nodes that already have the
container image a higher score. Once a pod is scheduled
on a node it is will stay on that node during its lifetime
and there is no builtin migration mechanism implemented
in Kubernetes. However, our design needs to constantly
recreate services based on the users’ mobility. In our design,
we do the scheduling outside Kubernetes through our RL
agent and other types of decision making agents and then
pass the next pod placement to the Kubernetes cluster
through the Kubernetes Python client API. Future work will
use a more sophisticated implementation that will leverage
the Kubernetes scheduler plugin [43] to add the scheduler as
a plugin to the core Kubernetes scheduler instead of doing
the scheduling outside the Kubernetes cluster.

Service Migration Model Currently there is no live
migration scenario implemented in Kubernetes. Once a Ku-
bernetes pod is scheduled on a node it cannot be moved to
another node. The solution here is to stop and restart the
pod in another place. If we want to move pod 1 from node 1
to node 2 we first start pod 1 in node 2 Once we are sure pod
1 is up and running in node 2 we delete its previous version
from node 1. The reason for this waiting is to make sure
that the user will have access to the service during the pod
replacement process. In our design, we schedule pods one
by one instead of using a multi-threaded version of schedul-
ing. This is because the Kubernetes default scheduler itself
does not suggest the multi-threaded movement of pods and

advises scheduling them with a single scheduling queue.
Energy saving mechanism According to our energy con-

sumption objective we aim to have the minimum available
Kubernetes nodes in the cluster in order to be able to switch
them off. Since we are using virtual machines instead of
bare metal physical nodes we have not implemented a node
switching on/off mechanism. For a real-world implementa-
tion, this can be achieved by draining the Kubernetes nodes
to release it from the Kubernetes cluster and then switching
off the physical host.

Network and Mobility Simulator In contrast to the
node and service side, the networking side is based on
simulation. We have used the location of the towers in the
San Francisco area [44] to generate the simulation network.
We have considered co-located nodes with the stations. The
nodes are then connected using a minimum spanning tree.
The users are always connected to their closest base station.
The users’ mobility simulator is implemented using a real-
world taxi traces in San Francisco area from the cabspotting
dataset [45]. We extracted the location of taxis for each five
minute interval. The dataset does not contain the location
of the taxis for all time intervals. To interpolate the missing
entries we used the Euclidean distance and path between
available points.

Simulator for the training Training the system on
the real-world Kubernetes clusters is costly and time-
consuming. RL agents need to be trained on the environ-
ment in several timesteps. This makes it infeasible to do the
training on the real-world clusters. To solve this problem,

7



we implemented a simulator that can mimic the dynamics
of the real-world cluster during the training. The trained
agent can be later used outside the box in the real-world
cluster.

Complete System As it can be seen in Figure 3, our
design consist of three main parts. The first part is the
Kubernetes cluster containing our Kubernetes nodes and
services. The mobility simulator is another part that is
connected to the cluster through a simulated connection
that is a Python script assigning the users to the nodes.
The placement of the nodes and the location of the users is
passed to the controller. The controller wraps the informa-
tion received from both entities into a single environment
OpenAI gym [46] environment. The gym environment is
then used to calculate the reward based on the current
observation from the environment. This information is then
passed to the RL agent to decide the next placement of
pods in the nodes. We have used the rllib [47] library for
the implementation of the RL agents. This placement is
then passed back to the Kubernetes using the Kubernetes
Python API and the pods with be moved to a new node in
the cluster. All the codebase of this project is available at
https://github.com/saeid93/mobile-kube.

7 EXPERIMENTAL SETUP

We used the Google GKE service to deploy our Kubernetes
cluster. Due to our computational budget, we performed
the experiments on eight Kubernetes nodes. All the nodes
were of e2-standard-4 type of the GKE platform with four
cores and 16 GB of Memory. We used 16 stateless con-
tainerised services with the Flask app and the utilisation
server explained in section 6 with some constant load on
them3. We have used pods of guaranteed QoS Kubernetes
class which have equal size requests and limits. All the
services are of size 250 Mb RAM and 0.125 CPU. Due to
the complexity of the problem we have used constant load
on the services running on the nodes. This load is generated
using the utilisation server explained before. However, as
we discussed in section 6, for sensitivity analysis we con-
ducted the experiments for 16, 32, 48, users. In each scenario,
a service is serving one, two, and three users respectively.
In our simulations, the station and nodes were co-located,
therefore, we have eight stations proportional to the number
of the nodes. The users move in the radius of 37.72 and
37.78 for latitude and -122.45 to -122.38 in longitude. In
Figure 4 you can see the initial placement of nodes, servers,
and users in the map. During the training phase of the
RL algorithms we used the simulator explained in section
6. The number of user movements available per each user
in the cabspotting dataset (explained in Section 6) was not
sufficient for training the RL agent. Even with interpolation
between the locations in the dataset location of the taxis,
we ended up with 3453 locations for each taxi within five
minutes intervals. Therefore, for the training phase, we
generated a random user movements dataset within the
same vicinity for the training with 100000 user movements.
However, the final test results in Figures 9, 10, 11 and 12

3. As explained before the scheduling is based on the resource request
and not on the load of the containers. However, we put some load on
them to more closely emulate a real-world deployment.

Fig. 4. Placement of the users (16 users scenario) and stations/servers
on the map, we considered co-located stations and nodes (servers).
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Fig. 5. Comparison of scales of the two different reward.

are generated using the real world cabspotting dataset with
3453 timesteps.

The scaling of the training rewards between the two
objectives is a challenging task as the two objectives need to
be scaled so that the total values of the rewards in an episode
are roughly the same scale. We were able to achieve this
using experimental evaluation of different scaling methods.
In Figure 5 you can see that scale of the rewards within
a random 100 timestep episode is almost within the same
range.

RL algorithms are very sensitive to variation of hyper-
parameters [36], therefore using them for new problems
requires lots of hyperparameter tuning. By extensive sim-
ulation, we found out the following values as the optimal
hyperparameters values for each of the RL algorithms. The
values are presented in Table 2. For more detail about the
meaning of each hyperparamter see [48].

In the testing phase, we averaged the results for 20
separate episodes for each of the experiments.

We compared the results of the learning algorithms with
two greedy schedulers that focus on latency or energy con-
sumption only. As there is no work with a similar setting to
ours we chose two heuristic algorithms 1. Bestfit algorithm
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Neural Network
# Layers Layers size Activation funtion

2 64 Linear
PG

Train batch size Gamma Learning rate
1000 0.99 0.0003

PPO
SGD minibatch size train batch size learning rate

128 1000 0.0003
IMPALA

Train batch size Gamma Learning rate
1000 0.99 0.0003

TABLE 2
Hyperparameters of the RL algorithms
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Fig. 6. Average number of empty servers during the RL algorithms
training

as the ground truth value for energy consumption and 2.
A latency greedy algorithm that moves the services to the
closest vicinity of the users as the ground truth value for la-
tency. We compared IMPALA with two other RL algorithms
that have been widely used in previous scheduling works,
Vanilla Policy Gradient used in a paper with approximately
similar setting [49] and PPO which is one of the state of
the art algorithms previously used in systems research and
Kubernetes scheduling [50].

8 RESULTS

We evaluated the result in terms of the two energy saving
and latency objectives. During the training phase of the
algorithm, we observed that among the three tested RL
algorithms IMPALA showed the most stable convergence.
As you can see in Figure 7 and Figure 8 the green line
for IMPALA has fewer variations during the training. This
variation is not evident in Figure 6 as all the algorithms
converge to some optimal value very quickly. IMPALA also
shows a better convergence in all scenarios to the optimal
energy saving objective which is 6 empty servers. There was
not a consistent performance difference between the Policy
gradient and PPO during the training.

For the test results, we also compared the results with the
latency and energy saving heuristic algorithms. From Figure
9 we can see that the PG and IMPALA can achieve the best
average latency in the network among the three tested RL
algorithms. However, the difference between the achieved
results in both IMPALA and PG cases is very close.

In the case of the energy saving objective, the IMPALA
was able to converge to the optimal result in all network
sizes. This is illustrated in Figure 10. This was not the case
for the other two RL algorithms.

Analysis of the timesteps (instead of the average of the
servers) of a test episode can also confirm similar results
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episode run
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Fig. 12. Average network latency of different algorithms during a sample
episode run

to averaged results of multiple episodes (previously shown
test results). In Figures 11 and 12 we observe that during a
sample 200 timestamp episode the ordering is the same as
the averaged results.

We can also see that IMPALA is able to achieve similar
performance with the heuristic method that focuses on
the energy saving objective only. It can achieve this result
while reducing the average latency of users by 43%. This
demonstrates the efficacy of the Mobile-Kube system in
providing MEC services in a sustainable fashion. From these
results, we observed that IMPALA is able to achieve the
best result in terms of achieving a trade off between the two
aforementioned objectives.

9 CHALLENGES OF USING MACHINE LEARNING
FOR RESOURCE MANAGEMENT

There are still significant challenges in using ML-based
methods for resource management to make them fully com-
patible with real in-production systems. Firstly, the central
existing ML-based methods are not scalable to datacen-
ters with thousands of jobs waiting to be scheduled. One
solution here would be to use multi-agent reinforcement
learning [51] instead of a single agent central scheduler. A
similar idea has been previously used in some literature in
simulated environments [9], [52] but they have not been
examined at scale experimentally. Another solution to the
scalability problem would be to define a hierarchy in the
resource allocation problem and use hierarchical reinforce-
ment learning [53] to have access to different levels of
the desired resource allocation objective. In [54] authors
proposed the same scheme for resource allocation but the
method was not ML-based.

Another challenge is that there are several resource allo-
cation goals e.g. reducing energy consumption and reducing
resource fragmentation. However, most of the previous
works are only focused on optimising one resource allo-
cation goals. For example, DeepRM and Decima focus on

minimising the average job slowdown. However, the same
method could be used for minimizing other resource allo-
cation objectives such as server consolidation. Other than
the general objective of the resource allocation achieving
the same objective when having multiple resources is yet
another challenge. For example, the experiments on Decima
were conducted with at most two types of resources at the
same time (CPU and Memory) thus extending the same ob-
jective for different resources is yet another possible venue
for future research. Multi-objective RL methods seems to be
a good candidate for achieving such goals in the future.

One problem with most resource management problems
is that the dynamics of the environment are not solely
dependent on the agents’ actions. For example, the job
arrival of resources in DeepRM is based on a probability
distribution that the agent does not have any knowledge
of beyond those jobs that are already in the queue. This
violation of Markovian property makes the design of the RL-
based resource schedulers harder. The studies on applying
reinforcement learning to non-Markovian environments is
a longstanding research area [55], however, its applications
in systems research and in particular resource management
are not fully discovered. To the authors’ knowledge the Mao
et al. [56] paper is the only research that has tackled one of
the challenges of a semi-Markovian environment MDP in
the area.

10 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a deep reinforcement learning
solution for reducing energy consumption in containerised
clusters. Our results suggest that commonly used heuristic
algorithms like bin-packing can be replaced with learning-
based methods to achieve similar performance for the tar-
geted object while also improving performance in other
areas. Some directions for future works are:

Checkpointing of stateful services In this work we only
considered the case the case of stateless services that could
be turned on and off anytime without the need of preserving
their current state. However, this is not the case for many
real-world use cases. To this end, a checkpointing mech-
anism that could preserve the current state of the service
until it is restarted can be implemented in future works.

Kubernetes full implementation Currently we have our
scheduling control loop completely out of the Kubernetes
cluster. Although Mobile-Kube can be deployed in a cloud
environment best practice would be to place the control loop
inside the Kubernetes cluster. Kubernetes custom resource
[57] and operators [58] can be used in future works to
achieve this goal.
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